SHALLOW GROUNDWATER SUMMARY REPORT

STUDY AREA 5 SITE 117 - RYERSON STEEL SITE JERSEY CITY, NEW JERSEY

Prepared for:
Honeywell
101 Columbia Road
Morristown, NJ 07962

Prepared by:

AMEC E&I, Inc. 200 American Metro Boulevard, Suite 113 Hamilton, New Jersey 08619

SEPTEMBER 2011

TABLE OF CONTENTS

EXE	CUTIV	E SUMMARY	ES-1						
1.0	INTI	RODUCTION	1						
	1.1	Background and Purpose	1						
	1.2	Report Organization	3						
2.0	SITE	BACKGROUND	4						
	2.1	Site Description and Physical Setting	4						
	2.2	Site Geology / Hydrogeology	4						
	2.3	Previous Investigations / Remedial Actions	6						
	2.4	Summary of Regional Groundwater Remedy	9						
	2.5	Receptor Evaluation	10						
3.0	SUM	SUMMARY OF GROUNDWATER INVESTIGATION							
	3.1	Monitoring Well Redevelopment	12						
	3.2	Groundwater Level Measurements	12						
	3.3	Groundwater Field Sampling Activities	13						
	3.4	Groundwater Analytical Results	14						
		3.4.1 Total Chromium	14						
		3.4.2 Hexavalent Chromium	15						
		3.4.3 Total Organic Carbon	15						
	3.5	Well Search	16						
	3.6	Quality Assurance/Quality Control	16						
	3.7	Reliability of Laboratory Analytical Data	17						
	3.7	Offsite Shallow Groundwater Delineation	17						
4.0	SUM	IMARY OF FINDINGS AND RECOMMENDATIONS	18						
	4.1	Summary of Findings	18						
	4.2	Recommendations	19						
5.0	REF	ERENCES	21						
TABI	LES								
Table	e 1	Monitoring Well Construction Details							
Table	e 2	Groundwater Level Measurements and Elevations							
Table	e 3	Groundwater Field Measurements							
Table	e 4	Summary of Analytical Groundwater Results for Site 117 Shallow							
		Wells: 2009 (All Shallow Wells) and 2010-2011 (117-MW-A014)							

FIGURES

Figure 1	Site Location Map
Figure 2A	Groundwater Elevation Contour Map $-$ September 2009
Figure 2B	Groundwater Elevation Contour Map – October 2009
Figure 3	Groundwater Sampling Results

APPENDICES

Appendix A	Reference Figures from Regional Monitoring Program
Appendix B	Groundwater Field Sampling Forms/Contour Map Reporting Forms
Appendix C	Laboratory Analytical Data
	C1: Electronic Data Deliverables: NJDEP Hazsite (compact disc)
	C2: Laboratory Data Reports (provided on compact disk)
Appendix D	Data Validation Reports

VOLUME 2 – Full Laboratory Analytical Data Reports (Hard Copy)

Groundwater Samples Collected in 2009 (Site 117 Shallow Monitoring Wells) Groundwater Samples Collected in 2010-2011 (117-MW-A014 only)

EXECUTIVE SUMMARY

Honeywell International Inc. (Honeywell) has completed groundwater sampling for the portion of Study Area 5 designated by the New Jersey Department of Environmental Protection (NJDEP) as Site No. 117 Ryerson Steel Site (Site). This activity was undertaken to obtain additional data to evaluate whether further action is required for shallow groundwater. Pursuant to the Consent Decree Regarding Remediation of Study Area 5 Shallow Groundwater and Site 079 Residential Properties (SA-5 Shallow Groundwater Consent Decree) in *Jersey City Municipal Utility Authority v. Honeywell International Inc.*, this report is being submitted to the Parties as well as the NJDEP. This report addresses compliance with groundwater requirements of the NJDEP Technical Requirements for Site Remediation and the SA-5 Shallow Groundwater Consent Decree.

The Site is located within a portion of Study Area 5 that was redeveloped as a retail center. Remedial actions for soils were completed during 1997, and the NJDEP approved the soil remedial actions in a letter dated March 27, 1998. Further sampling and delineation of chromium impacts in groundwater (including shallow and deeper groundwater zones) has been completed as part of the Study Area 7 regional investigation and documented in the Final Groundwater Investigation Report for Study Area 7 (HydroQual, 2007).

The work detailed in this report includes the redevelopment of six existing shallow monitoring wells followed by two rounds of groundwater sampling of those wells during 2009. In the second round of sampling, one additional well (117-MW-S4) was added to the list of wells sampled. Samples were analyzed for total and hexavalent chromium. Total organic carbon was also analyzed during the second round of sampling. Additional sampling of monitoring well 117-MW-A014 (located in the southeast portion of the Site) was performed during 2010-2011 as part of further delineation work as specified in the SA-5 Shallow Groundwater Consent Decree.

Total chromium was detected at concentrations above the NJDEP groundwater quality standard (GWQS) of 70 µg/L in four wells:

117-MW-A062; 117-MW-A085;

117-MW-A089; and 117-MW-S4.

Filtered total chromium results indicate concentrations above 70 μ g/L in two wells: 117-MW-A085 and 117-MW-S4. Hexavalent chromium was detected above 70 μ g/L in only one well (117-MW-S4). Monitoring well 117-MW-A085 is located in the southwest (downgradient) portion of the Site and chromium detections are associated with the presence of chromite ore processing residue (COPR) fill. Well 117-MW-S4 is located in the northwest portion of the Site; chromium detections at this location are likely associated with the wet process area of the former Mutual Chemical plant.

Comparison of current data with historical results indicates that total and hexavalent chromium concentrations in shallow groundwater have declined substantially over the last 10 years in the majority of wells. Field measurements of low dissolved oxygen and negative oxidation-reduction potential indicate the presence of a reducing environment in most of the wells. These conditions favor reduction of hexavalent chromium to trivalent chromium. The exception was well 117-MW-A014, where a slightly oxidizing environment was encountered (positive oxidation-reduction potential).

The results of the sampling demonstrate that delineation in the shallow groundwater zone has been completed. At the downgradient side, Site 117 is contiguous with Site 153 (Former Morris Canal), where completion of Remedial Investigation (RI) is in progress. Completion of the RI at Site 153 is expected to provide additional delineation of hexavalent chromium-impacted fill soils and shallow groundwater further downgradient of Site 117. Shallow groundwater at the other sites comprising SA-5, including Sites 079 Route 440 Vehicle Corp. and Sites 090/184 Baldwin Steel/M.I. Holdings (NJCU Property) located north of Site 117, is being addressed as part of implementation of site-specific work plans approved by the NJDEP. Delineation and remediation of deep groundwater impacts are being addressed as part of the Study Area 7 regional groundwater remedy.

Based on current data, the regional groundwater remedy being implemented, and institutional control (Classification Exception Area [CEA]) to be established, no further remedial action is proposed for SA-5 shallow groundwater at this time. Significant decreases in total and hexavalent chromium concentrations have been

noted in the last ten years in the shallow zone and these concentrations are minor when compared to the regional groundwater issues associated with hexavalent chromium. These regional issues are being addressed with both a pump and treat approach as well as an in-situ approach. Chromium in groundwater in Study Area 5, 6, and 7 is being aggressively remediated. It is expected that shallow groundwater will attain the GWQS long before deep groundwater.

Documentation for the establishment of a Classification Exception Area for the entire complex of Study Areas 5, 6 and 7 has been submitted to the NJDEP. Following review of this report by the NJDEP and Parties, and NJDEP establishment of a CEA, it is anticipated that Honeywell will obtain a Remedial Action Permit for Groundwater to address NJDEP requirements with respect to long-term monitoring, maintenance, and institutional controls for groundwater at SA-5.

1.0 INTRODUCTION

This Shallow Groundwater Summary Report (Report) was prepared by AMEC E&I, Inc. (Amec), formerly MACTEC Engineering and Consulting, Inc. (Mactec), on behalf of Honeywell for NJDEP Site No. 117 (Ryerson Steel Site or Site) located in the City of Jersey City, Hudson County, New Jersey. The Site is located within a portion of Study Area 5 (SA-5) that was redeveloped as a retail center. This report presents the results of additional groundwater sampling of shallow monitoring wells and addresses delineation and remediation of shallow groundwater in compliance with requirements of the NJDEP Technical Requirements for Site Remediation and the SA-5 Shallow Groundwater Consent Decree.

1.1 BACKGROUND AND PURPOSE

Environmental investigations and remedial actions are being conducted in accordance with the requirements of the Administrative Consent Order (ACO) between Honeywell (formerly Allied Signal) and the NJDEP dated June 17, 1993, and the New Jersey Technical Requirements for Site Remediation (Technical Requirements) (N.J.A.C. 7:26E). The ACO includes requirements to investigate and, if necessary, remediate chromium contamination at 21 sites referred to as the Hudson County Chromium Sites. The sites are grouped into seven Study Areas. Study Area 5 is comprised of the following five sites located along the east side of Route 440 in Jersey City:

- Route 440 Vehicle Corp. (Site 079)
- Baldwin Steel (Site 090)
- Ryerson Steel (Site 117)
- Former Morris Canal (Site 153)
- M.I. Holdings, Inc. (Site 184)

A Remedial Investigation (RI) for SA-5 was completed during 1997-1999 and documented in a Remedial Investigation Report (RIR) dated November 1999 (TetraTech NUS, 1999). Additional RI activities were completed subsequent to the November 1999 RIR.

Remedial actions for soils at SA-5 Site 117 were completed during 1997 and included the installation of engineering controls (cap) and establishment of institutional

INTRODUCTION Honeywell

controls (deed notice). A No Further Action Letter for soils was issued by the NJDEP on March 27, 1998. Post-remediation quarterly cap inspections are performed and biennial certification reports are submitted to NJDEP to document the effectiveness of the engineering controls.

Previous investigation and delineation of chromium in shallow groundwater at SA-5 was completed and documented as part of previous RI activities for the sites comprising SA-5, as well as the regional groundwater investigation associated with Study Area 7 (SA-7). The purpose of the latest sampling provided in this report was to obtain current data on shallow groundwater conditions and evaluate whether further action is required for shallow groundwater.

Further delineation with respect to SA-5 shallow groundwater has also been completed as part of the SA-5 Shallow Groundwater Consent Decree requirements and documented in a report entitled Shallow Offsite Groundwater Delineation and Remedy Proposal Report dated July 2011 (Offsite Shallow Groundwater Report). This work included sampling of one existing monitoring well on Site 117 (117-MW-A014) and three new monitoring wells installed on off-site properties, including one shallow well to the south of SA-5 Site 117 (on Regnal Realty property) and two shallow wells located west of Route 440 (on Delco Levco Venture property) for delineation farther south/southwest of SA-5 and southeast of Study Area 6 South (SA-6 South). A letter from Plaintiffs dated August 11, 2011 stated that the Offsite Shallow Groundwater Report addressed off-site delineation sampling but did not address shallow groundwater contamination that exists on SA-5, namely the contaminated shallow groundwater on Site 117. Specifically, paragraph 64 of the Consent Decree requires the submittal of "a proposal for any remedial actions that may be required to address Study Area 5 Shallow Groundwater, including, if appropriate, either individually or in concert, containment, in situ treatment or other methods of source removal, pumping and treating, an environmental permit, a classification exception area or functional equivalent, or other form of institutional control permitted under the Technical Requirements for Site Remediation."

This report addresses SA-5 Site 117 shallow groundwater in compliance with the requirements of the SA-5 Shallow Groundwater Consent Decree and the NJDEP Technical Requirements for Site Remediation. Shallow groundwater at other sites comprising SA-5 is being addressed as part of implementation of site-specific work plans and document submittals to the NJDEP (see Section 2 for summary of

INTRODUCTION Honeywell

previous investigations and remedial actions).

Groundwater impacts within the deeper groundwater zones are being addressed by the regional remedy for SA-7 under oversight by a court-appointed Special Master. Work associated with the regional groundwater remedy is addressed in separate document submittals to the Special Master, with copies provided to the NJDEP.

1.2 REPORT ORGANIZATION

This report contains the following sections:

- 1. *Introduction*: summarizes the purpose of the report and report organization.
- 2. *Site Background*: provides a summary of Site background information, geology and hydrogeology, previous investigations and remedial actions.
- 3. Summary of Groundwater Investigation: presents a summary of additional groundwater investigations and monitoring (e.g., monitoring well installation, groundwater sampling and analysis) and discussion of sample results.
- 4. *Summary of Findings and Recommendations*: presents a summary of findings and recommendations for addressing shallow groundwater contamination at the Site.

2.0 SITE BACKGROUND

2.1 SITE DESCRIPTION AND PHYSICAL SETTING

The Ryerson Steel Site is located in the City of Jersey City, Hudson County, New Jersey (see **Figure 1**). The Site property encompasses approximately 15 acres on the east side of Route 440. The Site is bounded on the north by Sites 090 (Baldwin Steel), on the east by a railroad spur line, on the south by a commercial facility, and on the west by Site 153 (Former Morris Canal) and Route 440. Site history was documented in previous report submittals (Enviro-Sciences, Inc., 1997; TetraTech NUS, 1999). The Site was the location of the former Mutual Chemical Company sodium dichromate production facility from approximately 1905 to 1954, and then was used for steel production by Ryerson Steel. All buildings at the Site related to former chemical and steel production have been demolished. The entire Site was capped in accordance with an NJDEP-approved Remedial Action Work Plan (RAWP) as part of the redevelopment of the property as a retail center.

2.2 SITE GEOLOGY / HYDROGEOLOGY

Based on the results of previous RI soil borings, Site soils consist of fill ranging in thickness from approximately 5 to 17 feet, with an average thickness of about 10-12 feet. The fill consists primarily of silty sand, and includes miscellaneous construction debris such as bricks, glass, slag, concrete, wood, etc. Varying amounts of COPR were encountered in some borings within the fill materials. The residue, consisting of silty slag with green and/or yellow streaking or staining, was typically found in small pockets of a few inches thickness or less. The water table was also encountered within the fill materials.

Directly underlying the fill materials across most of the Site are alluvial deposits consisting primarily of fine to medium sand with some silt. Within the western portion of the Site, a layer of meadow mat was encountered in a number borings between the fill and the underlying alluvium. The thickness of the alluvium generally increases from east to west, towards the Hackensack River and Newark Bay, and from south to north. Glacial till was encountered below the alluvium in borings that extended through the alluvium. The till consists of a dense, cohesive, heterogeneous mix of sand, silt, clay, and gravel. Based on RI data, it appears that the till surface slopes to the west and south within SA-5.

The top of the shallow groundwater table occurs in the fill zone above the alluvial deposits and/or meadow mat beneath the Site. Slug test data for the shallow fill zone from the RI indicate a geometric mean hydraulic conductivity value of 0.5 feet/day, although local variations are likely. An average groundwater flow velocity of 3 feet/year was calculated for the Site based on the average hydraulic conductivity value, average gradient of 0.005 and assumed porosity of 0.3 (TetraTech NUS, 1999).

Groundwater flow in the area of the SA-5/6/7 has been mapped as part of the SA-7 regional investigation, which identified four hydro-stratigraphic zones as follows:

- Shallow Zone above the meadow mat and generally in fill material.
- Intermediate Zone within lacustrine deposits just below the meadow mat. This zone is from approximately 20 to 40 feet below ground surface (bgs) and includes sand deposits identified as S-1 and upper S-2 lacustrine sands.
- Deep Zone within lacustrine deposits just above the glacial till/ice contact deposits. This zone is from approximately 60 to 90 feet bgs and includes sand deposits identified as lower S-2 and S-3 lacustrine sands.
- Upper Bedrock Zone just below the top of bedrock, which occurs at depths from approximately 80 feet to 130 feet.

Groundwater contour maps from the SA-7 regional investigation and long term monitoring program indicate that shallow groundwater flow is generally to the west-southwest and is influenced by man-made features such as sewer systems along Route 440, the barrier wall around SA-7, and the recently constructed barrier wall along the south and west boundary of the SA-5 Sites 090/184 (NJCU property) (HydroQual, 2007; Cornerstone; 2011). Groundwater contour maps from the regional monitoring program for the shallow zone are provided for reference in **Appendix A**. Groundwater contour maps for SA-5 Site 117 presented in this report indicate shallow groundwater flow to the southwest, in the direction of Site 153 Former Morris Canal and Route 440. The direction of groundwater flow at Site 117 is consistent with regional groundwater contour maps.

Data from the SA-7 regional investigation indicate a downward vertical flow gradient in the eastern portion of the study area on SA-5 Site 117 and an upward flow gradient in the western portion of the study area near the river. The downward

SITE BACKGROUND Honeywell

flow gradient in the area of SA-5 may be due, at least in part, to the absence of meadow mat (a hydraulically restrictive layer) which pinches out east of Route 440.

2.3 PREVIOUS INVESTIGATIONS / REMEDIAL ACTIONS

SA-5 Site 117

The following investigations and remedial actions have been completed at the Site:

- Remedial Investigations (1991 to 1997): Sampling of surface and subsurface media at Site 117 was first conducted in 1991; a total of 118 soil samples were collected at the time. An RI was conducted during 1996-1997 by Enviro-Sciences, Inc. on behalf of G. Heller Enterprises, Inc. The RI included the drilling and sampling of more than 100 soil borings (350+ soils samples) and five shallow groundwater monitoring wells. The RI Report and the Remedial Action Work Plan were approved by the NJDEP. The entire Site was capped with a synthetic membrane system. Chromium-impacted soils that were excavated during construction were contained and capped on-site under a double liner system. Remedial actions were documented in a Remedial Action Report dated December 1997 (Enviro-Sciences, Inc., 1997).
- Remedial Investigation (1997-1999): On behalf of Honeywell, TetraTech NUS conducted RI work including soil boring installation, soil and groundwater sampling, and laboratory analysis, and presented the RI results in a Draft RI Report for Study Area 5 dated November 1999. The RI groundwater investigation for Site 117 included analysis of samples collected from the six on-site shallow monitoring wells: 117-MW-A05, 117-MW-A014, 117-MW-A062, 117-MW-A085, 117-MW-A089, and 117-MW-A099. Groundwater sample parameters included: total and hexavalent chromium, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), Target Analyte List (TAL) metals, total dissolved solids (TDS), and total organic carbon (TOC). Total chromium was detected above the GWQS in the six shallow monitoring wells at concentrations ranging from 131 µg/L (117-MW-A014) to 14,100 μg/L (117-MW-A085). Hexavalent chromium exceeded the GWQS for total chromium in 117-MW-A014 (up to 131 µg/L) and 117-MW-A089 (up to 1,750) during the initial round of monitoring in 1997. Subsequent sampling rounds during 1998-1999 indicated lower total and hexavalent chromium concentrations in the majority of shallow wells.

SITE BACKGROUND Honeywell

Aluminum, sodium, and iron exceeded the GWQS in monitoring wells 117-MW-A85, 117-MW-A89, and 117-MW-A99 (not aluminum).

• Groundwater Investigation (2003-2007): On behalf of Honeywell, HydroQual conducted groundwater investigations in two phases in 2003 and 2006. The groundwater sampling and laboratory analysis of the groundwater results were presented in a Final Groundwater Investigation Report (FGIR) for SA-7 dated February 2007. Samples were analyzed for total and hexavalent chromium, chloride, sulfate, TDS, and TAL metals in 2003, and for total and hexavalent chromium, VOCs, TAL metals, pH, TDS, TOCs in 2006. The groundwater sample results during 2003 indicated that total chromium was detected in the following wells above the GWQS of 70 μg/L: 117-MW-A014 (86.4 μg/L), 117-MW-A062 (401 μg/L), 117-MW-A085 (3,380 μg/L), 117-MW-A089 (457 μg/L), and 117-MW-A099 (78.4 μg/L). Hexavalent chromium concentrations were below the GWQS, with the exception of monitoring well 117-MW-A089 (416 μg/L). Groundwater sample results during 2006 indicated similar chromium concentrations as detected during 2003 (HydroQual, 2007).

During the court-ordered SA-7 investigation, shallow monitoring well 117-MW-S4 was installed in December 2006 as part of a series of well couplets installed to evaluate conditions at the former Mutual Chemical plant wet process area along the northern Site perimeter. Previous data in this area indicated chromium concentrations in the shallow zone on the order of 100 mg/L based on vertical aquifer screening results. The FGIR for SA-7 indicated that a relatively thin layer of COPR-like material was encountered at this location, and concluded that the source of elevated chromium concentrations was likely associated with historical discharges of sodium dichromate. Groundwater data from shallow well 117-MW-S4 was not included in the FGIR for SA-7 due to the timing of well installation relative to the report submittal in February 2007. This well was initially installed adjacent to monitoring well 117-MW-I4 (Intermediate Zone well) for collection of samples for treatability testing, and was sampled during the more recent October 2009 event to provide current data on shallow groundwater conditions.

Other SA-5 Sites: Sites 079, 090, 153 and 184

Remedial investigations and/or actions with respect to shallow groundwater at the other sites comprising SA-5 are being addressed through implementation of site-specific work plans and reports submitted to the NJDEP for review and approval.

At Site 079 Route 440 Vehicle Corp., located to the north of Site 117, groundwater is not impacted with chromium above the GWQS of 70 μ g/L. Remedial actions for soils were completed during 2010 and have been documented in a Remedial Action Report (RAR) that was submitted to the NJDEP in September 2011.

At Sites 090/184 Baldwin Steel/M.I. Holdings (NJCU property) located immediately north of Site 117, remedial actions were completed during 2010-2011 and will be documented in a RAR anticipated to be submitted to the NJDEP by the end of 2011. Remedial actions included a combination of soil excavation, capping system, and installation of a hydraulic barrier (sealed sheet pile) along the southern boundary (between Site 117 and NJCU) and western boundary (along Site 153/Route 440) to prevent off-site contaminated groundwater from impacting the remediated soil area and to prevent contaminated groundwater from migrating off-site. Remedial actions also included installation of a contingent groundwater extraction system.

At Site 153 Former Morris Canal, located along the western (downgradient) perimeter of Site 117, additional RI delineation sampling was conducted during 2010-2011 and will be documented in a future report submittal to the NJDEP. For the purpose of site identification and remedial action, Site 153 has been divided into several sections as described in the SA-5 Consent Decree: Site 153 North (next to NJCU property), Site 153 South Upper Segment (next to Site 117) and Site 153 South Lower Segment (south of Site 117). Interim remedial measures (IRMs) for Site 153 South Lower Segment were completed in 2009 and included excavation of chromium-impacted soils to a depth of three feet bgs and restoration of surface vegetative cover and pavement consistent with pre-remediation conditions. Similar IRM activities are being completed at Site 153 South Upper Segment during 2011. Remedial actions at Site 153 North were completed as part of the remedial actions at the NJCU property. Final remedial actions will be summarized in a future report submittal to the NJDEP.

2.4 SUMMARY OF REGIONAL GROUNDWATER REMEDY

The SA-7 regional groundwater remedy includes a Ground Water Extraction and Treatment (GWET) system which began operation in December 2008, and an in situ chromium mass removal program (involving reductant injection into the S-3 sand) that is scheduled to begin during the latter part of 2011. The deep overburden plume originates at the former Mutual Chemical facility on SA-5 Site 117 and flows under portions of SA-6 and SA-7 west of Route 440. The plume is contained and is being prevented from discharge to the Hackensack River by the GWET system.

The GWET system consists of deep overburden and bedrock groundwater extraction from three recovery wells, with treatment of the extracted water at Honeywell's treatment plant located on Kellogg Street. The extraction wells are designated as PW-1 (deep overburden zone; pumping rate 40 gallons per minute [gpm]), PW-2 (intermediate overburden zone; pumping rate 7.5 gpm), and 115-MW-203BR (upper bedrock zone; pumping rate 7 gpm). The two overburden wells are located near the downgradient end of the deep overburden plume and contain the plume from further off-site migration. The wells also cause a reversal of the hydraulic gradient in the deep overburden beneath the Hackensack River and pull back the river-ward portion of the plume. The bedrock extraction well is located in the southwest corner of SA-7 and serves to contain the bedrock plume. The combined pumping from PW-1 and PW-2 creates a capture zone that encompasses the full width of the deep overburden plume from its origin at the former Mutual Chemical plant on Site 117 and along its flow path under portions of SA-5 and SA-6 North. The total pumping rate of the three GWET wells is currently 54.5 gpm. Periodic monitoring and annual reporting is conducted in accordance with the Long Term Monitoring Plan for the Deep Overburden and Bedrock Groundwater Remedy (HydroQual, 2008; Cornerstone, 2011).

The in-situ chromium mass removal program involves injection of reductant into the deep overburden groundwater plume within the S-3 sand formation. This additional remedial action will supplement the existing GWET system and provide mass removal and source treatment within the higher concentrations of the plume. The objective is to inject soluble reductant to reduce 50 tons of hexavalent chromium within the groundwater of deep overburden plume. Reductant will be injected into four injection wells located along the central portion of the plume. The most upgradient injection well is 117-MW-I4 located on SA-5 Site 117 and the other three

injection wells were installed on SA-6 North (reference map provided in **Appendix A**). The wells were installed with double casing and extended to the S-3 sand layer at approximately 60 feet below grade. Details regarding the in situ chromium mass removal program and monitoring/reporting requirements are provided in the Operations Work Plan for In-Situ Chromium Mass Removal (Cornerstone, 2010).

2.5 RECEPTOR EVALUATION

A receptor evaluation has been performed for the SA-5 sites and documented in a report submittal to the NJDEP in February 2011 in compliance with the Technical Requirements for Site Remediation, specifically N.J.A.C. 7:26E-1.15 through 1.19. These requirements include: evaluation of land use; updated well search; evaluation of groundwater data with respect to identified water supply wells and NJDEP groundwater screening levels for the vapor intrusion (VI) pathway; and ecological evaluation. A summary of the receptor evaluation results pertaining to groundwater is provided for reference as follows.

An updated well records search was conducted to identify all monitoring and potable wells located within one-half mile and all irrigation, industrial wells, and wells with water-allocation permits located within one mile of the SA-5 sites. No potable or water supply wells were identified within 1,000 feet of SA-5. One (1) industrial well (205 feet deep) was identified within one-half mile and two (2) industrial wells (117 to 335 feet deep) were identified between one-half mile and one mile of SA-5. These wells are located to the northeast, southeast and east relative to SA-5. Groundwater impacts at SA-5 would not be expected to impact these wells due to their distance and location relative to SA-5 sites.

Groundwater in the area of SA-5 is not used as a source of potable water, and both the Site and surrounding area of Jersey City are served by the municipal water supply system (United Water Company). Potable water supply for Jersey City is provided by United Water Company (formerly Hackensack Water Company) which obtains water from surface water reservoir sources in Morris County, New Jersey.

With respect to the VI pathway evaluation, volatile organic compounds (VOCs) are the primary contaminants of concern. NJDEP groundwater screening levels for the VI pathway are not available for chromium. Chromium is not considered a contaminant of concern for the groundwater to VI pathway because it does not readily volatilize from groundwater.

SITE BACKGROUND Honeywell

Site data were also reviewed with respect to contaminants of potential ecological concern (COPECs) and potential migration pathways to environmentally sensitive natural resources. While COPECs (e.g., hexavalent chromium) were identified in soil and groundwater, no environmentally sensitive areas are present on the properties comprising SA-5. The nearest environmentally sensitive resource is the Hackensack River, located approximately 1,200 feet west of the SA-5 sites.

Chromium-related sediment impacts in the Hackensack River are being addressed as part of the SA-7 regional investigation and remedy. Honeywell has conducted appropriate surface water and sediment investigations within the Hackensack River in the area of SA-6/SA-7 as part of the regional investigation associated with SA-7. Reference documents including the Final Sediment Investigation Report and the Sediment Remedial Alternatives Assessment have been provided by Honeywell to the NJDEP. Remedial actions to mitigate potential impacts to surface water and sediments will be addressed as part of the SA-7 regional investigation and remedy.

3.0 SUMMARY OF GROUNDWATER INVESTIGATION

The groundwater investigation included the redevelopment of six existing shallow groundwater monitoring wells during August 2009 and two rounds of groundwater sampling of those wells in September and October 2009, as well as the sampling of one additional existing monitoring well (117-MW-S4) in October 2009. Well 117-MW-S4 was not developed or included in the first round of sampling (September 2009) since this well was not part of the initial RI for SA-5 Site 117 but was installed as part of the SA-7 regional investigation; it was included in the second round of sampling (October 2009) to provide current data for all existing shallow wells on the Site. Additional sampling of monitoring well 117-MW-A014 was completed during 2010-2011 as part of further delineation requirements for shallow groundwater as specified in the SA-5 Shallow Groundwater Consent Decree. The remainder of this section describes the monitoring well redevelopment, groundwater level gauging, field sampling and analytical results from the sampling events.

3.1 MONITORING WELL REDEVELOPMENT

On August 7, 2009, six monitoring wells (117-MW-A05, 117-MW-A014, 117-MW-A062, 117-MW-A085, 117-MW-A089 and 117-MW-A099) were redeveloped by B&B Drilling, Inc., a New Jersey Licensed well driller, under observation and supervision by Mactec. The purpose of well redevelopment was to remove accumulated fines and rehabilitate the wells, since they were installed over 10 years ago and had not been sampled since 2006. The redevelopment removed fines accumulated in the well annulus and ensured proper hydraulic connection to the saturated zone, by removing any fines that may have been lodged in the sand pack and screen. The wells were redeveloped using surge-block method, in accordance with N.J.A.C. 7:9D. Well 117-MW-S4 was not redeveloped during this event because it was installed in 2006 as explained above.

Monitoring well construction details are provided in **Table 1**. The locations of the wells are shown on **Figures 2 and 3**.

3.2 GROUNDWATER LEVEL MEASUREMENTS

The static depth to water level in each monitoring well was measured (to the nearest 0.01 foot) prior to each round of sampling using an electronic water level indicator. The depth to water and corresponding groundwater elevation data recorded during

the sampling events are provided on Table 2.

The groundwater elevations from each of the wells were used to prepare groundwater elevation contour maps for the shallow water table zone. Groundwater elevation contour maps from each monitoring event are shown on **Figures 2A and 2B** and indicate that the generalized direction of shallow groundwater flow is toward the west/southwest. This flow direction is generally consistent with previous groundwater investigations and contour maps for the shallow zone. Overall, groundwater elevations (feet above mean sea level) observed across the Site during the monitoring events varied from a low of 4.57 feet in 117-MW-A089 during October 2009 to 8.42 feet in 117-MW-A062 during September 2009. The fluctuations in groundwater elevations over the monitoring events ranged from approximately 0.30 feet to 0.55 feet. Groundwater monitoring field forms and contour map reporting forms are included in **Appendix B**.

3.3 GROUNDWATER FIELD SAMPLING ACTIVITIES

The monitoring wells were purged using low-flow sampling methods and equipment (peristaltic pumps) and groundwater samples were collected directly from dedicated pump tubing. Field parameter measurements including pH, specific conductance, temperature, dissolved oxygen (DO), oxidation-reduction potential (ORP), salinity, and turbidity were recorded during the well purging and sampling activities. Results for field parameters indicate that elevated pH values (pH >10) were detected in the following wells: 117-MW-A85 and 117-MW-S4 during the second round of sampling. DO values were low (less than 1 mg/L) or were not detected in the majority of wells; positive DO values were detected in 117-MW-A014, 117-MW-S4, and 117-MW-A099. ORP values were negative (between -263 mV to -41 mV) for all of the wells except for 117-MW-A14, which shows a positive value. Groundwater field measurements are reported in **Table 3**. Groundwater field sampling data sheets are included as **Appendix B**.

A hydrocarbon sheen was observed in well 117-MW-A062. This sheen has been observed on a number of instances in the past, and is believed to be related to a former underground storage tank (UST) that was closed as part of the Site redevelopment.

Groundwater samples were analyzed by Accutest Laboratories of Dayton, New Jersey (NJ Certification #12129). The sampling program incorporated the collection

and analysis of quality assurance/quality control (QA/QC) samples including field blanks and duplicate samples. Samples were analyzed for total and hexavalent chromium. During the second round of sampling, samples were also analyzed for total organic carbon.

3.4 GROUNDWATER ANALYTICAL RESULTS

Groundwater sample results are summarized in **Table 4** and shown on **Figure 3**. Electronic copies of the full laboratory data reports and the NJDEP HAZSITE electronic data deliverables for the sampling performed in 2009 (all wells) and 2010-2011 (117-MW-A014) are included in **Appendix C**. One full hard copy of the laboratory analytical data reports is provided to the NJDEP as a separate bound document. Sample QA/QC and data validation are discussed in Sections 3.6 and 3.7. Copies of data validation reports are included as **Appendix D**.

3.4.1 Total Chromium

In September 2009, total chromium concentrations ranged from 10 µg/L to 186 µg/L in non-filtered samples and 10 µg/L to 111 µg/L in filtered samples. In October 2009, total chromium concentrations ranged from 10 µg/L to 1,570 µg/L (filtered results ranged from non-detect to 55 µg/L), except for monitoring well 117-MW-S4 which had a total chromium concentration of 334,000 µg/L. Total chromium concentrations detected during 2010-2011 in 117-MW-A014 were below 70 µg/L and consistent with 2009 results.

The total chromium concentrations in groundwater are generally lower than historical data, suggesting that well redevelopment was successful at removing interfering fines. This is consistent with the general observation that total chromium concentrations in filtered samples were substantially less than unfiltered results or not detected. Overall, as shown on **Figure 3**, total chromium concentrations have declined with time including an overall reduction from the September to the October sampling round.

Total chromium concentration exceeded the 70 μ g/L GWQS in well 117-MW-A85 during both sampling rounds. This well is located in an area where RI soil sampling results indicated elevated concentrations of total chromium. Nonetheless, during the second round of sampling, total chromium was not detected in the filtered sample. Total chromium was detected in 117-MW-A062 at a concentration of 1,570

 μ g/L in the October 2009 event; however the filtered sample result was 55 μ g/L and less than the GWQS of 70 μ g/L. This may be an artifact of the petroleum hydrocarbons present in the well, which can interfere with the analytical method for hexavalent chromium.

The highest chromium concentration detected was in well 117-MW-S4, which is located in the area of the former chromates production building/wet process area. This well is located generally upgradient of 117-MW-099, where total chromium concentrations were below the GWQS. Therefore, the areal extent of the high chromium concentrations at 117-MW-S4 is limited and chromium is not migrating in shallow groundwater beyond the immediate vicinity of that well.

3.4.2 Hexavalent Chromium

Hexavalent chromium was detected in 117-MW-A014 and 117-MW-S4. Samples from 117-MW-S4 (installed in the area of former chromates production building) exceeded the GWQS for total chromium, and hexavalent chromium concentrations are similar to those of total chromium. Hexavalent chromium was not detected in 117-MW-A099 (located downgradient of 117-MW-S4), suggesting that hexavalent chromium is reduced and precipitated out of the groundwater and is not migrating in shallow groundwater beyond the immediate vicinity of well 117-MW-S4.

Hexavalent chromium was detected in filtered and unfiltered samples in well 117-MW-A014. RI data indicate that hexavalent chromium was detected in soil samples in this area. Because groundwater redox conditions at this location are oxidizing, hexavalent chromium tends to persist and is detected in the groundwater, but at concentrations below the GWQS.

Overall, as shown on **Figure 3**, hexavalent chromium concentrations have declined with time in all the shallow wells installed at the Site.

3.4.3 Total Organic Carbon

Total organic carbon (TOC) in the monitoring wells is generally low ranging from 2 mg/L in 117-MW-A05 to 13.6 mg/L in 117-MW-A062. Generally, TOC concentrations are highest in the downgradient wells which overlie the meadow mat. The TOC concentration in well 117-MW-A062 likely reflects the petroleum hydrocarbons detected in this well. Overall, TOC levels show an inverse relationship to redox conditions.

3.5 WELL SEARCH

Well searches have been completed during the initial RI work in the late 1990s and more recently as part of the Final Groundwater Investigation Report for SA-7 (HydroQual, 2007) and Receptor Evaluation Report for SA-5 (Mactec, 2011). Well search results indicate that groundwater is not used as a source of potable water in the area of the Site. No water supply wells or pumping centers were identified in the vicinity of the Site nor is the Site in a recharge area for a pumping center. The City of Jersey City is served by the municipal water supply system, which obtains water from sources outside of Hudson County. It is anticipated that any new development in the area of the Site would connect to the municipal water system.

3.6 QUALITY ASSURANCE/QUALITY CONTROL

Groundwater samples were collected in accordance with the guidelines and procedures specified in the NJDEP Field Sampling Procedures Manual. The samples were transferred directly to laboratory-prepared sample bottles from dedicated pump tubing, and transported to the laboratory following chain-of-custody procedures.

Field blank samples were collected by passing reagent-grade water through the sampling equipment (dedicated pump tubing) and analyzed at a rate of one per day (one field blank for each round of sampling). No target analytes were detected in any of the field blank samples collected during the sampling program.

Duplicate samples were collected at the rate of one per sampling round and analyzed for the groundwater sampling parameters. Duplicate results for chromium are consistent with the corresponding environmental sampling results for each round of monitoring.

Data validation of the groundwater samples was independently performed by Validata, LLC, Seattle, Washington. Based on the data validation results, the laboratory analytical data were determined to be acceptable, with minor qualifications. Details of these qualifications are provided in the data validation summary reports in **Appendix D**.

3.7 RELIABILITY OF LABORATORY ANALYTICAL DATA

Groundwater samples were collected and analyzed for total chromium and hexavalent chromium during the sampling program. In addition, each of the samples was analyzed for dissolved total chromium and dissolved hexavalent chromium. The analytical data and validation qualifiers for groundwater sample analyses are presented on **Table 4**. A review of the data validation reports indicates that some results for hexavalent chromium were qualified as estimated values (J qualifier) due to minor deficiencies associated with spike recovery. Based on data validation review, the data collected and presented in this report is reliable and usable as submitted or qualified.

3.8 OFFSITE SHALLOW GROUNDWATER DELINEATION

Further delineation of SA-5 shallow groundwater was completed as part of the SA-5 Shallow Groundwater Consent Decree requirements and documented in the Offsite Shallow Groundwater Report dated July 2011. Work included sampling of an existing monitoring well on Site 117 (117-MW-A014) and installation/sampling of three new monitoring wells installed on off-site properties, including one shallow well (153-MW-05) to the south of SA-5 Site 117 (on Regnal Realty property) and two shallow wells (124-MW-10, 124-MW-11) located west of Route 440 (on Delco Levco Venture property) for delineation farther south/southwest of SA-5 and southeast of SA-6 South. Two rounds of sampling were completed in October 2010 and April 2011 with laboratory analysis of samples for total and hexavalent chromium. Groundwater sample results indicated that all of the above wells were below the GWQS for total chromium. Based on sample results, the offsite shallow groundwater delineation requirements of the SA-5 Shallow Groundwater Consent Decree were addressed (Mactec, 2011).

4.0 SUMMARY OF FINDINGS AND RECOMMENDATIONS

4.1 SUMMARY OF FINDINGS

Based on the groundwater elevation data, the direction of shallow groundwater flow at the Site is to the west/southwest, toward Site 153 (Former Morris Canal).

The horizontal extent of chromium-impacted groundwater has been delineated. Shallow groundwater chromium impacts exceeding the GWQS generally coincide with the previously delineated chromium-impacted fill and limited to the western portion of the Site. Over time, total and hexavalent chromium concentrations are declining, as expected for a capped site with prevalent reducing conditions. Comparison of current data with historical results indicates that total and hexavalent chromium concentrations in shallow groundwater have declined substantially over the last 10 years. The most recent data from October 2009 indicate chromium concentrations above the GWQS in three wells (117-MW-A062, 117-MW-A085, 117-MW-S4) and filtered results exceeding the GWQS in only one well (117-MW-S4). The high concentrations of chromium in well 117-MW-S4 are limited to the immediate vicinity of that well. The overall downgradient extent of the impacted shallow groundwater is estimated to extend to Site 153 (Former Morris Canal). The remaining RI at Site 153 is expected to provide additional data to complete the delineation of chromium-impacted fill and shallow groundwater impacts downgradient of the Site.

The vertical extent of chromium-impacted groundwater was delineated under the regional groundwater investigation (HydroQual 2007). Data collected during that investigation demonstrate that deep groundwater impacts are associated with historic discharges of sodium dichromate and are not related to COPR fill. Elevated chromium concentrations that may be migrating downward in the area of shallow well 117-MW-S4 are being addressed by the regional groundwater remedy.

From a regional perspective, delineation of SA-5 shallow groundwater impacts has been completed based on data from the SA-7 regional investigation and the additional groundwater delineation sampling performed as required by the SA-5 Shallow Groundwater Consent Decree. Documentation for the establishment of a

Classification Exception Area (CEA) for the SA-5 and SA-6 shallow groundwater system was submitted to the NJDEP in June 2009.

Previous investigation results show that sodium and chloride concentrations in the shallow groundwater exceed the NJDEP Class IIB GWQS, which is consistent with saline water impacts related to the history of the Site and surrounding area as a former marshland and the subsequently filling and construction of the Morris Canal, which was operated with water from Newark Bay and the New York Harbor.

4.2 RECOMMENDATIONS

Based on the data obtained during the current and previous sampling events, the extent of chromium impacts in the shallow saturated zone has been delineated to the Site boundary.

Based on the findings, the regional groundwater remedy being implemented, and institutional control (CEA) to be established, no further remedial action is recommended with respect to shallow groundwater at Site 117 at this time. This recommendation is supported by the following findings:

- Significant declines are noted in shallow groundwater chromium concentrations over the last ten years. The concentrations are minor when compared to the regional groundwater issues associated with hexavalent chromium. The elevated chromium concentrations in well 117-MW-S4 are limited to the immediate area of that well in the northwest portion of the Site. Elevated chromium concentrations that may be migrating downward in the area of 117-MW-S4 are being addressed by the regional groundwater remedy, which includes the existing GWET downgradient pumping system and the S-3 injection mass removal program. The reductant injection program includes one injection well (117-MW-I4) in the area of 117-MW-S4 and three injection wells farther downgradient within the central portion of the deep overburden plume. It is expected that shallow groundwater will attain the GWQS long before deep groundwater.
- The Site is fully capped, which mitigates the risk of contact with contaminated soil and/or groundwater.

- Groundwater beneath the Site and surrounding area is not used as a source of potable water, and no domestic or public water supply wells were identified within one-half mile of the Site.
- The SA-7 regional groundwater remedy and Long Term Monitoring Plan includes monitoring to evaluate and document groundwater conditions within the SA-5/6/7 system and performance of the regional groundwater remedy.
- An institutional control (CEA) for groundwater will be established to identify groundwater impacts above the GWQS and prevent the use of groundwater within the designated CEA area.

Following review of this report by the NJDEP and Plaintiffs, and NJDEP establishment of a CEA, it is anticipated that Honeywell will obtain a Remedial Action Permit for Groundwater to address NJDEP requirements with respect to long-term monitoring, maintenance, and institutional controls for groundwater at SA-5.

5.0 REFERENCES

- Cornerstone, 2010. Operations Work Plan for In-Situ Chromium Mass Removal (Reductant Injection into the S-3 Sand), Study Area 7. October 22, 2010; revised April 19, 2011.
- Cornerstone, 2011. Annual Performance Report #2, Long Term Monitoring Plan, Study Area 7 Deep Overburden and Bedrock Groundwater Remedy. February 24, 2011.
- Enviro-Sciences, Inc., October 1996. Remedial Investigation Report and Remedial Action Work Plan for 440 Commons Home Depot, Ryerson Steel/Mutual Chemical Site, Jersey City, New Jersey. October 1996; revised June 2007.
- Enviro-Sciences, Inc., 1997. Remedial Action Report for 440 Commons Home Depot, Former Ryerson Steel/Mutual Chemical Site, Jersey City, New Jersey. December 1997; revised February 1998.
- HydroQual, Inc., 2007. Final Groundwater Investigation Report, Honeywell Study Area 7. February 2, 2007.
- HydroQual, Inc., 2008. Long Term Monitoring Plan, Deep Overburden and Bedrock Groundwater Remedy, Honeywell Study Area 7. June 13, 2008.
- Mactec, 2011a. Shallow Offsite Groundwater Delineation and Remedy Proposal Report. July 19, 2011.
- Mactec, 2011b. Receptor Evaluation Reports for the Hudson County Chromium Sites, February 28, 2011.
- TetraTech, Inc., 1999. Draft Remedial Investigation Report Study Area 5 NJDEP Site No. 079, 090, 117, 153 and 184 Jersey City, NJ. November 1999.

Table 1 Monitoring Well Construction Details Study Area 5 - Site 117 Ryerson Steel Site Jersey City, New Jersey

Well ID	Northing	Easting	Date Installed	Casing Diameter (in)	Ground Elevation (MSL) ²	Top of Casing Elevation (MSL) ²	Top of Screen (feet bgs) ³	Bottom of Screen (feet bgs) ³	Top of Screen Elevation (MSL) ²	Bottom of Screen Elevation (MSL) ²
117-MW-A05	604115.91	684005.21	c.1997	2	18	18.50	6	16	12.5	2.5
117-MW-A014	603651.33	683698.66	c.1997	2	17	17.33	7	17	10.33	0.33
117-MW-A062	603928.97	684384.79	c.1997	2	18	18.32	5	15	13.32	3.32
117-MW-A085	603558.19	684201.79	c.1997	2	17	17.40	5	15	12.4	2.4
117-MW-A089	603352.69	683955.18	c.1997	2	13	13.17	6	16	7.17	-2.83
117-MW-A099	603743.66	684623.97	c.1997	2	16	15.95	4	14	11.95	1.95
117-MW-S4	603839.60	684702.80	c. 2006	2	16	15.49	10	20	5.49	-4.51

Notes:

- 1. Not Available
- 2. Elevations relative to mean seal level (MSL). Elevation Datum is NAD 1983.
- 3. Feet below ground surface.

Table 2
Groundwater Level Measurements and Elevations
Study Area 5 - Site 117 Ryerson Steel Site
Jersey City, New Jersey

Monitoring Well	Date	Time	DTB (ft btoc)	TOC Elevation (ft amsl)	DTW (ft btoc)	GW Elevation (ft amsl)			
117-MW-A05	09/09/2009	7:10	16.74	18.50	10.32	8.18			
117-MW-A05	10/12/2009	8:45	16.41	18.50	10.72	7.78			
117-MW-A014	09/09/2009	7:15	17.25	17.33	11.63	5.70			
117-MW-A014	10/12/2009	8:53	17.51	17.33	11.88	5.45			
117-MW-A014	10/19/2010	9:15	17.25	17.33	11.75	5.58			
117-MW-A014	04/26/2011	7:20	17.2	17.33	11.32	6.01			
117-MW-A062	09/09/2009	7:18	14.50	18.32	9.90	8.42			
117-MW-A062	10/12/2009	11:05	14.50	18.32	10.37	7.95			
			•						
117-MW-A085	09/09/2009	7:05	16.12	17.40	10.92	6.48			
117-MW-A085	10/12/2009	7:40	16.35	17.40	11.38	6.02			
117-MW-A089	09/09/2009	6:50	16.57	13.17	8.31	4.86			
117-MW-A089	10/12/2009	7:55	NM	13.17	8.60	4.57			
117-MW-A099	09/09/2009	9:50	14.70	15.95	7.98	7.97			
117-MW-A099	10/12/2009	11:00	14.70	15.95	8.32	7.63			
117-MW-S4	09/09/2009	NA	NA	NA	NA	NA			
117-MW-S4	10/12/2009	10:02	19.84	15.49	7.52	7.97			

Notes:

DTB = Depth-to-Bottom of well (i.e.total depth), measured from top of casing

TOC = Top of Casing

DTW = Depth-to-Water level below top of casing

ft bgs = feet below ground surface

ft amsl = feet above mean sea level

ft btoc = feet below top of casing

NA = Not applicable; well could not be gauged.

Table 3
Groundwater Field Measurements
Study Area 5, Site 117 Ryerson Steel Site
Jersey City, New Jersey

Well ID	Date	pH (S.U.)	Cond. (ms/cm)	Turbidity (NTUs)	Diss. O ₂ (mg/L)	Temp (°C)	Salinity (%)	Redox (mV)		
117-MW-A05		5.99	1.45	38.3	0.00	19.91	0.10	-75		
117-MW-A014		6.05	1.27	25.1	0.00	18.88	0.06	31		
117-MW-A062		6.37	1.75	38.3	0.00	19.32	0.08	-174		
117-MW-A085	9/9/2009	8.75	0.499	13.5	0.00	19.21	0.20	-263		
117-MW-A089		6.84	2.31	58.7	0.00	19.36	0.10	-92		
117-MW-A099		7.26	1.25	79.1	8.70	23.85	0.10	-154		
117-MW-S4		NM	NM	NM	NM	NM	NM	NM		
117-MW-A05		6.44	0.509	7.4	0.43	18.60	0.00	-41		
117-MW-A014		6.85	0.867	0.5	0.00	18.39	0.00	108		
117-MW-A062		7.67	1.88	9.5	0.00	19.23	0.10	-119		
117-MW-A085	10/12/2009	10.56	0.378	14.2	0.00	19.24	0.00	-225		
117-MW-A089		7.07	2.24	0.0	0.00	18.13	0.10	-156		
117-MW-A099		8.33	1.7	2.9	0.00	21.27	0.10	-173		
117-MW-S4		11.82	3.98	35.7	1.42	19.16	0.20	-99		
117-MW-A014	10/19/2010	6.48	1.59	0	1.00	20.20	0.10	68		
117-MW-A014	4/26/2011	6.45	0.778	0	0.75	14.28	0.00	138		

Notes:

NR - No reading due to instrument malfunction.

NM - Not measured

Table 4
Summary of Analytical Groundwater Results - September and October 2009, October 2010 and April 2011
Study Area 5 - Site 117 Ryerson Steel Site
Jersey City, New Jersey

Location	Sample Date	Field Sample ID	Lab Sample ID	Chromium	Hexavalent	Total Organic
	_		_	(ug/L)	Chromium (ug/L)	Carbon (mg/L)
117-MW-A014	9/9/2009	117-MW-A014-090909	JA27477-1	41.3	14J	-
117-MW-A014	9/9/2009	117-MW-A014F-090909	JA27477-1F	17.2	11J	-
117-MW-A014	10/12/2009	117-MW-A014-101209	JA30201-1	37.6	28J	2.9
117-MW-A014	10/12/2009	117-MW-A014F-101209	JA30201-1F	34.3	27J	-
117-MW-A014	10/19/2010	117-MW-A014-101910	JA59191-6	40.7	31J	-
117-MW-A014	10/19/2010	117-MW-A014F-101910	JA59191-6F	38.9	21J	-
117-MW-A014	4/26/2011	117-MW-A014-042610	JA74100-1	43.7	40J	-
117-MW-A014	4/26/2011	117-MW-A014F-042610	JA74100-1F	43.6	44J	-
117-MW-A05	9/9/2009	117-MW-A05-090909	JA27477-3	15.5	10UJ	-
117-MW-A05	9/9/2009	117-MW-A05F-090909	JA27477-3F	10U	10UJ	-
117-MW-A05	9/9/2009	117-MW-A05DP-090909	JA27477-4	16.7	10UJ	-
117-MW-A05	9/9/2009	117-MW-A05DPF-090909	JA27477-4F	10U	10UJ	-
117-MW-A05	10/12/2009	117-MW-A05-101209	JA30201-3	10U	10UJ	2
117-MW-A05	10/12/2009	117-MW-A05F-101209	JA30201-3F	10U	10UJ	-
117-MW-A05	10/12/2009	117-MW-A05DP-101209	JA30201-4	10U	10UJ	1.8
117-MW-A05	10/12/2009	117-MW-A05DPF-101209	JA30201-4F	10U	10UJ	-
117-MW-A062	9/9/2009	117-MW-A062-090909	JA27477-6	36.5	10UJ	-
117-MW-A062	9/9/2009	117-MW-A062F-090909	JA27477-6F	10U	10UJ	-
117-MW-A062	10/12/2009	117-MW-A062-101209	JA30201-6	1570*	10UJ	13.6
117-MW-A062	10/12/2009	117-MW-A062F-101209	JA30201-6F	55.1	10UJ	-
117-MW-A099	9/9/2009	117-MW-A99-090909	JA27477-7	42.6	10UJ	-
117-MW-A099	9/9/2009	117-MW-A99F-090909	JA27477-7F	10U	50UJ	-
117-MW-A099	10/12/2009	117-MW-A99-101209	JA30201-7	10.9	10UJ	6.8
117-MW-A099	10/12/2009	117-MW-A99F-101209	JA30201-7F	10U	10UJ	-
117-MW-A85	9/9/2009	117-MW-A85-090909	JA27477-5	186*	10UJ	-
117-MW-A85	9/9/2009	117-MW-A85F-090909	JA27477-5F	111*	10UJ	-
117-MW-A85	10/12/2009	117-MW-A85-101209	JA30201-5	89.9*	10UJ	9.6
117-MW-A85	10/12/2009	117-MW-A85F-101209	JA30201-5F	10U	10UJ	-
117-MW-A89	9/9/2009	117-MW-A89-090909	JA27477-2	176*	10UJ	-
117-MW-A89	9/9/2009	117-MW-A89F-090909	JA27477-2F	10U	10UJ	-
117-MW-A89	10/12/2009	117-MW-A89-101209	JA30201-2	30.5	10UJ	9.2
117-MW-A89	10/12/2009	117-MW-A89F-101209	JA30201-2F	10U	10UJ	-
117-MW-S4	10/12/2009	117-MW-S4-101209	JA30201-8	334000*	328000J	6.1
117-MW-S4	10/12/2009	117-MW-S4F-101209	JA30201-8F	353000*	325000J	-
117-QC	9/9/2009	117-MW-FB-090909	JA27477-8	10U	10UJ	-
117-QC	10/12/2009	117-MW-FB-101209	JA30201-9	10U	10UJ	1.0U
117-QC	10/19/2010	117-FB-101910	JA59191-7	4U	5.5UJ	-
117-QC	4/26/2011	117-FB-042611	JA74100-2	4U	5.5UJ	-

Note:

- U Not detected.
- J Estimated concentrations.
- * Results exceeds the NJDEP GWQS of 70 ug/l for Chromium.
- Not Analyzed
 - Filtered samples are designated with an "F" at the end of sample and laboratory ID.

	APPENDIX A		
REFERENCE FIGURES FRO	OM REGIONAL M	IONITORING	PROGRAM

Note: Hexavalent chromium plume taken from Figure 4.5-5 of the FGIR. Darker red area is defined by the 1,000 ppm iso-concentration contour.

LEGEND

- Proposed Reductant
 Injection Well
- Proposed Monitoring Well

Figure 1-1

Proposed Injection Well and Monitoring Well Locations

Study Area 7, Jersey City, NJ

APPENDIX B GROUNDWATER FIELD SAMPLING FORMS/ GROUNDWATER CONTOUR MAP REPORTING FORMS

September 2009 Groundwater Field Sampling Forms/Contour Map Reporting Form

(Signature)

Groundwater Sampling Form Job Name: Honeywell - SA-5 - (Site 117) Well Number: 117-MW-A05 3480050164 Well Type: Monitor ✓ Other ☐ Job Number: Task: Stainless Steel
Steel
Other Well Material: PVC ▼ WELL PURGING INFORMATION **PURGE VOLUME PURGE METHOD PUMP INTAKE SETTING** Low Flow Method: 🔽 Bailer - Type: Near Bottom ☐ Near Top ☐ NA 3 to 5 Volume Purge Method: Center

Number of Well Volumes to Casing Diameter (D in Inche Total Depth of Casing (TD in Screen Interval in Feet (BTC	s): 4 feet BTOC):	Bladder PURGE VOLU (Peristaltic Other JME CALCULATIONS 2	NA Gallons Caluclated Purge Volume
. 3	San. Sewer	Type	Other Treatment Sys	stem
	INSTRUMENT IDENTIFICATION	ON RECORD AND FI	ELD MEASUREMENTS	
Instrument Type: Horiba Serial Number: 131 For Calibration Information, See Instru		0.32 Tim 1: 16.74 PIC 9/9/2009	ne: 8:35 Date: Date: D Reading (inside of Casing):	9/9/2009 NM
	FIELD PAR	METER MEASURMI	ENTS	
Recorded By:	Sample	ed By: BS	Purge Start Time: 8:3	6

Time	Minutes Elapsed	Rate MIPM	Purged mL	pH (S.U.)	Cond. (ms/cm)	Turbidity (NTUs)	Diss. O ₂ (mg/L)	Temp (°C)	Salinity (%)	Redox (mV)	Depth to Water	Comments
8:40	0	gpm 400	Gal	6.17	1.70	49.7	4.31	21.64	0.10	-59	10.46	
8:45	5	400	2000	5.89	1.93	73.0	0.64	20.01	0.10	-69	10.46	
8:50	10	400	4000	5.89	1.78	75.2	0.04	19.84	0.10	-74	10.46	
8:55	15	400	6000	5.93	1.59	72.1	0.00	19.81	0.10	-76	10.46	
9:00	20	400	8000	5.96	1.50	41.4	0.00	19.89	0.10	-77	10.46	
9:05	25	400	10000	5.98	1.48	35.7	0.00	20.01	0.10	-76	10.46	
9:10	30	400	12000	5.99	1.45	38.3	0.00	19.91	0.10	-75	10.46	
9:12	Sample	400	12000	0.00	1.40	30.0	0.00	10.01	0.10	7.5	10.40	
9:12	Sample	MS/MSD										
9:19	Sample	DUP										
01.0	- Carripro											

		OBSERVATIONS DU	RING WELL PURGING			
Well Condition		Good	Odor:	None		
Color of GW:		Clear	Other:			
Sample Time:	9:12		Additional San	nples: 🔽	Sample Time:	9:19
Sample ID:		117-MW-A05-090909	Sample ID:		DUP, MS, MSD	

					te 117) 2100		II Number: Well Type: II Material:	Monitor	Other		☐ Steel	Other
					WE	LL PURGII	NG INFORM	MATION				
Low Flo 3 to 5 V Numbe Casing Total Do Screen	Interval in	ge Metholumes to in Inclusing (TD) Feet (B)	to be Pu hes) in feet I TOC) fro	BTOC):	to		Submersite Bladder PURGE VO	pe: Note Cer DLUME CA	ntrifugal ristaltic LCULATIO X X No. Volume	Nea Cen Othe NS 0.0408	ter er NA Caluclate	☐ Near Top ☐
Purge Water Disposal: San. Sewer ☐ Drum ☐ Type Other ▼ Treatment System Storm Sewer ☐ Size												
INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS												
Serial N	Instrument Type: Horiba U-22 Depth to Water: 11.63 Time: 8:46 Date: 9/9/2009 Serial Number: T203031 Depth to Bottom of Well: 17.25 PID Reading (inside of Casing): NM For Calibration Information, See Instrument Calibration Record Sheet Dated: 9/9/2009											
					FIELD	PARAMET	TER MEAS	JRMENTS				
Record		gnature)			Si	ampled By:	FP	Pu	rge Start Tii	me: 8	3:50	
Time	Minutes Elapsed	☑ lpm	Purged Gal	(STI)	Cond. (ms/cm)	Turbidity (NTUs)	Diss. O ₂ (mg/L)	Temp (°C)	Salinity (%)	Redox (mV)	Depth to Water	Comments
8:50	0	0.2	0.0	7.60	1.24	60.6	2.29	19.46	0.06	-12	11.65	
8:51	1	0.2	0.2	7.38	1.23	56.9	1.61	19.41	0.06	-9 C	11.66	
8:52 8:53	3	0.2	0.4	7.28 7.21	1.24 1.24	60.4 62.5	1.26 0.97	19.28 19.21	0.06	-6 -4	11.67 11.67	
8:54	4	0.2	0.8	7.13	1.24	60.7	0.75	19.13	0.06	-3	11.68	
9:00	10	0.2	2.0	6.74	1.24	52.5	0.15	18.96	0.06	3	11.69	
9:05	15	0.2	3.0	6.39	1.26	42.6	0.00	18.91	0.06	9	11.70	
9:10	20	0.2	4.0	6.27	1.26	33.5	0.00	18.88	0.06	16	11.71	
9:15	25	0.2	5.0	6.15	1.27	23.8	0.00	18.90	0.06	28	11.72	
9:20 9:25	30 35	0.2	6.0 7.0	6.08 6.05	1.27 1.27	26.0 25.1	0.00	18.87 18.88	0.06 0.06	29 31	11.73 11.74	
9:30	Sample	0.2	7.0	0.00	1.21	20.1	0.00	10.00	0.00	01	11.7 7	

		OBSERVATIONS DURI	NG WELL PURGING			
Well Condition		Poor; no screws; water in casing	Odor:	None		
Color of GW:		Clear	Other:			
Sample Time:	9:30		Additional San	nples:	Sample Time:	
Sample ID:		117-MW-A014-090909	Sample ID:		•	

PURGE VOLUME

 Job Name:
 Honeywell - SA-5 - (Site 117)
 Well Number:
 117-MW-A062

 Job Number:
 3480050164
 Task:
 2100
 Well Type:
 Monitor
 ✓ Other
 ✓

 Well Material:
 PVC.
 ✓ Stainless Steel
 ✓ Steel
 ✓ Other

WELL PURGING INFORMATION	

PURGE METHOD

PUMP INTAKE SETTING

Low Flow Method:

3 to 5 Volume Purge Method:

Number of Well Volumes to be Purged: NA

Bailer - Type: NA

Submersible □ Centrifugal □ Center □

Peristaltic □ Other □

Purge Water Disposal: San. Sewer ☐ Drum ☐ Type Other ▼ Treatment System

Storm Sewer ☐ Size

INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS

Instrument Type: Horiba U-22 Depth to Water: 9.90 Time: 10:08 Date: 9/9/2009

Serial Number: T203031 Depth to Bottom of Well: 14.5 PID Reading (inside of Casing): NM

For Calibration Information, See Instrument Calibration Record Sheet Dated: 9/9/2009

FIELD PARAMETER MEASURMENTS

Recorded By: _____ Sampled By: __FP __ Purge Start Time: ____10:10 _____

Rate Purged Minutes рH Cond. Turbidity Diss. O₂ Temp Salinity Redox Depth to lpm Time ▽ Comments Elapsed (S.U.) (ms/cm) (NTUs) (mg/L) (°C) (%) (mV) Water ☐ gpm 7.67 1.64 30.1 20.97 0.08 -165 9.93 10:10 0 0.2 0.0 6.16 1.63 29.8 7.46 20.38 0.08 -166 9.95 10:11 1 0.2 0.2 6.17 -166 10:12 2 0.2 0.4 6.18 1.64 25.9 4.59 20.33 0.08 9.96 2.39 -166 9.98 10:13 0.2 0.6 6.19 1.64 60.8 20.16 0.08 3 -166 10:14 4 6.20 1.64 60.0 3.94 20.13 0.08 10.00 0.2 8.0 10 3.86 -165 10:20 0.2 2.0 6.23 1.65 83.9 20.57 0.08 10.01 10:25 15 0.2 3.0 6.27 1.72 86.4 5.39 19.62 0.08 -169 10.02 20 6.34 0.00 19.36 0.08 -172 10.03 10:30 0.2 4.0 1.73 9.6 25 0.2 6.37 1.74 38.7 0.00 19.34 0.08 -174 10.04 10:35 5.0 30 6.37 1.74 37.2 0.00 19.30 0.08 -174 10.05 10:40 0.2 6.0 35 1.75 38.3 0.00 19.32 0.08 -174 10.06 10:45 0.2 7.0 6.37 10:50 Sample

		OBSERVATIONS DU	RING WELL PURGING			
Well Condition		Good	Odor:	Fuel odor		
Color of GW:		Clear	Other:			
Sample Time:	10:50		Additional Sa	amples:	Sample Time:	
Sample ID:		117-MW-A062-090909	Sample ID:		-	

 Job Name:
 Honeywell - SA-5 - (Site 117)
 Well Number:
 117-MW-A85

 Job Number:
 3480050164
 Task:
 2100
 Well Type:
 Monitor
 ✓ Other
 Staipless Steel
 Steel
 Other

						We	II Material:	PVC 🔽	Stainless	Steel	☐ Steel	☐ Other ☐		
					WE	LL PURGII	NG INFORM	MATION						
Low Flo 3 to 5 \ Number Casing Total D	PURGE VOLUME Low Flow Method: Satisfactory of Well Volumes to be Purged: NA Submersible Funder (D in Inches) 4 Submer													
Purge Water Disposal: San. Sewer Drum Type Other Treatment System Size														
	INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS													
Instrument Type: Horiba U-22 Depth to Water: 10.92 Time: 7:23 Date: 9/9/2009 Serial Number: T203031 Depth to Bottom of Well: 16.12 PID Reading (inside of Casing): NM For Calibration Information, See Instrument Calibration Record Sheet Dated: 9/9/2009														
					FIELD	PARAME	TER MEAS	JRMENTS						
Record	led By: (Si	gnature)			Sa	ampled By:	FP	Pu	rge Start Ti	me: 7	7:25			
Time	Minutes Elapsed	✓ Ipm	Purged Gal	(STI)	Cond. (ms/cm)	Turbidity (NTUs)	Diss. O ₂ (mg/L)	Temp (°C)	Salinity (%)	Redox (mV)	Depth to Water	Comments		
7:25	0	0.2	0.0	6.76	0.499	34.3	0.69	19.81	0.20	-214	11.10			
7:26	1	0.2	0.2	7.18	0.495	32.0	0.06	19.77	0.20	-222	11.13			
7:27	2	0.2	0.4	7.42	0.493	39.9	0.00	19.71	0.20	-228	11.17			
7:28	3	0.2	0.6	7.61	0.493	35.4	0.00	19.69	0.20	-232	11.20			
7:29	4	0.2	8.0	7.75	0.496	33.3	0.00	19.67	0.20	-236	11.23			
7:35	10	0.2	2.0	8.23	0.501	28.7	0.00	19.61	0.20	-244	11.27			
7:40 7:45	15 20	0.2	3.0 4.0	8.55 8.62	0.503 0.510	16.0 13.5	0.00	19.52 19.45	0.20 0.20	-253 -255	11.29 11.31			
7:50	25	0.2	5.0	8.68	0.510	8.7	0.00	19.45	0.20	-258	11.32			
7:55	30	0.2	6.0	8.72	0.506	13.0	0.00	19.25	0.20	-261	11.33			
8:00	35	0.2	7.0	8.75	0.499	13.5	0.00	19.21	0.20	-263	11.34			
8:05	Sample													
	-													
-														

		OBSERVATIONS DURIN	NG WELL PURGIN	IG			
Well Condition		Poor; no screws; water in casing	Odor:	Faint at star	t but dis	ssipated	
Color of GW:		Clear	Other:				
Sample Time:	8:05		Addition	nal Samples:		Sample Time	e:
Sample ID:		117-MW-A85-090909	Sample	: ID:			

Sample ID:

117-MW-A89-090909

Honeywell - SA-5 - (Site 117) Well Number: 117-MW-A89 Job Name: Job Number: 3480050164 Task: 2100 Well Type: Monitor ✓ Other □ Well Material: PVC ✓ Stainless Steel ☐ Steel ☐ Other ☐ WELL PURGING INFORMATION **PURGE VOLUME** PURGE METHOD **PUMP INTAKE SETTING** NA Low Flow Method: V Bailer - Type: Near Bottom ☐ Near Top ☐ 3 to 5 Volume Purge Method: Center Other \square Number of Well Volumes to be Purged: Casing Diameter (D in Inches): 4 PURGE VOLUME CALCULATIONS $\underline{\text{()}}$ - $\underline{\text{)}}$ x $\underline{\text{D}}$ 2 x $\underline{\text{x}}$ x 0.0408 = $\underline{\text{NA}}$ Gallons Caluclated Purge Volu Total Depth of Casing (TD in feet BTOC): Screen Interval in Feet (BTOC) from Caluclated Purge Volume Drum 🗌 Other <a>Treatment System Туре ____ Purge Water Disposal: San. Sewer Storm Sewer Size INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS Depth to Water: 8.31 Instrument Type: Horiba U-22 Time: 7:15 Date: 9/9/2009 13198 Depth to Bottom of Well: 16.57 PID Reading (inside of Casing): NM Serial Number: For Calibration Information, See Instrument Calibration Record Sheet Dated: 9/9/2009 FIELD PARAMETER MEASURMENTS Purge Start Time: 7:18 Recorded By: Sampled By: BS (Signature) Rate Purged Minutes рH Cond. **Turbidity** Diss. O₂ Temp Salinity Redox Depth to **✓** mlpm **✓** mL Time Comments (S.U.) (NTUs) Elapsed (ms/cm) (mg/L) (°C) (%) (mV) Water gpm 7:20 0.998 154.0 4.06 19.28 0.10 84 500 0 6.03 8.71 400 2.43 125.0 1.52 19.14 0.10 38 8.64 7:25 5 2500 6.39 7:30 10 400 4500 6.65 2.48 89.1 0.91 19.25 0.10 9 8.59 2.44 15 400 6500 77.5 0.51 19.26 0.10 -36 8.58 7:35 6.72 2.41 20 7:40 400 8500 76.4 0.52 19.27 0.10 -58 8.58 6.76 7:45 25 400 10500 6.79 2.37 68.8 0.41 19.33 0.10 -70 8.58 7:50 30 400 12500 6.82 2.35 65.6 0.19 19.36 0.10 -81 8.58 7:55 6.84 2.33 0.00 19.35 0.10 8.58 400 14500 64.1 -87 8:00 40 6.84 2.31 59.9 0.00 19.34 0.10 8.58 400 16500 -90 45 400 18500 2.31 58.7 0.00 19.36 0.10 -92 8.58 8:05 6.84 8:06 Sample Note: > = Greater Than < = Less Than NM = Not Measured EF = Equipment Failure **OBSERVATIONS DURING WELL PURGING** Well Condition Good Odor: Color of GW: Clear Other: Additional Samples: Sample Time: Sample Time: 8:06

Sample ID:

Sample ID:

117-MW-A099-090909

Groundwater Sampling Form Honeywell - SA-5 - (Site 117) Well Number: Job Name: 117-MW-A099 **Job Number:** 3480050164 **Task:** 2100 Well Type: Monitor ✓ Other □ Well Material: PVC ✓ Stainless Steel ☐ Steel ☐ Other ☐ WELL PURGING INFORMATION **PURGE VOLUME PURGE METHOD PUMP INTAKE SETTING** Low Flow Method: ▼ Bailer - Type: NA Near Bottom

✓ Near Top

☐ 3 to 5 Volume Purge Method: Center Other 🔽 Number of Well Volumes to be Purged: NΑ 11 ft BTOC **PURGE VOLUME CALCULATIONS** Casing Diameter (D in Inches): 4 $\frac{\text{(}}{\text{TD}}$ - $\frac{\text{)}}{\text{WL}}$ x $\frac{\text{)}}{\text{D}}$ x $\frac{\text{x}}{\text{No. Volumes}}$ x 0.0408 = $\frac{\text{NA}}{\text{Caluclated Purge Volumes}}$ Gallons Total Depth of Casing (TD in feet BTOC): Screen Interval in Feet (BTOC) from Caluclated Purge Volume Other <a> Treatment System Purge Water Disposal: San. Sewer Drum \square Type Storm Sewer Size INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS Instrument Type: Horiba U-22 Depth to Water: 7.98 Time: 9:58 9/9/2009 Date: 13198 Depth to Bottom of Well: 14.70 PID Reading (inside of Casing): NM Serial Number: For Calibration Information, See Instrument Calibration Record Sheet Dated: 9/9/2009 FIELD PARAMETER MEASURMENTS Recorded By: Sampled By: BS Purge Start Time: 9:59 (Signature) Rate Purged Minutes рН Cond. **Turbidity** Diss. O₂ Temp Salinity Redox Depth to **✓** mlpm Time ✓ Comments mL Elapsed (S.U.) (ms/cm) (NTUs) (mg/L) (°C) (%) (mV) Water gpm 7.07 0.869 72.4 8.24 23.67 0.0 -134 10:00 0 200 0 8.14 200 0.927 143.0 8.54 23.60 0.0 -140 8.19 10:05 5 1000 7.07 10:10 10 200 2000 7.11 0.980 81.7 8.68 23.73 0.0 -145 8.19 3000 15 200 7.16 1.13 85.4 8.74 0.1 -150 8.19 10:15 23.82 20 200 4000 7.20 1.16 91.6 8.77 23.88 0.1 -152 8.19 10:20 1.20 10:25 25 200 5000 7.22 83.7 8.74 23.91 0.1 -153 8.19 10:30 30 200 6000 7.24 1.22 86.3 8.73 23.79 0.1 -154 8.19 35 200 7000 7.26 1.25 79.1 8.70 23.85 -154 10:35 0.1 8.19 10:36 Sample Note: > = Greater Than < = Less Than NM = Not Measured EF = Equipment Failure **OBSERVATIONS DURING WELL PURGING** Well Condition Good Fuel Oil Odor Color of GW: Sheen/Light gray Other: DNAPL on tip - Not measurable Sample Time: 10:36 Additional Samples: Sample Time:

Sample ID:

Contour Map Reporting Form Study Area 5 - Site 117 Ryerson Steel Site Jersey City, New Jersey September 2009

This reporting form shall accompany each groundwater elevation contour map submittal. Use additional sheets as necessary.

1.	Did any surveyed well casing elevations change from the previous sampling event? Yes
	No \underline{X} . If yes, attach new "Well Certification Form B" and identify the reason for the elevation change (damage to casing, installation or recovery system in monitoring well, etc.)
2.	Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes $\underline{\hspace{1cm}}$ No \underline{X} . If yes, identify these wells.
3.	Are there any monitor wells present at the site but omitted from the contour map? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}}$ Unless the omission of the well(s) has been previously approved by the department, justify the omissions.
4.	Are there any monitor wells containing separate phase product during this measuring event? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}} \underline{\hspace{1cm}} X$. Were any of the monitor wells with separate phase product included in the groundwater contour map? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}} \underline{\hspace{1cm}} X$. If yes, show the formula used to correct the water table elevation.
5.	Has the groundwater flow direction changed more than 45° from the previous groundwater contour map? Yes No \underline{X} . If yes, discuss the reasons for the change.
6.	Has the groundwater mounding and/or depressions been identified in the groundwater contour map? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}}$ Unless the groundwater mounds and/or depressions are caused by the groundwater remediation system, discuss the reasons for this occurrence.
<i>7</i> .	Are all the wells used in the contour map screened in the same water-bearing zone? Yes \underline{X} . No $\underline{\hspace{1cm}}$. If no, justify inclusion of those wells.
8.	Were the groundwater contours computer generated $\underline{\underline{X}}$, computer aided $\underline{\underline{X}}$, or hand-drawn $\underline{\underline{X}}$. If computer aided or generated, identify the interpolation method(s) used. <i>Kriging method</i> .

 ${\bf October~2009}$ Groundwater Field Sampling Forms/Contour Map Reporting Form

Groundwater Sampling Form Job Name: Honeywell - SA-5 - (Site 117) Well Number: 117-MW-A05 3480050164 Job Number: Task: _ Well Type: Monitor ✓ Other □ Stainless Steel
Steel
Other Well Material: PVC 🔽 **WELL PURGING INFORMATION PURGE VOLUME PURGE METHOD PUMP INTAKE SETTING** Low Flow Method: 🔽 Bailer - Type: NA Near Bottom ☐ Near Top ☐ V 3 to 5 Volume Purge Method: Center Number of Well Volumes to be Purged: NA Bladder Peristaltic Other Casing Diameter (D in Inches): **PURGE VOLUME CALCULATIONS** x 0.0408 = Total Depth of Casing (TD in feet BTOC): -) x NA Gallons Screen Interval in Feet (BTOC) from WL to No. Volumes Caluclated Purge Volume Purge Water Disposal: Other 🔽 Treatment System San. Sewer Drum Type Storm Sewer Size INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS Instrument Type: Horiba U-22 Depth to Water: 10.72 8:45 Date: 10/12/2009 Time: 16.41 Serial Number: 11850 Depth to Bottom of Well: PID Reading (inside of Casing): For Calibration Information, See Instrument Calibration Record Sheet Dated: 10/12/2009 FIELD PARAMETER MEASURMENTS Recorded By: Sampled By: MD Purge Start Time: 8:52 (Signature)

Time	Minutes Elapsed	Rate Ipm Ipm Ipm		(S.U.)	Cond. (ms/cm)	Turbidity (NTUs)	Diss. O ₂ (mg/L)	Temp (°C)	Salinity (%)	Redox (mV)	Depth to Water	Comments
8:52	0	0.25	0.0	6.03	0.825	44.2	4.04	16.80	0.00	-54	11.07	
8:57	5	0.25	1.5	6.51	0.667	20.5	1.64	17.89	0.00	-43	11.05	
9:02	10	0.25	2.7	6.47	0.532	7.8	1.14	18.29	0.00	-45	11.08	
9:07	15	0.25	3.9	6.46	0.514	8.6	0.78	18.48	0.00	-49	11.11	
9:12	20	0.25	5.0	6.44	0.509	7.4	0.43	18.60	0.00	-41	11.15	
												_
												_

		OBSERVATIONS DU	RING WELL PURGING			
Well Condition		Missing bolts	Odor:	None	•	
Color of GW:		Clear	Other:			
Sample Time:	9:23		Additional Sam	ples: 🔽	Sample Time	9:28
Sample ID:		117-MW-A05-101209	Sample ID:		DUP, MS, MSD	

Well Number: 117-MW-A014
Well Type: Monitor ✓ Other ☐
Well Material: PVC ✓ Stainless Steel ☐ Steel ☐ Other ☐ Job Name: Honeywell - SA-5 - (Site 117) Job Number: 3480050164 Task: 2100

					WE	LL PURGII	NG INFORM	MATION					
Low Flo 3 to 5 V Number Casing Total De Screen		ge Metholumes to in Inclining (TD) Feet (B	to be Puthes) in feet l TOC) fro	BTOC):	to		Submersib Bladder PURGE VO (-) TD WL	De: Note: Note: Cer Per Per Per Per Per Per Per Per Per P	ntrifugal ristaltic CULATIO X	Nea Cent Othe NS 0.0408	ter er NA Caluclated	☐ Near Top ☐	
Purge V	Purge Water Disposal: San. Sewer Drum Type Other V Treatment System												
	INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS												
Serial N	nstrument Type: Horiba U-22 Depth to Water: 11.88 Time: 9:05 Date: 10/12/2009 Serial Number: 8300 Depth to Bottom of Well: 17.51 PID Reading (inside of Casing): 0 or Calibration Information, See Instrument Calibration Record Sheet Dated: 10/12/2009												
Record	Recorded By: Sampled By: BS Purge Start Time:9:08 (Signature)												
Time	Minutes Elapsed	✓ Ipm	Purged C Gal	pH (S.U.)	Cond. (ms/cm)	Turbidity (NTUs)	Diss. O ₂ (mg/L)	Temp (°C)	Salinity (%)	Redox (mV)	Depth to Water	Comments	
9:10	0	0.25	0.00	7.59	0.907	22.5	6.21	17.81	0.00	-36	11.90		
9:15	5	0.25	1.25	7.24	0.941	9.8	0.00	17.78	0.00	-27	11.92		
9:20	10	0.25	2.50	6.99	0.866	3.6	0.00	18.04	0.00	64	11.92		
9:25 9:30	15 20	0.25	3.75 5.00	6.90 6.87	0.859 0.861	0.7 1.9	0.00	18.19 18.35	0.00	90 101	11.92 11.92		
9:35	25	0.25	6.25	6.86	0.863	2.1	0.00	18.34	0.00	104	11.92		
9:40	30	0.25	7.50	6.85	0.865	0.7	0.00	18.44	0.00	106	11.92		
9:45	35	0.25	8.75	6.85	0.867	0.5	0.00	18.39	0.00	108	11.92		
9:46	Sample												
Note: >=	= Greater Thar	1 <= Les	s Than N	M = Not Meas	ured EF = Eq	uipment Failur	e						

	OBSERVATIONS DURING WELL PURGING									
Well Condition		Fair	Odor:	None						
Color of GW:		Clear	Other:							
Sample Time:	9:46		Additional San	nples:	Sample Time:					
Sample ID:		117-MW-A014-101209	Sample ID:		•					

Job N				- SA-5 - (Si		We	II Number:	117-N	ЛW-A062			
Job Nu	ımber:	3480050	0164	Task:	2100		Well Type:	Monitor	Other			
						We	II Material:	PVC 🔽	Stainless	s Steel	☐ Steel	☐ Other ☐
					WE	LL PURGII	NG INFORM	MATION				
PURG	VOLUME						PURGE MI	ETHOD		PUI	MP INTAKE	SETTING
Low Flo	ow Method:	V					Bailer - Ty	pe: N	IA	Nea	r Bottom	□ Near Top □
3 to 5 \	olume Pur	ge Meth	od: 🗆					ole 🗌 Cer				▽
Numbe	r of Well Vo	olumes t	to be Pu	rged:	NA		Bladder		ristaltic 🔽		er 🔲	
Casing	Diameter (D in Inc	hes)	4			PURGE V	OLUME CA	LCULATIO			
Total D	epth of Cas	ing (TD	in feet	BTOC):			(-)	X 2	х х	0.0408	= NA	Gallons
Screen	Interval in	Feet (B	TOC) fro	om	to		TD WL	D	No. Volume	es	Caluclate	d Purge Volume
Durgo \	Mator Diena	ocal:	San Sa	owor \Box	Drum	Type		Othor	☑ Tre	natmont (Systom	
ruige	ivalei Displ	Joai.		Sewer \square	Diulii	Size		Other	116	zatilielli (Jystelli	
			Storm	Jewei L		3126						
			IN	ISTRUMEN	IT IDENTIF	ICATION R	ECORD AN	ID FIELD M	IEASUREM	IENTS		
Instrum	ent Type:	Horiba	a U-22	Depth t	o Water:	10.37		Time: 1	12:20	Date	e: 10/12	/2009
	Number:		800			f Well:		PID Readir		f Casing)): 39.7	,
						ted: 10/12		i ib itoaaii	ig (inoldo o	. Odomig,		
		.01., 000		- Cambration 110	00.00.00.	107.12	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
					FIELD	PARAME	TER MEAS	URMENTS				
Record	ded By:				S	ampled Bv:	BS/MD	Pu	rge Start Ti	me: 1	2:21	
		gnature)				. , ,			J			
	`											
	Minutes		Purged	рН	Cond.	Turbidity	Diss. O ₂	Temp	Salinity	Redox	Depth to	
Time	Elapsed			(S.U.)	(ms/cm)	(NTUs)	(mg/L)	(°C)	(%)	(mV)	Water	Comments
10.00			✓ Gal	7.00	1.01	4.0			0.40	100	40.50	
12:22	0	NM	0.00	7.80	1.84	4.8	4.56	18.63	0.10	-122	10.50	
12:27	5	0.05	0.25	7.64	1.93	4.5	0.00	18.78	0.10	-124	10.57	
12:32 12:37	10 15	0.05	0.50 1.00	7.64 7.67	1.89 1.86	8.3 8.3	0.00	19.04 19.02	0.10 0.10	-123 -123	10.63 10.69	
12:42	20	0.1	1.50	7.67	1.90	10.6	0.00	19.02	0.10	-123	10.69	
12:47	25	0.1	2.00	7.68	1.90	11.5	0.00	19.21	0.10	-124	10.70	
12:52	30	0.1	2.50	7.67	1.88	9.5	0.00	19.23	0.10	-119	10.70	
12.02		0.1	2.00	7.01	1.00	0.0	0.00	10.20	0.10	110	10.70	

		OBSERVATIONS DU	RING WELL PURGING			
Well Condition		Good	Odor:	Fuel Oil		
Color of GW:		Clear	Other:			
Sample Time:	12:55		Additional Sa	amples: 🔲	Sample Time:	
Sample ID:		117-MW-A062-101209	Sample ID:		•	

Job Name: Honeywell - SA-5 - (Site 117) Well Number: 117-MW-A85

Job Nu	Job Number: 3480050164 Task: 2100 Well Type: Monitor ✓ Other ☐ Well Material: PVC ✓ Stainless Steel ☐ Steel ☐ Other ☐												
					WE	LL PURGII	NG INFORM	MATION					
Low Flo 3 to 5 V Number Casing Total De Screen	URGE VOLUME ow Flow Method: to 5 Volume Purge Method: lumber of Well Volumes to be Purged: lumber of Casing (TD in feet BTOC): creen Interval in Feet (BTOC) from lurge Water Disposal: San. Sewer Storm Sewer Storm Sewer												
	INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS												
Serial N	Instrument Type: Horiba U-22 Depth to Water: 11.38 Time: 7:40 Date: 10/12/2009 Serial Number: 8300 Depth to Bottom of Well: 16.35 PID Reading (inside of Casing): 0 For Calibration Information, See Instrument Calibration Record Sheet Dated: 10/12/2009												
					FIELD	PARAME	TER MEAS	JRMENTS					
Record	led By:(Si	gnature)			Sa	ampled By:	BS	Pu	rge Start Tii	me:	7:43		
Time	Minutes Elapsed	✓ lpm	Purged L Gal	pH (S.U.)	Cond. (ms/cm)	Turbidity (NTUs)	Diss. O ₂ (mg/L)	Temp (°C)	Salinity (%)	Redox (mV)	Depth to Water	Comments	
7:45	0		0.00	9.96	0.529	336.0	4.05	18.56	0.00	-207	11.46		
7:50	5	0.25	1.25	10.41	0.473	71.4	0.00	19.31	0.00	-232	11.73		
7:55 8:00	10 15	0.25	2.50 3.75	10.49 10.49	0.393	24.7 23.1	0.00	19.27 19.20	0.00	-223 -217	11.94 12.05		
8:05	20	0.25	5.00	10.49	0.384	16.2	0.00	19.20	0.00	-217	12.03		
8:10	25	0.25	6.25	10.52	0.380	18.1	0.00	19.18	0.00	-220	12.12		
8:15	30	0.25	7.50	10.54	0.379	16.3	0.00	19.21	0.00	-223	12.14		
8:20	35	0.25	8.75	10.56	0.378	14.2	0.00	19.24	0.00	-225	12.16		
8:23	Sample												
Notar	- Grooter The		o Thor	IM - Not Mar-	sured EE E	uinment Faller	0						
inote: > :	= Greater Thar	ı < = Les	ынап N	iivi = inot ivieas	sured EF = Ec	uipinient Fallur	C						
					OBSERV	ATIONS D	URING WE	LL PURGIN	IG				
Well Co	ndition			F	air			Odor:		None			

OBSERVATIONS DURING WELL PURGING											
Well Condition		Fair	Odor:	None							
Color of GW:		Clear	Other:								
Sample Time:	8:23		Additional S	Samples:	Sample Time:						
Sample ID:	11	7-MW-A85-101209	Sample ID:								

Honeywell - SA-5 - (Site 117) Well Number: 117-MW-A89 Job Name: Job Number: 3480050164 Task: 2100 Well Type: Monitor ✓ Other □ Well Material: PVC ✓ Stainless Steel ☐ Steel ☐ Other ☐ WELL PURGING INFORMATION **PURGE VOLUME** PURGE METHOD **PUMP INTAKE SETTING** NA Low Flow Method: 🔽 Bailer - Type: Near Bottom ☐ Near Top ☐ 3 to 5 Volume Purge Method: Center Other \square Number of Well Volumes to be Purged: Casing Diameter (D in Inches): 4 PURGE VOLUME CALCULATIONS $\underline{\text{()}}$ - $\underline{\text{)}}$ x $\underline{\text{D}}$ 2 x $\underline{\text{x}}$ x 0.0408 = $\underline{\text{NA}}$ Gallons Caluclated Purge Volu Total Depth of Casing (TD in feet BTOC): Screen Interval in Feet (BTOC) from Caluclated Purge Volume Drum 🗌 Other <a>Treatment System Туре ____ Purge Water Disposal: San. Sewer Storm Sewer Size INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS Instrument Type: Horiba U-22 Depth to Water: 8.6 Time: 8:00 Date: 10/12/2009 11850 Depth to Bottom of Well: NM PID Reading (inside of Casing): Serial Number: For Calibration Information, See Instrument Calibration Record Sheet Dated: 10/12/2009 FIELD PARAMETER MEASURMENTS Purge Start Time: 8:00 Recorded By: Sampled By: MD (Signature) Rate Purged Minutes pΗ Cond. **Turbidity** Diss. O₂ Temp Salinity Redox Depth to ☐ lpm Time Comments (NTUs) Elapsed (S.U.) (ms/cm) (mg/L) (°C) (%) (mV) Water **✓** gpm V 2.600 27.4 4.56 17.80 0.10 -68 9.05 8:02 NM 0.0 6.61 8:07 NM 7.00 2.46 9.7 0.00 18.20 0.10 -138 9.39 5 2.5 8:12 10 NM 6.0 7.04 2.31 3.1 0.00 18.20 0.10 -156 9.62 9.65 15 NM 7.08 2.23 0.4 0.00 18.10 0.10 -156 8:17 7.5 20 7.07 0.00 0.10 9.67 8:22 NM 9.0 2.24 0.0 18.13 -156 Note: > = Greater Than < = Less Than NM = Not Measured EF = Equipment Failure **OBSERVATIONS DURING WELL PURGING** Well Condition Good Odor: Color of GW: Clear Other: Additional Samples: Sample Time: Sample Time: 8:23 Sample ID: 117-MW-A89-101209 Sample ID:

Sample Time:

Sample ID:

12:06

117-MW-A099-101209

Groundwater Sampling Form Honeywell - SA-5 - (Site 117) Well Number: 117-MW-A099 Job Name: Job Number: 3480050164 Task: 2100 Well Type: Monitor ✓ Other ☐ Well Material: PVC ✓ Stainless Steel ☐ Steel ☐ Other ☐ WELL PURGING INFORMATION **PURGE VOLUME PURGE METHOD PUMP INTAKE SETTING** Low Flow Method: ▼ Bailer - Type: NA Near Bottom

✓ Near Top

☐ 3 to 5 Volume Purge Method: Center Other 🔽 Number of Well Volumes to be Purged: NΑ 11 ft BTOC **PURGE VOLUME CALCULATIONS** Casing Diameter (D in Inches): 4 $\frac{\text{(}}{\text{TD}}$ - $\frac{\text{)}}{\text{WL}}$ x $\frac{\text{)}}{\text{D}}$ x $\frac{\text{x}}{\text{No. Volumes}}$ x 0.0408 = $\frac{\text{NA}}{\text{Caluclated Purge Volumes}}$ Gallons Total Depth of Casing (TD in feet BTOC): Screen Interval in Feet (BTOC) from Caluclated Purge Volume Other <a> Treatment System Purge Water Disposal: San. Sewer Drum \square Type Storm Sewer Size INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS Time: 11:20 Instrument Type: Horiba U-22 Depth to Water: 8.32 10/12/2009 Date: Serial Number: 8300 Depth to Bottom of Well: 14.70 PID Reading (inside of Casing): 0.4 For Calibration Information, See Instrument Calibration Record Sheet Dated: 10/12/2009 FIELD PARAMETER MEASURMENTS Recorded By: Sampled By: BS/MD Purge Start Time: 11:22 (Signature) Rate Purged Minutes рН Cond. **Turbidity** Diss. O₂ Temp Salinity Redox Depth to ☐ lpm Time ✓ Comments Elapsed (S.U.) (ms/cm) (NTUs) (mg/L) (°C) (%) (mV) Water gpm 1.260 0.60 20.68 -160 8.58 11:30 0 0.25 0 8.14 8.2 0.1 1.230 1.24 21.18 0.1 -168 8.80 11:35 5 0.25 1 8.12 1.4 11:40 10 0.07 2 8.08 1.200 4.2 0.84 21.38 0.1 -162 8.92 11:45 15 1.27 3.0 0.58 0.1 -161 9.01 0.08 2 8.11 21.39 1.38 11:50 20 3 3.5 0.31 21.32 0.1 -162 9.05 0.1 8.16 1.49 -164 11:55 25 0.14 3 8.22 3.3 0.04 21.30 0.1 9.05 12:00 30 0.14 4 8.28 1.60 4.4 0.00 21.34 0.1 -169 9.07 1.64 5.4 21.31 12:05 35 0.1 5 8.3 0.00 0.1 -171 9.09 12:10 40 8.33 1.70 2.9 0.00 21.27 0.1 -173 9.11 0.1 5 Note: > = Greater Than < = Less Than NM = Not Measured EF = Equipment Failure **OBSERVATIONS DURING WELL PURGING** Well Condition Good Odor: Yes: Fuel oil odor Color of GW: Clear with sheen/some odor Other: Purge for 8 min. before using Horiba

Additional Samples:

Sample ID:

Sample Time:

Groundwater Sampling Form Job Name: Honeywell - SA-5 - (Site 117) Well Number: 117-MW-S4 3480050164 Job Number: Task: Well Type: Monitor ✓ Other □ Well Material: PVC 🔽 Stainless Steel
Steel
Other WELL PURGING INFORMATION **PURGE VOLUME PURGE METHOD PUMP INTAKE SETTING** Low Flow Method: 🔽 Bailer - Type: NA Near Bottom ☐ Near Top ☐ V 3 to 5 Volume Purge Method: Center Number of Well Volumes to be Purged: NA Peristaltic Other Casing Diameter (D in Inches): **PURGE VOLUME CALCULATIONS** 2 x x 0.0408 = Total Depth of Casing (TD in feet BTOC): -) x NA Gallons Screen Interval in Feet (BTOC) from WL No. Volumes Caluclated Purge Volume Purge Water Disposal: Other <a> Treatment System San. Sewer Drum \square Type Storm Sewer Size INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS Instrument Type: Horiba U-22 Depth to Water: 7.52 Time: 10:14 Date: 10/12/2009 Serial Number: 11850 Depth to Bottom of Well: 19.84 PID Reading (inside of Casing): 0 For Calibration Information, See Instrument Calibration Record Sheet Dated: 10/12/2009 FIELD PARAMETER MEASURMENTS Recorded By: Sampled By: MD Purge Start Time: 10:15

(Signature)

Time	Minutes Elapsed	Rate		рн (S.U.)	Cond. (ms/cm)	Turbidity (NTUs)	Diss. O ₂ (mg/L)	Temp (°C)	Salinity (%)	Redox (mV)	Depth to Water	Comments
10:15	0	0.5	0.0	12.12	6.730	83.6	10.29	17.69	0.40	-106	7.60	
10:20	5	0.5	8.0	12.23	7.77	55.6	8.11	18.27	0.40	-122	7.66	
10:25	10	0.5	1.9	12.22	7.81	58.0	6.88	18.65	0.40	-131	7.69	
10:30	15	0.5	3.0	12.15	6.78	22.0	6.17	18.97	0.40	-133	7.70	
10:35	20	0.5	3.8	11.99	5.20	15.4	5.60	19.01	0.30	-122	7.70	
10:40	25	0.5	4.5	11.92	4.61	10.4	5.12	19.04	0.20	-112	7.71	
10:45	30	0.5	5.0	11.87	4.34	8.2	4.53	19.10	0.20	-107	7.72	
10:50	35	0.5	5.7	11.85	4.16	11.4	1.64	19.12	0.20	-104	7.72	
10:55	40	0.5	6.5	11.83	4.08	21.6	1.47	19.18	0.20	-102	7.73	
11:00	45	0.5	7.0	11.82	4.03	35.7	1.45	19.20	0.20	-100	7.74	
11:05	50	0.5	7.5	11.82	3.98	35.7	1.42	19.16	0.20	-99	7.73	

	OBSERVATIONS DURING WELL PURGING										
Well Condition		Good	Odor:	None							
Color of GW:		Yellow	Other:								
Sample Time:	11:06		Addition	al Samples:	Sample Time:						
Sample ID:		117-MW-S4-101209	Sample	ID:	•						

Contour Map Reporting Form Study Area 5 - Site 117 Ryerson Steel Site Jersey City, New Jersey October 2009

This reporting form shall accompany each groundwater elevation contour map submittal. Use additional sheets as necessary.

1.	Did any surveyed well casing elevations change from the previous sampling event? Yes No \underline{X} . If yes, attach new "Well Certification Form B" and identify the reason for the elevation change (damage to casing, installation or recovery system in monitoring well, etc.)
2.	Are there any monitor wells in unconfined aquifers in which the water table elevation is higher than the top of the well screen? Yes \underline{X} No $\underline{\hspace{0.5cm}}$. If yes, identify these wells.
3.	Are there any monitor wells present at the site but omitted from the contour map? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}}$ Unless the omission of the well(s) has been previously approved by the department, justify the omissions.
4.	Are there any monitor wells containing separate phase product during this measuring event? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}} X$. Were any of the monitor wells with separate phase product included in the groundwater contour map? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}} X$. If yes, show the formula used to correct the water table elevation.
5.	Has the groundwater flow direction changed more than 45° from the previous groundwater contour map? Yes $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}}$ No $\underline{\hspace{1cm}}$. If yes, discuss the reasons for the change.
6.	Has the groundwater mounding and/or depressions been identified in the groundwater contour map? Yes No \underline{X} . Unless the groundwater mounds and/or depressions are caused by the groundwater remediation system, discuss the reasons for this occurrence.
<i>7</i> .	Are all the wells used in the contour map screened in the same water-bearing zone? Yes \underline{X} . No $\underline{\hspace{1cm}}$. If no, justify inclusion of those wells.
8.	Were the groundwater contours computer generated, computer aided \underline{X} , or hand-drawn? If computer aided or generated, identify the interpolation method(s) used. <i>Kriging method</i> .

October 2010/April 2011 Groundwater Field Sampling Forms for 117-MW-A014

Job N	lame:	Ho	neywell	- SA-5 - (Si	ite 117)	We	II Number:	117-N	MW-A014			
Job Nu	ımber:	3480050	0164	Task:	2100		Well Type:					
						We	II Material:	PVC 🔽	Stainless	s Steel	Steel	Other
					WE	LL PURGII	NG INFORM	MATION				
PURGE	VOLUME						PURGE MI	ETHOD		PUI	MP INTAKE	
	ow Method:						Bailer - Ty		IA		r Bottom	☐ Near Top ☐
	olume Pur								ntrifugal 🔲			~
	r of Well Vo				NA				ristaltic 🔽		er 🔲	
_	Diameter (PURGE V					
	-			BTOC):							= NA	
Screen	Interval in	Feet (B	TOC) fro	om	to		TD WL	D	No. Volum	es	Caluclate	d Purge Volume
Purge \	Nater Dispo	osal:	San. Se	ewer 🔲	Drum	Type		Other	▽ Tre	eatment S	System	
J				Sewer		Size					,	•
			IN	ISTRUMEN	IT IDENTIF	ICATION R	ECORD AN	ID FIELD N	MEASUREN	MENTS		
Instrum	ent Type:	Horiba	a U-22	Depth t	to Water:	11.76		Time: 1	14:20	Date	e: 10/19	/2010
		103					17.25			f Casing)		
					cord Sheet Da			i ib itoaaii	ig (illolde e	. Odomig)	14101	
		,										
					FIELD	PARAME	TER MEAS	JRMENTS				
Pocoro	led By:				9.	ampled By:	MD	Dii	rge Start Ti	mo: 1	4.23	
Record		gnature)				апріса ву.	IVID	ı u	ige Start II	. <u> </u>	4.20	
	(0)	griaturo										
	Minutes		Purged	ъЦ	Cond.	Turbidity	Diss. O ₂	Tomp	Salinity	Dodov	Donth to	
Time	Elapsed	lpm	V	pH (S.U.)	(ms/cm)	(NTUs)	(mg/L)	Temp (°C)	(%)	Redox (mV)	Depth to Water	Comments
	шараец	gpm	Gal	(3.0.)	(1113/0111)	(11103)	(IIIg/L)	(0)	(70)	(1117)	vvalei	
14:23	0	1	0.00	6.77	1.240	117.0	3.44	20.21	0.10	1	11.92	
14:28	5	1	5.00	6.50	1.250	7.5	0.67	20.35	0.10	36	11.92	
14:33	10	1	10.00	6.47	1.200	7.7	0.55	20.30	0.10	48	11.95	
14:38	15	1	15.00	6.46	1.160	3.1	1.68	20.25	0.10	57	11.95	
14:43	20	1	20.00	6.45	1.160	0.3	1.87	20.27	0.10	66	11.95	
14:48	25	1	25.00	6.45	1.170	0.0	1.37	20.27	0.10	70	11.95	
14:52	30	1	30.00	6.46	1.280	0.0	0.20	20.18	0.10	71	11.95	
14:57	35 40	1	35.00 40.0	6.48 6.47	1.380 1.54	0.0 1.0	0.31 0.11	20.20	0.10 0.30	72 71	11.95 11.95	
15:02	40	I I	1 4U.U I	0.47	1.54	1.0	ı U.II I	20.17	ı U.3U	I / I	11.95	

Time	Minutes Elapsed	Rate ✓ Ipm ☐ gpm	-	pH (S.U.)	Cond. (ms/cm)	Turbidity (NTUs)	Diss. O ₂ (mg/L)	Temp (°C)	Salinity (%)	Redox (mV)	Depth to Water	Comments
14:23	0	1	0.00	6.77	1.240	117.0	3.44	20.21	0.10	1	11.92	
14:28	5	1	5.00	6.50	1.250	7.5	0.67	20.35	0.10	36	11.92	
14:33	10	1	10.00	6.47	1.200	7.7	0.55	20.30	0.10	48	11.95	
14:38	15	1	15.00	6.46	1.160	3.1	1.68	20.25	0.10	57	11.95	
14:43	20	1	20.00	6.45	1.160	0.3	1.87	20.27	0.10	66	11.95	
14:48	25	1	25.00	6.45	1.170	0.0	1.37	20.27	0.10	70	11.95	
14:52	30	1	30.00	6.46	1.280	0.0	0.20	20.18	0.10	71	11.95	
14:57	35	1	35.00	6.48	1.380	0.0	0.31	20.20	0.10	72	11.95	
15:02	40	1	40.0	6.47	1.54	1.0	0.11	20.17	0.30	71	11.95	
15:07	45	1	45.0	6.48	1.57	0.0	1.02	20.19	0.10	70	11.95	
15:08	Sample											
				.								

OBSERVATIONS DURING WELL PURGING											
Well Condition		Good	Odor:	None							
Color of GW:		Clear	Other:								
Sample Time:	1:55		Additional Sar	mples:	Sample Time:						
Sample ID:		117-MW-A014-101910	Sample ID:		·						

Job Name: SA-5 Site 117 Well Number: 117-MW-A14 **Task:** 2100.16 Job Number: 3480110255 Well Type: Monitor 🔽 Other 🗔 Well Material: PVC ☑ Stainless Steel ☐ Steel ☐ Other ☐ WELL PURGING INFORMATION **PUMP INTAKE SETTING PURGE VOLUME** PURGE METHOD Low Flow Method: Bailer - Type: Near Bottom Near Top 3 to 5 Volume Purge Method: 🔽 Center Bladder Peristaltic Other Number of Well Volumes to be Purged: **PURGE VOLUME CALCULATIONS** Casing Diameter (D in Inches) 4 Total Depth of Casing (TD in feet BTOC): Screen Interval in Feet (BTOC) from _____to Calculated Purge Volume Drum Type____ San. Sewer Other 🔽 Purge Water Disposal: Storm Sewer Size INSTRUMENT IDENTIFICATION RECORD AND FIELD MEASUREMENTS Depth to Water: 11.32 Time: 11:15 Date: 4/26/2011 Instrument Type: Horiba U-22 Serial Number: 8888 Depth to Bottom of Well: 17.2 PID Reading (inside of Casing): NM For Calibration Information, See Instrument Calibration Record Sheet Dated: 4/26/2011 FIELD PARAMETER MEASURMENTS Recorded By: Sampled By: BS Purge Start Time: 11:17 (Signature) Rate Purged Minutes pΗ Cond. Turbidity Diss. O₂ Temp Salinity Redox Depth to Ipm Comments Time (NTUs) Water Elapsed (S.U.) (ms/cm) (mg/L) (°C) (%) (mV) **✓** Gal **✓** gpm 11:20 6.87 0.801 5.7 5.94 15.19 83 11.49 0 0.5 0 0 11:30 10 0.5 6.47 0.791 1.7 1.33 14.17 0 126 11.57 0.87 14.27 0 11:40 20 0.5 10 6.41 0.782 0.3 137 11.61 11:45 25 0.5 6.45 0.778 0 0.75 14.28 0 138 11.65 12.5 11:47 Sample Note: > = Greater Than < = Less Than NM = Not Measured EF = Equipment Failure **OBSERVATIONS DURING WELL PURGING** Well Condition Good Odor: Clear Color of GW: Other: Additional Samples: Sample Time: 11:47 Sample Time: Sample ID: 117-MW-A14-042611 Sample ID:

APPENDIX C LABORATORY ANALYTICAL DATA

C1: Electronic Data Deliverables: NJDEP HAZSITE (Compact Disk)
C2: Laboratory Data Reports (Provided on Compact Disk)

Appendix C-1
Electronic Data Deliverables (Compact Disk)
NJDEP HAZSITE Electronic Data Deliverables

Appendix C-2
Laboratory Data Reports (Compact Disk)
[Hard Copy Provided in Separate Bound Volume]

APPENDIX D DATA VALIDATION REPORTS

Page 1

To: Ed Gaven/Vanthuy Lieu, MACTEC Engineering and Consulting, Inc.

From: Christina Jensen, Validata, LLC

Re: Honeywell Hudson County Data Validation

Date: September 25, 2009

This memorandum discusses the results of the data validation of analytical data in Sample Delivery Group (SDG) JA27477 provided by Accutest Laboratory, located in Dayton, New Jersey, for samples collected as part of the Honeywell Hudson County project. No samples were rejected as a result of the data validation process. Appendix A contains the Sample Summary Table, Appendix B contains a list of the State of New Jersey Department of Environmental Protection (NJDEP) data validation footnotes, and Appendix C contains copies of the completed data validation report forms.

The validation for samples in this SDG was performed by Christina Jensen, Validata, LLC. The following table lists the samples that were included in this SDG.

Samples

Table 1-1. Sample cross-reference list

Sampling	F: 110 1 15		
Date	Field Sample ID	Lab Sample ID	Sample Analyses
9/9/2009	117-MW-A014-090909	JA27477-1	SW6010, SW7196
9/9/2009	117-MW-A014F-090909	JA27477-1F	SW6010, SW7196
9/9/2009	117-MW-A05-090909	JA27477-3	SW6010, SW7196
9/9/2009	117-MW-A05DP-090909	JA27477-4	SW6010, SW7196
9/9/2009	117-MW-A05DPF-090909	JA27477-4F	SW6010, SW7196
9/9/2009	117-MW-A05F-090909	JA27477-3F	SW6010, SW7196
9/9/2009	117-MW-A062-090909	JA27477-6	SW6010, SW7196
9/9/2009	117-MW-A062F-090909	JA27477-6F	SW6010, SW7196
9/9/2009	117-MW-A85-090909	JA27477-5	SW6010, SW7196
9/9/2009	117-MW-A85F-090909	JA27477-5F	SW6010, SW7196
9/9/2009	117-MW-A89-090909	JA27477-2	SW6010, SW7196
9/9/2009	117-MW-A89F-090909	JA27477-2F	SW6010, SW7196
9/9/2009	117-MW-A99-090909	JA27477-7	SW6010, SW7196
9/9/2009	117-MW-A99F-090909	JA27477-7F	SW6010, SW7196
9/9/2009	117-MW-FB-090909	JA27477-8	SW6010, SW7196

Validation Level

The level of validation for this SDG is level V for hexavalent chromium and level IV for chromium. The remaining analyses were not validated per the MACTEC project manager.

References

The samples collected for the project were analyzed in accordance with the following methods:

USEPA 1986. Test Methods for Evaluating Solid Waste, SW-846, 3rd Edition, USEPA, Washington, D.C.

The data validation procedures were consistent with those specified in the NJDEP validation guidelines listed below:

 NJDEP. 2002. Standard Operating Procedure (SOP) entitled Quality Assurance Data Validation of Analytical Deliverables for Inorganics (based on EPA SW-846 Methods), SOP No. 5.A.16. Trenton, New Jersey; Page 2

- NJDEP. 2001. Standard Operating Procedure for the Completion of the Data Validation Report Forms and the Preparation of the Final Data Validation Report, SOP No. 5.A.15, Trenton, New Jersey;
- NJDEP. 2005. Standard Operating Procedure for Analytical Data Validation of Hexavalent Chromium, SOP No. 5.A.10, Revision 2, Trenton, New Jersey; and
- NJDEP. 2001. Standard Operating Procedure for the Completion of the Hexavalent Chromium Data Validation Report Forms and the Preparation of the Final Data Validation Report, SOP No. 5.A.09 Trenton, New Jersey.

Sample Summary Table

The Sample Summary Table provided in Appendix A contains only detected and/or qualified data. Results that were non-detect for an analyte were not included in the table.

Validation Footnotes

Appendix B contains the footnotes used for this project and shall remain consistent throughout the validation. The footnote(s) assigned will not be sequential. Specific footnote(s) used during the validation will be provided in Appendix B.

Chain-of-Custody Documentation

The custody documentation was complete for this SDG.

Major Deficiencies

There were no major deficiencies identified with the data.

Minor Deficiencies and Completeness

Minor deficiencies identified during validation are summarized per analytical method as follows:

Total Chromium by SW6010

No qualification to the data was made. Data usability is the number of usable (non-rejected) sample results divided by the total number of sample results for each type of analysis times 100. Data usability has been determined to be 100%.

Hexavalent Chromium by SW7196

All samples were qualified as estimated and assigned footnote H11 or H12 to indicate zero post verification spike recovery. Data usability is the number of usable (non-rejected) sample results divided by the total number of sample results for each type of analysis times 100. Data usability has been determined to be 100%.

Data Assessment Summary

Overall, the laboratory performed the analyses in accordance with the requirements set forth in the methods.

Data Usability

Based on the validation of data, it has been determined that 100% of the data are usable as qualified. The analytical data are of sufficient quality to be used for qualitative and quantitative purposes.

APPENDIX A

Sample Summary Table

Honeywell Hudson County Accutest Sampling Date 9/09/09 Fraction: Wet Chemistry, Inorganics SDG: JA27477 NJDEP SRP No. Matrix: Water

TARGET AND NON-TARGET ANALYTE SUMMARY

	_	_	_	_	_		_	$\overline{}$	_	1	_		_	_	_	_		_	_	_	_	_	_	
NJDEP Footnote		H11		H11		H12	H12		H12	H12		H12	H12		H12		H12		H12	H12		H12	H12	H12
QA Decision		Qualified		Qualified		Qualified	Qualified		Qualified	Qualified		Qualified	Qualified		Qualified		Qualified		Qualified	Qualified		Qualified	Qualified	Qualified
QA Reported	41.3	0.014J	17.2	0.011J	176	0.010UJ	0.010UJ	15.5	0.010UJ	0.010UJ	16.7	0.010UJ	0.010UJ	186	0.010UJ	111	0.010UJ	36.5	0.010UJ	0.010UJ	42.6	0.010UJ	0.050UJ	0.010UJ
Lab Concentration & Qualifiers	41.3	0.014	17.2	0.011	176	0.010U	0.010U	15.5	0.010U	0.010U	16.7	0.010U	0.010U	186	0.010U	111	0.010U	36.5	0.010U	0.010U	42.6	0.010U	0.050U	0.010U
Method Blank Result	100	0.010U	100	0.010U	100	0.010U	0.010U	100	0.010U	0.010U	100	0.010U	0.010U	100	0.010U	100	0.010U	100	0.010U	0.010U	100	0.010U	0.010U	0.010U
Units	l/gu	l/gm	l/gn	l/gm	l/gn	l/gm	l/gm	l/gu	l/gm	mg/l	l/gu	mg/l	mg/l	l/gu	l/gm	l/gn	mg/l	l/gn	mg/l	l/gm	l/gn	mg/l	mg/l	l/gm
Parameter	Chromium	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Chromium, Hexavalent	Chromium, Hexavalent
Laboratory Sample ID	JA27477-1	JA27477-1	JA27477-1F	JA27477-1F	JA27477-2	JA27477-2	JA27477-2F	JA27477-3	JA27477-3	JA27477-3F	JA27477-4	JA27477-4	JA27477-4F	JA27477-5	JA27477-5	JA27477-5F	JA27477-5F	JA27477-6	JA27477-6	JA27477-6F	JA27477-7	JA27477-7	JA27477-7F	JA27477-8
Field Sample ID	117-MW-A014-090909	117-MW-A014-090909	117-MW-A014F-090909	117-MW-A014F-090908	117-MW-A89-090909	117-MW-A89-090909	117-MW-A89F-090909	117-MW-A05-090909	117-MW-A05-090909	117-MW-A05F-090909	17-MW-A05DP-090909	17-MW-A05DP-09090	17-MW-A05DPF-09090	117-MW-A85-090909	117-MW-A85-090909	117-MW-A85F-090909	117-MW-A85F-090909	117-MW-A062-090909	117-MW-A062-090909	117-MW-A062F-09090s	117-MW-A99-090909	117-MW-A99-090909	117-MW-A99F-090909	117-MW-FB-090909
Dilution Factor	1	1	1 1	1	1	1	-	1	1	1	_	1	1	1	1	1	-	-	-	1	7	1	. 2	1
Fraction	SW6010	SW7196	SW6010	SW7196	SW6010	SW7196	SW7196	SW6010	SW7196	SW7196	SW6010	SW7196	SW7196	SW6010	SW7196	SW6010	SW7196	SW6010	SW7196	SW7196	SW6010	SW7196	SW7196	SW7196

APPENDIX B

NJDEP Qualifiers

Reason
Code
Description

H11
The reported value was qualified because the PVS recovery was less than 85 percent.

The non-detected value was qualified (UJ) because the PVS recovery was less than 85 percent. The possibility of a false negative exists.

APPENDIX C

NJDEP Validation Forms, Other Validation Forms.

DATA DÉLIVERABLE REQUIREMENTS

Site Name_Honeywell Hudson Co				Job Code JAZ7477			
Location SAS Site117				Date of Review 9 2509			
Lab	oratory Name_STL Accutest_	CAS	Lea	d Division/BureauNJDEF	·		
Rev	riewer_Christina Jensen		Met	hodology Review(leovo		
Site	e/Case Manager <u>(A)</u> G (M	ven_					
******************	munia	Knowis	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	GENERAL REQUIREMENT	S: Circle YES or	NO	and list the deviations at th	ne bottom:		
Α.	Permanently Bound	Yes (No)	G.	Methodology Review	Yes No		
B.	Paginated	Yes No	Н.	Uninitialed Strikeovers	Yes No		
c.	Title Page	Yes No	1.	Legible Photocopies	Yes No		
D.	Table of Contents	Yes No	J.	Consistent Dates	Yes No		
E.	Chain of Custody	Yes No	K.	Digestion Log	Yes No		
F.	Non-conformance Summary	(ves) No					
Des	scribe any deviations from the						
•							

HOLDING TIMES FOR METALS

Matrix:	Aqueous	1) or	Nonaqueou	us (/)		
	SAMPLE ID		E of	ICP	MERCURY	FURNACE	HOLDING
FIELD	or LAB		/IPLE	ANALYSIS	ANALYSIS	ANALYSIS	TIME
		I	ECTIO	DATE	DATE	DATE	EXCEEDED
			V				
1 (TA 7)	24771	99	03	77065			No
2	1/2	•	ec`	ι, '			
3	7	1		e (
4	U			10			
5	3			et			
6	37-			C1			
7	4			t e			
8	Up			ÿ	· · · · · · · · · · · · · · · · · · ·		
9	5			"(
10	5F			, (
11	4			"			
12	Car			N	·		
13	7	***************************************		11			
14	12			fa.			
15 -	15/	ć	<u>يا</u>	((7
16	· · · · · · · · · · · · · · · · · · ·		1				
17							****
18							
19							
20							

COMMENTS		
COOLER	ETEMP 4, 200	
PRESERVATION_	Au.	
HANDLING TIME_	save day	

INSTRUMENT CALIBRATION, INITIAL CALIBRATION CHECK (ICC) and INITIAL CALIBRATION VERIFICATION (ICV)

ASS	OCIATED SAMPLES	Part 1 of 2
1.	a. Was the ICP instrument (6010B) properly standardized? If no, explain and list action.	N/A
	b. Was the AA instrument (7000 Methods) properly standardized? Yes No	N/A
	c. Was the instrument used for Mercury properly standardized? Yes No If no, explain and list action.	N/A
2.	Was the ICV/ICC analyzed immediately after the systems were calibrated? If no, explain and list action.	No
3.	Was the ICV/ICC analyzed for every analyte? If no, explain and list action.	No
4.	Do all ICV/ICC analytes meet the QC requirements for % recovery? Yes No If no, list affected analytes, their % recovery, associated samples, and action.	
5.	a. Show calculation for the % recovery of one ICV analyte analyzed by ICP. Analyte	<u> </u>

993/1000=9

DPFSR/BEMQA MAY 2002

INSTRUMENT CALIBRATION, INITIAL CALIBRATION CHECK (ICC) and INITIAL CALIBRATION VERIFICATION (ICV)

Part 2 of 2

b.	C analyte analyzed by AA.	
	Analyte	Lab Value
c.	Show calculation for the ICV % recovery of Me	ercury.
	Nh	Lab Value
SPE	ECIFIC COMMENTS	

CONTINUING CALIBRATION VERIFICATION (CCV) and CALIBRATION CHECK STANDARD (CCS)

ASSO	CIATED SAMPLES	Part 1 of 2
1. a.	Was the CCV/CCS performed at the minimum frequency of 10%?	Yes No
	If no, list action	
	b. Was the CCV/CCS performed after ten samples and at the end of Yes	f sample analysis? No
	If no, list action	
2.	Were the CCV/CCS standards analyzed for all analytes?	YesNo
	If no, list affected analytes, their associated samples and action.	
3.	Was the CCV/CCS concentration near the midpoint of the calibration	curve?
	If no, list affected analytes, their associated samples and action.	(Yes) No
4.	Do all CCV/CCS analytes meet the QC requirement for % recovery?	Yes No
	If no, list affected analytes, their associated samples and action.	

CONTINUING CALIBRATION VERIFICATION (CCV) and CALIBRATION CHECK STANDARD (CCS)

Part 2 of 2

a.	Show calculation for the % recovery of one	oo v analyto analyzed by lol .
	Analyte	Lab value <u>9/07</u>
	1970/2000= 5	6
b.	Show calculation for the % recovery of one	CCS analyte analyzed by AA.
	Analyte M	Lab value
	·	
c.	Show calculation for the % recovery of one	CCV analyte for Mercury.
	na	Lab value
SPE	ECIFIC COMMENTS	·
	C.	Analyte

METHOD BLANK SUMMARY

Method Blank ID WM 4	9.477	Sample ma		
Did the frequency of the met	·	et method		(Yes) No
ANALYTE	CONCENTRATION	<mdl< td=""><td>COMMENTS / ACTION</td><td></td></mdl<>	COMMENTS / ACTION	
CV	-,2	yer	mm	
		0		

ASSOCIATEDSAMPLES______

CALIBRATION BLANKS

SS	OCIATED SAMPLES		
	Were the initial calibration blanks analyzed for all analytes and run after the ICV/I	CC? Yes	No
•	Was the absolute value for all analytes in the calibration blank below the MDL? If no, list affected analytes and qualify them.	Yes	No
•	Were the continuing calibration blanks analyzed for all analytes and run after the CCV/CCS?	(Yes	No
	Was the frequency for the continuing calibration blanks correct? No If no, list affected analytes, associated samples and action.		

ICP INTERFERENCE CHECK SAMPLE

AS	SOCIATED SAMPLES		
1.	Was an ICP interference check sample performed at the correct frequency?		
	If no, note any deviations and action	Yes	No
2.	Were the analytes interest and interferents for ICS reported? If no, note deviations.		
3.	Did all the required analytes of interest in the ICS meet the QC limit of 80-120%?	(Yes)	No
	If no, list the analytes, the % recovery, associated samples and the action		
4.	Show the calculation for the % recovery for one analyte in the ICS. Analyte	<u> </u>	
5.	COMMENTS		

MATRIX SPIKE (MS) and MATRIX SPIKE DUPLICATE (MSD)

Spike	e Anal	ysis performed on sample $M27437-4F$ % Solids	Part 1 of 2
Units		mg/kg ug/L	
1.		s the MS/MSD performed at the correct frequency? o, note deviations and action	Yes No
2.	Wa	s the MS/MSD analyses performed on a field sample?	(Yes) No
	lf n	o, reject all associated samples	
3.	a.	Were two (2) analytical methods used to obtain reported values for one analyte (i.e., ICP and AA) ? If yes, list analytes	Yes No
	b.	Was MS/MSD analysis performed using both methods for that analyte? If no, reject affected sample(s) which did not have spike analysis performed.	Voyes No
		in the frequence attracted campically without and the thave opine analysis performe	<i>-</i>

MATRIX SPIKE (MS) and MATRIX SPIKE DUPLICATE (MSD)

Part 2 of 2

DPFSR/BEMQA MAY 2002

4.	Did the % recovery for all analytes meet the criteria of	and one of the contract of the
	If no, list % recovery in parenthesis next to the analyte	e out and action.
5.	Did the Relative Percent Difference (RPD) for all analyte	es meet the requirement of 20% RPD?
	If no, list analytes and action.	No N/A
6.	a. Show calculation for % recovery for one analyte.	
	Analyte	Lab value $\overbrace{\mathcal{I}}$
	194-1-3 600=94	
	b. Show calculation for % RPD for one analyte.	
	Analyte	Lab valueS
	194-195	
	194-195b	. 065
	1941956	

POST-DIGESTION SPIKE ANALYSIS

t Digestion Spike	e Analysis pe	erformed on sample _			
nple matrix:	Soil	Water	% Solids_		
ts:	mg/kg	ug/L			
SOCIATED SAM	PLES				
Was post-dig	gestion spike	analysis performed a	t the correct frequency	y?	No
If no, list the	analyte(s) a	nd action.			
•	st-digestion s alytes and qu	spike performed on a alify them.	field sample?	Yes No	
		heir % recovery who QC criteria and actio		e analysis was perform	ned
Show the canalysis was		r % recovery for a	least one analyte w		ike
Analyte			Lab value		
Comments:					
		а		DPFSR/BEMQA MAY 2002	

LABORATORY CONTROL SAMPLE (LCS)

Sampl	e matrix: Soil Water	
Units:	mg/kg (ug/L	
ASSO	CIATED SAMPLES	
1.	Was the laboratory control sample performed at the correct frequency? Yes	No
2.	Do all analytes meet the QC limits of 80-120 %? If no, list analytes, their % recovery and action.	-
3.	Show the calculation for % recovery for one analyte. Analyte	<u>-12</u> 0
4.	Comments:	-

SERIAL DILUTION ANALYSIS

Samp	Dilution performed on sample 147747-35ilution Factor
AUUC	CIATED GAINT ELG
1.	Was a serial dilution performed at the correct frequency? Yes No If no, give action
2.	Was a field sample used for serial dilution?
	If no, give action
3.	For all analytes greater than ten times the IDL after dilution for 6010B and 25 times the EDL for 7000A methods, was a serial dilution performed?
	If no, list analytes and reject them.
4.	For all analytes that needed serial dilution analysis, was the QC limit of 10 % D met? If no, list those analytes outside the limits and qualify them.
5.	Show calculation for % D for one analyte analyzed by ICP. Analyte
	1.7-0

METHOD OF STANDARD ADDITION (MSA)

\SS(OCIATED SAMPLES
	If the post digestion spike recovery for Methods 7000A was outside the QC limit, was th MSA performed? Yes No If no, explain and list action.
2.	Was the MSA within the linear range of the instrument? Yes No If no, explain and list action.
3.	Was the MSA sample and spikes analyzed consecutively? Yes No If no, explain and list action.
٠.	Was the slope of the MSA plot less than 20% difference of the slope of the standard curve? If no, explain and list action.
i.	Comments:

, ,,,,,,,	OCIATED SAMPLE RESULT VERIFICATION	
1.	Were all sample results reported within the calibration range? (Yes No	
	If no, list affected samples and action.	
2.	Was the raw data free of any anomalies?	No
	If no, list affected samples and action.	
3.	Was the data package free of any computational or transcription errors?	No
	If no, list affected samples and action	
4.	Was the % solids analysis performed for all nonaqueous samples?	
	Yes o, list affected samples and action.	No (N/A)
5.	Show the calculation for % solids for one sample. Lab Value	
6.	Verify that nonaqueous samples were reported on a dry weight basis by recresult for one analyte in a sample.	alculating the
	Sample JA27477-1 Analyte Cv Lab value 41.6	pufley
	MA Adulous - X LUG	

DATA DELIVERABLE REQUIREMENTS for HEXAVALENT CHROMIUM

SRP NoSite Name_Honeywell Hudson County_ Location_Edison, NJ Laboratory Name_STL Accutes CAS_ Reviewer_Christina Jensen Date of Review			SDG				
GEI	NERAL REQUIREMENTS: C	Circle YES or NC) and	l list the deviations at the	bottom:		
A.	Permanently Bound	Yes No	G.	Methodology Review	(Yes) No		
В.	Paginated	(es) No	Н.	Uninitialed Strikeovers	Yes (No)		
C.	Title Page	(es) No	I.	Legible Xerox	Yes No		
D.	Table of Contents	(Yes) No	J.	Consistent Dates	Yes No		
E.	Chain of Custody	Yes No					
F.	Non-conformance Summary	Yes No					
Des	cribe any deviations from	the requirement	s				

HOLDING TIMES

Sample I Field or L		Matrix	Date of Sample	Hex Chrome Analysis	Holding Time	QA Decision
			Collection	Date	Exceeded	
1774774	1771	W	9905	9909	No	pore
2	IF		i in	test	(
3	_2_			<i>e</i> (
4	2F			11		
5	3			11		
6	2£			i (
7	9			e (
8	45			(,t		
9	5					
10	5F			M		
11	Co.					
12	COF			G		
13	7			Ü		
14	25			(q		
15	8	A	- h	¢/	4	comp
16						
17				,		
18						
19						
20						

List any samples that exceeded the holding time, the number of days exceeded by and QA decision.

INSTRUMENT CALIBRATION CURVE and CALIBRATION CHECK STANDARD (CCS)

ASS	SOCIATED SAMPLES		-
1.	Was the instrument properly standardized? If no, explain and list action.	Yes No	
2.	Was the CCS analyzed at the proper frequency? If no, explain and list action.	Yes No	
3.	Was the same CCS concentration used throughout the If no, list action.	analysis? Yes No	
4.	Does the CCS standard meet the QC requirements of 9 If no, list the % recovery, and action.	0-110% recovery ? Yes No	
 5.	Show calculation for the % recovery of Hexavalent Chr.	omium in the CCS standard	

.528/.5=1.0

DPFSR/BEMQA OCTOBER 2001

Lab value / \iint

CALIBRATION BLANKS

Was the calibration blank analyzed before the instrument's initial calibration standards?
If no, list action.
Was a calibration blank analyzed after the calibration check standard? Yes No If no, list associated samples and action.
Was the value of Hexavalent Chromium for the continuing calibration blank below the

PREPARATION/REAGENT BLANK SUMMARY

Preparation/Reagent	Blank ID M3	241	-	
Sample matrix: Soil Units: mg/k	(yVater			
		gent blank	analysis	meet method requirements?
If no, explain and not	e action			(Yes) No
				· · · · · · · · · · · · · · · · · · ·
ANALYTE	CONCENTRATION	< MDL	>IDL	COMMENTS / ACTION
Ø				
'CM	004	(per	va	none
		J		
ASSOCIATED SAMP	<u>LES</u>			

AQUEOVS-Sel West PREDIGESTION SPIKE ANALYSIS poss

Spike Analysis performed on sample _____ Solids Sample matrix: Soil Units: mg/kg ASSOCIATED SAMPLES _____ 1. Was the predigestion spike analysis performed at the correct frequency? Yes No If no, note deviations and action _____ 2. Was the predigestion spike analysis performed on a field sample? Yes No If no, reject all associated samples.____ Was the predigestion spike analysis performed at the proper concentration? 3. Yes No If no, qualify the associated samples._____ Did the % recovery for hexavalent chromium meet the criteria of 75-125 %? 4. Yes No If no, list action. 5. Show calculation for predigestion spike recovery of Hexavalent Chromium. Lab value _____

POST VERIFICATION SPIKE ANALYSIS

ost Verification Spike (PVS) performed on sample <u>JA77447-3,</u> 3F
sample matrix: Soil Water % Solids * W#
Jnits: mg/kg (ug/)
SSOCIATED SAMPLES
. Was PVS analysis performed at the correct frequency and proper concentration? Yes No If no, list action.
Was DVS analysis performed an a field sample?
. Was PVS analysis performed on a field sample? Yès No If no, list action
a. Does the PVS recovery meet the criteria of 85-115%?
If no, list action all Molts Q, D) H107H12(M)
b. If the PVS recovery was less than 85%, did the laboratory reanalyze the sample? Yes No NA If no, list action
. Show the calculation for % recovery for PVS.
Lab value
0/15=0

DPFSR/BEMQA OCTOBER 2001

DUPLICATE ANALYSIS

Duplic	cate Analysis performed on sample <u>A27477</u> %Solids							
Samp	Sample matrix: Soil Water							
Units:	mg/kg (ug/L)							
ASSO	CIATED SAMPLES							
1.	Was the Duplicate analyses performed at the correct frequency? Yes No If no, list action.							
2.	Was the duplicate analysis performed on a field sample? Yes No If no, reject all associated samples.							
3.	Does the duplicate analysis meet the QC control limits? If no, qualify the associated samples.							
4.	Show the calculation for RPD for Hexavalent Chromium.							
	Lab value							
	Lab value ϕ							

LABORATORY CONTROL SAMPLE

Sam Units	ple matrix: Soil Water s: mg/kg ug/L
ASS	OCIATED SAMPLES
1.	Was the laboratory control sample performed at the correct frequency? If no, list action.
2.	Does the LCS meet the QC limit of 80-120 % If no, list the % recovery and actionRange Used
3.	Show the calculation for the LCS % recovery for hexavalent chromium. Lab Value
	Range =

15/15=1.

SAMPLE RESULT VERIFICATION

OCIATED SAMPLES
 Were all samples reported within the calibration range? If no, list affected samples and action.
Was the raw data free of any anomalies? If no, list affected samples and action.
Was the data package free of any computational or transcription errors? Yes No If no, list affected samples and action.
Were both 3060 & 7196A pH readings provided and within method requirer Yes No N/A If no, list affected samples and action.
3060A? <u>N</u>
Were the hotplate temperatures provided and within method requirements? Yes No N/A If no, list affected samples and action.
Show the calculation for % solids for one sample. Lab value
Show the calculation for a nonaqueous sample. Lab value
DDESD/REMO/

DPFSR/BEMQA OCTOBER 2001

Page 1

To: Ed Gaven/Vanthuy Lieu, MACTEC Engineering and Consulting, Inc.

From: Christina Jensen, Validata, LLC

Re: Honeywell Hudson County Data Validation

Date: November 4, 2009

This memorandum discusses the results of the data validation of analytical data in Sample Delivery Group (SDG) JA30201 provided by Accutest Laboratory, located in Dayton, New Jersey, for samples collected as part of the Honeywell Hudson County project. No samples were rejected as a result of the data validation process. Appendix A contains the Sample Summary Table, Appendix B contains a list of the State of New Jersey Department of Environmental Protection (NJDEP) data validation footnotes, and Appendix C contains copies of the completed data validation report forms.

The validation for samples in this SDG was performed by Christina Jensen, Validata, LLC. The following table lists the samples that were included in this SDG.

Samples

Table 1-1. Sample cross-reference list

Sampling	·	Lab Sample	
Date	Field Sample ID	ID	Sample Analyses
9/12/2009	117-MW-A05DP-101209	JA30201-4	SW6010, SW7196, SW9060
9/12/2009	117-MW-A05DPF-101209	JA30201-4F	SW6010, SW7196
9/12/2009	117-MW-A05F-101209	JA30201-3F	SW6010, SW7196
9/12/2009	117-MW-A062-101209	JA30201-6	SW6010, SW7196, SW9060
9/12/2009	117-MW-A062F-101209	JA30201-6F	SW6010, SW7196
9/12/2009	117-MW-A85-101209	JA30201-5	SW6010, SW7196, SW9060
9/12/2009	117-MW-A85F-101209	JA30201-5F	SW6010, SW7196
9/12/2009	117-MW-A99-101209	JA30201-7	SW6010, SW7196, SW9060
9/12/2009	117-MW-A99F-101209	JA30201-7F	SW6010, SW7196
9/12/2009	117-MW-FB-101209	JA30201-9	SW6010, SW7196, SW9060
9/12/2009	117-MW-S4-101209	JA30201-8	SW6010, SW7196, SW9060
9/12/2009	117-MW-S4F-101209	JA30201-8F	SW6010, SW7196
10/12/2009	117-MW-A014-101209	JA30201-1	SW6010, SW7196, SW9060
10/12/2009	117-MW-A014F-101209	JA30201-1F	SW6010, SW7196
10/12/2009	117-MW-A05-101209	JA30201-3	SW6010, SW7196, SW9060
10/12/2009	117-MW-A89-101209	JA30201-2	SW6010, SW7196, SW9060
10/12/2009	117-MW-A89F-101209	JA30201-2F	SW6010, SW7196

Validation Level

The level of validation for this SDG is level V for hexavalent chromium and level IV for chromium. The remaining analyses were not validated per the MACTEC project manager.

References

The samples collected for the project were analyzed in accordance with the following methods:

USEPA 1986. Test Methods for Evaluating Solid Waste, SW-846, 3rd Edition, USEPA, Washington, D.C.

The data validation procedures were consistent with those specified in the NJDEP validation guidelines listed below:

Page 2

- NJDEP. 2002. Standard Operating Procedure (SOP) entitled Quality Assurance Data Validation of Analytical Deliverables for Inorganics (based on EPA SW-846 Methods), SOP No. 5.A.16. Trenton, New Jersey;
- NJDEP. 2001. Standard Operating Procedure for the Completion of the Data Validation Report Forms and the Preparation of the Final Data Validation Report, SOP No. 5.A.15, Trenton, New Jersey;
- NJDEP. 2005. Standard Operating Procedure for Analytical Data Validation of Hexavalent Chromium, SOP No. 5.A.10, Revision 2, Trenton, New Jersey; and
- NJDEP. 2001. Standard Operating Procedure for the Completion of the Hexavalent Chromium Data Validation Report Forms and the Preparation of the Final Data Validation Report, SOP No. 5.A.09 Trenton, New Jersey.

Sample Summary Table

The Sample Summary Table provided in Appendix A contains only detected and/or qualified data. Results that were non-detect for an analyte were not included in the table.

Validation Footnotes

Appendix B contains the footnotes used for this project and shall remain consistent throughout the validation. The footnote(s) assigned will not be sequential. Specific footnote(s) used during the validation will be provided in Appendix B.

Chain-of-Custody Documentation

The custody documentation was complete for this SDG.

Major Deficiencies

No major deficiencies were identified.

Minor Deficiencies and Completeness

Minor deficiencies identified during validation are summarized per analytical method as follows:

Total Chromium by SW6010

No qualification to the data was made. Data usability is the number of usable (non-rejected) sample results divided by the total number of sample results for each type of analysis times 100. Data usability has been determined to be 100%.

Hexavalent Chromium by SW7196

All samples were qualified as estimated and assigned footnote H11 or H12 to indicate low post verification spike recovery. Data usability is the number of usable (non-rejected) sample results divided by the total number of sample results for each type of analysis times 100. Data usability has been determined to be 100%.

Data Assessment Summary

Overall, the laboratory performed the analyses in accordance with the requirements set forth in the methods.

Data Usability

Based on the validation of data, it has been determined that 100% of the data are usable as qualified. The analytical data are of sufficient quality to be used for qualitative and quantitative purposes.

APPENDIX A

Sample Summary Table

Honeywell Hudson County Accutest Sampling Date 10/12/09 Fraction: Wet Chemistry, Inorganics SDG: JA30201 NJDEP SRP No. Matrix: Water

TARGET AND NON-TARGET ANALYTE SUMMARY

	Τ		Π	Τ	Τ	1		ĺ	Г		Ī			Γ	Γ		Γ	Ι					<u> </u>				Г	Ī]	_		Г
NJDEP Footnote		H11			H11		H12		H12	H12		H12	H12		H12		H12		H12		H12			H12		H12		H12		H11			Ξ	H12
QA Decision		Qualified			Qualified		Qualified		Qualified	Qualified		Qualified	Qualified		Qualified		Qualified		Qualified		Qualified			Qualified		Qualified		Qualified		Qualified			Qualified	Oualified
QA Reported	37.6	0.028J	2.9	34.3	0.027J	30.5	0.010UJ	9.2	0.010UJ	0.010UJ	2	0.0100J	0.010UJ	1.8	0.010UJ	89.9	0.010UJ	9.6	0.010UJ	1570	0.010UJ	13.6	55.1	0.010UJ	10.9	0.010UJ	6.8	0.010UJ	334000	328J	6.1	353000	325J	0.010111
Lab Concentration & Qualifiers	37.6	0.028	2.9	34.3	0.027	30.5	0.010U	9.2	0.010U	0.010U	2	0.010U	0.010U	1.8	0.010U	89.9	0.010U	9.6	0.010U	1570	0.010U	13.6	55.1	0.010U	10.9	0.010U	6.8	0.010U	334000	328	6.1	353000	325	0.01011
Method Blank Result	100	0.010U	1.00	100	0.010U	100	0.010U	1.0U	0.010U	0.010U	1.00	0.010U	0.010U	1.00	0.010U	100	0.010U	1.00	0.0100	100	0.010U	1.0U	100	0.010U	100	0.010U	1.00	0.010U	100	0.010U	1.00	100	0.010U	1010
Units	l/gn	l/gm	mg/l	l/gn	l/gm	l/bn	mg/l	mg/l	mg/l	mg/l	mg/l	l/gm	mg/l	mg/l	mg/l	l/bn	mg/l	mg/l	mg/l	l/gn	mg/l	mg/l	l/gn	mg/l	l/gn	mg/l	mg/l	l/gm	l/gn	mg/l	mg/l	l/gn	mg/l	// 500
Parameter	Chromium	Chromium, Hexavalent	Total Organic Carbon	Chromium	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Total Organic Carbon	Chromium, Hexavalent	Chromium, Hexavalent	Total Organic Carbon	Chromium, Hexavalent	Chromium, Hexavalent	Total Organic Carbon	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Total Organic Carbon	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Total Organic Carbon	Chromium	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Total Organic Carbon	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Total Organic Carbon	Chromium	Chromium, Hexavalent	Chromium Havavalant
Laboratory Sample ID	JA30201-1	JA30201-1	JA30201-1	JA30201-1F	JA30201-1F	JA30201-2	JA30201-2	JA30201-2	JA30201-2F	JA30201-3	JA30201-3	JA30201-3F	JA30201-4	JA30201-4	JA30201-4F	JA30201-5	JA30201-5	JA30201-5	JA30201-5F	JA30201-6	JA30201-6	JA30201-6	JA30201-6F	JA30201-6F	JA30201-7	JA30201-7	JA30201-7	JA30201-7F	JA30201-8	JA30201-8	JA30201-8	JA30201-8F	JA30201-8F	1430201.0
	117-MW-A014-101209	117-MW-A014-101209	117-MW-A014-101209	117-MW-A014F-101209	117-MW-A014F-101209	117-MW-A89-101209	117-MW-A89-101209	117-MW-A89-101209	117-MW-A89F-101209	117-MW-A05-101209	117-MW-A05-101209	117-MW-A05F-101209	17-MW-A05DP-10120	117-MW-A05DP-101208	17-MW-A05DPF-10120	117-MW-A85-101209	117-MW-A85-101209	117-MW-A85-101209	117-MW-A85F-101209	117-MW-A062-101209	117-MW-A062-101209	117-MW-A062-101209	117-MW-A062F-101209	117-MW-A062F-101209	117-MW-A99-101209	117-MW-A99-101209	117-MW-A99-101209	117-MW-A99F-101209	117-MW-S4-101209	117-MW-S4-101209	117-MW-S4-101209	117-MW-S4F-101209	117-MW-S4F-101209	117-MM/-FB-101209
Dilution Factor	-	-	1	-	-	1	-	-	-	-	_	-	-	-	_		-	-	-	-	-	-	-	-	-	-	-	-	10	200	-	10	200	·
Fraction	SW6010	SW7196	SW9060	SW6010	SW7196	SW6010	SW7196	SW9060	SW7196	SW7196	SW9060	SW7196	SW7196	SW9060	SW7196	SW6010	SW7196	SW9060	SW7196	SW6010	SW7196	SW9060	SW6010	SW7196	SW6010	SW7196	SW9060	SW7196	SW6010	SW7196	SW9060	SW6010	SW7196	S/A/7106

APPENDIX B

NJDEP Qualifiers

Reason
Code Description

H11 The reported value was qualified because the PVS recovery was less than 85 percent.

The non-detected value was qualified (UJ) because the PVS recovery was less than 85 percent. The possibility of a false negative exists.

APPENDIX C

NJDEP Validation Forms, Other Validation Forms.

DATA DELIVERABLE REQUIREMENTS

Site NameHoneywell Hudson Co			Job Code A 3020				
Location SAS Sife/17			Date of Review 11307				
Lab	oratory Name_STL Accutest CAS		Lea	d Division/BureauNJDEP			
Rev	iewer_Christina Jensen		Met	:hodology Review <i>(</i>	"ODOP		
Site	Site/Case Manager FN GAVEN. Warin Wa O Wis						
	GENERAL REQUIREMENTS: Ci	rcle YES or	NO.	and list the deviations at th	e bottom:		
A.	Permanently Bound Yes	No	G.	Methodology Review	Yes No		
В.	Paginated (Yes)	No	Н.	Uninitialed Strikeovers	Yes No		
C.	Title Page (Yes)	No	l.	Legible Photocopies	(Yes) No		
D.	Table of Contents Yes	No	J.	Consistent Dates	Yes No		
Ε.	Chain of Custody (Yes	No	K.	Digestion Log	Yes No		
F.	Non-conformance Summary Yes	No					
Describe any deviations from the requirements							
-							

HOLDING TIMES FOR METALS

Matrix:	Aqueous	(/) or	Nonaqueou	ıs ()	1-00	
SAI	MPLE ID	DATE of	ICP	MERCURY	FURNACE	HOLDING
FIELI	D or LAB	SAMPLE	ANALYSIS	ANALYSIS	ANALYSIS	TIME
		COLLECTIO	DATE	DATE	DATE	EXCEEDED
		N				
1)/7	20201-1	10 1209	102709			no
2	15	- 11	•			
3	-2		10 2709			
4	W.		10 2209			
5	シ		10 21,09			
6	375		102209			
7	4		107700			
8	46		10 2704			
9	1 5		102709			
10	5		102709			
11	Ce		10 7205			
12	100		10 2709			
13	1 7		102709			
14	1 70		102209			
15	5		107709	· · · · · · · · · · · · · · · · · · ·		
16	87		102709			
17 -	9		102709			4
18	* //		,			
19						
20						

COMMENTS		,		
COOLER	TEMP	2500	. 2,3%	
PRESERVATION / M	Stan	WILL COPY	as CNVCelle	Meservel
HANDLING TIME Sain	10/1/18	h.	7	/ 000
<u>8,0000</u>	700	1	/	

INSTRUMENT CALIBRATION, INITIAL CALIBRATION CHECK (ICC) and INITIAL CALIBRATION VERIFICATION (ICV) Part 1 of 2 ASSOCIATED SAMPLES Was the ICP instrument (6010B) properly standardized? N/A 1. If no, explain and list action. Was the AA instrument (7000 Methods) properly standardized? Yes If no, explain and list action. Was the instrument used for Mercury properly standardized? Yes No c. If no, explain and list action. Was the ICV/ICC analyzed immediately after the systems were calibrated? 2. No If no, explain and list action. No 3. Was the ICV/ICC analyzed for every analyte? If no, explain and list action. Do all ICV/ICC analytes meet the QC requirements for % recovery? 4. If no, list affected analytes, their % recovery, associated samples, and action. Show calculation for the % recovery of one ICV analyte analyzed by ICP. 5. Analyte 4/ Lab Value 92

973/1000=.97

DPFSR/BEMQA MAY 2002

INSTRUMENT CALIBRATION, INITIAL CALIBRATION CHECK (ICC) and INITIAL CALIBRATION VERIFICATION (ICV)

Part 2 of 2

Analyte	Lab Value
c. Show calculation for the ICV % recovery of Mer	courv ·
The leaves of th	Lab Value
SPECIFIC COMMENTS	

CONTINUING CALIBRATION VERIFICATION (CCV) and CALIBRATION CHECK STANDARD (CCS)

ASSO	CIATED SAMPLES	Part 1 of 2
1. a.	Was the CCV/CCS performed at the minimum frequency of 10%?	_
		Yes) No
	If no, list action	
	b. Was the CCV/CCS performed after ten samples and at the end of sa	
	If no, list action	<u> </u>
2.	Were the CCV/CCS standards analyzed for all analytes?	YesNo
	If no, list affected analytes, their associated samples and action.	
3.	Was the CCV/CCS concentration near the midpoint of the calibration cur	ve?
	If no, list affected analytes, their associated samples and action.	Yes No
		\supset
4.	Do all CCV/CCS analytes meet the QC requirement for % recovery?	Yes No
	If no, list affected analytes, their associated samples and action.	

CONTINUING CALIBRATION VERIFICATION (CCV) and CALIBRATION CHECK STANDARD (CCS)

Part 2 of 2

5.	a.	Show calculation for the % recovery of one CCV analyte analyzed by ICP.					
		Analyte	Lab value 773				
		1980/2000= 9					
	b.	Show calculation for the % recovery of one CCS ar	nalyte analyzed by AA.				
		Analyte	Lab value				
	c.	Show calculation for the % recovery of one CCV ar	palyte for Mercury				
	0.	onew calculation for the 75 receiving of one cov at					
		Na	Lab value				
6.	SP	ECIFIC COMMENTS					

METHOD BLANK SUMMARY

Method Blank ID MP5	VUZ	Sample ma	atrix: Soil Water its: mg/kg ug/L	
Did the frequency of the r				(Yes) No
ANALYTE	CONCENTRATION	<mdl< th=""><th>COMMENTS / ACTION</th><th></th></mdl<>	COMMENTS / ACTION	
CV	,272	Mes	none	
		1		

ASSOCIATEDSAMPLES______

CALIBRATION BLANKS ASSOCIATED SAMPLES Were the initial calibration blanks analyzed for all analytes and run after the ICV/ICC? 1. No If no, list affected analytes, and action. Was the absolute value for all analytes in the calibration blank below the MDL? 2. No If no, list affected analytes and qualify them. 3. Were the continuing calibration blanks analyzed for all analytes and run after the CCV/CCS? No If no, list affected analytes, associated samples and action. Was the frequency for the continuing calibration blanks correct? 4. If no, list affected analytes, associated samples and action._____

AS	SSOCIATED SAMPLES		
1.	Was an ICP interference check sample performed at the correct frequency?		
	If no, note any deviations and action	Yes	No
2.	Were the analytes interest and interferents for ICS reported? Yes No		
	If no, note deviations.		
3.	Did all the required analytes of interest in the ICS meet the QC limit of 80-120%?	Yes	No
	If no, list the analytes, the % recovery, associated samples and the action		
4.	Show the calculation for the % recovery for one analyte in the ICS.		
	Analyte Lab value 9570		
	475/500 -95		
5.	COMMENTS		

MATRIX SPIKE (MS) and MATRIX SPIKE DUPLICATE (MSD)

Spike Analysis performed on sample H30201-3 H % Solids NA					
	ple matrix: Soil Water	·			
Units					
ASS(OCIATED SAMPLES				
1.	Was the MS/MSD performed at the correct frequency?	Yes No			
	If no, note deviations and action				
2.	Was the MS/MSD analyses performed on a field sample?	Yes No			
	If no, reject all associated samples				
3.	a. Were two (2) analytical methods used to obtain reported values analyte (i.e., ICP and AA) ?				
	If yes, list analytes	Yes No			
		<u> </u>			

b. Was MS/MSD analysis performed using both methods for that analyte?

Yes No

If no, reject affected sample(s) which did not have spike analysis performed.

MATRIX SPIKE (MS) and MATRIX SPIKE DUPLICATE (MSD)

Part 2 of 2

1.	If no, list % recovery in parenthesis next to the analyte out and action.	Yes No	
	——————————————————————————————————————	-	
		_	
		_	
5.	Did the Relative Percent Difference (RPD) for all analytes meet the requirem Yes No N/A	ent of 20% RPD?	
	If no, list analytes and action.	<u> </u>	
ŝ.	a. Show calculation for % recovery for one analyte.		
	Analyte Lab value 95	-	
	199-7-3/20=9		
	b. Show calculation for % RPD for one analyte.		
	Analyte <u>Q</u> Lab value <u>G</u>	<u>1</u>	

199-208 199+208h

DPFSR/BEMQA MAY 2002 POST-DIGESTION SPIKE ANALYSIS

Post	Digestion Spike	e Analysis pei	formed on samp	le	
Samp	ole matrix:	Soil	Water	% Solids	
Units	:	mg/kg	ug/L		
ASS	OCIATED SAMI	PLES			
1.	Was post-dig	jestion spike	analysis perform	ed at the correct frequency?	Vac Na
	If no, list the	analyte(s) ar	nd action.		Yes No
		st-digestion s alytes and qua		n a field sample?	Yes No
					
3.		•	neir % recovery QC criteria and a	where post-digestion spike ar	
4.	Show the c	alculation for		or at least one analyte wher	e post-digestion spike
	Analyte	 ,		Lab value	
5.	Comments:				
1					
			<	1	PFSR/BEMQA IAY 2002

LABORATORY CONTROL SAMPLE (LCS)

Sample	e matrix: Soil	Water		
Units:	mg/k	a W V (na/i)		
ASSO	CIATED SAMPLE	s UU	CATALO	
1.		tory control sample performed at the	Yes No	
2.	•	meet the QC limits of 80-120 %? es, their % recovery and action.	Yes No	
3.	Show the calcu	lation for % recovery for one analyte	Lab Value <u>97</u> Soil limits <u>80–120</u>	-
		487/5002.77		
4.	Comments:			

SERIAL DILUTION ANALYSIS

Seria	l Dilution performed on sample <u>月3のの プガ</u> Dilutio	n Facto	r <u> 5 </u>	
•	ole matrix: Soil Water Units: n		ugXL	
1.	Was a serial dilution performed at the correct frequency? If no, give action		Yes	No
2.	Was a field sample used for serial dilution? If no, give action			s No
3.	For all analytes greater than ten times the IDL after dilution for 7000A methods, was a serial dilution performed? If no, list analytes and reject them.			times the EDL Yes No
4.	For all analytes that needed serial dilution analysis, was the 10 % D met? If no, list those analytes outside the limits and qualify them.		it of Yes No	
5.		_ab valu	e <u>,3</u>	
	7.33-7.34= .003		DPFSR/BE MAY 200	

DPFSR/BEMQA MAY 2002

	METHOD OF STANDARD ADDITION (MSA)	
ASS	OCIATED SAMPLES	
		-
		
1.	If the post digestion spike recovery for Methods 7000A was outside the O	C limit, was the
	MSA performed? Yes	No
	If no, explain and list action.	-
2.	Was the MSA within the linear range of the instrument? Yes No	
	If no, explain and list action.	-
3.	Was the MSA sample and spikes analyzed consecutively? Yes No)
	If no, explain and list action.	-
4.	Was the slope of the MSA plot less than 20% difference of the slope of the standard curve? Yes No	
	If no, explain and list action.	_
5.	Comments:	_

ASSO	CIATED SAMPLES	SAMPLE RESULT VE	RIFICATION		
	-				
1.	Were all sample results rep	oorted within the calib	ration range?	Yes No	
	If no, list affected samples	and action.			
				*	
2.	Was the raw data free of a	any anomalies?		Yes	No
	If no, list affected samples	and action.			
3.	Was the data package free	of any computationa	ıl or transcription erı	rors? Yes) No
	If no, list affected samples	and action.			
4.	Was the % solids analysis	performed for all non	aqueous samples?	Yes	No (N/A
If no	, list affected samples an	d action.			
5.	Show the calculation for %	6 solids for one samp		N/A o Value	
6.	Verify that nonaqueous s result for one analyte in a	amples were reporte sample.	d on a dry weight	basis by rec	alculating the
	Sample	Analyte	Lab value	e	_

DATA DELIVERABLE REQUIREMENTS for HEXAVALENT CHROMIUM

Site Loc Lab Rev	No. Name_Honeywell Hudson ation_Edison, NJ oratory Name_STL Accute iewer_Christina Jensen e of Review_\(\)		Lea	Manager <u>ENGAVIV</u> d Division/Bureau_NJDEP	
GEI	NERAL REQUIREMENTS:	Circle YES or NC) and	l list the deviations at the	e bottom:
Α.	Permanently Bound	Yes (No	G.	Methodology Review	Yes No
В.	Paginated	Yes No	Н.	Uninitialed Strikeovers	Yes No
C.	Title Page	Yes No	I.	Legible Xerox	(Yes No
D.	Table of Contents	Xes No	J.	Consistent Dates	(Yes) No
E.	Chain of Custody	Yes No			
F.	Non-conformance Summary	Kes No			
Des	scribe any deviations fron	n the requiremen	ts		·

HOLDING TIMES

	ple ID or Lab	Matrix	Date of Sample Collection	Hex Chrome Analysis Date	Holding Time Exceeded	QA Decision
1 7A2	N207-1	. W	10 1209	10 1209	M	none
2	i	Î	(\	li `		į
3	7,		5.4	(1		
4	W.		(3	l (
5	3		(((1		
6	死		į (C1		
7	4		ţc	(r		
8	UP		į ((\		
9	5		k	ev		
10	5F		('	C1		
11	6		ι'	le .		
12	Lèr		£ ((1		
13	1 7		(<	cr cr		
14	75		ſ	le		
15	4		و (c •		
16	81		((SI.		
17 -	1 9	4	110	, C1	Å	4
18		-4.				
19						
20						

List any samples that exceeded the holding time, the number of days exceeded by and QA decision.	

DPFSR/BEMQA OCTOBER 2001

INSTRUMENT CALIBRATION CURVE and CALIBRATION CHECK STANDARD (CCS)

ASS	SSOCIATED SAMPLES		
1.	Was the instrument properly standardized? If no, explain and list action.	Yes	No
2.	Was the CCS analyzed at the proper frequency? If no, explain and list action.	Yes —	No
3.	Was the same CCS concentration used throughout the analysis? If no, list action.	y (es)No	o
4.	Does the CCS standard meet the QC requirements of 90-110% Yes If no, list the % recovery, and action.	recovery No	?
5.	·	n the CCS ab value <u>(</u>	

DPFSR/BEMQA OCTOBER 2001

CALIBRATION BLANKS

Was the calibration blank analyzed before the instrument's initial calibration standards? Yes No If no, list action.
Was a calibration blank analyzed after the calibration check standard?
If no, list associated samples and action.
Was the value of Hexavalent Chromium for the continuing calibration blank below the M
If no, list associated samples and qualify them.

PREPARATION/REAGENT BLANK SUMMARY

Preparation/Reagen	t Blank ID SWH	097-1	us 1		
Sample matrix: Soi	l Water				
Units: mg	/kg (ig/L				
Does the frequency	of the preparation/reag	jent blank	analysis	meet method requirements?	
If no, explain and n	ote action				
ANALYTE	CONCENTRATION	< MDL	>IDL	COMMENTS / ACTION	
CM	0027	Ger	no	none	
ASSOCIATED SAM	IPLES				

Spike	Analysis performed on sample	 	
Samp	le matrix: Soil	Units: mg/kg	
ASSC	OCIATED SAMPLES		
1.	Was the predigestion spike analysis performed If no, note deviations and action	Yes No	
2.	Was the predigestion spike analysis performed If no, reject all associated les		
3.	Was the predigestion spike analysis performed If no, qualify the associated samples.	Yes No	
4.	Did the % recovery for hexavalent chromium n	Yes No	
5.	Show calculation for predigestion spike recov	ery of Hexavalent Chromium.	
		Lab value	

DPFSR/BEMQA OCTOBER 2001

POST VERIFICATION SPIKE ANALYSIS

Post \	Verification Spik	e (PVS) pe	erformed o	n sample <u> </u>	4 50 21	<u>M-</u> 2-	
Samp	le matrix:	Soil	Water	% Solids			
Units:	:	mg/kg	ug/L				
ASSC	OCIATED SAMPL	.es <u> </u>					-
1.	Was PVS analy	Yes	med at the No	correct freque	ency and prop	per concentration	on?
2.	Was PVS analy		med on a f	eld sample?	Yes	No	
3.	a. Does the P\					3057 10/100	
	b. If the PVS r sample?	ecovery w	vas less tha	/ n 85%, did the	le laboratory ro Yes	orning	0
4.	If no, list action Show the calcu			y for PVS.	12 Com	ry you	
		۰	· (N	La 23/.15= .	ib value <u> </u>	<u>}</u>	

DPFSR/BEMQA OCTOBER 2001

DUPLICATE ANALYSIS

 $\varphi/\varphi = \varphi$

LABORATORY CONTROL SAMPLE

Samp	le matrix: Soil Water
Units:	mg/kg /ug/L
ASSO	CIATED SAMPLES
1.	Was the laboratory control sample performed at the correct frequency? If no, list action.
2.	Does the LCS meet the QC limit of 80-120 % If no, list the % recovery and actionRange Used
3.	Show the calculation for the LCS % recovery for hexavalent chromium. Lab Value /// Range =
	Range = , ! \ / / / 5 - /

SAMPLE RESULT VERIFICATION

ASS	SOCIATED SAMPLES (M)			
1.	Were all samples reported within the calibration range? Yes No If no, list affected samples and action.			
	In no, list affected samples and action.			
2.	Was the raw data free of any anomalies?			
	If no, list affected samples and action.			
3.	Was the data package free of any computational or transcription errors?			
	If no, list affected samples and action.			
4.	Were both 3060 & 7196A pH readings provided and within method requirements? Yes No N/A If no, list affected samples and action.			
	3060A? 7790			
5.	Were the hotplate temperatures provided and within method requirements?			
	If no, list affected samples and action			
6.	Show the calculation for % solids for one sample. Lab value			
7.	Show the calculation for a nonaqueous sample. Lab value			
	DPFSR/BEMQA OCTOBER 2001			

Page 1

To: Ed Gaven/Vanthuy Lieu, MACTEC Engineering and Consulting, Inc.

From: Christina Jensen, Validata, LLC ARE: Honeywell Hudson County Data Validation

Date: November 23, 2010

This memorandum discusses the results of the data validation of analytical data in Sample Delivery Group (SDG) JA59191B provided by Accutest Laboratory, located in Dayton, New Jersey, for samples collected as part of the Honeywell Hudson County project. No samples were rejected as a result of the data validation process. Appendix A contains the Sample Summary Table, Appendix B contains a list of the State of New Jersey Department of Environmental Protection (NJDEP) data validation footnotes, and Appendix C contains copies of the completed data validation report forms.

The validation for samples in this SDG was performed by Christina Jensen, Validata, LLC. The following table lists the samples that were included in this SDG.

Samples

Table 1-1. Sample cross-reference list

Sampling Date	Field Sample ID	Lab Sample ID	Sample Analyses
10/19/2010	117-FB-101910	JA59191-7	E200.8, SW7199
10/19/2010	117-MW-A14-101910	JA59191-6	E200.8, SW7199
10/19/2010	117-MW-A14-101910	JA59191-6F	E200.8, SW7199

Validation Level

The level of validation for this SDG is level V for hexavalent chromium and level IV for chromium. The remaining analyses were not validated per the MACTEC project manager.

References

The samples collected for the project were analyzed in accordance with the following methods:

 USEPA 1986. Test Methods for Evaluating Solid Waste, SW-846, 3rd Edition, USEPA, Washington, D.C.

The data validation procedures were consistent with those specified in the NJDEP validation guidelines listed below:

- NJDEP. 2002. Standard Operating Procedure (SOP) entitled Quality Assurance Data Validation of Analytical Deliverables for Inorganics (based on EPA SW-846 Methods), SOP No. 5.A.16. Trenton, New Jersey:
- NJDEP. 2001. Standard Operating Procedure for the Completion of the Data Validation Report Forms and the Preparation of the Final Data Validation Report, SOP No. 5.A.15, Trenton, New Jersey;
- NJDEP. 2005. Standard Operating Procedure for Analytical Data Validation of Hexavalent Chromium, SOP No. 5.A.10, Revision 2, Trenton, New Jersey; and
- NJDEP. 2001. Standard Operating Procedure for the Completion of the Hexavalent Chromium Data Validation Report Forms and the Preparation of the Final Data Validation Report, SOP No. 5.A.09 Trenton, New Jersey.

Sample Summary Table

The Sample Summary Table provided in Appendix A contains only detected and/or qualified data. Results that were non-detect for an analyte were not included in the table.

Page 2

Validation Footnotes

Appendix B contains the footnotes used for this project and shall remain consistent throughout the validation. The footnote(s) assigned will not be sequential. Specific footnote(s) used during the validation will be provided in Appendix B.

Chain-of-Custody Documentation

The custody documentation was complete for this SDG.

Major Deficiencies

There were no major deficiencies identified with the data.

Minor Deficiencies and Completeness

Minor deficiencies identified during validation are summarized per analytical method as follows:

Total Chromium by E200.8

No qualification to the data was made. Data usability is the number of usable (non-rejected) sample results divided by the total number of sample results for each type of analysis times 100. Data usability has been determined to be 100%.

Hexavalent Chromium by SW7199

All samples were qualified as estimated and assigned footnote H11 or H12 to indicate low post verification spike recovery. Data usability is the number of usable (non-rejected) sample results divided by the total number of sample results for each type of analysis times 100. Data usability has been determined to be 100%.

Data Assessment Summary

Overall, the laboratory performed the analyses in accordance with the requirements set forth in the methods.

Data Usability

Based on the validation of data, it has been determined that 100% of the data are usable as qualified. The analytical data are of sufficient quality to be used for qualitative and quantitative purposes.

APPENDIX A

Sample Summary Table

Honeywell Hudson County Accutest

Sampling Date 10/19/10
Fraction: Wet Chemistry, Inorganics
SDG: JA59191B
NJDEP SRP No.
Matrix: Water

TARGET AND NON-TARGET ANALYTE SUMMARY

APPENDIX B

NJDEP Qualifiers

Reason
Code
Description

H11 The reported value was qualified because the PVS recovery was less than 85 percent.

The non-detected value was qualified (UJ) because the PVS recovery was less than 85 percent. The possibility of a false negative exists.

APPENDIX C

NJDEP Validation Forms, Other Validation Forms.

DATA DELIVERABLE REQUIREMENTS for HEXAVALENT CHROMIUM

SRP No	tv/ S	SDG (7459/91						
Site Name_Honeywell Hudson Coun Location_Edison, NJ	~ /	Site Manager Ed Gaven/Maria Kaouris						
Laboratory Name_ Accutest Reviewer_Christina Jensen_ Date of Review	LN	Lead Division/Bureau_NJDEP_ MethodologySW3060_71967199						
GENERAL REQUIREMENTS: Circle YES or NO and list the deviations at the bottom:								
A. Permanently Bound Ye	es No	G. Methodology Review Yes No						
B. Paginated Ye	No F	H. Uninitialed Strikeovers Yes No						
C. Title Page	es No I	I. Legible Xerox Yes No						
D. Table of Contents	No .	J. Consistent Dates (Yes No						
E. Chain of Custody	es) No							
F. Non-conformance Yes	es No							
Describe any deviations from the requirements								

HOLDING TIMES

	15		Dete	- 4	Ноу С	hrome	Hal	ding	QA	\
Sample		n	Date of			1	Holding Time			1
Field or (Cab)		Matrix	Sample		Analysis		1		Decision	
			Collection		Date		Exceeded			
1 1A596	91-1	\mathcal{W}_{-}	10-10	10/0	[0.	2010	w)	non	4
2	"12									
3	2									
4	W									
5	3									
6	20									
7	4									
8	45									
9	5									
10	5F									
11	(0	·								
12	CeF									
13	Ä	4	4				ゥ			7
14	•		•		·					
15										
16										
17										
18										
19										
20										

List any samples that excee	ded the holding time, the numb	per of days exceeded by and QA decision	١.

DPFSR/BEMQA OCTOBER 2001

INSTRUMENT CALIBRATION CURVE and CALIBRATION CHECK STANDARD (CCS)

ASS 	OCIATED SAMPLES
1.	Was the instrument properly standardized? If no, explain and list action.
2.	Was the CCS analyzed at the proper frequency? If no, explain and list action.
3.	Was the same CCS concentration used throughout the analysis Yes No If no, list action.
4.	Does the CCS standard meet the QC requirements of 90-100% recovery? Yes No If no, list the % recovery, and action.
5.	Show calculation for the % recovery of Hexavalent Chromium in the CCS standard. Lab value 104

DPFSR/BEMQA OCTOBER 2001

CALIBRATION BLANKS

1.	Was the calibration blank analyzed before the instrument's initial calibration standards?
	If no, list action.
2.	Was a calibration blank analyzed after the calibration check standard? Yes No If no, list associated samples and action.
3,	Was the value of Hexavalent Chromium for the continuing calibration blank below the MD If no, list associated samples and qualify them.

PREPARATION/REAGENT BLANK SUMMARY

		gent blank	analysis	meet method requirements	i?
Jnits: mg/kg		gent blank	analysis	meet method requirements	1?
loes the frequency of	f the preparation/reag	gent blank	analysis	meet method requirements	;?
			, 210	Yes) No	
f no, explain and note	e action				
ANALYTE	CONCENTRATION	< MDL	>IDL	COMMENTS / ACTION	
P					

Spike	e Analysis performed on sample	Solids	
Sam	ple matrix: Soil	Units: mg/kg	
ASS	OCIATED SAMPLES		
1.	Was the predigestion spike analysis perfor	Yes No	
2. sam	Was the predigestion spike analysis perfor If no, reject all associated ples.	Yes No	
3.	Was the predigestion spike analysis performs of the predigestion spike analysis performs.	Yes No	
4.	Did the % recovery for hexavalent chromi	Yes No	
5.	Show calculation for predigestion spike i	ecovery of Hexavalent Chromium. Lab value	

POST VERIFICATION SPIKE ANALYSIS

Post	Verification Spike (PVS) performed on sample <u>JHS 4141-1, 11-</u>
	ole matrix: Soil (Water % Solids
Units	mg/kg ug/L
ASS	OCIATED SAMPLES
1.	Was PVS analysis performed at the correct frequency and proper concentration. If no, list action.
2.	Was PVS analysis performed on a field sample? If no, list action
3.	a. Does the PVS recovery meet the criteria of 85-115%?
×	
	If no, list action all guls I/WI HTT or H/2 Low post guile recovery
	b. If the PVS recovery was less than 85%, did the laboratory reanalyze the sample?
	If no, list action
4.	Show the calculation for % recovery for PVS.
7.	Lab value 57

DPFSR/BEMQA OCTOBER 2001

DUPLICATE ANALYSIS

Duplic	ate Analysis performed on sample \$\frac{7459191-1,17-1}{\%Solids}
	e matrix: Soil Water
Units:	mg/kg (ug/)L
ASSO	CIATED SAMPLES
1,	Was the Duplicate analyses performed at the correct frequency. Yes No If no, list action.
2.	Was the duplicate analysis performed on a field sample? Ves No If no, reject all associated samples.
3.	Does the duplicate analysis meet the QC control limits? No If no, qualify the associated samples.
4.	Show the calculation for RPD for Hexavalent Chromium. Lab value
	$\phi/\phi=\phi$

DPFSR/BEMQA OCTOBER 2001

LABORATORY CONTROL SAMPLE

Sampl	le matrix: Soil (Water)
Units:	mg/kg (vg/L)
ASSO	CIATED SAMPLES
1.	Was the laboratory control sample performed at the correct frequency?
	If no, list action.
2.	Does the LCS meet the QC limit of 80-120 % If no, list the % recovery and actionRange Used
3.	Show the calculation for the LCS % recovery for hexavalent chromium. Lab Value / O /
	Range = $1.506 / .50 = 1.0$

SAMPLE RESULT VERIFICATION

Wε	ere all samples reported within the calibration range? Ves No
lf r	no, list affected samples and action
Wa	as the raw data free of any anomalies?
lf r	no, list affected samples and action
Wa	as the data package free of any computational or transcription errors?
lf r	no, list affected samples and action
···	ere both 3060 & 7196A pH readings provided and within method require
	Yes No (N/A)
	Yes No N/A) no, list affected samples and action
If,	Yes No N/A no, list affected samples and action3060A?
If,	Yes No N/A no, list affected samples and action.
If I	Yes No N/A no, list affected samples and action3060A?
W If	Yes No N/A no, list affected samples and action.
If I	Yes No N/A no, list affected samples and action. 3060A? ere the hotplate temperatures provided and within method requirements? Yes No N/A no, list affected samples and action. N/A

DATA DELIVERABLE REQUIREMENTS

Site NameHoneywell Hudson Co	Job Code 1159191
Location 5/15 Sife 153 lunger	Date of Review ///7//
Laboratory Name_Accutest	Lead Division/BureauNJDEP
ReviewerChristina Jensen	Methodology Review W ZW, 8
Site/Case ManagerEd Gaven/Maria Kaouris_	
GENERAL REQUIREMENTS: Circle YES	or NO and list the deviations at the bottom:
A. Permanently Bound Yes No	G. Methodology Review Yes No
B. Paginated Yes No	H. Uninitialed Strikeovers
C. Title Page (Yes) No	I. Legible Photocopies Yes No
D. Table of Contents Yes No	J. Consistent Dates (Yes) No
E. Chain of Custody (Yes No	K. Digestion Log (Yes No
F. Non-conformance Summary Yes No	
Describe any deviations from the requirements	· · · · · · · · · · · · · · · · · · ·
	<u> </u>

HOLDING TIMES FOR METALS

Matrix: A	Aqueous	(/)	or	/V	onaqueo	us ()				
SAMPL	E ID	DATE of	of	10	CP	MERCURY	′ Fl	JRNACE	НО	LDING
FIELD or LAB		SAMPL	Ε	ANALYSIS		ANALYSIS	S AI	NALYSIS	TIME	
		COLLEC	гіо	DA	ATE	DATE		DATE	EXC	EEDED
		N								
1 DA5910	7/-1	10191	0		210				1	S
2	15		,	, -					}	
3	7									
4	U									
5	3									
6	2°									
7	4									
8	40				•					
9	9									
10	58									
11	4			·						
12	CA									
13 4	7	A		4					V	
14				,						
15				•						
16										
17										
18		J								
19										
20										

COMMENTS	,	
COOLER	TEMP 12-0-2	
PRESERVATION_	187M (M - 41002	
HANDLING TIME	Same dee	
7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

INSTRUMENT CALIBRATION, INITIAL CALIBRATION CHECK (ICC) and INITIAL CALIBRATION VERIFICATION (ICV)

1. a. Was the ICP instrument (6010B) properly standardized? If no, explain and list action. b. Was the AA instrument (7000 Methods) properly standardized? If no, explain and list action. c. Was the instrument used for Mercury properly standardized? If no, explain and list action. 2. Was the ICV/ICC analyzed immediately after the systems were calib. If no, explain and list action. 3. Was the ICV/ICC analyzed for every analyte? If no, explain and list action. If no, explain and list action.	
b. Was the AA instrument (7000 Methods) properly standardized? If no, explain and list action. c. Was the instrument used for Mercury properly standardized? If no, explain and list action. 2. Was the ICV/ICC analyzed immediately after the systems were calib If no, explain and list action. 3. Was the ICV/ICC analyzed for every analyte?	No N/A
If no, explain and list action. c. Was the instrument used for Mercury properly standardized? If no, explain and list action. Was the ICV/ICC analyzed immediately after the systems were calib If no, explain and list action. Was the ICV/ICC analyzed for every analyte?	- 1
c. Was the instrument used for Mercury properly standardized? If no, explain and list action. Was the ICV/ICC analyzed immediately after the systems were calib If no, explain and list action. Was the ICV/ICC analyzed for every analyte?	Yes No N/A
If no, explain and list action. Was the ICV/ICC analyzed immediately after the systems were calib If no, explain and list action. Was the ICV/ICC analyzed for every analyte?	511-18-10 511-18-10
Was the ICV/ICC analyzed immediately after the systems were calib If no, explain and list action. Was the ICV/ICC analyzed for every analyte?	Yes No M/A)
If no, explain and list action. Was the ICV/ICC analyzed for every analyte?	
. Was the ICV/ICC analyzed for every analyte?	orated?
. Was the ICV/ICC analyzed for every analyte?	Yes No
If no, explain and list action	Yes No
Do all ICV/ICC analytes meet the QC requirements for % recovery?	
If no, list affected analytes, their % recovery, associated samples, a	and action.
5. a. Show calculation for the % recovery of one ICV analyte analyze	ed by ICP
4 ,	Value /()
60.7/6021.	t (

DPFSR/BEMQA MAY 2002

INSTRUMENT CALIBRATION, INITIAL CALIBRATION CHECK (ICC) and INITIAL CALIBRATION VERIFICATION (ICV)

Part 2 of 2

Analyte	- Mu	Lab Value
c. Show calculation	for the ICV % recovery of Mercu	ırv
, onew datediation		
	pla	Lab Value
PECIFIC COMMENTS	S	

CONTINUING CALIBRATION VERIFICATION (CCV) and CALIBRATION CHECK STANDARD (CCS)

ASSC	CIATED SAMPLES (I)	Part 1 of 2
1. a.	Was the CCV/CCS performed at the minimum frequency of 10%?	(es) No
	If no, list action.	
	b. Was the CCV/CCS performed after ten samples and at the end	d of sample analysis? No
	If no, list action.	***************************************
2.	Were the CCV/CCS standards analyzed for all analytes?	YesNo
	If no, list affected analytes, their associated samples and action.	
3.	Was the CCV/CCS concentration near the midpoint of the calibration	on curve?
	If no, list affected analytes, their associated samples and action.	Yes No
4.	Do all CCV/CCS analytes meet the QC requirement for % recovery	? Yes No
	If no, list affected analytes, their associated samples and action.	
		,

CONTINUING CALIBRATION VERIFICATION (CCV) and CALIBRATION CHECK STANDARD (CCS)

Part 2 of 2

5.	a.	Show calculation for the % recovery of one CCV analyte	analyzed by ICP.
		Analyte	Lab value
		49.4/90=.9	
	b.	Show calculation for the % recovery of one CCS analyte	analyzed by AA.
		Analyte Www	Lab value
	c.	Show calculation for the % recovery of one CCV analyte	for Mercury.
		pa	Lab value
6.	SPE	ECIFIC COMMENTS	
·			

METHOD BLANK SUMMARY

, ,	ethod blank analysis me	Sample matrix: Soil Water Units: mg/kg ug/L meet method requirements?		
If no, explain and note action	CONCENTRATION	<mdl< td=""><td>COMMENTS / ACTION</td><td></td></mdl<>	COMMENTS / ACTION	
		1		
CV	.26	Ul	hore	
CV	-2le	Uga	Mire	
And gargeting and the second s				
			, and the second	
			,	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
4				
ASSOCIATEDS AMPLES /	1			

CALIBRATION BLANKS

ASS	OCIATED SAMPLES (U)		
1.	Were the initial calibration blanks analyzed for all analytes and run after the ICV/I	CC?	No
	If no, list affected analytes, and action.		140
2.	Was the absolute value for all analytes in the calibration blank below the MDL?	Yes	No
	If no, list affected analytes and qualify them.		
3.	Were the continuing calibration blanks analyzed for all analytes and run after the CCV/CCS?	Yes	No
	If no, list affected analytes, associated samples and action.		
4.	Was the frequency for the continuing calibration blanks correct? Yes No		
т.	If no, list affected analytes, associated samples and action.		

	NA W 260 X		
	ICP INTERFERENCE CHECK SAMPLE		
AS	SSOCIATED SAMPLES		
••		_	
1.	. Was an ICP interference check sample performed at the correct frequency?	_	
	If no, note any deviations and action.	Yes	No
2.	. Were the analytes interest and interferents for ICS reported? Yes	No	
	If no, note deviations.		
3.	. Did all the required analytes of interest in the ICS meet the QC limit of 80-120)%?	
		Yes	No
	If no, list the analytes, the % recovery, associated samples and the action		
		· 	
4.	. Show the calculation for the % recovery for one analyte in the ICS.	_	
	Analyte Lab value		
5.	. COMMENTS		
		_	

		MATRIX SPIKE (MS) and MATRIX SPIKE DUPLICATE (MSD)		
Spik	e Ana	JASM9(-CoF lysis performed on sample JAS9191-/JF % Solids	Part 1	of 2
Sam	ple ma	atrix: Soil Water		
Units	s:	mg/kg (ug/)	¥	
ASS	OCIAT	red samples <u> </u>		
1.	Wa	s the MS/MSD performed at the correct frequency?	Yest	No
	lf n	o, note deviations and action		
2.	— Wa	s the MS/MSD analyses performed on a field sample?		
			Yes	No
	lf n	o, reject all associated samples		
3.	a.	Were two (2) analytical methods used to obtain reported values for one analyte (i.e., ICP and AA) ?		
		If yes, list analytes	Yes(Νð
			_	
			-	
	b.	Was MS/MSD analysis performed using both methods for that analyte?	11a v.	N1 -
		If no, reject affected sample(s) which did not have spike analysis performe	U9 Yes eĕ.	No

MATRIX SPIKE (MS) and MATRIX SPIKE DUPLICATE (MSD)

Part 2 of 2

Did the % recovery for all analytes meet the criteria of 75-125 %?		NIa
If no, list % recovery in parenthesis next to the analyte out and action.	Yes	No
Did the Relative Percent Difference (RPD) for all analytes meet the requirement No N/A	ent of 20% R	PD?
If no, list analytes and action.		
a. Show calculation for % recovery for one analyte. Analyte Lab value	_	
Reu-3.8/100-282		
b. Show calculation for % RPD for one analyte.		٠
Analyte Lab value		
84.4-85.8/2 . 007		

DPFSR/BEMQA MAY 2002

POST-DIGESTION SPIKE ANALYSIS

Post	Digestion Spike	Analysis pe	rformed on sampl	e _				
Samp	ole matrix:	Soil	Water		% Solids			
Units	:	mg/kg	ug/L					
ASSC	OCIATED SAMP	LES						
1.	Was post-dige	estion spike			at the correct frequency?		Yes	No
	If no, list the 2. Was pos If no, list anal	t-digestion s	pike performed o	n a	field sample?	- Yes	No	
3.			neir % recovery ν ΩC criteria and ac		ere post-digestion spike analy n. N/A	- /sis w -	/as perfo	ormed
4.	Show the ca		% recovery for	a	t least one analyte where p	– ost-d	igestion	spike
	Analyte				Lab value			
5.	Comments: _			-				
				******	4	_		

DPFSR/BEMQA MAY 2002

LABORATORY CONTROL SAMPLE (LCS)

Samı	ple matrix: Soil Water	
Units	s: mg/kg (ug/)	
ASS	OCIATED SAMPLES	
1.	Was the laboratory control sample performed at the correct frequency? If no, give action.	lo
2.	Do all analytes meet the QC limits of 80-120 %? If no, list analytes, their % recovery and action.	
3.	Show the calculation for % recovery for one analyte. Analyte	_ _ _
4		
4.	Comments:	

NA for Zoon

SERIAL DILUTION ANALYSIS

Seria	al Dilution performed on sample Dilution Factor		
	ple matrix: Soil Water Units: mg/kg ug/l		
ASS	OCIATED SAMPLES (1)		
1.	Was a serial dilution performed at the correct frequency?	Yes	No
	If no, give action		
2.	Was a field sample used for serial dilution?	- Yes	No
	If no, give action		
3.	For all analytes greater than ten times the IDL after dilution for 6010B and for 7000A methods, was a serial dilution performed?	- d 25 t	imes the EDL Yes No
	If no, list analytes and reject them.		103 140
4.	For all analytes that needed serial dilution analysis, was the QC limit of 10 % D met? Yes If no, list those analytes outside the limits and qualify them.	No 	
5.	Show calculation for % D for one analyte analyzed by ICP.	_	
	Analyte Lab value		
		R/BEM	QA

no

METHOD OF STANDARD ADDITION (MSA)

C	OCIATED SAMPLES
·	
	If the post digestion spike recovery for Methods 7000A was outside the QC limit, was MSA performed?
	If no, explain and list action.
	Was the MSA within the linear range of the instrument? Yes No
	If no, explain and list action.
	Was the MSA sample and spikes analyzed consecutively? Yes No
	If no, explain and list action.
	Was the slope of the MSA plot less than 20% difference of the slope of the standard curve? Yes No
	If no, explain and list action.
	Comments:

ASSO	CIATED SAMPLES	SAMPLE RESULT VER	IFICATION		
1.	Were all sample results re	eported within the calibra	ition range?	Yes No	
	If no, list affected sample	es and action.			
2.	Was the raw data free of	any anomalies?		(Ye)s	No
	If no, list affected sample	es and action.			
3.	Was the data package fre	ee of any computational o	or transcription error:	s? Ved	No
	If no, list affected sample	es and action.			110
4					
4.	Was the % solids analysis	s pertormed for all nonac	jueous samples?	V	N N
If no	, list affected samples a	nd action		Yes	No (N/A')
5.	Show the calculation for	% solids for one sample.	Lab V	/alue	
6.	Verify that nonaqueous result for one analyte in a		on a dry weight ba	asis by reca	alculating the
	Sample	Analyte	Lab value		

Page 1

To: Ed Gaven/Vanthuy Lieu, MACTEC Engineering and Consulting, Inc.

From: Christina Jensen, Validata, LLC

Re: Honeywell Hudson County Data Validation

Date: May 18, 2011

This memorandum discusses the results of the data validation of analytical data in Sample Delivery Group (SDG) JA74100 provided by Accutest Laboratory, located in Dayton, New Jersey, for samples collected as part of the Honeywell Hudson County project. No samples were rejected as a result of the data validation process. Appendix A contains the Sample Summary Table, Appendix B contains a list of the State of New Jersey Department of Environmental Protection (NJDEP) data validation footnotes, and Appendix C contains copies of the completed data validation report forms.

The validation for samples in this SDG was performed by Christina Jensen, Validata, LLC. The following table lists the samples that were included in this SDG.

Samples

Table 1-1. Sample cross-reference list

Sampling Date	Field Sample ID	Lab Sample ID	Sample Analyses
4/26/2011	117-FB-042611	JA74100-2	E200.8, SW7199
4/26/2011	117-MW-A14-042611	JA74100-1	E200.8, SW7199
4/26/2011	117-MW-A14-042611F	JA74100-1F	E200.8, SW7199

Validation Level

The level of validation for this SDG is level V for hexavalent chromium and level IV for chromium. The remaining analyses were not validated per the MACTEC project manager.

References

The samples collected for the project were analyzed in accordance with the following methods:

USEPA 1986. Test Methods for Evaluating Solid Waste, SW-846, 3rd Edition, USEPA, Washington, D.C.

The data validation procedures were consistent with those specified in the NJDEP validation guidelines listed below:

- NJDEP. 2002. Standard Operating Procedure (SOP) entitled Quality Assurance Data Validation of Analytical Deliverables for Inorganics (based on EPA SW-846 Methods), SOP No. 5.A.16. Trenton, New Jersey;
- NJDEP. 2001. Standard Operating Procedure for the Completion of the Data Validation Report Forms and the Preparation of the Final Data Validation Report, SOP No. 5.A.15, Trenton, New Jersey:
- NJDEP. 2005. Standard Operating Procedure for Analytical Data Validation of Hexavalent Chromium, SOP No. 5.A.10, Revision 2, Trenton, New Jersey; and
- NJDEP. 2001. Standard Operating Procedure for the Completion of the Hexavalent Chromium Data Validation Report Forms and the Preparation of the Final Data Validation Report, SOP No. 5.A.09 Trenton, New Jersey.

Sample Summary Table

The Sample Summary Table provided in Appendix A contains only detected and/or qualified data. Results that were non-detect for an analyte were not included in the table.

Page 2

Validation Footnotes

Appendix B contains the footnotes used for this project and shall remain consistent throughout the validation. The footnote(s) assigned will not be sequential. Specific footnote(s) used during the validation will be provided in Appendix B.

Chain-of-Custody Documentation

The custody documentation was complete for this SDG.

Major Deficiencies

There were no major deficiencies identified with the data.

Minor Deficiencies and Completeness

Minor deficiencies identified during validation are summarized per analytical method as follows:

Total Chromium by E200.8

No qualification to the data was made. Data usability is the number of usable (non-rejected) sample results divided by the total number of sample results for each type of analysis times 100. Data usability has been determined to be 100%.

Hexavalent Chromium by SW7199

All samples were qualified as estimated and assigned footnote H11 or H12 to indicate low post verification spike recovery. Data usability is the number of usable (non-rejected) sample results divided by the total number of sample results for each type of analysis times 100. Data usability has been determined to be 100%.

Data Assessment Summary

Overall, the laboratory performed the analyses in accordance with the requirements set forth in the methods.

Data Usability

Based on the validation of data, it has been determined that 100% of the data are usable as qualified. The analytical data are of sufficient quality to be used for qualitative and quantitative purposes.

APPENDIX A

Sample Summary Table

Honeywell Hudson County Accutest

Sampling Date 4/26/11
Fraction: Wet Chemistry, Inorganics
SDG: JA74100
NJDEP SRP No.
Matrix: Water

TARGET AND NON-TARGET ANALYTE SUMMARY

	Т	1	Ī	Τ	Т
NJDEP Footnote	H12		H11		H11
QA Decision	Qualified		Qualified		Qualified
QA Reported	0.0055UJ	43.7	0.040	43.6	0.044J
Method Blank Lab Concentration Result & Qualifiers	0.0055U	43.7	0.04	43.6	0.044
Method Blank Result	0.0014	4.0U	0.0014	4.0U	0.0014
Units	l/gm	l/gu	l/gm	l/gn	mg/l
Parameter	Chromium, Hexavalent	Chromium	Chromium, Hexavalent	Chromium	Chromium, Hexavalent
Laboratory Sample ID	JA74100-2	JA74100-1	JA74100-1	JA74100-1F	JA74100-1F
Field Sample ID	117-FB-042611	117-MW-A14-042611	117-MW-A14-042611	117-MW-A14-042611F	117-MW-A14-042611F
Dilution Factor	1	1	-	1	1
Fraction	SW7199	E200.8	SW7199	E200.8	SW7199

APPENDIX B

NJDEP Qualifiers

Reason Code	Description
H11	The reported value was qualified because the PVS recovery was less than 85 percent.
H12	The non-detected value was qualified (UJ) because the PVS recovery was less than 85 percent. The possibility of a false negative exists.

APPENDIX C

NJDEP Validation Forms, Other Validation Forms.

DATA DELIVERABLE REQUIREMENTS

Site NameHoneywell Hudson Co			Job Code <u>JA74/80</u>				
Loc	ation St Sife 112	D	Date of Review 5/8///				
Lab	oratory Name_Accutest	. Lo	ead Division/BureauNJDEP				
Rev	riewerChristina Jensen	M	Methodology ReviewEZW.8_W				
Site/Case ManagerEd Gaven/Maria Kaouris							
	GENERAL REQUIREMENTS: Circle VI	ES or N	O and list the deviations at the bottom:				
	GENERAL TREGORDENIES. CITOLOTT	<u> </u>	o and list the deviations at the pottom:				
A.	Permanently Bound Yes (No	G	G. Methodology Review (res) No				
В.	Paginated Yes No	Н	H. Uninitialed Strikeovers Yes No				
C.	Title Page Yes No	i.	. Legible Photocopies Yes No				
D.	Table of Contents Yes No	J	. Consistent Dates Yes No				
E.	Chain of Custody (Yes No	K	C. Digestion Log Yes No				
F.	Non-conformance Summary (Yes) No	•	•				
Des	Describe any deviations from the requirements						
200	onso any deviatione from the requiremen						

HOLDING TIMES FOR METALS

Matrix: Aqueous	(/) or	Nonaqueo	us ()	_	
SAMPLE ID	DATE of	ICP	MERCURY	FURNACE	HOLDING
FIELD or (AB)	SAMPLE	ANALYSIS	ANALYSIS	ANALYSIS	TIME
	COLLECTIO	DATE	DATE	DATE	EXCEEDED
	N				
1 14741001	47611	5711			m
2 11/					
3 17	ال ا	(1			
4					
5					
6					
7					
8					
9					
10					
11					
12	1,0		,		****
13			*****		
14					
15					
16					
17					
18					
19					
20					

COMMENTS				
COOLER	TEMP_	11100	 -	
PRESERVATIO		HNOZ		
HANDLING TIN	ME Sume du	· —)		

DPFSR/BEMQA MAY 2002

INSTRUMENT CALIBRATION, INITIAL CALIBRATION CHECK (ICC) and INITIAL CALIBRATION VERIFICATION (ICV)

ASS(OCIAT	red samples		Part 1 of 2
1.	a.	Was the ICP instrument (6010B) properly standardized?	– No	N/A
	b.	If no, explain and list action. Was the AA instrument (7000 Methods) properly standardized? Yes If no, explain and list action.	No (N/A
	c.	Was the instrument used for Mercury properly standardized? Yes If no, explain and list action.	No	(N/A)
2.		s the ICV/ICC analyzed immediately after the systems were calibrated? o, explain and list action.	Yes) No
3.	Wa	s the ICV/ICC analyzed for every analyte? o, explain and list action.	Ves	No
4.		all ICV/ICC analytes meet the QC requirements for % recovery? Yes	No ion.	
5.	a.	Show calculation for the % recovery of one ICV analyte analyzed by I Analyte		
		61.2/160=1.		

6.

INSTRUMENT CALIBRATION, INITIAL CALIBRATION CHECK (ICC) and INITIAL CALIBRATION VERIFICATION (ICV)

Part 2 of 2

the ICV % recovery of Mer	Lab Value
the ICV % recovery of Mer	
the ICV % recovery of Mer	
	rcury.
nu	Lab Value
_	

CONTINUING CALIBRATION VERIFICATION (CCV) and CALIBRATION CHECK STANDARD (CCS)

ASSO	CIATED SAMPLES	Part 1 of 2
1. a.	Was the CCV/CCS performed at the minimum frequency of 10%?	(Kes No
	If no, list action.	
	b. Was the CCV/CCS performed after ten samples and at the end of Yes	of sample analysis? No
	If no, list action.	
2.	Were the CCV/CCS standards analyzed for all analytes?	YesNo
	If no, list affected analytes, their associated samples and action.	
3.	Was the CCV/CCS concentration near the midpoint of the calibration	curve?
	If no, list affected analytes, their associated samples and action.	Yes No
4.	Do all CCV/CCS analytes meet the QC requirement for % recovery? If no, list affected analytes, their associated samples and action.	Yes No

CONTINUING CALIBRATION VERIFICATION (CCV) and CALIBRATION CHECK STANDARD (CCS)

Part 2 of 2

5.	a.	Show calculation for the % recovery of one C	CV analyte analyzed by ICP.
		Analyte	Lab value <u>94</u>
		48,4/50=.94	
ı,	b.	Show calculation for the % recovery of one C	CS analyte analyzed by AA.
·		Analyte	Lab value
		no	
,	c.	Show calculation for the % recovery of one C	CV analyte for Mercury.
		na	Lab value
6.	SPE	ECIFIC COMMENTS	

METHOD BLANK SUMMARY

Method Blank ID W	45073	Sample mat		
Did the frequency of the mo				Yε
If no, explain and note action	on			
ANALYŢE	CONCENTRATION	<mdl< td=""><td>COMMENTS / ACTION</td><td></td></mdl<>	COMMENTS / ACTION	
-				
				_
				_
				\parallel
				4
				\parallel
ASSOCIATEDSAMPLES	710			

DPFSR/BEMQA MAY 2002

CALIBRATION BLANKS

SC	DCIATED SAMPLES		
	Were the initial calibration blanks analyzed for all analytes and run after the ICV/III	CC?	V
	Was the absolute value for all analytes in the calibration blank below the MDL?	Ved	N
	If no, list affected analytes and qualify them.		•
	Were the continuing calibration blanks analyzed for all analytes and run after the CCV/CCS?	(Yes)	Ν
	If no, list affected analytes, associated samples and action.		
	Was the frequency for the continuing calibration blanks correct? No If no, list affected analytes, associated samples and action		

WU. 8 MX

ICP INTERFERENCE CHECK SAMPLE

AS	SOCIATED SAMPLES		
1.	Was an ICP interference check sample performed at the correct frequency?		
	If no, note any deviations and action	(Yes)	No
2.	Were the analytes interest and interferents for ICS reported? No If no, note deviations.		
3.	Did all the required analytes of interest in the ICS meet the QC limit of 80-120%?	Ves	No
	If no, list the analytes, the % recovery, associated samples and the action		
4.	Show the calculation for the % recovery for one analyte in the ICS. Analyte		
5.	COMMENTS		

MATRIX SPIKE (MS) and MATRIX SPIKE DUPLICATE (MSD)

Spike	e Anal	ysis performed on sample TH THWO -1 % Solids MK	Part 1 o	of 2
	ple ma	atrix: Soil Water		
Jnits ASS		red samples		
1.		s the MS/MSD performed at the correct frequency?	Yes) No
	lf n	o, note deviations and action		
2.	Wa	s the MS/MSD analyses performed on a field sample?	Yes	No
	lf n	o, reject all associated samples		
3.	a.	Were two (2) analytical methods used to obtain reported values for one analyte (i.e., ICP and AA) ?	Vas	No.
		If yes, list analytes	163	プ
	b.	Was MS/MSD analysis performed using both methods for that analyte?	la.	
		If no, reject affected sample(s) which did not have spike analysis performe	d.	No

MATRIX SPIKE (MS) and MATRIX SPIKE DUPLICATE (MSD)

Part 2 of 2

Did the % recovery for a	all analytes meet the criteria of	75-125 %?	Ves	No
If no, list % recovery in	parenthesis next to the analyte	out and action.		140
Did the Relative Percent	Difference (RPD) for all analyte	s meet the requirements	nt of 20% RPD)?
If no, list analytes and a	ction.		_	
a. Show calculation for	or % recovery for one analyte.		·····	
Analyte <u>//</u>		Lab value $\sqrt{\mathcal{O}}$	-	
145	-47.7/10026.0	N		
o. Show calculation fo	or % RPD for one analyte.			
Analyte <u> </u>		Lab value	-	
	145-142 145-142/2	2		
	rus 1 147/11			

DPFSR/BEMQA MAY 2002

POST-DIGESTION SPIKE ANALYSIS

Post D	Digestion Spike A	nalysis per	formed on sample					
Sampl	e matrix:	Soil	Water		% Solids			
Jnits:		mg/kg	ug/L					
ASSO	CIATED SAMPLE	ES		\perp	143 brid			
					and the second s	_		
						_		
1.	Was post-diges	tion spike a	analysis performed	at t	he correct frequency?		V	
	If no, list the an	ıalyte(s) an	d action.				Yes	No
	2. Was post-o	-	oike performed on lify them.	a fie	ld sample?		No	
3.			eir % recovery w ΩC criteria and acti		post-digestion spike ana N/A	 ysis w 	vas perfoi	rmed
4.	Show the calc	ulation for	% recovery for	at le	east one analyte where	– post-d	igestion :	spike
	analysis was pe	erformed.						
	Analyte	-	2		Lab value			
5.	Comments:							
						····		
						SR/BEN / 2002		

LABORATORY CONTROL SAMPLE (LCS)

Samp	ole matrix: Soil (Water)		
Units	OCIATED SAMBLES		
1.	Was the laboratory control sample performed at the co	Yes	No
2.	Do all analytes meet the QC limits of 80-120 %? If no, list analytes, their % recovery and action.	,	
3.	Show the calculation for % recovery for one analyte. Analyte	Lab Value <u>(OY</u> Soil limits <u>MA</u>	
	104/100-1.	(
4.	Comments:		

SERIAL PILUTION ANALYSI

Serial Dilution performed on sample	Dilution Factor	
Sample matrix: Soil Wa	ater Units: mg/kg ug/L	
Was a serial dilution performed	at the correct frequency? Yes No	
Was a field sample used for ser	rial dilution? Yes No	
for 7000A methods, was a seri	en times the IDL after dilution for 6010B and 25 times the E rial dilution performed? Yes nem.	
10 % D met?	rial dilution analysis, was the QC limit of Yes No e the limits and qualify them.	
5. Show calculation for % D for o	one analyte analyzed by ICP. Lab value	

DPFSR/BEMQA MAY 2002

METHOD OF STANDARD ADDITION (MSA)

ASS	SOCIATED SAMPLES	
1.	If the post digestion spike recovery for Methods 7000A was outside the QC limit, was MSA performed? Yes No If no, explain and list action.	as the
2.	Was the MSA within the linear range of the instrument? Yes No If no, explain and list action.	
3.	Was the MSA sample and spikes analyzed consecutively? Yes No If no, explain and list action.	
4.	Was the slope of the MSA plot less than 20% difference of the slope of the standard curve? Yes No If no, explain and list action.	
5.	Comments:	

ASS	OCIATED SAMPLES	SAMPLE RESULT VER	RIFICATION		
1.	Were all sample re	sults reported within the calibra	ation range?	Yes No	
	If no, list affected	samples and action.			
2.	Was the raw data	free of any anomalies?		Yes	No
	If no, list affected	samples and action.			
3.	Was the data pack	age free of any computational	or transcription e	rrors?	No
	If no, list affected	samples and action.			
		1			
4.	Was the % solids	analysis performed for all nona	queous samples?	Yes	No (N/A)
lf n	o, list affected sam	ples and action.			140 (1477)
5.	Show the calculati	on for % solids for one sample		ab Value	
6.	Verify that nonaq result for one analy	ueous samples were reported rte in a sample.	on a dry weigh	t basis by rec	alculating the
	Sample	Analyte	Lab valu	ue	_

DATA DELIVERABLE REQUIREMENTS for HEXAVALENT CHROMIUM

Site Loc Lab Rev	NoName_Honeywell Hudsor ation_Edison, NJ oratory Name_ Accutest iewer_Christina Jensen_ e of Review/&/	County_	-		Lea	Manager_Ed Gaven/Maria d Division/Bureau_NJDEP_ chodologySW3060_71		, .
GEI	NERAL REQUIREMENTS	: Circle \	/ES o	r NO	and	I list the deviations at the	e bottom:	
A.	Permanently Bound	Yes	Ng		G.	Methodology Review	(Yes) No	
В.	Paginated	Yes	No		Н.	Uninitialed Strikeovers	Yes No	
C.	Title Page	Yes	No		١.	Legible Xerox	Yes No	·
D.	Table of Contents	Yes	No		J.	Consistent Dates	Yes No	
Ε.	Chain of Custody	Yes	No					
F.	Non-conformance Summary	(Yes	No			i gind ^{a gan}		
De	scribe any deviations fro	om the re	quire	men1	:s			

HOLDING TIMES

Sample ID Field or Lab	Matrix	Date of Sample	Hex Chrome Analysis	Holding Time	QA Decision
		Collection	Date	Exceeded	1
1) A 74100 1	<u> W</u>	4 2cel1	42611	w	hone
2 -15		· ·	<i>(1</i>	٠,	
3 1-2		٠. ((,		<i>(1</i>
4					
5					
6					
7					
8				``	
9					•
10					
11					
12					
13					
14					
15					
16					
17					
18					
19					
20					

List any samples that exceeded the holding tim	e, the number of days exceeded by and QA decision.	
		-

INSTRUMENT CALIBRATION CURVE and CALIBRATION CHECK STANDARD (CCS)

ASS	OCIATED SAMPLES
1.	Was the instrument properly standardized? If no, explain and list action.
2.	Was the CCS analyzed at the proper frequency? If no, explain and list action.
3.	Was the same CCS concentration used throughout the analysis? Yes No If no, list action.
4 ['] .	Does the CCS standard meet the QC requirements of 90-110% recovery ?
	If no, list the % recovery, and action.
5.	Show calculation for the % recovery of Hexavalent Chromium in the CCS standard. Lab value 100
	DPFSR/BEMQA OCTOBER 2001

CALIBRATION BLANKS

ASS	OCIATED SAMPLES
1.	Was the calibration blank analyzed before-the instrument's initial calibration standards? No If no, list action.
2.	Was a calibration blank analyzed after the calibration check standard? Yes No If no, list associated samples and action.
3.	Was the value of Hexavalent Chromium for the continuing calibration blank below the MDL (Yes) No If no, list associated samples and qualify them.

PREPARATION/REAGENT BLANK SUMMARY

Preparation/Reagen	t Blank ID 97580	188			
Sample matrix: So	il Water				
Units: mg	ı/kg (ug/L)				
		gent blank	analysis	meet method requirements Yes No	s?
if no, explain and n	ote action				
ANALYTE	CONCENTRATION	< MDL	>IDL	COMMENTS / ACTION	
P					
		<u> </u>			

ASSOCIATED SAMPLES

DPFSR/BEMQA OCTOBER 2001

AQ-NA

PREDIGESTION SPIKE ANALYSIS

Spik	e Analysis performed on sample	Solids	
Sam	ple matrix: Soil	Units: mg/kg	
ASS	OCIATED SAMPLES		
1.	Was the predigestion spike analysis pe		
2. sam	Was the predigestion spike analysis pe If no, reject all associated ples.	Yes No	
3.		erformed at the proper concentration? Yes No	
4.		omium meet the criteria of 75-125 % ? Yes No	X.
5.	Show calculation for predigestion spik	ke recovery of Hexavalent Chromium.	
		Lab value	

POST VERIFICATION SPIKE ANALYSIS

Post \	Verification Spike (PVS) performed on sample <u>JA + W78 1</u>
Units:	le matrix: Soil Water % Solids mg/kg ug/L OCIATED SAMPLES
1.	Was PVS analysis performed at the correct frequency and proper concentration? If no, list action.
2.	Was PVS analysis performed on a field sample? If no, list action
3.	a. Does the PVS recovery meet the criteria of 85-115%? Yes No If no, list action ### ###############################
	If no, list action
4.	Show the calculation for % recovery for PVS. Lab value

DPFSR/BEMQA OCTOBER 2001

DUPLICATE ANALYSIS

Duplic	ate Analysis p	erformed :	on sample _.	JA740	<u>% </u>	<u> </u>
Samp	le matrix:	Soil	Water			
Units:		mg/kg	ug/L			
ASSO	CIATED SAM	PLES			· · ·	
1.	Was the Dupl		yses perfo			quency? Yes No
2.	Was the dupli				eld sample?	Yes No
3.	Does the dup		•		ntrol limits?	Yes No
4.	Show the cal	culation fo	or RPD for I	Hexavalen	t Chromium.	
				L	ab value ϕ	
			ϕ	b = a		

LABORATORY CONTROL SAMPLE

Samp	le matrix: Soil Water
Units	: mg/kg (ug/L)
ASSC	OCIATED SAMPLES
1.	Was the laboratory control sample performed at the correct frequency? If no, list action.
2.	Does the LCS meet the QC limit of 80-120 % If no, list the % recovery and actionRange Used
3.	Show the calculation for the LCS % recovery for hexavalent chromium. Lab Value
	Range = $.098 / .0901 = 1.03$

SAMPLE RESULT VERIFICATION

SC	OCIATED SAMPLES
	Were all samples reported within the calibration range?
	If no, list affected samples and action
	Was the raw data free of any anomalies?
	If no, list affected samples and action.
	Was the data package free of any computational or transcription errors?
	If no, list affected samples and action
	Were both 3060 & 7196A pH readings provided and within method requirem Yes No N/A
	If no, list affected samples and action.
	3060A?
	Were the hotplate temperatures provided and within method requirements? Yes No N/A
	If no, list affected samples and action
	Show the calculation for % solids for one sample. Lab value
	Show the calculation for a nonaqueous sample. Lab value
	DPFSR/BEMQA OCTOBER 2001

SHALLOW GROUNDWATER SUMMARY REPORT

STUDY AREA 5 SITE 117 - RYERSON STEEL SITE JERSEY CITY, NEW JERSEY

VOLUME 2 – FULL LABORATORY ANALYTICAL DATA REPORTS (HARD COPY)

Prepared for:

101 Columbia Road Morristown, NJ 07962

Prepared by:

AMEC E&I, Inc. 200 American Metro Boulevard, Suite 113 Hamilton, New Jersey 08619

SEPTEMBER 2011

TABLE OF CONTENTS

VOLUME 2 – Full Laboratory Analytical Data Reports (Hard Copy)

- 1. Groundwater Samples Collected in September 2009 (Site 117 Shallow Wells)
- 2. Groundwater Samples Collected in October 2009 (Site 117 Shallow Wells)
- 3. Groundwater Samples Collected in October 2010 (117-MW-A014)
- 4. Groundwater Samples Collected in April 2011 (117-MW-A014)

11/16/09

Technical Report for

Honeywell International Inc.

HLANJPR: SA-5 Site 117, Jersey City, NJ

PO#3480050136

Accutest Job Number: JA27477

Sampling Date: 09/09/09

Report to:

Mactec

vhlieu@mactec.com

ATTN: Vanthuy Lieu

Total number of pages in report: 189

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Marty Vitanza 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

David N. Speis

VP Ops, Laboratory Director

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	5
Section 3: Sample Results	
3.1: JA27477-1: 117-MW-A014-090909	7
3.2: JA27477-1F: 117-MW-A014F-090909	9
3.3: JA27477-2: 117-MW-A89-090909	11
3.4: JA27477-2F: 117-MW-A89F-090909	13
3.5: JA27477-3: 117-MW-A05-090909	
3.6: JA27477-3F: 117-MW-A05F-090909	17
3.7: JA27477-4: 117-MW-A05DP-090909	
3.8: JA27477-4F: 117-MW-A05DPF-090909	21
3.9: JA27477-5: 117-MW-A85-090909	
3.10: JA27477-5F: 117-MW-A85F-090909	25
3.11: JA27477-6: 117-MW-A062-090909	
3.12: JA27477-6F: 117-MW-A062F-090909	
3.13: JA27477-7: 117-MW-A99-090909	
3.14: JA27477-7F: 117-MW-A99F-090909	33
3.15: JA27477-8: 117-MW-FB-090909	
Section 4: Misc. Forms	37
4.1: Chain of Custody	
4.2: Sample Tracking Chronicle	
4.3: Internal Chain of Custody	
Section 5: Metals Analysis - QC Data Summaries	
5.1: Inst QC MA23143: Cr	
5.2: Prep QC MP49677: Cr	
5.3: IDL and Linear Range Summaries	
Section 6: Metals Analysis - Raw Data	
6.1: Raw Data MA23143	
6.2: Prep Logs	
Section 7: General Chemistry - QC Data Summaries	165
1	166
7.2: Duplicate Results Summary	167
7.3: Matrix Spike Results Summary	168
Section 8: General Chemistry - Raw Data	169
8.1: Misc. General Chemistry Raw Data	170
Section 9: Misc. Raw Data	183
9.1: Sample Filtration, Metals: 09/10/09	184
9.2: Sample Filtration, Metals: 09/14/09	187

ယ

0

Sample Summary

Job No:

JA27477

Honeywell International Inc.

HLANJPR: SA-5 Site 117, Jersey City, NJ Project No: PO#3480050136

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
JA27477-1	09/09/09	09:30 SP	09/09/09	AQ	Ground Water	117-MW-A014-090909
JA27477-1F	09/09/09	09:30 SP	09/09/09	AQ	Groundwater Filtered	117-MW-A014F-090909
JA27477-2	09/09/09	08:06 SP	09/09/09	AQ	Ground Water	117-MW-A89-090909
JA27477-2F	09/09/09	08:06 SP	09/09/09	AQ	Groundwater Filtered	117-MW-A89F-090909
JA27477-3	09/09/09	09:12 SP	09/09/09	AQ	Ground Water	117-MW-A05-090909
JA27477-3D	09/09/09	09:12 SP	09/09/09	AQ	Water Dup/MSD	117-MW-A05MD-090909
JA27477-3F	09/09/09	09:12 SP	09/09/09	AQ	Groundwater Filtered	117-MW-A05F-090909
JA27477-3FD	09/09/09	09:12 SP	09/09/09	AQ	Water Dup/MSD	117-MW-A05MDF-090909
JA27477-3FS	09/09/09	09:12 SP	09/09/09	AQ	Water Matrix Spike	117-MW-A05MSF-090909
JA27477-3S	09/09/09	09:12 SP	09/09/09	AQ	Water Matrix Spike	117-MW-A05MS-090909
JA27477-4	09/09/09	09:19 SP	09/09/09	AQ	Ground Water	117-MW-A05DP-090909
JA27477-4F	09/09/09	09:19 SP	09/09/09	AQ	Groundwater Filtered	117-MW-A05DPF-090909
JA27477-5	09/09/09	08:05 SP	09/09/09	AQ	Ground Water	117-MW-A85-090909

Sample Summary (continued)

Job No:

JA27477

Honeywell International Inc.

HLANJPR: SA-5 Site 117, Jersey City, NJ Project No: PO#3480050136

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
JA27477-5F	09/09/09	08:05 SP	09/09/09	AQ	Groundwater Filtered	117-MW-A85F-090909
JA27477-6	09/09/09	10:50 SP	09/09/09	AQ	Ground Water	117-MW-A062-090909
JA27477-6F	09/09/09	10:50 SP	09/09/09	AQ	Groundwater Filtered	117-MW-A062F-090909
JA27477-7	09/09/09	10:36 SP	09/09/09	AQ	Ground Water	117-MW-A99-090909
JA27477-7F	09/09/09	10:36 SP	09/09/09	AQ	Groundwater Filtered	117-MW-A99F-090909
JA27477-8	09/09/09	11:15 SP	09/09/09	AQ	Field Blank Water	117-MW-FB-090909

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Honeywell International Inc. Job No JA27477

Site: HLANJPR: SA-5 Site 117, Jersey City, NJ Report Date 9/22/2009 11:44:24 AM

On 09/09/2009, 7 Sample(s), 0 Trip Blank(s) and 1 Field Blank(s) were received at Accutest Laboratories at a temperature of 4.7 C. Samples were intact and properly preserved, unless noted below. An Accutest Job Number of JA27477 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals By Method SW846 6010B

Matrix AO Batch ID: MP49677

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JA27477-3FMS, JA27477-3FMSD, JA27477-3MSD, JA27477-3SDL, JA27477-3FSDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Chromium are outside control limits for sample MP49677-SD2. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Wet Chemistry By Method SW846 7196A

Matrix AQ Batch ID: GN30041

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JA27477-3DUP, JA27477-3FDUP, JA27477-3MS, JA27477-3FMS were used as the QC samples for Chromium, Hexavalent.
- GN30041-S2 for Chromium, Hexavalent: Spike recovery indicates possible matrix interference. Good pH adjusted post spike recovery (88%)
- GN30041-S1 for Chromium, Hexavalent: Spike recovery indicates possible matrix interference. Good pH adjusted post spike recovery (96%)

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Sample Results

Report of Analysis

Report of Analysis

Page 1 of 1

Client Sample ID: 117-MW-A014-090909

Lab Sample ID:JA27477-1Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	41.3	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA23143(2) Prep QC Batch: MP49677

Report of Analysis

Client Sample ID: 117-MW-A014-090909

Lab Sample ID:JA27477-1Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	0.014	0.010	mg/l	1	09/09/09	MW	SW846 7196A

Page 1 of 1

Report of Analysis

Client Sample ID: 117-MW-A014F-090909

Lab Sample ID:JA27477-1FDate Sampled:09/09/09Matrix:AQ - Groundwater FilteredDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	17.2	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA23143(2) Prep QC Batch: MP49677

Page 1 of 1

Report of Analysis

Client Sample ID: 117-MW-A014F-090909

Lab Sample ID:JA27477-1FDate Sampled:09/09/09Matrix:AQ - Groundwater FilteredDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	0.011	0.010	mg/l	1	09/09/09 21:05	MW	SW846 7196A

Report of Analysis

Client Sample ID: 117-MW-A89-090909

Lab Sample ID:JA27477-2Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	176	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

Page 1 of 1

Client Sample ID: 117-MW-A89-090909

Lab Sample ID:JA27477-2Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	09/09/09 21:44	- MW	SW846 7196A

C

Report of Analysis

Client Sample ID: 117-MW-A89F-090909

Lab Sample ID:JA27477-2FDate Sampled:09/09/09Matrix:AQ - Groundwater FilteredDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

Client Sample ID: 117-MW-A89F-090909

Lab Sample ID:JA27477-2FDate Sampled:09/09/09Matrix:AQ - Groundwater FilteredDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	09/09/09 21:0	5 MW	SW846 7196A

Report of Analysis

Client Sample ID: 117-MW-A05-090909

Lab Sample ID:JA27477-3Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	15.5	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

of tof Analysis

Client Sample ID: 117-MW-A05-090909

Lab Sample ID:JA27477-3Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium Heyavalent	< 0.010	0.010	ma/l	1	09/09/09 21:44	MW	SW1846 7106

Report of Analysis

Client Sample ID: 117-MW-A05F-090909

Lab Sample ID:JA27477-3FDate Sampled:09/09/09Matrix:AQ - Groundwater FilteredDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: 117-MW-A05F-090909

Lab Sample ID:JA27477-3FDate Sampled:09/09/09Matrix:AQ - Groundwater FilteredDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium Heyavalent	< 0.010	0.010	ma/l	1	09/09/09 21:05	MW	SW246 7106

Page 1 of 1

Client Sample ID: 117-MW-A05DP-090909

Lab Sample ID:JA27477-4Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	16.7	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

Client Sample ID: 117-MW-A05DP-090909

Lab Sample ID:JA27477-4Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium. Hexavalent	< 0.010	0.010	mg/l	1	09/09/09 21:44	MW	SW846 7196A

Page 1 of 1

Report of Analysis

Client Sample ID: 117-MW-A05DPF-090909

Lab Sample ID:JA27477-4FDate Sampled:09/09/09Matrix:AQ - Groundwater FilteredDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: 117-MW-A05DPF-090909

Lab Sample ID:JA27477-4FDate Sampled:09/09/09Matrix:AQ - Groundwater FilteredDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	09/09/09 21:0)5 MW	SW846 7196A

Report of Analysis

Client Sample ID: 117-MW-A85-090909

Lab Sample ID:JA27477-5Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	186	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

Client Sample ID: 117-MW-A85-090909

Lab Sample ID:JA27477-5Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium Heyavalent	< 0.010	0.010	mg/l	1	09/09/09 21:44	MW	SW846 71064

Page 1 of 1

Page 1 of 1

Client Sample ID: 117-MW-A85F-090909

Lab Sample ID:JA27477-5FDate Sampled:09/09/09Matrix:AQ - Groundwater FilteredDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	111	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: 117-MW-A85F-090909

Lab Sample ID:JA27477-5FDate Sampled:09/09/09Matrix:AQ - Groundwater FilteredDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium Heyavalent	< 0.010	0.010	ma/l	1	09/09/09 21:05	MW	SW246 7106

Page 1 of 1

Client Sample ID: 117-MW-A062-090909

Lab Sample ID:JA27477-6Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	36.5	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

Page 1 of 1

Client Sample ID: 117-MW-A062-090909

Lab Sample ID:JA27477-6Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	09/09/09 21:44	MW	SW846 7196A

Page 1 of 1

Client Sample ID: 117-MW-A062F-090909

Lab Sample ID:JA27477-6FDate Sampled:09/09/09Matrix:AQ - Groundwater FilteredDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

Page 1 of 1

Client Sample ID: 117-MW-A062F-090909

Lab Sample ID:JA27477-6FDate Sampled:09/09/09Matrix:AQ - Groundwater FilteredDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	09/09/09 21:05	MW	SW846 7196A

Page 1 of 1

Client Sample ID: 117-MW-A99-090909

Lab Sample ID:JA27477-7Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	42.6	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: 117-MW-A99-090909

Lab Sample ID:JA27477-7Date Sampled:09/09/09Matrix:AQ - Ground WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium Heyavalent	< 0.010	0.010	mg/l	1	09/09/09 21:44	MW	SW846 71064

Page 1 of 1

Client Sample ID: 117-MW-A99F-090909

Lab Sample ID:JA27477-7FDate Sampled:09/09/09Matrix:AQ - Groundwater FilteredDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: 117-MW-A99F-090909

Lab Sample ID: JA27477-7F **Date Sampled:** 09/09/09 Matrix: AQ - Groundwater Filtered **Date Received:** 09/09/09 Percent Solids: n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium Heyavalent	< 0.050	0.050	ma/l	5	09/09/09 21:10	MW	SW246 7106

Page 1 of 1

Client Sample ID: 117-MW-FB-090909

Lab Sample ID:JA27477-8Date Sampled:09/09/09Matrix:AQ - Field Blank WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	09/18/09	09/20/09 ND	SW846 6010B ¹	SW846 3010A ²

Client Sample ID: 117-MW-FB-090909

Lab Sample ID:JA27477-8Date Sampled:09/09/09Matrix:AQ - Field Blank WaterDate Received:09/09/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium Heyavalent	< 0.010	0.010	ma/l	1	09/09/09 21:44	MW	CW946 7106

Page 1 of 1

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

																							e e/
AC	CUTEST	9W			Γ																	\neg	AESI Ref: 38439.43925
	Ponds Corporate	(I '	lding B			Hoi	пеу м	veli	Ch	ain O	f Cus	ody	/ Апа	lysis	Req	uest				, -, -	7		COC#; 37287-091009
	Route 130, Dayton																(JA:	<u>ر ر</u>	17			Lab Use Only
732-	329-0200 Phone, 7	32-329-349	9 Fax		Privileged &	Confident	ial	Y			Site Na	me;	HUDSO	ONCO									Lab Proj#
					EDD To:		Agshust (M	ACTEC)		Locatio	n of Si	ite:	SA-5	Home L	Depot, Si	te 117, J	ersey Ci	ty, NJ				Lab ID ACTD
Clies	it Contact: (name,	co., addre	ss)		Sampler:	Senna/Pet	rino					Prese	rvative				,						PAGE 1 of 2
And	ew Shust - MACT	TEC Engin	eering an	d Consulting, Inc	PO#				348	050136		0	0	0	2								Job No.
	American Metr		uite 113		Analysis Turna	tround Time:						A)											
	nilton, NJ 08619				Standard -				Y			VI (7196A)	7.00	uni						-			
agsh	ust@mactec.com	1			Rush Charges A 2 weeks -	authorized for						NI(ш 3(nron.	E E		1						
Har	icopy Report To:	See above	-		2 WEEKS						e,	MO	Chromium 200.	Ď.	Chromium	-							What is in the Text File?
					1 week -						a me	MC	- F	vale	릴								Mouse over here.
Invoice To: Maria Kaouris - Honeywell PM 101									Pos.	HR	ed Total	Hexa	Tota								Written and		
		Columbia	Rd, Morr	istown, NJ 07962	Next Day -		r					ved C	ved T	96	200.7 Total								maintained by AESI
1			**		Sample	Sample	Sample	Sample		# of	Grabi(Dissolved CHROMIUM	Dissolv	EPA 1196 Hexavalent Chromium	EPA 20								(Ver.3 7)
⊢		Sample Start	Identifica End	ition	Date	Time	Type	Matrix	Purpose	Cont.	(日本)	О	Ω	a	피	-+-		+	-+	_	+		no 01 05 renesurgico aci com
	Location ID	Depth (ft)	Depth (ft)	Field Sample ID	1		4			11	Units	ng/L	ug/L	T/ân	ng/L								Lab Sample Numbers
	117-MW-A014	~ 3		117-MW-A014- 252565	9/ 9 /2009	930	GW	Water	REG	2	ar N		İ	x	x								ME44.)
2	117-MW-A014	-15		117-MW-A014F- 049104	9/ ¶ /2009	930	GW	Water	REG	2	å N	х	х								1		ME32
3	117-MW-A89	- 2		117-MW-A89- 05-405	9/ ¶ /2009	806	GW	Water	REG	2	grab J			x	х								
4	117-MW-A89	-24		117-MW-A89F- 040404	9/ 4 /2009	806	GW	Water	REG	2	grab N	x	X										
5	117-MW-A05	-3		117-MW-A05- 050409	9/ 🐧 /2009		GW	Water	REG	2	grab			х	x				_		\perp		
6	117-MW-A05	-3F		117-MW-A05F- 0 ዓ 9 ዓ0 ዓ	 		GW	Water	REG	2	gra _b N	x	X						\perp				
7	117-MW-A05	4		117-MW-A05DP- ወና0 ባ 0 ኅ	9/ 🐴 /2009	919	GW	Water	FD	2	grab			x	х						↓		
8	117-MW-A05	-4F		117-MW-A05DPF- 0 40459	<u>'</u>	- ' ' '	GW	Water	FD	2	grab N	^	X					H	_	4	┿		
9	117-MW-A05	-3		117-MW-A05MS- 270409	 		GW	Water	MS	2	grab N	-		x	x	_					┿	-	
10	117-MW-A05	- 3F		117-MW-A05MSF- 040109	-	1.0	GW	Water	MS	2	b grab	X	Х			_	-		_		+	\vdash	
11	117-MW-A05	-3		117-MW-A05MD-040904	+	1, -	GW	Water	MSD	2	d Srab	_		X	Х	-	٠,	\perp	\dashv		+		100
12	117-MW-A05	-3F		117-MW-A05MDF- <i>ዕ</i>ዳ ን \$	9/ 5 /2009	912	GW	Water	MSD	2	grab	X	. X	L				$oldsymbol{L}$					
Lab	filter dissolved ch	romium/ch	romium V	4							ı	,	7	a s	SAN	TUE COA	8 26 3 A		7.7	3			, 4
Reli	iquished by		ę	Company	MAC	TEC	Received by	1/2	7		9/9	109	1600	mpany OO			Con	Hijon			Custo	idy Sea	ds Intact
L	m	/ <		Date/Time		9 1000		1/X	2			Date	Time		L		_	er Nemb).				
Reli	nquished by			Company	1		Received by		•					mpany			-	dition			Custo	ıdy Sea	ils Intact
L				Date/Time								Date	/Time				Coo	er Temp). 				
Pres	ervatives: 0 = No	ne; [1 = H	CL ; [2 =	HNO3 ; [3 = H2SO4]; [4 = Na	oOH]; [5 = Zi	ı. Acetate];	[6 = MeOH	I]; [7 = N	aHSO4];	8 = Oth	er (spec	ify):									44.	700	

2A.

JA27477: Chain of Custody Page 1 of 3

JA27477: Chain of Custody Page 2 of 3

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: JA274			Immediate Client Servi		•
Date / Time Received: 9/9/20	Delive	ry Method:	Client Service Action	on Required at	Login: N
Project:	No. Co	oolers:	1 Airbill #'s:		
	or N	Y or N	Sample Integrity - Documentation	Y or	N_
Custody Seals Present:	3. COC Present:	2	Sample labels present on bottles:	✓	
2. Custody Seals Intact:	4. Smpl Dates/Time OK		2. Container labeling complete:	✓	
Cooler Temperature	Y or N		3. Sample container label / COC agree:	✓	
1. Temp criteria achieved:			Sample Integrity - Condition	Y or	N_
Cooler temp verification:	Infared gun		Sample recvd within HT:	✓	
3. Cooler media:	Ice (bag)		2. All containers accounted for:	✓	
Quality Control Preservatio	Y or N N/A		3. Condition of sample:	Intac	:t
1. Trip Blank present / cooler:			Sample Integrity - Instructions	Y or	N N/A
2. Trip Blank listed on COC:			1. Analysis requested is clear:	✓	
3. Samples preserved properly:	✓		2. Bottles received for unspecified tests		✓
4. VOCs headspace free:			3. Sufficient volume recvd for analysis:	✓	
			4. Compositing instructions clear:		
			5. Filtering instructions clear:		
Comments					
Accutest Laboratories V:732.329.0200			S Highway 130 2.329.3499		Dayton, N www/accu

JA27477: Chain of Custody Page 3 of 3

JA27477

Job No:

Internal Sample Tracking Chronicle

Honeywell International Inc.

HLANJPR: SA-5 Site 117, Jersey City, NJ Project No: PO#3480050136

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JA27477-1 117-MW-A	Collected: 09-SEP-09 0 014-090909	9:30 By: SP	Receiv	red: 09-SEP-	09 By:	_
	SW846 7196A SW846 6010B	09-SEP-09 20-SEP-09 02:54	MW ND	18-SEP-09	DP	XCR CR
JA27477-2 117-MW-A	Collected: 09-SEP-09 0 89-090909	08:06 By: SP	Receiv	red: 09-SEP-	09 By:	
	SW846 7196A SW846 6010B	09-SEP-09 21:44 20-SEP-09 03:00	MW ND	18-SEP-09	DP	XCR CR
JA27477-3 117-MW-A	Collected: 09-SEP-09 (05-090909	9:12 By: SP	Receiv	ed: 09-SEP-	09 By:	
	SW846 7196A SW846 6010B	09-SEP-09 21:44 20-SEP-09 03:07	MW ND	18-SEP-09	DP	XCR CR
	Collected: 09-SEP-09 (05DP-090909	9:19 By: SP	Receiv	ed: 09-SEP-	09 By:	
	SW846 7196A SW846 6010B	09-SEP-09 21:44 20-SEP-09 03:25		18-SEP-09	DP	XCR CR
JA27477-5 117-MW-A	Collected: 09-SEP-09 (85-090909	98:05 By: SP	Receiv	ed: 09-SEP-	09 By:	
	SW846 7196A SW846 6010B	09-SEP-09 21:44 20-SEP-09 03:31	MW ND	18-SEP-09	DP	XCR CR
JA27477-6 117-MW-A	Collected: 09-SEP-09 1 062-090909	0:50 By: SP	Receiv	red: 09-SEP-	09 By:	
	SW846 7196A SW846 6010B	09-SEP-09 21:44 20-SEP-09 03:37	MW ND	18-SEP-09	DP	XCR CR
JA27477-7 117-MW-A	Collected: 09-SEP-09 1 99-090909	0:36 By: SP	Receiv	red: 09-SEP-	09 By:	
JA27477-7	SW846 7196A	09-SEP-09 21:44	MW			XCR

JA27477

Internal Sample Tracking Chronicle

Honeywell International Inc.

Job No: HLANJPR: SA-5 Site 117, Jersey City, NJ Project No: PO#3480050136

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JA27477-7	SW846 6010B	20-SEP-09 03:44	ND	18-SEP-09	DP	CR
JA27477-8 117-MW-FI	Collected: 09-SEP-09 1 3-090909	1:15 By: SP	Receiv	ed: 09-SEP-	09 By:	
	SW846 7196A SW846 6010B	09-SEP-09 21:44 20-SEP-09 03:50	MW ND	18-SEP-09	DP	XCR CR
	F Collected: 09-SEP-09 0 014F-090909	9:30 By: SP	Receiv	ed: 09-SEP-	09 By:	
	SSW846 7196A SSW846 6010B	09-SEP-09 21:05 20-SEP-09 03:56	MW ND	18-SEP-09	DP	XCR CR
JA27477-2F 117-MW-A	F Collected: 09-SEP-09 0 89F-090909	98:06 By: SP	Receiv	ed: 09-SEP-	09 By:	
	SSW846 7196A SSW846 6010B	09-SEP-09 21:05 20-SEP-09 04:02	MW ND	18-SEP-09	DP	XCR CR
JA27477-3F 117-MW-A	F Collected: 09-SEP-09 0 05F-090909	9:12 By: SP	Receiv	ed: 09-SEP-	09 By:	
	SSW846 7196A SSW846 6010B	09-SEP-09 21:05 20-SEP-09 02:24	MW ND	18-SEP-09	DP	XCR CR
	Collected: 09-SEP-09 0 05DPF-090909	9:19 By: SP	Receiv	ed: 09-SEP-	09 By:	
	SSW846 7196A SSW846 6010B	09-SEP-09 21:05 20-SEP-09 04:08	MW ND	18-SEP-09	DP	XCR CR
JA27477-5F 117-MW-A	Collected: 09-SEP-09 0 85F-090909	98:05 By: SP	Receiv	ed: 09-SEP-	09 By:	
	FSW846 7196A FSW846 6010B	09-SEP-09 21:05 20-SEP-09 04:14	MW ND	18-SEP-09	DP	XCR CR

JA27477

Job No:

Internal Sample Tracking Chronicle

Honeywell International Inc.

JI ANIDD, CA 5 Site 117 Jorgan City, NI

HLANJPR: SA-5 Site 117, Jersey City, NJ Project No: PO#3480050136

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
	F Collected: 09-SEP-09 \u00e4062F-090909	10:50 By: SP	Receiv	ved: 09-SEP-	09 By:	
	F SW846 7196A F SW846 6010B	09-SEP-09 21:05 20-SEP-09 04:21	MW ND	18-SEP-09	DP	XCR CR
	F Collected: 09-SEP-09 199F-090909	10:36 By: SP	Receiv	/ed: 09-SEP-	09 By:	
	F SW846 7196A F SW846 6010B	09-SEP-09 21:10 20-SEP-09 04:45	MW ND	18-SEP-09	DP	XCR CR

Accutest Internal Chain of Custody Job Number: JA27477

HWINJM Honeywell International Inc. Account: **Project:** HLANJPR: SA-5 Site 117, Jersey City, NJ

Received: 09/09/09

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA27477-1.1	Secured Storage	John Thomas		Retrieve from Storage
JA27477-1.1	John Thomas	Millicent Walker		Custody Transfer
JA27477-1.1	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage
	ole for custody transfer.			
JA27477-1.1	Secured Storage	Todd Shoemaker		Retrieve from Storage
JA27477-1.1	Todd Shoemaker	Rinku Patel		Custody Transfer
JA27477-1.1	Rinku Patel	Secured Storage		Return to Storage
JA27477-1.1	Secured Storage	Adam Scott		Retrieve from Storage
JA27477-1.1	Adam Scott	Rinku Patel		Custody Transfer
JA27477-1.1	Rinku Patel	Secured Storage	09/18/09 15:33	Return to Storage
JA27477-1.1	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-1.1.1	Rinku Patel	Metals Digestion		Digestate from JA27477-1.1
JA27477-1.1.1	Metals Digestion	Darshananben Patel	09/18/09 15:15	Digestate from JA27477-1.1
JA27477-1.1.1	Darshananben Patel	Metals Digestate Storage	09/18/09 15:16	Return to Storage
JA27477-1.3	Secured Storage	John Thomas	09/09/09 20:11	Retrieve from Storage
JA27477-1.3	John Thomas	Millicent Walker		Custody Transfer
JA27477-1.3	Shirley Grzybowski	Secured Storage		Return to Storage
Analyst unavailab	ole for custody transfer.	-		_
JA27477-1.3	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-1F.2	Secured Storage	John Thomas	09/09/09 19:41	Retrieve from Storage
JA27477-1F.2	John Thomas	Millicent Walker	09/09/09 19:43	Custody Transfer
JA27477-1F.2	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage
Analyst unavailab	ole for custody transfer.	_		_
JA27477-1F.2	Secured Storage	Beatrice Marcelino	09/10/09 13:53	Retrieve from Storage
JA27477-1F.2	Beatrice Marcelino	Secured Storage		Return to Storage
JA27477-1F.2	Secured Storage	Adam Scott	09/18/09 08:13	Retrieve from Storage
JA27477-1F.2	Adam Scott	Rinku Patel	09/18/09 08:15	Custody Transfer
JA27477-1F.2	Rinku Patel	Secured Storage	09/18/09 15:33	Return to Storage
JA27477-1F.2	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-1F.2.1	Rinku Patel	Metals Digestion	09/18/09 15:10	Digestate from JA27477-1F.
JA27477-1F.2.1	Metals Digestion	Darshananben Patel		Digestate from JA27477-1F.
JA27477-1F.2.1	Darshananben Patel	Metals Digestate Storage	09/18/09 15:16	Return to Storage
JA27477-1F.4	Secured Storage	John Thomas	09/09/09 20:11	Retrieve from Storage
JA27477-1F.4	John Thomas	Millicent Walker		Custody Transfer
JA27477-1F.4	Shirley Grzybowski	Secured Storage		Return to Storage
	ole for custody transfer.	2		2
JA27477-1F.4	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-2.1	Secured Storage	John Thomas	09/09/09 19:41	Retrieve from Storage

Accutest Internal Chain of Custody Job Number: JA27477

HWINJM Honeywell International Inc. Account: **Project:** HLANJPR: SA-5 Site 117, Jersey City, NJ

Received: 09/09/09

Sample. Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA27477-2.1	John Thomas	Millicent Walker	00/00/00 10:43	Custody Transfer
JA27477-2.1 JA27477-2.1	Shirley Grzybowski	Secured Storage		Return to Storage
	ble for custody transfer.	Secured Storage	09/10/09 07.03	Return to Storage
JA27477-2.1	Secured Storage	Todd Shoemaker	09/10/09 09:01	Retrieve from Storage
JA27477-2.1 JA27477-2.1	Todd Shoemaker	Rinku Patel		Custody Transfer
JA27477-2.1 JA27477-2.1	Rinku Patel	Secured Storage		Return to Storage
JA27477-2.1	Secured Storage	Adam Scott		Retrieve from Storage
JA27477-2.1	Adam Scott	Rinku Patel		Custody Transfer
JA27477-2.1	Rinku Patel	Secured Storage		Return to Storage
JA27477-2.1 JA27477-2.1	Dave Hunkele	Secured Storage	10/12/09 05:25	
3112/4//-2.1	Dave Hunkere		10/12/07 03.23	Disposed
JA27477-2.1.1	Rinku Patel	Metals Digestion	09/18/09 15:10	Digestate from JA27477-2.1
JA27477-2.1.1	Metals Digestion	Darshananben Patel		Digestate from JA27477-2.1
JA27477-2.1.1	Darshananben Patel	Metals Digestate Storage		Return to Storage
				G
JA27477-2.3	Secured Storage	John Thomas	09/09/09 20:11	Retrieve from Storage
JA27477-2.3	John Thomas	Millicent Walker	09/09/09 20:12	Custody Transfer
JA27477-2.3	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage
Analyst unavailab	ole for custody transfer.			
JA27477-2.3	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-2F.2	Secured Storage	John Thomas	09/09/09 19:41	Retrieve from Storage
JA27477-2F.2	John Thomas	Millicent Walker	09/09/09 19:43	Custody Transfer
JA27477-2F.2	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage
Analyst unavailab	ole for custody transfer.			
JA27477-2F.2	Secured Storage	Beatrice Marcelino	09/10/09 13:53	Retrieve from Storage
JA27477-2F.2	Beatrice Marcelino	Secured Storage	09/10/09 16:32	Return to Storage
JA27477-2F.2	Secured Storage	Adam Scott	09/18/09 08:13	Retrieve from Storage
JA27477-2F.2	Adam Scott	Rinku Patel	09/18/09 08:15	Custody Transfer
JA27477-2F.2	Rinku Patel	Secured Storage	09/18/09 15:33	Return to Storage
JA27477-2F.2	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-2F.2.1	Rinku Patel	Metals Digestion	09/18/09 15:10	Digestate from JA27477-2F.
JA27477-2F.2.1	Metals Digestion	Darshananben Patel		Digestate from JA27477-2F.
JA27477-2F.2.1	Darshananben Patel	Metals Digestate Storage		Return to Storage
				-
JA27477-2F.4	Secured Storage	John Thomas		Retrieve from Storage
JA27477-2F.4	John Thomas	Millicent Walker		Custody Transfer
JA27477-2F.4	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage
	ole for custody transfer.			
JA27477-2F.4	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-3.1	Secured Storage	Todd Shoemaker	09/10/09 09:01	Retrieve from Storage
	=			_
JA27477-3.1 JA27477-3.1	Secured Storage Todd Shoemaker	Todd Shoemaker Rinku Patel		Retrieve from Storage Custody Transfer

1

Accutest Internal Chain of Custody Job Number: JA27477

Account: HWINJM Honeywell International Inc. **Project:** HLANJPR: SA-5 Site 117, Jersey City, NJ

Received: 09/09/09

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA27477-3.1	Rinku Patel	Secured Storage	09/10/09 11:39	Return to Storage
JA27477-3.1	Secured Storage	Adam Scott		Retrieve from Storage
JA27477-3.1	Adam Scott	Rinku Patel		Custody Transfer
JA27477-3.1	Rinku Patel	Secured Storage		Return to Storage
JA27477-3.1	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-3.1.1	Rinku Patel	Metals Digestion	09/18/09 15:10	Digestate from JA27477-3.
JA27477-3.1.1	Metals Digestion	Darshananben Patel	09/18/09 15:15	Digestate from JA27477-3.1
JA27477-3.1.1	Darshananben Patel	Metals Digestate Storage	09/18/09 15:16	Return to Storage
JA27477-3.2	Secured Storage	John Thomas	09/09/09 19:41	Retrieve from Storage
JA27477-3.2	John Thomas	Millicent Walker	09/09/09 19:43	Custody Transfer
JA27477-3.2	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage
Analyst unavailal	ole for custody transfer.			
JA27477-3.2	Secured Storage	Todd Shoemaker		Retrieve from Storage
JA27477-3.2	Todd Shoemaker	Rinku Patel		Custody Transfer
JA27477-3.2	Rinku Patel	Secured Storage		Return to Storage
JA27477-3.2	Secured Storage	Adam Scott		Retrieve from Storage
JA27477-3.2	Adam Scott	Rinku Patel		Custody Transfer
JA27477-3.2	Rinku Patel	Secured Storage		Return to Storage
JA27477-3.2	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-3.3	Secured Storage	Adam Scott	09/18/09 08:13	Retrieve from Storage
JA27477-3.3	Adam Scott	Rinku Patel	09/18/09 08:15	Custody Transfer
JA27477-3.3	Rinku Patel	Secured Storage	09/18/09 15:33	Return to Storage
JA27477-3.3	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-3.8	Secured Storage	John Thomas	09/09/09 20:11	Retrieve from Storage
JA27477-3.8	John Thomas	Millicent Walker		Custody Transfer
JA27477-3.8	Shirley Grzybowski	Secured Storage		Return to Storage
Analyst unavailal	ole for custody transfer.	-		-
JA27477-3.8	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-3F.4	Secured Storage	Todd Shoemaker	09/10/09 09:01	Retrieve from Storage
JA27477-3F.4	Todd Shoemaker	Rinku Patel		Custody Transfer
JA27477-3F.4	Rinku Patel	Secured Storage	09/10/09 11:39	Return to Storage
JA27477-3F.4	Secured Storage	Adam Scott		Retrieve from Storage
JA27477-3F.4	Adam Scott	Teresa Guziak		Custody Transfer
JA27477-3F.4	Teresa Guziak	Secured Storage		Return to Storage
JA27477-3F.4	Secured Storage	Adam Scott		Retrieve from Storage
JA27477-3F.4	Adam Scott	Rinku Patel		Custody Transfer
JA27477-3F.4	Rinku Patel	Secured Storage		Return to Storage
JA27477-3F.4	Dave Hunkele	=	10/12/09 05:25	

HWINJM Honeywell International Inc. Account: **Project:** HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA27477-3F.4.1	Rinku Patel	Metals Digestion	09/18/09 15:10	Digestate from JA27477-3F.
JA27477-3F.4.1	Metals Digestion	Darshananben Patel	09/18/09 15:15	Digestate from JA27477-3F.
JA27477-3F.4.1	Darshananben Patel	Metals Digestate Storage	09/18/09 15:16	Return to Storage
JA27477-3F.5	Secured Storage	John Thomas		Retrieve from Storage
JA27477-3F.5	John Thomas	Millicent Walker		Custody Transfer
JA27477-3F.5	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage
	le for custody transfer.			
JA27477-3F.5	Secured Storage	Beatrice Marcelino		Retrieve from Storage
JA27477-3F.5	Beatrice Marcelino	Secured Storage	09/10/09 16:32	Return to Storage
JA27477-3F.5	Secured Storage	Adam Scott	09/18/09 08:13	Retrieve from Storage
JA27477-3F.5	Adam Scott	Rinku Patel	09/18/09 08:15	Custody Transfer
JA27477-3F.5	Rinku Patel	Secured Storage	09/18/09 15:33	Return to Storage
JA27477-3F.5	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-3F.6	Secured Storage	Adam Scott	09/14/09 10:04	Retrieve from Storage
JA27477-3F.6	Adam Scott	Teresa Guziak	09/14/09 10:06	Custody Transfer
JA27477-3F.6	Teresa Guziak	Secured Storage	09/14/09 16:49	Return to Storage
JA27477-3F.6	Secured Storage	Adam Scott	09/15/09 08:59	Retrieve from Storage
JA27477-3F.6	Adam Scott	Rinku Patel	09/15/09 09:02	Custody Transfer
JA27477-3F.6	Rinku Patel	Secured Storage	09/15/09 16:57	Return to Storage
JA27477-3F.6	Secured Storage	Adam Scott	09/18/09 08:13	Retrieve from Storage
JA27477-3F.6	Adam Scott	Rinku Patel	09/18/09 08:15	Custody Transfer
JA27477-3F.6	Rinku Patel	Secured Storage	09/18/09 15:33	Return to Storage
JA27477-3F.6	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-3F.10	Secured Storage	John Thomas	09/09/09 20:11	Retrieve from Storage
JA27477-3F.10	John Thomas	Millicent Walker	09/09/09 20:12	Custody Transfer
JA27477-3F.10	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage
Analyst unavailab	ole for custody transfer.			
JA27477-3F.10	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-4.1	Secured Storage	John Thomas	09/09/09 19:41	Retrieve from Storage
JA27477-4.1	John Thomas	Millicent Walker	09/09/09 19:43	Custody Transfer
JA27477-4.1	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage
•	ole for custody transfer.			-
JA27477-4.1	Secured Storage	Todd Shoemaker	09/10/09 09:01	Retrieve from Storage
JA27477-4.1	Todd Shoemaker	Rinku Patel	09/10/09 09:02	Custody Transfer
JA27477-4.1	Rinku Patel	Secured Storage		Return to Storage
JA27477-4.1	Secured Storage	Adam Scott	09/18/09 08:13	Retrieve from Storage
JA27477-4.1	Adam Scott	Rinku Patel	09/18/09 08:15	Custody Transfer
JA27477-4.1	Rinku Patel	Secured Storage	09/18/09 15:33	Return to Storage
JA27477-4.1	Dave Hunkele		10/12/09 05:25	Disposed

HWINJM Honeywell International Inc. Account: **Project:** HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason	
JA27477-4.1.1	Rinku Patel	Metals Digestion	09/18/09 15:10	Digestate from JA27477-4.1	
JA27477-4.1.1	Metals Digestion	Darshananben Patel	09/18/09 15:15	Digestate from JA27477-4.1	
JA27477-4.1.1	Darshananben Patel	Metals Digestate Storage	09/18/09 15:16	Return to Storage	
JA27477-4.3	Secured Storage	John Thomas		Retrieve from Storage	
JA27477-4.3	John Thomas	Millicent Walker		Custody Transfer	
JA27477-4.3	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage	
•	le for custody transfer.				
JA27477-4.3	Dave Hunkele		10/12/09 05:25	Disposed	
JA27477-4F.2	Secured Storage	John Thomas	09/09/09 19:41	Retrieve from Storage	
JA27477-4F.2	John Thomas	Millicent Walker		Custody Transfer	
JA27477-4F.2	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage	
Analyst unavailab	ole for custody transfer.				
JA27477-4F.2	Secured Storage	Beatrice Marcelino		Retrieve from Storage	
JA27477-4F.2	Beatrice Marcelino	Secured Storage		Return to Storage	
JA27477-4F.2	Secured Storage	Adam Scott		Retrieve from Storage	
JA27477-4F.2	Adam Scott	Rinku Patel		Custody Transfer	
JA27477-4F.2	Rinku Patel	Secured Storage	09/18/09 15:33	Return to Storage	
JA27477-4F.2	Dave Hunkele		10/12/09 05:25	Disposed	
JA27477-4F.2.1	Rinku Patel	Metals Digestion	09/18/09 15:10	Digestate from JA27477-4F.2	
JA27477-4F.2.1	Metals Digestion	Darshananben Patel	09/18/09 15:15	Digestate from JA27477-4F.2	
JA27477-4F.2.1	Darshananben Patel	Metals Digestate Storage	09/18/09 15:16	Return to Storage	
JA27477-4F.4	Secured Storage	John Thomas	09/09/09 20:11	Retrieve from Storage	
JA27477-4F.4	John Thomas	Millicent Walker	09/09/09 20:12	Custody Transfer	
JA27477-4F.4	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage	
Analyst unavailab	ole for custody transfer.	-			
JA27477-4F.4	Dave Hunkele		10/12/09 05:25	Disposed	
JA27477-5.1	Secured Storage	John Thomas	09/09/09 19:41	Retrieve from Storage	
JA27477-5.1	John Thomas	Millicent Walker		Custody Transfer	
JA27477-5.1	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage	
Analyst unavailab	ole for custody transfer.				
JA27477-5.1	Secured Storage	Todd Shoemaker	09/10/09 09:01	Retrieve from Storage	
JA27477-5.1	Todd Shoemaker	Rinku Patel	09/10/09 09:02	Custody Transfer	
JA27477-5.1	Rinku Patel	Secured Storage		Return to Storage	
JA27477-5.1	Secured Storage	Adam Scott		Retrieve from Storage	
JA27477-5.1	Adam Scott	Rinku Patel		Custody Transfer	
JA27477-5.1	Rinku Patel	Secured Storage		Return to Storage	
JA27477-5.1	Dave Hunkele		10/12/09 05:25	Disposed	
JA27477-5.1.1	Rinku Patel	Metals Digestion	09/18/09 15:10	Digestate from JA27477-5.1	

HWINJM Honeywell International Inc. Account: **Project:** HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason	
JA27477-5.1.1	Metals Digestion	Darshananben Patel		Digestate from JA27477-5.1	
JA27477-5.1.1	Darshananben Patel	Metals Digestate Storage	09/18/09 15:16	Return to Storage	
JA27477-5.3	Secured Storage	John Thomas		Retrieve from Storage	
JA27477-5.3	John Thomas	Millicent Walker		Custody Transfer	
JA27477-5.3	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage	
	le for custody transfer.				
JA27477-5.3	Dave Hunkele		10/12/09 05:25	Disposed	
JA27477-5F.2	Secured Storage	John Thomas	09/09/09 19:41	Retrieve from Storage	
JA27477-5F.2	John Thomas	Millicent Walker	09/09/09 19:43	Custody Transfer	
JA27477-5F.2	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage	
Analyst unavailab	le for custody transfer.	-		-	
JA27477-5F.2	Secured Storage	Beatrice Marcelino	09/10/09 13:53	Retrieve from Storage	
JA27477-5F.2	Beatrice Marcelino	Secured Storage	09/10/09 16:32	Return to Storage	
JA27477-5F.2	Secured Storage	Adam Scott	09/18/09 08:13	Retrieve from Storage	
JA27477-5F.2	Adam Scott	Rinku Patel	09/18/09 08:15	Custody Transfer	
JA27477-5F.2	Rinku Patel	Secured Storage	09/18/09 15:33	Return to Storage	
JA27477-5F.2	Dave Hunkele		10/12/09 05:25	Disposed	
JA27477-5F.2.1	Rinku Patel	Metals Digestion	09/18/09 15:10	Digestate from JA27477-5F.2	
JA27477-5F.2.1	Metals Digestion	Darshananben Patel		Digestate from JA27477-5F.2	
JA27477-5F.2.1	Darshananben Patel	Metals Digestate Storage		Return to Storage	
JA27477-5F.4	Secured Storage	John Thomas	09/09/09 20:11	Retrieve from Storage	
JA27477-5F.4	John Thomas	Millicent Walker		Custody Transfer	
JA27477-5F.4	Shirley Grzybowski	Secured Storage		Return to Storage	
	le for custody transfer.				
JA27477-5F.4	Dave Hunkele		10/12/09 05:25	Disposed	
JA27477-6.1	Secured Storage	John Thomas	09/09/09 19:41	Retrieve from Storage	
JA27477-6.1	John Thomas	Millicent Walker		Custody Transfer	
JA27477-6.1	Shirley Grzybowski	Secured Storage		Return to Storage	
	le for custody transfer.	211011111111111111111111111111111111111			
JA27477-6.1	Secured Storage	Todd Shoemaker	09/10/09 09:01	Retrieve from Storage	
JA27477-6.1	Todd Shoemaker	Rinku Patel		Custody Transfer	
JA27477-6.1	Rinku Patel	Secured Storage		Return to Storage	
JA27477-6.1	Secured Storage	Adam Scott		Retrieve from Storage	
JA27477-6.1	Adam Scott	Rinku Patel		Custody Transfer	
JA27477-6.1	Rinku Patel	Secured Storage		Return to Storage	
JA27477-6.1	Dave Hunkele		10/12/09 05:25	_	
JA27477-6.1.1	Rinku Patel	Metals Digestion	09/18/09 15:10	Digestate from JA27477-6.1	
JA27477-6.1.1	Metals Digestion	Darshananben Patel		Digestate from JA27477-6.1	

HWINJM Honeywell International Inc. Account: **Project:** HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA27477-6.1.1	Darshananben Patel	Metals Digestate Storage	09/18/09 15:16	Return to Storage
JA27477-6.3	Secured Storage	John Thomas		Retrieve from Storage
JA27477-6.3	John Thomas	Millicent Walker		Custody Transfer
JA27477-6.3	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage
•	ble for custody transfer.			
JA27477-6.3	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-6F.2	Secured Storage	John Thomas	09/09/09 19:41	Retrieve from Storage
JA27477-6F.2	John Thomas	Millicent Walker	09/09/09 19:43	Custody Transfer
JA27477-6F.2	Shirley Grzybowski	Secured Storage		Return to Storage
Analyst unavailab	ole for custody transfer.	_		-
JA27477-6F.2	Secured Storage	Beatrice Marcelino	09/10/09 13:53	Retrieve from Storage
JA27477-6F.2	Beatrice Marcelino	Secured Storage	09/10/09 16:32	Return to Storage
JA27477-6F.2	Secured Storage	Adam Scott	09/18/09 08:13	Retrieve from Storage
JA27477-6F.2	Adam Scott	Rinku Patel	09/18/09 08:15	Custody Transfer
JA27477-6F.2	Rinku Patel	Secured Storage	09/18/09 15:33	Return to Storage
JA27477-6F.2	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-6F.2.1	Rinku Patel	Metals Digestion	09/18/09 15:10	Digestate from JA27477-6F.2
JA27477-6F.2.1	Metals Digestion	Darshananben Patel		Digestate from JA27477-6F.2
JA27477-6F.2.1	Darshananben Patel	Metals Digestate Storage		Return to Storage
JA27477-6F.4	Secured Storage	John Thomas	09/09/09 20:11	Retrieve from Storage
JA27477-6F.4	John Thomas	Millicent Walker		Custody Transfer
JA27477-6F.4	Shirley Grzybowski	Secured Storage		Return to Storage
Analyst unavailab	ole for custody transfer.	C		Č
JA27477-6F.4	Dave Hunkele		10/12/09 05:25	Disposed
JA27477-7.1	Secured Storage	John Thomas	09/09/09 19:41	Retrieve from Storage
JA27477-7.1	John Thomas	Millicent Walker		Custody Transfer
JA27477-7.1	Shirley Grzybowski	Secured Storage		Return to Storage
	ole for custody transfer.	2		Č
JA27477-7.1	Secured Storage	Todd Shoemaker	09/10/09 09:01	Retrieve from Storage
JA27477-7.1	Todd Shoemaker	Rinku Patel		Custody Transfer
JA27477-7.1	Rinku Patel	Secured Storage	09/10/09 11:39	Return to Storage
JA27477-7.1	Secured Storage	Adam Scott	09/18/09 08:13	Retrieve from Storage
JA27477-7.1	Adam Scott	Rinku Patel		Custody Transfer
JA27477-7.1	Rinku Patel	Secured Storage		Return to Storage
JA27477-7.1	Dave Hunkele	-	10/12/09 05:25	Disposed
JA27477-7.1.1	Rinku Patel	Metals Digestion	09/18/09 15:10	Digestate from JA27477-7.1
JA27477-7.1.1	Metals Digestion	Darshananben Patel		Digestate from JA27477-7.1
JA27477-7.1.1	Darshananben Patel	Metals Digestate Storage		Return to Storage

HWINJM Honeywell International Inc. Account: **Project:** HLANJPR: SA-5 Site 117, Jersey City, NJ

F		Transfer TO			
JA27477-7.3	Secured Storage	John Thomas	09/09/09 20:11	Retrieve from Storage	
JA27477-7.3	John Thomas	Millicent Walker		Custody Transfer	
JA27477-7.3	Shirley Grzybowski	Secured Storage		Return to Storage	
Analyst unavailab	ole for custody transfer.	Č		Č	
JA27477-7.3	Dave Hunkele		10/12/09 05:25	Disposed	
JA27477-7F.2	Secured Storage			Retrieve from Storage	
JA27477-7F.2	John Thomas	Millicent Walker		Custody Transfer	
JA27477-7F.2	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage	
Analyst unavailab	ole for custody transfer.	-		-	
JA27477-7F.2 Secured Storage		Beatrice Marcelino	09/10/09 13:53	Retrieve from Storage	
JA27477-7F.2	Beatrice Marcelino	Secured Storage		Return to Storage	
JA27477-7F.2	Secured Storage	Adam Scott		Retrieve from Storage	
JA27477-7F.2	Adam Scott	Rinku Patel		Custody Transfer	
JA27477-7F.2	Rinku Patel	Secured Storage		Return to Storage	
JA27477-7F.2	Dave Hunkele		10/12/09 05:25	Disposed	
JA27477-7F.2.1	Rinku Patel			Digestate from JA27477-7F.2	
JA27477-7F.2.1	Metals Digestion	Darshananben Patel	Darshananben Patel 09/18/09 15:15 Digestat		
JA27477-7F.2.1	Darshananben Patel	Metals Digestate Storage	09/18/09 15:16	Return to Storage	
JA27477-7F.4	Secured Storage	John Thomas		Retrieve from Storage	
JA27477-7F.4	John Thomas	Millicent Walker		Custody Transfer	
JA27477-7F.4	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage	
•	ble for custody transfer.				
JA27477-7F.4	Dave Hunkele		10/12/09 05:25	Disposed	
JA27477-8.1	Secured Storage	John Thomas		Retrieve from Storage	
JA27477-8.1	John Thomas	Millicent Walker		Custody Transfer	
JA27477-8.1	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage	
	ole for custody transfer.				
JA27477-8.1	Secured Storage	Todd Shoemaker		Retrieve from Storage	
JA27477-8.1	Todd Shoemaker	Rinku Patel		Custody Transfer	
JA27477-8.1	Rinku Patel	Secured Storage		Return to Storage	
JA27477-8.1	Secured Storage	Adam Scott		Retrieve from Storage	
JA27477-8.1	Adam Scott	Rinku Patel		Custody Transfer	
JA27477-8.1	Rinku Patel	Secured Storage		Return to Storage	
JA27477-8.1	Dave Hunkele		10/12/09 05:25	Disposed	
JA27477-8.1.1	Rinku Patel	Metals Digestion	09/18/09 15:10	Digestate from JA27477-8.1	
JA27477-8.1.1	Metals Digestion	Darshananben Patel		Digestate from JA27477-8.1	
JA27477-8.1.1	Darshananben Patel	Metals Digestate Storage		Return to Storage	
		6.2			

Page 9 of 9

Accutest Internal Chain of Custody Job Number: JA27477

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Received: 09/09/09

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason	
JA27477-8.2	Secured Storage	John Thomas	09/09/09 20:11	Retrieve from Storage	
JA27477-8.2	John Thomas	Millicent Walker	09/09/09 20:12	Custody Transfer	
JA27477-8.2	Shirley Grzybowski	Secured Storage	09/10/09 07:03	Return to Storage	
Analyst unavailable for custody transfer.					
JA27477-8.2	Dave Hunkele		10/12/09 05:25	Disposed	

4

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Instrument Runlogs
- Initial and Continuing Calibration Blanks
- Initial and Continuing Calibration Checks
- · High and Low Check Standards
- Interfering Element Check Standards
- Method Blank Summaries
- · Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries
- IDL and Linear Range Summaries

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Run ID: MA23143

File ID: SA091909M1.ICP Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B

Analyst: ND

	meters: Cr			Ruii 1D. Pia23143
Time	Sample Description	Dilution P: Factor Re	S ecov	Comments
10:57	MA23143-STD1	1		STDA
11:04	MA23143-STD2	1		STDB
11:10	MA23143-CCV1	1		
11:16	MA23143-CCB1	1		
11:24	MA23143-STD3	1		STDA
11:31	MA23143-STD4	1		STDB
11:37	MA23143-STD5	1		STDB
11:46	MA23143-HSTD1	1		
11:57	MA23143-HSTD2	1		
12:05	MA23143-CRIB1	1		
12:11	MA23143-CRID1	1		
12:19	MA23143-ICV1	1		
12:29	MA23143-ICB1	1		
12:34	ZZZZZZ	1		
12:41	ZZZZZZ	1		
12:49	MA23143-ICCV1	1		
13:01	MA23143-CCB2	1		
13:05	MA23143-ICSA1	1		
13:12	MA23143-ICSAB1	1		
13:18	MA23143-CCV2	1		
13:24	MA23143-CCB3	1		
13:30	ZZZZZZ	10		
13:36	ZZZZZZ	1		
13:42	ZZZZZZ	25		
13:48	ZZZZZZ	5		
13:54	ZZZZZZ	5		
14:01	MP49683-MB1	1		
14:07	MP49683-LC1	1		
14:13	MP49683-S1	1		
14:19	MP49683-S2	1		
14:25	MA23143-CCV3	1		
14:31	MA23143-CCB4	1		
14:37	JA27169-2	1		(sample used for QC only; not part of login JA27477)

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B Run ID: MA23143

Analyst: ND Parameters: Cr

14:49	Time		Dilution Factor	Comments
14:86	14:43	MP49683-SD1	5	
15:02 ZZZZZZ	14:49	ZZZZZZ	1	
15:18	14:56	ZZZZZZ	1	
15:14	15:02	ZZZZZZ	1	
15:27	15:08	ZZZZZZ	1	
15:37	15:14	ZZZZZZ	1	
15:33 MA23143-CCV4 1 15:45 ZZZZZ 1 15:51 MP4698-MB1 1 15:57 MP4698-LC1 1 16:03 JA28426-1 1 16:03 ZZZZZZ 1 16:16 ZZZZZZ 1 16:16 ZZZZZZ 1 16:17 ZZZZZZ 1 10 XAZZZZZ 1 10 XAZZZZZ 1 10 XAZZZZZ 1 10:18 XZZZZZ 1 10 XAZZZZZ 1 10 XAZZZZZZ 1 10 XAZZZZZZ 1 10 XAZZZZZZ 1 10 XAZZZZZZ 1 10 XAZZZZZZ 1 10 XAZZZZZ 1 10 XAZZZZZ 1 10 XZZZZZ 1	15:20	ZZZZZZ	1	
15:39	15:27	ZZZZZZ	1	
15:51	15:33	MA23143-CCV4	1	
15:51 M249698-MB1 1 15:57 M249698-LC1 1 16:03 J22822-1 1 16:04 Z2ZZZZ 1 16:25 ZZZZZZ 1 16:26 ZZZZZZ 1 16:27 ZZZZZZ 1 16:30 M23143-CCV5 1 16:40 MA23143-CSA2 1 16:41 MA23143-CSA2 1 16:59 M23143-CCV6 1 17:10 ZZZZZ 1 17:11 ZZZZZZ 1 17:12 ZZZZZZ 1 17:17 ZZZZZZ 1 17:18 ZZZZZZ 1 17:19 ZZZZZZ 1 17:40 ZZZZZZ 1 17:41 ZZZZZZ 1 17:42 ZZZZZZ 1 17:42 ZZZZZZ 1 17:43 ZZZZZZ 1 17:44 ZZZZZZ 1 17:45 ZZZZZZ 1 17:47 ZZZZZZ 1 17:48 </td <td>15:39</td> <td>MA23143-CCB5</td> <td>1</td> <td></td>	15:39	MA23143-CCB5	1	
16:57 M49698-LC1 1 16:03 JA28426-1 1 (sample used for QC only; not part of login JA27477) 16:04 ZZZZZZ 1 16:25 ZZZZZZ 1 16:28 ZZZZZZ 1 16:34 MA23143-CCV5 1 16:47 MA23143-CSA6 1 16:59 MA23143-CSA6 1 17:10 ZZZZZ 1 17:11 ZZZZZ 1 17:12 ZZZZZ 1 1 1 17:14 ZZZZZZ 1 1 1 17:15 ZZZZZZ 1 1 1 17:16 ZZZZZZ 1 1 1 17:17 ZZZZZZ 1 1 1 17:18 ZZZZZZ 1 1 1 17:19 ZZZZZZ 1 1 1 17:10 ZZZZZZ 1 1 1 17:11 ZZZZZZ 1 1 1 17:12 ZZZZZZ 1 1 1 17:13 ZZZZZZ 1 1 1 17:14 ZZZZZZ 1 1 1 17:15 ZZZZZZ 1 1 1 17:16 ZZZZZZ 1 1 1 17:17 ZZZZZZ 1 1 1 17:18 ZZZZZZ 1 1 1 17:19 ZZZZZZ 1 1 1 17:10 ZZZZZZ 1 1 1 17:10 ZZZZZZ 1 1 1 17:11 ZZZZZZ 1 1 1 17:12 ZZZZZZ 1 1 1 17:12 ZZZZZZ 1 1 1 17:13 ZZZZZZ 1 1 1 17:14 ZZZZZZZ 1 1 1 17:15 ZZZZZZ 1 1 1 17:16 ZZZZZZ 1 1 1 17:17 ZZZZZZZ 1 1 1 17:18 ZZZZZZ 1 1 1 17:19 ZZZZZZ 1 1 1 17:10 ZZZZZZ 1 1 1 17:10 ZZZZZZ 1 1 1 17:10 ZZZZZZ 1	15:45	ZZZZZZ	1	
16:03 JA28426-1 1 (sample used for QC only; not part of login JA27477) 16:09 ZZZZZZ 1 16:16 ZZZZZZ 1 16:28 ZZZZZZ 1 16:28 ZZZZZZ 1 16:34 MA23143-CCB6 1 16:40 MA23143-CCB6 1 16:53 MA23143-ICSAB2 1 16:59 MA23143-CCV 1 17:05 MA23143-CCV 1 17:17 ZZZZZZ 1 17:18 ZZZZZZ 1 17:40 ZZZZZZ 1 17:40 ZZZZZZ 1 17:41 ZZZZZZ 1 17:42 ZZZZZZ 1	15:51	MP49698-MB1	1	
16:09 ZZZZZZZ 1 16:16 ZZZZZZZ 1 16:22 ZZZZZZ 1 16:28 ZZZZZZ 1 16:34 MA23143-CCY5 1 16:40 MA23143-CCB6 1 16:53 MA23143-ICSA2 1 16:59 MA23143-CCY6 1 17:05 MA23143-CCB7 1 17:11 ZZZZZZ 1 17:12 ZZZZZZ 1 17:23 ZZZZZZ 1 17:40 ZZZZZZ 1 17:42 ZZZZZZ 1 17:42 ZZZZZZ 1 17:42 ZZZZZZ 1 17:48 ZZZZZZ 1 17:49 ZZZZZZ 1 17:40 ZZZZZZ 1 17:42 ZZZZZZ 1 17:48 ZZZZZZ 1	15:57	MP49698-LC1	1	
16:16 ZZZZZZ 1 16:27 ZZZZZZ 1 16:34 M23143-CCV5 1 16:40 M23143-CCB6 1 16:47 M23143-ICSA2 1 16:53 M23143-ICSA2 1 16:59 M23143-CCV6 1 17:10 M23143-CCV3 1 17:11 ZZZZZZ 1 17:12 ZZZZZZ 1 17:23 ZZZZZZ 1 17:36 ZZZZZZ 1 17:42 ZZZZZZ 1 17:42 ZZZZZZ 1 17:43 ZZZZZZ 1 17:45 ZZZZZZ 1 17:48 ZZZZZZ 1 17:49 ZZZZZZ 1 17:49 ZZZZZZ 1 17:40 ZZZZZZ 1 17:40 ZZZZZZ 1 17:41 ZZZZZZ 1 17:42 ZZZZZZ 1 17:43 X </td <td>16:03</td> <td>JA28426-1</td> <td>1</td> <td>(sample used for QC only; not part of login JA27477)</td>	16:03	JA28426-1	1	(sample used for QC only; not part of login JA27477)
16:22 ZZZZZZ 1 16:34 XZZZZZ 1 16:40 MA23143-CCB6 1 16:47 MA23143-ICSAB2 1 16:53 MA23143-ICSAB2 1 16:59 MA23143-CCB6 1 17:10 ZZZZZZ 1 17:11 ZZZZZZ 1 17:23 ZZZZZZ 1 17:29 ZZZZZZ 1 17:40 ZZZZZZ 1 17:42 ZZZZZZ 1 17:43 ZZZZZZ 1 17:44 ZZZZZZ 1 17:45 ZZZZZZ 1 17:48 ZZZZZZ 1 17:49 ZZZZZZ 1 17:40 ZZZZZZ 1 17:40 ZZZZZZ 1 17:41 ZZZZZZ 1 17:42 ZZZZZZ 1 17:42 ZZZZZZ 1 17:43 ZZZZZZ 1 17:44 ZZZZZZ 1 17:45 ZZZZZZ 1 17:47	16:09	ZZZZZZ	1	
16:28 ZZZZZZ 1 16:34 MA23143-CCS5 1 16:40 MA23143-CCB6 1 16:47 MA23143-ICSA2 1 16:59 MA23143-CCB7 1 17:05 MA23143-CCB7 1 17:11 ZZZZZZ 1 17:23 ZZZZZZ 1 17:29 ZZZZZZ 1 17:40 ZZZZZZ 1 17:42 ZZZZZZ 1 17:48 ZZZZZZ 1 17:49 ZZZZZZ 1 17:40 ZZZZZZ 1 17:41 ZZZZZZ 1 17:42 ZZZZZZ 1 17:43 ZZZZZZ 1 17:44 ZZZZZZ 1 17:45 ZZZZZZ 1	16:16	ZZZZZZ	1	
16:34 MA23143-CCV5 1 16:40 MA23143-CCB6 1 16:47 MA23143-ICSAB2 1 16:59 MA23143-CCV6 1 17:05 MA23143-CCB7 1 17:11 ZZZZZZ 1 17:17 ZZZZZZ 1 17:23 ZZZZZZ 1 17:36 ZZZZZZ 1 17:42 ZZZZZZ 1 17:48 ZZZZZZ 1 17:49 ZZZZZZ 1 17:49 ZZZZZZ 1 17:40 ZZZZZZ 1 17:40 ZZZZZZ 1 17:41 ZZZZZZ 1 17:42 ZZZZZZ 1 17:48 ZZZZZZ 1 17:49 ZZZZZZ 1	16:22	ZZZZZZ	1	
16:40 MA23143-CCB6 1 16:47 MA23143-ICSAB2 1 16:59 MA23143-CCV6 1 17:05 MA23143-CCB7 1 17:11 ZZZZZZ 1 17:12 ZZZZZZ 1 17:23 ZZZZZZ 1 17:29 ZZZZZZ 1 17:36 ZZZZZZ 1 17:42 ZZZZZZ 1 17:48 ZZZZZZ 1 17:54 ZZZZZZ 1 17:55 ZZZZZZ 1	16:28	ZZZZZZ	1	
16:47 MA23143-ICSA2 1 16:53 MA23143-ICSAB2 1 16:59 MA23143-CCV6 1 17:05 MA23143-CCB7 1 17:11 ZZZZZZ 1 17:17 ZZZZZZ 1 17:23 ZZZZZZ 1 17:36 ZZZZZZ 1 17:42 ZZZZZZ 1 17:48 ZZZZZZ 1 17:54 ZZZZZZ 1 17:55 ZZZZZZ 1	16:34	MA23143-CCV5	1	
16:53 MA23143-ICSAB2 1 16:59 MA23143-CCV6 1 17:05 MA23143-CCB7 1 17:11 ZZZZZZ 1 17:27 ZZZZZZ 1 17:28 ZZZZZZ 1 17:36 ZZZZZZ 1 17:42 ZZZZZZ 1 17:48 ZZZZZZ 1 17:54 ZZZZZZ 1 17:55 ZZZZZZ 1	16:40	MA23143-CCB6	1	
16:59 MA23143-CCV6 1 17:05 MA23143-CCB7 1 17:11 ZZZZZZ 1 17:23 ZZZZZZ 1 17:29 ZZZZZZ 1 17:36 ZZZZZZ 1 17:42 ZZZZZZ 1 17:48 ZZZZZZ 1 17:54 ZZZZZZ 1 17:54 ZZZZZZ 1	16:47	MA23143-ICSA2	1	
17:05 MA23143-CCB7 1 17:11 ZZZZZZZ 1 17:23 ZZZZZZ 1 17:29 ZZZZZZ 1 17:36 ZZZZZZ 1 17:42 ZZZZZZ 1 17:48 ZZZZZZ 1 17:54 ZZZZZZ 1	16:53	MA23143-ICSAB2	1	
17:11 zzzzzz 1 17:17 zzzzzz 1 17:23 zzzzzz 1 17:36 zzzzzz 1 17:42 zzzzzz 1 17:48 zzzzzz 1 17:54 zzzzzz 1 17:54 zzzzzz 1	16:59	MA23143-CCV6	1	
17:17 zzzzzz 1 17:23 zzzzzz 1 17:29 zzzzzz 1 17:36 zzzzzz 1 17:42 zzzzzz 1 17:48 zzzzzz 1 17:54 zzzzzz 1	17:05	MA23143-CCB7	1	
17:23 zzzzzz 1 17:29 zzzzzz 1 17:36 zzzzzz 1 17:42 zzzzzz 1 17:48 zzzzzz 1 17:54 zzzzzz 1	17:11	ZZZZZZ	1	
17:29 zzzzzz 1 17:36 zzzzzz 1 17:42 zzzzzz 1 17:48 zzzzzz 1 17:54 zzzzzz 1	17:17			
17:36 ZZZZZZ 1 17:42 ZZZZZZ 1 17:48 ZZZZZZ 1 17:54 ZZZZZZ 1	17:23	ZZZZZZ	1	
17:42 zzzzzz 1 17:48 zzzzzz 1 17:54 zzzzzz 1	17:29	ZZZZZZ	1	
17:48 ZZZZZZ 1 17:54 ZZZZZZ 1	17:36	ZZZZZZ	1	
17:54 ZZZZZZ 1	17:42	ZZZZZZ	1	
	17:48	ZZZZZZ	1	
18:00 ZZZZZZ 1	17:54	ZZZZZZ	1	
	18:00	ZZZZZZ	1	

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Run ID: MA23143

File ID: SA091909M1.ICP Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B

Analyst: ND Parameters: Cr

Para	meters: Cr		
Time	Sample Description	Dilution Factor	Comments
18:06	ZZZZZZ	1	
18:12	MA23143-CCV7	1	
18:18	MA23143-CCB8	1	
18:25	MP49698-S1	1	
18:31	MP49698-S2	1	
18:37	MP49698-SD1	5	
18:43	ZZZZZZ	1	
18:49	ZZZZZZ	1	
18:55	ZZZZZZ	1	
19:01	ZZZZZZ	1	
19:07	ZZZZZZ	1	
19:13	MP49681-MB1	1	
19:19	MP49681-LC1	1	
19:25	MA23143-CCV8	1	
19:31	MA23143-CCB9	1	
19:38	MP49681-S1	1	
19:44	MP49681-S2	1	
19:50	JA28143-2	1	(sample used for QC only; not part of login JA27477)
19:56	MP49681-SD1	5	
20:02	ZZZZZZ	1	
20:08	ZZZZZZ	1	
20:14	ZZZZZZ	1	
20:20	ZZZZZZ	1	
20:26	ZZZZZZ	1	
20:33	ZZZZZZ	1	
20:39	MA23143-CCV9	1	
20:45	MA23143-CCB10	1	
20:51	ZZZZZZ	1	
20:57	ZZZZZZ	1	
21:04	ZZZZZZ	1	
21:10	ZZZZZZ	1	
21:16	ZZZZZZ	1	
21:22	ZZZZZZ	1	

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Analyst: ND Date Analyzed: 09/19/09 Run ID: MA23143 Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Dilution Factor	PS Recov	Comments
21:28	ZZZZZZ	1		
21:35	ZZZZZZ	1		
21:41	ZZZZZZ	1		
21:47	ZZZZZZ	1		
21:53	MA23143-CCV10	1		
21:59	MA23143-CCB11	1		
22:05	ZZZZZZ	1		
22:11	ZZZZZZ	1		
22:18	ZZZZZZ	1		
22:24	MP49675-MB1	1		
22:30	MP49675-LC1	1		
22:36	MP49675-S1	1		
22:42	MP49675-S2	1		
22:48	JA27495-7	1		(sample used for QC only; not part of login JA27477)
22:54	MP49675-SD1	5		
23:01	ZZZZZZ	5		
23:07	MA23143-CCV11	1		
23:13	MA23143-CCB12	1		
23:19	MA23143-ICSA3	1		
23:25	MA23143-ICSAB3	1		
23:31	MA23143-CCV12	1		
23:37	MA23143-CCB13	1		
23:43	ZZZZZZ	5		
23:50	ZZZZZZ	5		
23:56	ZZZZZZ	5		
00:02	ZZZZZZ	1		
00:08	ZZZZZZ	1		
00:14	ZZZZZZ	1		
00:20	ZZZZZZ	1		
00:26	ZZZZZZ	1		
00:33	ZZZZZZ	1		
00:39	ZZZZZZ	1		
00:45	MA23143-CCV13	1		

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Analyst: ND Date Analyzed: 09/19/09 Run ID: MA23143 Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Dilution PS Factor Recov Comments
00:51	MA23143-CCB14	1
00:57	ZZZZZZ	1
01:04	ZZZZZZ	1
01:10	ZZZZZZ	1
01:16	ZZZZZZ	1
01:23	ZZZZZZ	1
01:29	ZZZZZZ	1
01:35	ZZZZZZ	1
01:41	ZZZZZZ	1
01:47	MP49677-MB1	1
01:53	MP49677-LC1	1
01:59	MA23143-CCV14	1
02:05	MA23143-CCB15	1
02:11	MP49677-S3	1
02:18	MP49677-S4	1
02:24	JA27477-3F	1
02:30	MP49677-SD2	5
02:36	ZZZZZZ	1
02:42	ZZZZZZ	1
02:48	ZZZZZZ	1
02:54	JA27477-1	1
03:00	JA27477-2	1
03:07	JA27477-3	1
03:13	MA23143-CCV15	1
03:19	MA23143-CCB16	1
03:25	JA27477-4	1
03:31	JA27477-5	1
03:37	JA27477-6	1
03:44	JA27477-7	1
03:50	JA27477-8	1
03:56	JA27477-1F	1
04:02	JA27477-2F	1
04:08	JA27477-4F	1

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 09/19/09 File ID: SA091909M1.ICP Methods: EPA 200.7, SW846 6010B Run ID: MA23143

Analyst: ND Parameters: Cr

---->

Fala	meters: Cr						
Time	_	Dilution Factor		Comments			
04:14	JA27477-5F	1					
04:21	JA27477-6F	1					
04:27	MA23143-CCV16	1					
04:33	MA23143-CCB17	1					
04:39	ZZZZZZ	1					
04:45	JA27477-7F	1					
04:51	ZZZZZZ	1					
04:58	ZZZZZZ	1					
05:04	MP49677-S1	1					
05:10	MP49677-S2	1					
Last r	MP49677-SD1 eportable sample ZZZZZZ	5 /prep for 1	job JA27	477			
05:28	MA23143-CCV17	1					
05:34	MA23143-CCB18	1					
05:41	MA23143-ICSA4	1					
05:47	MA23143-ICSAB4	1					
05:53	MA23143-CCV18	1					
Last r	MA23143-CCB19 reportable CCB fo ZZZZZZ	r job JA2'	7477				
06:11	ZZZZZZ	1					
06:18	ZZZZZZ	1					
06:24	ZZZZZZ	1					
06:30	ZZZZZZ	1					
06:36	ZZZZZZ	1					

Refer to raw data for calibration curve and standards.

1

06:42 ZZZZZZ

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Analyst: ND Date Analyzed: 09/19/09 Run ID: MA23143 Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4
10:57	MA23143-STD1	2269 R	108400 R	18430 R	5075 R
11:04	MA23143-STD2	2129	103180	17904	4503
11:10	MA23143-CCV1	2173	104660	17765	4669
11:16	MA23143-CCB1	2232	108200	18395	4987
11:24	MA23143-STD3	2256	108620	18266	5041
11:31	MA23143-STD4	2129	102840	17843	4496
11:37	MA23143-STD5	2130	101320	17794	4486
11:46	MA23143-HSTD1	2118	105360	18426	4462
11:57	MA23143-HSTD2	2136	102820	17731	4499
12:05	MA23143-CRIB1	2220	106540	18018	4909
12:11	MA23143-CRID1	2236	108010	19170	5025
12:19	MA23143-ICV1	2241	108190	18932	4987
12:29	MA23143-ICB1	2245	108150	18935	5057
12:34	ZZZZZZ	2181	104630	19115	4719
12:41	ZZZZZZ	2184	105950	18656	4710
12:49	MA23143-ICCV1	2193	104000	18353	4727
13:01	MA23143-CCB2	2229	112150	19187	5011
13:05	MA23143-ICSA1	1954	97312	17879	4021
13:12	MA23143-ICSAB1	1985	96918	17760	4076
13:18	MA23143-CCV2	2173	106390	18615	4708
13:24	MA23143-CCB3	2237	106310	18916	5041
13:30	ZZZZZZ	2453	119150	20699	5011
13:36	ZZZZZZ	2223	109310	18786	4984
13:42	ZZZZZZ	2220	106500	18979	4802
13:48	ZZZZZZ	2234	108650	18599	4945
13:54	ZZZZZZ	2262	109170	18739	4999
14:01	MP49683-MB1	2265	110020	18837	5067
14:07	MP49683-LC1	2233	109390	18831	4961
14:13	MP49683-S1	2108	103900	17886	4528
14:19	MP49683-S2	2121	104270	18565	4550
14:25	MA23143-CCV3	2206	106830	17802	4752
14:31	MA23143-CCB4	2267	110240	19063	5095
14:37	JA27169-2	2141	105450	18988	4660

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Analyst: ND Date Analyzed: 09/19/09 Run ID: MA23143 Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4
14:43	MP49683-SD1	2229	109230	19279	4989
14:49	ZZZZZZ	2133	106710	19237	4687
14:56	ZZZZZZ	2109	106610	19238	4619
15:02	ZZZZZZ	2178	108450	19342	4819
15:08	ZZZZZZ	2134	106610	19365	4719
15:14	ZZZZZZ	1948	98440	18351	4107
15:20	ZZZZZZ	2111	105710	19402	4621
15:27	ZZZZZZ	2075	102390	19099	4506
15:33	MA23143-CCV4	2179	107010	19084	4738
15:39	MA23143-CCB5	2245	107390	17935	4993
15:45	ZZZZZZ	2238	107160	18013	4961
15:51	MP49698-MB1	2219	106390	17659	4928
15:57	MP49698-LC1	2219	110910	18377	4905
16:03	JA28426-1	2199	107010	18259	4855
16:09	ZZZZZZ	1919	92933	17191	3902
16:16	ZZZZZZ	1910	91016	16635	3853
16:22	ZZZZZZ	2173	105460	17804	4817
16:28	ZZZZZZ	2070	101080	17431	4422
16:34	MA23143-CCV5	2159	103470	17362	4603
16:40	MA23143-CCB6	2227	105830	17356	4917
16:47	MA23143-ICSA2	1997	95947	16704	4035
16:53	MA23143-ICSAB2	2006	96252	16729	4044
16:59	MA23143-CCV6	2169	102320	17108	4612
17:05	MA23143-CCB7	2242	106010	17351	4939
17:11	ZZZZZZ	2131	102670	17209	4584
17:17	ZZZZZZ	2227	106890	17305	4699
17:23	ZZZZZZ	2226	104960	17392	4928
17:29	ZZZZZZ	2087	101750	17133	4492
17:36	ZZZZZZ	2095	104020	17250	4500
17:42	ZZZZZZ	2117	103170	17282	4748
17:48	ZZZZZZ	2090	104880	18751	4630
17:54	ZZZZZZ	2122	105870	19245	4690
18:00	ZZZZZZ	2099	102740	19109	4347

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Analyst: ND Date Analyzed: 09/19/09 Run ID: MA23143 Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4
18:06	ZZZZZZ	2203	108920	19217	4992
18:12	MA23143-CCV7	2145	102810	17433	4604
18:18	MA23143-CCB8	2235	105760	16173	4944
18:25	MP49698-S1	2141	102570	17263	4658
18:31	MP49698-S2	2121	101660	17152	4636
18:37	MP49698-SD1	2201	98208	17178	4882
18:43	ZZZZZZ	2144	104120	17134	4704
18:49	ZZZZZZ	2151	103240	17625	4720
18:55	ZZZZZZ	2131	102930	17863	4675
19:01	ZZZZZZ	2133	102250	17886	4689
19:07	ZZZZZZ	2274	106830	18110	5088
19:13	MP49681-MB1	2236	106550	17950	4989
19:19	MP49681-LC1	2208	104090	17075	4838
19:25	MA23143-CCV8	2170	102270	16828	4615
19:31	MA23143-CCB9	2248	104850	16944	4958
19:38	MP49681-S1	2224	104500	17365	4665
19:44	MP49681-S2	2231	105160	17302	4681
19:50	JA28143-2	2281	106590	17550	4894
19:56	MP49681-SD1	2296	105920	16978	5043
20:02	ZZZZZZ	2020	94388	16459	4119
20:08	ZZZZZZ	2052	95707	16383	4214
20:14	ZZZZZZ	2152	97121	17686	4552
20:20	ZZZZZZ	2181	102530	16845	4747
20:26	ZZZZZZ	2095	98690	16643	4409
20:33	ZZZZZZ	2156	100700	16649	4582
20:39	MA23143-CCV9	2192	102230	16764	4647
20:45	MA23143-CCB10	2234	106000	16909	4925
20:51	ZZZZZZ	2047	96791	16481	4251
20:57	ZZZZZZ	2010	95003	16447	4107
21:04	ZZZZZZ	2077	98788	17007	4310
21:10	ZZZZZZ	2157	98479	17191	4587
21:16	ZZZZZZ	2154	103720	17460	4727
21:22	ZZZZZZ	2055	98246	16587	4308

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 09/19/09 Run ID: MA23143 File ID: SA091909M1.ICP Methods: EPA 200.7, SW846 6010B

Analyst: ND Parameters: Cr

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4
21:28	ZZZZZZ	2091	100780	17640	4410
21:35	ZZZZZZ	2049	98294	17571	4294
21:41	ZZZZZZ	2282	109110	18436	4967
21:47	ZZZZZZ	2243	106740	17934	4935
21:53	MA23143-CCV10	2208	106320	17180	4712
21:59	MA23143-CCB11	2307	108040	17897	5119
22:05	ZZZZZZ	2309	109440	18414	5009
22:11	ZZZZZZ	2309	109480	18248	4989
22:18	ZZZZZZ	2276	107650	18234	5006
22:24	MP49675-MB1	2338	109680	18308	5179
22:30	MP49675-LC1	2267	107340	17867	4983
22:36	MP49675-S1	2129	102240	17606	4493
22:42	MP49675-S2	2116	100870	17308	4467
22:48	JA27495-7	2127	101980	17309	4529
22:54	MP49675-SD1	2249	101380	17480	4916
23:01	ZZZZZZ	2124	99698	16901	4439
23:07	MA23143-CCV11	2227	105070	17452	4748
23:13	MA23143-CCB12	2269	107500	17586	5032
23:19	MA23143-ICSA3	2013	97523	17146	4090
23:25	MA23143-ICSAB3	2017	96584	16892	4094
23:31	MA23143-CCV12	2205	104760	17550	4713
23:37	MA23143-CCB13	2281	104130	17525	5039
23:43	ZZZZZZ	2166	101690	16815	4628
23:50	ZZZZZZ	2121	100970	17430	4538
23:56	ZZZZZZ	2108	102650	17898	4532
00:02	ZZZZZZ	2224	106880	18218	4920
00:08	ZZZZZZ	2145	106380	18252	4678
00:14	ZZZZZZ	2192	106740	18409	4835
00:20	ZZZZZZ	2236	107820	18512	5000
00:26	ZZZZZZ	2195	106880	18532	4836
00:33	ZZZZZZ	2255	109420	18998	5068
00:39	ZZZZZZ	2109	102480	18146	4544
00:45	MA23143-CCV13	2235	107550	18605	4846

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Analyst: ND Date Analyzed: 09/19/09 Run ID: MA23143 Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4
00:51	MA23143-CCB14	2311	110880	18844	5198
00:57	ZZZZZZ	1536	75478	16226	2936 !
01:04	ZZZZZZ	1703	83299	16836	3388
01:10	ZZZZZZ	1884	90960	17522	3817
01:16	ZZZZZZ	1956	96509	17785	4109
01:23	ZZZZZZ	2293	111370	19396	5052
01:29	ZZZZZZ	2283	110540	19282	5020
01:35	ZZZZZZ	2244	108810	18865	5012
01:41	ZZZZZZ	2166	105840	18685	4735
01:47	MP49677-MB1	2282	109950	18976	5156
01:53	MP49677-LC1	2267	109970	18859	5083
01:59	MA23143-CCV14	2227	107280	18622	4826
02:05	MA23143-CCB15	2304	110570	18861	5190
02:11	MP49677-S3	2130	105140	18515	4652
02:18	MP49677-S4	2135	105160	18481	4652
02:24	JA27477-3F	2160	105520	18577	4762
02:30	MP49677-SD2	2274	109750	18938	5089
02:36	ZZZZZZ	2295	110910	18979	5191
02:42	ZZZZZZ	2211	107300	18656	4918
02:48	ZZZZZZ	2203	107540	18754	4893
02:54	JA27477-1	2175	106580	18750	4783
03:00	JA27477-2	2151	102200	18865	4645
03:07	JA27477-3	2177	106190	18631	4798
03:13	MA23143-CCV15	2200	106510	18511	4780
03:19	MA23143-CCB16	2248	109690	18948	5083
03:25	JA27477-4	2128	105560	18478	4713
03:31	JA27477-5	2204	107730	18911	4902
03:37	JA27477-6	2113	103490	18482	4624
03:44	JA27477-7	2155	104130	18718	4731
03:50	JA27477-8	2246	106630	19478	5099
03:56	JA27477-1F	2129	104570	18517	4701
04:02	JA27477-2F	2139	102690	18432	4632
04:08	JA27477-4F	2144	105510	18628	4751

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 09/19/09 Run ID: MA23143 File ID: SA091909M1.ICP Methods: EPA 200.7, SW846 6010B

Analyst: ND Parameters: Cr

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4
04:14	JA27477-5F	2207	107250	18802	4917
04:21	JA27477-6F	2121	104430	18526	4633
04:27	MA23143-CCV16	2199	106730	18605	4786
04:33	MA23143-CCB17	2269	109910	18743	5124
04:39	ZZZZZZ	2046	101730	18060	4459
04:45	JA27477-7F	2159	105410	18539	4749
04:51	ZZZZZZ	2173	106690	18663	4865
04:58	ZZZZZZ	2122	100960	18269	4600
05:04	MP49677-S1	2117	104610	18532	4631
05:10	MP49677-S2	2113	104690	18430	4622
05:16	MP49677-SD1	2226	108710	18916	5009
05:22	ZZZZZZ	2266	110110	18853	5144
05:28	MA23143-CCV17	2195	106330	18445	4771
05:34	MA23143-CCB18	2288	110290	18798	5164
05:41	MA23143-ICSA4	1989	98225	17858	4114
05:47	MA23143-ICSAB4	1998	97818	17771	4134
05:53	MA23143-CCV18	2193	106290	18510	4771
05:59	MA23143-CCB19	2280	109820	17979	5110
06:05	ZZZZZZ	2290	106470	18920	4800
06:11	ZZZZZZ	2068	104060	18070	4490
06:18	ZZZZZZ	2220	107980	18404	4983
06:24	ZZZZZZ	2094	104360	17975	4527
06:30	ZZZZZZ	2266	109220	17845	5109
06:36	ZZZZZZ	2270	109670	18399	5090
06:42	ZZZZZZ	2256	108630	18621	5053
R = Re	eference for IST	D limits.	! = Outsi	de limits.	
LEGEND):				

LEGEND:

<u>Istd#</u>	Paramete	er	Limits		
Istd#1	Yttrium	(2243)	60-125	용	
Istd#2	Yttrium	(3600)	60-125	용	
Istd#3	Yttrium	(3710)	60-125	용	
Istd#4	Indium		60-125	용	

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA27477

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B Units: ug/l QC Limits: result < RL Run ID: MA23143

Time: Sample ID: Metal	RL	IDL	12:29 ICB1 raw	final	13:01 CCB2 raw	final	13:24 CCB3 raw	final	14:31 CCB4 raw	final
Aluminum	200	5.2	raw	TIMAT	Law	IIIIaI	IAW	IIIIaI	Iaw	IIIIaI
Antimony	6.0	1.6	anr							
Arsenic	3.0	1.3	anr							
Barium	200	.3	anr							
Beryllium	1.0	. 2	anr							
Boron	100	1.7	ani							
Cadmium	3.0	.2	anr							
Calcium	5000	36	anr							
Chromium	10	.5	-0.10	<10	0.20	<10	0.0	<10	0.40	<10
Cobalt	50	.3	0.10	110	0.20	110	0.0	110	0.40	110
Copper	10	.9	anr							
Iron	100	44	anr							
Lead	3.0	1.2	anr							
Magnesium	5000	29	anr							
Manganese	15	.3	anr							
Molybdenum	20	. 2	ani							
Nickel	10	. 2	anr							
Palladium	50	3	aiii							
Potassium	10000	95	anr							
Selenium	10	2.1	anr							
Silicon	200	9.6	ani							
Silver	10	.5	anr							
Sodium	10000	450	anr							
Strontium	10	.3								
Thallium	2.0	1.3	anr							
Tin	10	.3								
Titanium	10	. 6								
Tungsten	50	4.2								
Vanadium	50	.3	anr							
Zinc	20	.7	anr							

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA27477

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B

QC Limits: re			Da		ed: U9/19, ID: MA2314		ethods: El Units: ug		SW846 60.	108
Time: Sample ID:			15:39 CCB5		16:40 CCB6		17:05 CCB7		18:18 CCB8	
Metal	RL	IDL	raw	final	raw	final	raw	final	raw	final
Aluminum	200	5.2								
Antimony	6.0	1.6	anr							
Arsenic	3.0	1.3	anr							
Barium	200	.3	anr							
Beryllium	1.0	. 2	anr							
Boron	100	1.7								
Cadmium	3.0	. 2	anr							
Calcium	5000	36	anr							
Chromium	10	.5	0.30	<10	-0.10	<10	0.30	<10	0.60	<10
Cobalt	50	.3								
Copper	10	.9	anr							
Iron	100	44	anr							
Lead	3.0	1.2	anr							
Magnesium	5000	29	anr							
Manganese	15	.3	anr							
Molybdenum	20	. 2								
Nickel	10	. 2	anr							
Palladium	50	3								
Potassium	10000	95	anr							
Selenium	10	2.1	anr							
Silicon	200	9.6								
Silver	10	. 5	anr							
Sodium	10000	450	anr							
Strontium	10	.3								
Thallium	2.0	1.3	anr							
Tin	10	.3								
Titanium	10	.6								
Tungsten	50	4.2								
Vanadium	50	.3	anr							

(*) Outside of QC limits (anr) Analyte not requested

anr

BLANK RESULTS SUMMARY

Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA27477
Account: HWINJM - Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B

QC Limits: result < RL Run ID: MA23143 Units: ug/l

Time: Sample ID: Metal		IDL	19:31 CCB9 raw	final	20:45 CCB10 raw	final	21:59 CCB11 raw	final	23:13 CCB12 raw	final
Aluminum	200	5.2								
Antimony	6.0	1.6	anr							
Arsenic	3.0	1.3	anr							
Barium	200	.3	anr							
Beryllium	1.0	. 2	anr							
Boron	100	1.7								
Cadmium	3.0	. 2	anr							
Calcium	5000	36	anr							
Chromium	10	.5	0.10	<10	0.60	<10	0.40	<10	0.70	<10
Cobalt	50	.3								
Copper	10	. 9	anr							
Iron	100	44	anr							
Lead	3.0	1.2	anr							
Magnesium	5000	29	anr							
Manganese	15	. 3	anr							
Molybdenum	20	. 2								
Nickel	10	. 2	anr							
Palladium	50	3								
Potassium	10000	95	anr							
Selenium	10	2.1	anr							
Silicon	200	9.6								
Silver	10	. 5	anr							
Sodium	10000	450	anr							
Strontium	10	. 3								
Thallium	2.0	1.3	anr							
Tin	10	. 3								
Titanium	10	.6								
Tungsten	50	4.2								
Vanadium	50	.3	anr							
Zinc	20	.7	anr							

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA27477

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 09/19/09 File ID: SA091909M1.ICP Methods: EPA 200.7, SW846 6010B Units: ug/l QC Limits: result < RL Run ID: MA23143

Time: Sample ID: Metal	RL	IDL	23:37 CCB13 raw	final	00:51 CCB14 raw	final	02:05 CCB15 raw	final	03:19 CCB16 raw	final
Aluminum	200	5.2								
Antimony	6.0	1.6	anr							
Arsenic	3.0	1.3	anr							
Barium	200	.3	anr							
Beryllium	1.0	. 2	anr							
Boron	100	1.7								
Cadmium	3.0	. 2	anr							
Calcium	5000	36	anr							
Chromium	10	.5	0.40	<10	0.10	<10	0.20	<10	0.30	<10
Cobalt	50	.3								
Copper	10	.9	anr							
Iron	100	44	anr							
Lead	3.0	1.2	anr							
Magnesium	5000	29	anr							
Manganese	15	.3	anr							
Molybdenum	20	. 2								
Nickel	10	.2	anr							
Palladium	50	3								
Potassium	10000	95	anr							
Selenium	10	2.1	anr							
Silicon	200	9.6								
Silver	10	.5	anr							
Sodium	10000	450	anr							
Strontium	10	.3								
Thallium	2.0	1.3	anr							
Tin	10	.3								
Titanium	10	.6								
Tungsten	50	4.2								
Vanadium	50	.3	anr							
Zinc	20	.7	anr							

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA27477

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B QC Limits: result < RL Run ID: MA23143 Units: ug/1

Time: Sample ID: Metal	RL	IDL	04:33 CCB17 raw	final	05:34 CCB18 raw	final	05:59 CCB19 raw	final	
Aluminum	200	5.2	raw	TINAT	Iaw	TIMAT	Iaw	IIIIaI	
Antimony	6.0	1.6	anr						
Arsenic	3.0	1.3	anr						
Barium	200	.3	anr						
Beryllium	1.0	. 2	anr						
Boron	100	1.7	ani						
Cadmium	3.0	.2	anr						
Calcium	5000	36	anr						
Chromium	10	.5	0.0	<10	0.0	<10	0.30	<10	
Cobalt	50	.3	0.0	110	0.0	~10	0.30	110	
Copper	10	.9	anr						
Iron	100	44	anr						
Lead	3.0	1.2	anr						
Magnesium	5000	29	anr						
Manganese	15	.3	anr						
Molybdenum	20	. 2	ani						
Nickel	10	. 2	anr						
Palladium	50	3	aiii						
Potassium	10000	95	anr						
Selenium	10	2.1	anr						
Silicon	200	9.6	ani						
Silver	10	.5	anr						
Sodium	10000	450	anr						
Strontium	10	.3	ani						
Thallium	2.0	1.3	anr						
Tin	10	.3	GIII						
Titanium	10	.6							
Tungsten	50	4.2							
Vanadium	50	.3	anr						
Zinc	20	.7	anr						

(*) Outside of QC limits (anr) Analyte not requested

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Methods: EPA 200.7, SW846 6010B File ID: SA091909M1.ICP Date Analyzed: 09/19/09 Run ID: MA23143 Units: ug/l

QC Limits: 95 to 105 % Recovery

Time: Sample ID: Metal	ICCV True	12:49 ICCV1 Results	% Rec
Aluminum			
Antimony	anr		
Arsenic	anr		
Barium	anr		
Beryllium	anr		
Boron			
Cadmium	anr		
Calcium	anr		
Chromium	2000	1980	99.0
Cobalt			
Copper	anr		
Iron	anr		

Molybdenum Nickel anr Palladium Potassium anr Selenium anr Silicon Silver anr

anr

anr

anr

anr

Thallium anr

Sodium

Strontium

Lead

Magnesium

Manganese

Tin Titanium

Tungsten Vanadium anr

(*) Outside of QC limits (anr) Analyte not requested

anr

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP QC Limits: 95 to 105 % Recovery Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B Units: ug/l Run ID: MA23143

Time: Sample ID: Metal		12:19 ICV1 Results	% Rec	CCV True	13:18 CCV2 Results	% Rec	CCV True	14:25 CCV3 Results	% Rec	
Aluminum										
Antimony	anr									
Arsenic	anr									
Barium	anr									
Beryllium	anr									
Boron										
Cadmium	anr									
Calcium	anr									
Chromium	1000	993	99.3	2000	1930	96.5	2000	1950	97.5	
Cobalt										
Copper	anr									
Iron	anr									
Lead	anr									
Magnesium	anr									
Manganese	anr									
Molybdenum										
Nickel	anr									
Palladium										
Potassium	anr									
Selenium	anr									
Silicon										
Silver	anr									
Sodium	anr									
Strontium										
Thallium	anr									
Tin										
Titanium										
Tungsten										
Vanadium	anr									
Zinc	anr									

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B Units: ug/l Run ID: MA23143

QC Limits: 95 to 105 % Recovery

Time: Sample ID: Metal	CCV True	15:33 CCV4 Results	% Rec	CCV True	16:34 CCV5 Results	% Rec	CCV True	16:59 CCV6 Results	% Rec	
Aluminum										
Antimony	anr									
Arsenic	anr									
Barium	anr									
Beryllium	anr									
Boron										
Cadmium	anr									
Calcium	anr									
Chromium	2000	1950	97.5	2000	2000	100.0	2000	2040	102.0	
Cobalt										
Copper	anr									
Iron	anr									
Lead	anr									
Magnesium	anr									
Manganese	anr									
Molybdenum										
Nickel	anr									
Palladium										
Potassium	anr									
Selenium	anr									
Silicon										
Silver	anr									
Sodium	anr									
Strontium										
Thallium	anr									
Tin										
Titanium										
Tungsten										
Vanadium	anr									
Zinc	anr									

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B

File ID: SAG QC Limits: 95			Dat		ed: 09/19/ ID: MA2314		thods: El Units: ug	PA 200.7, g/l	SW846 601	0B
Time: Sample ID: Metal		18:12 CCV7 Results	% Rec	CCV True	19:25 CCV8 Results	% Rec	CCV True	20:39 CCV9 Results	% Rec	
Aluminum										
Antimony	anr									
Arsenic	anr									
Barium	anr									
Beryllium	anr									
Boron										
Cadmium	anr									
Calcium	anr									
Chromium	2000	2020	101.0	2000	2020	101.0	2000	2070	103.5	
Cobalt										
Copper	anr									
Iron	anr									
Lead	anr									
Magnesium	anr									
Manganese	anr									
Molybdenum										
Nickel	anr									
Palladium										
Potassium	anr									
Selenium	anr									
Silicon										
Silver	anr									
Sodium	anr									
Strontium										
Thallium	anr									
Tin										
Titanium										
Tungsten										
Vanadium	anr									

(*) Outside of QC limits (anr) Analyte not requested

anr

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Run ID: MA23143

Units: ug/l

File ID: SA091909M1.ICP QC Limits: 95 to 105 % Recovery Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B

Time: Sample ID: Metal	CCV True	21:53 CCV10 Results	% Rec	CCV True	23:07 CCV11 Results	% Rec	CCV True	23:31 CCV12 Results	% Rec
Aluminum									
Antimony	anr								
Arsenic	anr								
Barium	anr								
Beryllium	anr								
Boron									
Cadmium	anr								
Calcium	anr								
Chromium	2000	2020	101.0	2000	2030	101.5	2000	2020	101.0
Cobalt									
Copper	anr								
Iron	anr								
Lead	anr								
Magnesium	anr								
Manganese	anr								
Molybdenum									
Nickel	anr								
Palladium									
Potassium	anr								
Selenium	anr								
Silicon									
Silver	anr								
Sodium	anr								
Strontium									
Thallium	anr								
Tin									
Titanium									
Tungsten									
Vanadium	anr								
Zinc	anr								

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP QC Limits: 95 to 105 % Recovery Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B Units: ug/l Run ID: MA23143

Time: Sample ID: Metal	CCV True	00:45 CCV13 Results	% Rec	CCV True	01:59 CCV14 Results	% Rec	CCV True	03:13 CCV15 Results	% Rec	
Aluminum										
Antimony	anr									
Arsenic	anr									
Barium	anr									
Beryllium	anr									
Boron										
Cadmium	anr									
Calcium	anr									
Chromium	2000	1990	99.5	2000	2030	101.5	2000	2020	101.0	
Cobalt										
Copper	anr									
Iron	anr									
Lead	anr									
Magnesium	anr									
Manganese	anr									
Molybdenum										
Nickel	anr									
Palladium										
Potassium	anr									
Selenium	anr									
Silicon										
Silver	anr									
Sodium	anr									
Strontium										
Thallium	anr									
Tin										
Titanium										
Tungsten										
Vanadium	anr									
Zinc	anr									

(*) Outside of QC limits (anr) Analyte not requested

76 of 189

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP QC Limits: 95 to 105 % Recovery Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B Units: ug/l Run ID: MA23143

Time: Sample ID: Metal	CCV True	04:27 CCV16 Results	% Rec	CCV True	05:28 CCV17 Results	% Rec	CCV True	05:53 CCV18 Results	% Rec	
Aluminum										
Antimony	anr									
Arsenic	anr									
Barium	anr									
Beryllium	anr									
Boron										
Cadmium	anr									
Calcium	anr									
Chromium	2000	2030	101.5	2000	2040	102.0	2000	2040	102.0	
Cobalt										
Copper	anr									
Iron	anr									
Lead	anr									
Magnesium	anr									
Manganese	anr									
Molybdenum										
Nickel	anr									
Palladium										
Potassium	anr									
Selenium	anr									
Silicon										
Silver	anr									
Sodium	anr									
Strontium										
Thallium	anr									
Tin										
Titanium										
Tungsten										
Vanadium	anr									
Zinc	anr									

HIGH STANDARD CHECK SUMMARY

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP QC Limits: 95 to 105 % Recovery Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B Units: ug/l Run ID: MA23143

Time: Sample ID: Metal		11:46 HSTD1 Results	% Rec	HSTD True	11:57 HSTD2 Results	% Rec		
Aluminum								
Antimony	anr							
Arsenic	anr							
Barium	anr							
Beryllium	anr							
Boron								
Cadmium	anr							
Calcium	anr							
Chromium	4000	3860	96.5	4000	3950	98.8		
Cobalt								
Copper	anr							
Iron	anr							
Lead	anr							
Magnesium	anr							
Manganese	anr							
Molybdenum								
Nickel	anr							
Palladium								
Potassium	anr							
Selenium	anr							
Silicon								
Silver	anr							
Sodium	anr							
Strontium								
Thallium	anr							
Tin								
Titanium								
Tungsten								
Vanadium	anr							
Zinc	anr							

LOW CALIBRATION CHECK STANDARDS SUMMARY

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B
Run TD: MA23143 Unite: va/1 File ID: SA091909M1.ICP Units: ug/l Run ID: MA23143

QC Limits: 50 to 150 % Recovery

Time: Sample ID: Metal	CRI True	CRIA True	CRID True	12:11 CRID1 Results	% Rec
Aluminum			100		
Antimony	120		3.0	anr	
Arsenic	20	3.0	3.0	anr	
Barium	400		4.0	anr	
Beryllium	10	1.0	1.0	anr	
Boron			10		
Cadmium	10		1.0	anr	
Calcium			1000	anr	
Chromium	20		2.0	2.0	100.0
Cobalt	100		3.0		
Copper	50		2.0	anr	
Iron					
Lead	6.0		2.5	anr	
Magnesium			100	anr	
Manganese	30		3.0	anr	
Molybdenum	40				
Nickel	80		4.0	anr	
Palladium	100				
Potassium			2000	anr	
Selenium	10		5.0	anr	
Silicon					
Silver	20		1.0	anr	
Sodium			1000	anr	
Strontium					
Thallium	20	2.0	2.0	anr	
Tin					
Titanium					
Tungsten	50				
Vanadium	100		2.0	anr	
Zinc	40		10	anr	

LOW CALIBRATION CHECK STANDARDS SUMMARY

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B File ID: SA091909M1.ICP Units: ug/l Run ID: MA23143

QC Limits: 50 to 150 % Recovery

QC HIMICS: 30	20 130 %	recovery		Run ID: MAZJI45
Time: Sample ID: Metal		12:05 CRIB1 Results	% Rec	
Aluminum	200			
Antimony	6.0			
Arsenic	8.0			
Barium	200			
Beryllium	5.0			
Boron	100			
Cadmium	3.0			
Calcium	5000			
Chromium	10	9.9	99.0	
Cobalt	50			
Copper	10			
Iron	100			
Lead	3.0			
Magnesium	5000			
Manganese	15			
Molybdenum	20			
Nickel	10			
Palladium	50			
Potassium	10000			
Selenium	10			
Silicon	200			
Silver	10			
Sodium	10000			
Strontium	10			
Thallium	10			
Tin	10			
Titanium	10			
Tungsten	50			
Vanadium	50			
Zinc	20			

INTERFERING ELEMENT CHECK STANDARDS SUMMARY Part 1 - ICSA and ICSAB Standards

Login Number: JA27477
Account: HWINJM - Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B

QC Limits: 80 to 120 % Recovery Run ID: MA23143 Units: ug/l

Time: Sample ID: Metal	ICSA True	ICSAB True	13:05 ICSA1 Results	% Rec	13:12 ICSAB1 Results	% Rec	16:47 ICSA2 Results	% Rec	16:53 ICSAB2 Results	% Rec
Aluminum	500000	500000	509000	101.8	512000	102.4	502000	100.4	498000	99.6
Antimony		1000	0.40		1070	107.0	-0.20		1030	103.0
Arsenic		1000	-0.70		1050	105.0	0.30		1020	102.0
Barium		500	1.5		530	106.0	1.4		516	103.2
Beryllium		500	0.0		512	102.4	-0.10		506	101.2
Boron			-0.20		0.50		-1.6		-1.2	
Cadmium		1000	-0.40		1090	109.0	-0.40		1070	107.0
Calcium	400000	400000	378000	94.5	385000	96.3	389000	97.3	389000	97.3
Chromium		500	0.0		487	97.4	0.10		493	98.6
Cobalt		500	1.9		501	100.2	1.4		495	99.0
Copper		500	-0.80		502	100.4	-2.2		472	94.4
Iron	200000	200000	195000	97.5	203000	101.5	197000	98.5	203000	101.5
Lead		1000	2.6		983	98.3	0.70		981	98.1
Magnesium	500000	500000	520000	104.0	522000	104.4	536000	107.2	530000	106.0
Manganese		500	0.60		520	104.0	0.40		525	105.0
Molybdenum		500	-2.8		497	99.4	-3.4		488	97.6
Nickel		1000	1.0		961	96.1	2.0		953	95.3
Palladium		500	3.5		555	111.0	5.3		527	105.4
Potassium			415		365		437		244	
Selenium		1000	-1.0		1050	105.0	-1.2		1010	101.0
Silicon			12.5		4.7		15.6		5.0	
Silver		1000	-0.30		1100	110.0	-0.90		1060	106.0
Sodium			163		189		490		432	
Strontium			5.9		5.9		5.8		5.8	
Thallium		1000	0.80		980	98.0	-0.70		1000	100.0
Tin			-5.7		-7.0		-7.4		-5.8	
Titanium			3.1		3.6		2.8		3.5	
Tungsten		500								
Vanadium		500	3.2		515	103.0	3.5		493	98.6
Zinc		1000	-6.6		956	95.6	-7.4		991	99.1

(*) Outside of QC limits (anr) Analyte not requested

INTERFERING ELEMENT CHECK STANDARDS SUMMARY Part 1 - ICSA and ICSAB Standards

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: SA091909M1.ICP Date Analyzed: 09/19/09 Methods: EPA 200.7, SW846 6010B

QC Limits: 80				Run I	D: MA2314			Units: ug/l					
Time: Sample ID: Metal		ICSAB True	23:19 ICSA3 Results	% Rec	23:25 ICSAB3 Results	% Rec	05:41 ICSA4 Results	% Rec	05:47 ICSAB4 Results	% Rec			
Aluminum	500000	500000	505000	101.0	513000	102.6	502000	100.4	508000	101.6			
Antimony		1000	4.1		1040	104.0	0.90		1060	106.0			
Arsenic		1000	-1.6		1040	104.0	-0.40		1040	104.0			
Barium		500	1.1		517	103.4	1.5		527	105.4			
Beryllium		500	0.0		516	103.2	0.0		513	102.6			
Boron			-1.5		-1.6		-2.7		-2.8				
Cadmium		1000	0.0		1080	108.0	-0.40		1100	110.0			
Calcium	400000	400000	387000	96.8	391000	97.8	380000	95.0	383000	95.8			
Chromium		500	0.10		505	101.0	0.60		501	100.2			
Cobalt		500	1.2		501	100.2	1.8		502	100.4			
Copper		500	0.50		485	97.0	0.30		503	100.6			
Iron	200000	200000	199000	99.5	206000	103.0	195000	97.5	203000	101.5			
Lead		1000	-0.50		987	98.7	1.5		983	98.3			
Magnesium	500000	500000	536000	107.2	535000	107.0	522000	104.4	524000	104.8			
Manganese		500	0.40		497	99.4	0.50		490	98.0			
Molybdenum		500	-3.7		500	100.0	-3.5		503	100.6			
Nickel		1000	0.40		972	97.2	0.40		969	96.9			
Palladium		500	2.0		535	107.0	3.2		555	111.0			
Potassium			253		160		286		173				
Selenium		1000	1.6		1040	104.0	1.2		1050	105.0			
Silicon			13.5		3.4		13.1		0.70				
Silver		1000	0.70		1080	108.0	1.1		1090	109.0			
Sodium			320		326		375		415				
Strontium			5.7		5.7		5.8		5.7				
Thallium		1000	1.9		1000	100.0	1.6		969	96.9			
Tin			-6.2		-7.0		-6.2		-6.2				
Titanium			2.8		3.3		2.5		3.0				
Tungsten		500											
Vanadium		500	-0.40		532	106.4	0.50		526	105.2			
Zinc		1000	-6.1		993	99.3	-6.8		957	95.7			

(*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: JA27477

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP49677 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

09/18/09

Prep Date.					09/16/09
Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	5.2	26		
Antimony	6.0	1.6	2.9		
Arsenic	3.0	1.3	2.4		
Barium	200	.3	1.3		
Beryllium	1.0	. 2	. 4		
Boron	100	1.7	3.5		
Cadmium	3.0	. 2	. 4		
Calcium	5000	36	22		
Chromium	10	.5	.9	-0.30	<10
Cobalt	50	.3	1.6		
Copper	10	.9	1.6		
Iron	100	44	12		
Lead	3.0	1.2	1.7		
Magnesium	5000	29	37		
Manganese	15	.3	.5		
Molybdenum	20	. 2	1		
Nickel	10	. 2	.6		
Palladium	50	3	3.2		
Potassium	10000	95	170		
Selenium	10	2.1	3.7		
Silicon	200	9.6	38		
Silver	10	.5	1		
Sodium	10000	450	19		
Strontium	10	.3	.5		
Thallium	2.0	1.3	1.5		
Tin	10	. 3	2.1		
Titanium	10	.6	.6		
Tungsten	50	4.2	6.8		
Vanadium	50	.3	.9		
Zinc	20	.7	2.9		

Associated samples MP49677: JA27477-1, JA27477-2, JA27477-3, JA27477-4, JA27477-5, JA27477-6, JA27477-7, JA27477-8, JA27477-1F, JA27477-2F, JA27477-3F, JA27477-4F, JA27477-5F, JA27477-6F, JA27477-7F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP49677 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

09/18/09 Prep Date:

Metal	JA27477 Origina		Spikelot MPIRW1	% Rec	QC Limits
Aluminum					
Antimony					
Arsenic					
Barium					
Beryllium					
Boron					
Cadmium					
Calcium					
Chromium	1.3	194	200	96.4	75-125
Cobalt					
Copper					
Iron	anr				
Lead	anr				
Magnesium					
Manganese					
Molybdenum					
Nickel					
Palladium					
Potassium					
Selenium					
Silicon					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Tungsten					
Vanadium					
Zinc					

Associated samples MP49677: JA27477-1, JA27477-2, JA27477-3, JA27477-4, JA27477-5, JA27477-6, JA27477-7, JA27477-8, JA27477-1F, JA27477-2F, JA27477-3F, JA27477-4F, JA27477-5F, JA27477-6F, JA27477-7F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

5.2.2

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA27477
Account: HWINJM - Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP49677 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

Metal

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP49677 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

09/18/09

Metal	JA27477 Origina		Spikel MPIRW1		MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic						
Barium						
Beryllium						
Boron						
Cadmium						
Calcium						
Chromium	1.3	195	200	96.9	0.5	20
Cobalt						
Copper						
Iron	anr					
Lead	anr					
Magnesium						
Manganese						
Molybdenum						
Nickel						
Palladium						
Potassium						
Selenium						
Silicon						
Silver						
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Tungsten						
Vanadium						
Zinc						

Associated samples MP49677: JA27477-1, JA27477-2, JA27477-3, JA27477-4, JA27477-5, JA27477-6, JA27477-7, JA27477-8, JA27477-1F, JA27477-2F, JA27477-3F, JA27477-4F, JA27477-5F, JA27477-6F, JA27477-7F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

5.2.2

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA27477
Account: HWINJM - Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP49677 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

Metal

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP49677 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

09/18/09 Prep Date:

Metal	JA27477 Origina		Spikelot MPIRW1	% Rec	QC Limits
Aluminum					
Antimony					
Arsenic					
Barium					
Beryllium					
Boron					
Cadmium					
Calcium					
Chromium	15.5	204	200	94.3	75-125
Cobalt					
Copper					
Iron	anr				
Lead	anr				
Magnesium					
Manganese					
Molybdenum					
Nickel					
Palladium					
Potassium					
Selenium					
Silicon					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Tungsten					
Vanadium					
Zinc					

Associated samples MP49677: JA27477-1, JA27477-2, JA27477-3, JA27477-4, JA27477-5, JA27477-6, JA27477-7, JA27477-8, JA27477-1F, JA27477-2F, JA27477-3F, JA27477-4F, JA27477-5F, JA27477-6F, JA27477-7F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

5.2.2

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA27477
Account: HWINJM - Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP49677 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

Metal

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA27477 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP49677 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

09/18/09

Metal	JA27477 Origina		Spikelo MPIRW1	ot % Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic						
Barium						
Beryllium						
Boron						
Cadmium						
Calcium						
Chromium	15.5	203	200	93.8	0.5	20
Cobalt						
Copper						
Iron	anr					
Lead	anr					
Magnesium						
Manganese						
Molybdenum						
Nickel						
Palladium						
Potassium						
Selenium						
Silicon						
Silver						
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Tungsten						
Vanadium						
Zinc						

Associated samples MP49677: JA27477-1, JA27477-2, JA27477-3, JA27477-4, JA27477-5, JA27477-6, JA27477-7, JA27477-8, JA27477-1F, JA27477-2F, JA27477-3F, JA27477-4F, JA27477-5F, JA27477-6F, JA27477-7F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(N) Matrix Spike Rec. outside of QC limits

5.2.2

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA27477
Account: HWINJM - Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP49677 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

Metal

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: JA27477
Account: HWINJM - Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP49677 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 09/18/09

Metal	LCS Result	Spikelot MPLCW3	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium	507	500	101.4	80-120
Cobalt				
Copper				
Iron	anr			
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel				
Palladium				
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Strontium				
Thallium				
Гin				
Titanium				
Tungsten				
Vanadium				
Zinc				

Associated samples MP49677: JA27477-1, JA27477-2, JA27477-3, JA27477-4, JA27477-5, JA27477-6, JA27477-7, JA27477-8, JA27477-1F, JA27477-2F, JA27477-3F, JA27477-4F, JA27477-5F, JA27477-6F, JA27477-7F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: JA27477
Account: HWINJM - Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP49677 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 09/18/09 09/18/09

Metal	JA27477-3F Original S		%DIF	QC Limits	JA27477- Original	3 SDL 1:5	%DIF	QC Limits
Aluminum								
Antimony								
Arsenic								
Barium								
Beryllium								
Boron								
Cadmium								
Calcium								
Chromium	1.30 0	.00	100.0(a)	0-10	15.5	15.3	1.3	0-10
Cobalt								
Copper								
Iron	anr							
Lead	anr							
Magnesium								
Manganese								
Molybdenum								
Nickel								
Palladium								
Potassium								
Selenium								
Silicon								
Silver								
Sodium								
Strontium								
Thallium								
Tin								
Titanium								
Tungsten								
Vanadium								
Zinc								

Associated samples MP49677: JA27477-1, JA27477-2, JA27477-3, JA27477-4, JA27477-5, JA27477-6, JA27477-7, JA27477-8, JA27477-1F, JA27477-2F, JA27477-3F, JA27477-4F, JA27477-5F, JA27477-6F, JA27477-7F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

(all) Allalyce not requested

5.2.4

SERIAL DILUTION RESULTS SUMMARY

Login Number: JA27477
Account: HWINJM - Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP49677 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

(a) Percent difference acceptable due to low initial sample $\,$ concentration (< 50 times IDL).

Prep Date:

Metal

Page 1 of 1

5.3

Instrument Detection Limits

Job Number: JA27477

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Instrument ID:	SSTRACE1	Effective Date:	09/15/09

Amaluta	IDL /l	
Analyte	ug/l	
Aluminum	5.2	
Antimony	1.6	
Arsenic	1.3	
Barium	.3	
Beryllium	.2	
Boron	1.7	
Cadmium	.2	
Calcium	35.6	
Chromium	.5	
Cobalt	.3	
Copper	.9	
Iron	44.2	
Lead	1.2	
Magnesium	28.9	
Manganese	.3	
Molybdenum	.2	
Nickel	.2	
Palladium	3	
Potassium	95.1	
Selenium	2.1	
Silicon	9.6	
Silver	.5	
Sodium	448.6	
Strontium	.3	
Thallium	1.3	
Tin	.3	
Titanium	.6	
Tungsten	4.2	
Vanadium	.3	
Zinc	.7	

The above applies to the following instrument runs: MA23143

Instrument Linear Ranges

Job Number: JA27477

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Instrument ID: SSTRACE1 **Effective Date:** 09/15/09

Analyte	Linear Range ug/l
Aluminum	1000000
Antimony	50000
Arsenic	10000
Barium	50000
Beryllium	50000
Boron	50000
Cadmium	10000
Calcium	1000000
Chromium	50000
Cobalt	50000
Copper	50000
Iron	500000
Lead	50000
Magnesium	1000000
Manganese	25000
Molybdenum	50000
Nickel	50000
Palladium	50000
Potassium	500000
Selenium	50000
Silicon	50000
Silver	2000
Sodium	500000
Strontium	50000
Thallium	50000
Tin	50000
Titanium	50000
Tungsten	50000
Vanadium	50000
Zinc	25000

The above applies to the following instrument runs: MA23143

3 F . 1				1	•
N/Lotol	C	Λ 1	20	Iτ	010
Metal		-	14	ıν	217
1,10,000			1100	-,	

Raw Data

Cts/S

.0014

.0001

4.239

Units

Avg Stddev

%RSD

Zoom In Zoom Out

Acquired: 9/19/2009 10:57:55 Sample Name: StdA Type: Cal Method: Accutest1(v164) Mode: IR Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3: User: admin Comment: Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247

Cts/S

-.0016

.0001

6.832

Cts/S

.0012

.0000

.9928

.0014 .0012 -.0015 .0020 .0001 .0028 .0000 .0044 -.0001 #2 .0014 .0012 -.0017 .0023 .0001 .0027 .0000 .0046 -.0002 V_2924 Cts/S Flem Ca3179 7n2062 As1890 TI1908 Ph2203 Se1960 Sb2068 AI3961 Units Cts/S .0002 Cts/S Cts/S Cts/S -.0006 Cts/S Cts/S -.0002 Cts/S .0002 .0001 .0002 .0002 .0077 Avg Stddev .0000 .0001 .0000 .0001 .0001 .0000 .0002 .0001 .0000 %RSD 1.436 59.20 9.309 76.57 20.59 18.69 102.1 53.78 .4365 -.0002 -.0002 .0002 .0001 -.0005 .0002 -.0004 -.0002 .0077 #2 -.0002 -.0001 .0002 .0000 -.0007 .0002 -.0001 .0001 .0077 Flem Mg2790 Fe2599 Si2124 Sn1899 K 7664 Na5895 B 2089 Mo2020 Pd3404 Units Cts/S .0000 Cts/S -.0007 Cts/S .0042 Cts/S .0001 Cts/S .0001 Cts/S .0034 Cts/S .0001 Avg Stddev .0001 .0001 0000 0000 0003 0000 0000 0000 0000 0003 0001 %RSD 30.61 37.51 7.156 44.08 76.90 0000 - 0001 - 0009 0042 0001 0000 - 0001 0032 0000

.0041

Cts/S

.0021

.0002

8.441

Cts/S

.0001

.0000

20.33

.0001

.0000 -.0001 -.0005 Flem Sr4077 Ti3349 W_2079 Cts/S Cts/S Units Cts/S Avg Stddev %RSD -.0026 .0001 .0022 .0002 .0000 .0002 0025 0001 0023 -.0027 -.0001 .0021

Raw Data MA23143 page 1 of 245

∢ Zoom In ▶

Zoom In

Sample Name: StdA

User: admin

Comment:

Int. Std.

Units

Avg Stddev

%RSD

Zoom Out

Ag3280

Cts/S

.0001

.0000

30.54

-.0002

Mn2576

Cts/S

.0000

596.4

.000

Cts/S

.0027

.0001

2.630

-.0001

-.0001

Ni2316

Cts/S

.0045

.0002

3.450

Sample Name: STDB Acquired: 9/19/2009 11:04:06 Type: Cal Method: Accutest1(v164) Mode: IR Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3: Comment:

Cd2288

1.435

Co2286

Cr2677

Cu3247

Mn2576

Ni2316

Be3130

Ag3280 Cts/S Cts/S 7.777 Units Cts/S Cts/S Cts/S Cts/S Cts/S Cts/S Cts/S Avg Stddev 6.553 4.181 4.282 3704 8886 2.008 4.376 .0742 .005 .0001 .0050 %RSD .0004 .0614 .1645 .2345 0344 .5590 5340 .2124 .0696 7.781 7.774 .3705 6.553 6.553 4.289 4.275 2.000 2.015 4.383 4.370 4.176 #2 .3703 .8921 .0742 Elem V_2924 Zn2062 As1890 TI1908 Pb2203 Al3961 Ca3179 Se1960 Sb2068 Cts/S .5931 .0005 Cts/S .3605 Cts/S .9300 Cts/S 2.329 Units Cts/S Cts/S Cts/S Cts/S Cts/S 3.631 Avg Stddev .0007 .0011 .003 .0001 .0020 .005 .000 .001 %RSD 1394 .0079 .0917 4617 .1739 .0203 .2128 .0202 .1019 .5301 3.631 .5935 3606 9314 2.330 2401 1.668 4.626 #2 .5311 3.631 .5928 2417 1.664 .3605 .9286 2.329 4.632 Elem Fe2599 Ma2790 K 7664 Na5895 B 2089 Mo2020 Pd3404 Si2124 Sn1899 Cts/S 3.285 Cts/S .4163 Cts/S 1.437 Cts/S 5.202 Cts/S .8878 Cts/S 4.668 Cts/S .1730 Cts/S 2.423 Cts/S .7695 Units Avg Stddev 002 0002 002 009 0001 005 0009 007 0009 %RSD .0454 .0589 .0132 .1030 .3021 2.428 3.283 4165 .8878 1723 7701 1.438 5.209 4.672

W_2079 Cts/S Flem Sr4077 Ti3349 Cts/S 11.07 Cts/S Ava 1.428 Stddev 00 0009 011 .0145 .7630

#2

11.07 7091 1.420

Raw Data MA23143 page 3 of 245

Raw Data MA23143 page 2 of 245

✓ Zoom In ►

Sample Name: STDB Acquired: 9/19/2009 11:04:06 Type: Cal Method: Accutest1(v164) Mode: IR Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3: Comment:

Acquired: 9/19/2009 10:57:55

Y_2243

2269.3

3.1238

2319.4

2219.2

Cts/S

70.9

Custom ID2:

In2306

5074.6 149.4

2.9446

5180.2

4968.9

Cts/S

Method: Accutest1(v164) Mode: IR Corr. Factor: 1.000000

Custom ID1:

Y_3710

18430.

.37477

18478.

18381

Cts/S

69

Y_3600

108400

Cts/S

218

.20091

108550.

108240

Type: Cal

Custom ID3:

Int. Std.	Y_3600	Y_3710	Y_2243	In2306
Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	103180.	17904.	2129.4	4502.5
Stddev	51.	38.	4.5	2.6
%RSD	.04904	.20958	.20969	.05802
#1	103140.	17931.	2126.3	4500.7
#2	103210.	17878.	2132.6	4504.4

Raw Data MA23143 page 4 of 245

Custom ID1:

Be3130

ppm 2.040

.025

1.227

2.058

2.023

7n2062

ppm 2.042

.002

2.041 2.043

Ba4554

ppm 2.014

.024

1.181

2.031

1.997

V_2924

ppm 1.998

.016

1.987

Sample Name: CCV A Method: Accutest1(v164)

User: admin

Comment: Elem

Units

Avg Stddev

%RSD

Check ?

Value

Units

Avg Stddev %RSD

#1 #2

Range Flem

#2

Ag3280

ppm .2468

.0017

.6902

2480

.2456

Ca3179

ppm 40.73

.46 1.122

41.05

40.41

Sample Nam	e: CCV	Acquired	d: 9/19/2009 1	11:10:16	Type: QC	
Method: Accu	utest1(v164	1) Mo	de: CONC	Corr. Fact	or: 1.000000	
User: admin	Custo	m ID1:	Custom	ID2:	Custom ID3:	
Comment:						
Elem	Sr4077	Ti3349	W_2079			
Units	ppm	ppm	ppm			

UTIILS	ppiii	ppiii	ppiii	
Avg	2.046	2.011	2.058	
Stddev	.026	.014	.009	
%RSD	1.273	.6966	.4471	
#1	2.065	2.021	2.051	
#2	2.028	2.001	2.064	

Check? Chk Pass Chk Pass Chk Pass

Range

Int. Std.	Y_3600	Y_3710	Y_2243	In2306
Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	104660.	17765.	2173.0	4668.5
Stddev	522.	120.	.9	6.6
%RSD	.49905	.67459	.04110	.14078
#1	104300.	17680.	2173.7	4673.1
#2	105000	17050	0170 4	4//20

Check? Chk Pass Chk P

Acquired: 9/19/2009 11:10:16 Type: QC

Custom ID2:

Cd2288

ppm 2.010

.002

.1153

2.012

2.008

As1890

ppm 1.993

.002

1.992 1.995

Mode: CONC Corr. Factor: 1.000000

Co2286

ppm 2.032

.002

.1181

2.034

2.031

TI1908

ppm 2.031

.016 .8095

2.019 2.043 Custom ID3:

Cu3247

ppm 1.963 .010

.4944

1.970 1.956

Se1960

ppm 1.995

.001

1.994 1.995 Mn2576

ppm 2.081 .012

.5543

2.089

2.073

Sh2068

ppm 1.986

.004

1.989 1.984 Ni2316

ppm 2.039

.000

.0151

2.038

2.039

AI3961

ppm 40.33

.40 .9846

40.61

40.05

Cr2677

ppm 2.007

.013

.6577

2.017

1.998

Chk Pass Chk

Ph2203

ppm 2.037

.005

2.040 2.033

Range

Mg2790 Elem Fe2599 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn1899 K_7664 ppm 1.968 .013 Units ppm 40.80 ppm 40.45 ppm 40.36 ppm 40.66 ppm 2.011 ppm 5.024 ppm 2.041 Avg Stddev .46 .41 .31 .37 .006 .003 .018 .001 %RSD 1.132 1.016 .7651 .9174 .2984 .1315 .6660 .3617 .0283 41.13 40.74 2.015 2.017 1.977 5.037 2.042 40.58 40.93 #2 40.47 40.16 40.15 40.40 2.007 2.020 1.958 5.011 2.041

Check? Chk Pass Chk P

Raw Data MA23143 page 5 of 245

◀ Zoom In ▶ Zoom Out

Elem

Units

									Zoom Ou	ıt
Sample Na Method: Ac	cutest1(v1	64) Mo	d: 9/19/200 de: CONC	Corr. F	actor: 1.00	0000				
User: admir	n Cust	tom ID1:	Custo	om ID2:	Custo	m ID3:				
Comment:										
Elem Units Avg Stddev %RSD	Ba4554 ppm .0003 .0001 28.08	Be3130 ppm .0004 .0000 1.942	Cd2288 ppm .0006 .0000 1.469	Co2286 ppm .0005 .0001 28.11	Cr2677 ppm .0003 .0001 35.10	Cu3247 ppm .0004 .0004 92.33	Mn2576 ppm .0004 .0001 14.90	Ni2316 ppm .0005 .0002 44.01	Ag3280 ppm 0001 .0003 407.6	
#2	.0004	.0004	.0006	.0006	.0003	.0001	.0004	.0006	.0002	
Check ? High Limit Low Limit	Chk Pass									
Elem Units Avg	V_2924 ppm .0010	Zn2062 ppm .0006	As1890 ppm .0010	TI1908 ppm .0011	Pb2203 ppm 0008	Se1960 ppm .0014	Sb2068 ppm .0002	Al3961 ppm .0099	Ca3179 ppm .0103	

Stddev %RSD .0002 .0002 18.87 .0015 187.9 .0002 .0032 .0019 0009 0004 0009 0010 - 0018 0015 0002 0076 0117 .0012 .0007 .0011 .0012 .0003 .0013 .0002 .0122 .0090

Check? Chk Pass Chk Pas High Limit Low Limit

Elem Fe2599 Mg2790 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn1899 K_7664 Units Avg Stddev ppm 1961 ppm .0183 ppm F .0022 ppm .0004 ppm .0017 .0002 ppm .0105 ppm .0108 ppm .0022 ppm F .0013 .0009 .0040 .0120 .0025 .0001 .0001 .0017 .0001 %RSD 8.156 36.97 6.097 13.74 2.796 4.983 424.1 8.821 5.406 .0018 .0099 .0136 .1877 .0166 .0023 .0023 .0008 .0013

.0111 .0080 2046 .0201 .0022 .0021 .0016 .0016 .0012 Chk Pass Chk Pass Chk Pass Chk Pass Check ? Chk Fail Chk Pass Chk Pass Chk Fail High Limit Low Limit .0020 .0010

Raw Data MA23143 page 7 of 245

Raw Data MA23143 page 6 of 245

Sr4077

ppm

Zoom In ▶
 Zoom Out

Sample Name: 0	CCB Acc	quired: 9/1	9/2009 1	1:16:15	Type: QC
Method: Accute:	st1(v164)	Mode: C	ONC	Corr. Facto	r: 1.000000
User: admin	Custom IE	1:	Custom	ID2:	Custom ID3
Comment:					

W_2079

ppm

Avg Stddev %RSD	.0005 .0001 27.93	.0000		
#1 #2	.0004 .0006		.0455 .0410	
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .0126 0126	
Int. Std. Units	Y_3600 Cts/S			In2306 Cts/S

Ti3349

ppm

UTIILS	C(5/3	CIS/S	CIS/S	CIS/S	
Avg	108200.	18395.	2232.1	4987.3	
Stddev	563.	112.	17.0	39.9	
%RSD	.52076	.60690	.76382	.79973	
#1	108590.	18316.	2244.1	5015.5	
#2	107800	18474.	2220.0	4959.1	

Raw Data MA23143 page 8 of 245

Custom ID1:

Be3130

Cts/S

.0017

.0001

5.360

Sample Name: StdA

User: admin

Comment:

Elem

Units

Avg Stddev

%RSD

Method: Accutest1(v164)

Ba4554

Cts/S

.0017

.0001

4.006

Acquired: 9/19/2009 11:24:01

Cd2288

Cts/S

.0013

.0001

11.92

Mode: IR Corr. Factor: 1.000000

Co2286

Cts/S

.0023

.0001

4.782

Custom ID2:

	,			
Custo	om ID1:	Custo	m ID2:	Custom ID3
3600	Y 3710	Y 2243	In2306	
Cts/S	Cts/S	Cts/S	Cts/S	
	- 10			
8620	18266	2256.2	5040.8	

Acquired: 9/19/2009 11:24:01 Type: Cal

Mode: IR Corr. Factor: 1.000000

Int. Std. Y_3600 Units Cts/S Avg Stddev 108620 333. 78.9 168.1 5366 %RSD 4.9403 1.8218 3.4979 3.3342 112410. 18031 2312.0 5159.7 104820 18501 2200.4 4922.0

Sample Name: StdA

User: admin

Comment:

Method: Accutest1(v164)

.0017 .0017 -.0014 .0022 .0001 .0028 .0001 .0051 -.0001 #2 .0018 .0018 -.0011 .0024 .0001 .0027 .0001 .0047 -.0002 Flem As1890 TI1908 Ca3179 V_2924 Cts/S 7n2062 Ph2203 Se1960 Sb2068 AI3961 Units Cts/S .0003 Cts/S Cts/S Cts/S -.0008 Cts/S Cts/S -.0001 Cts/S .0001 .0001 .0003 .0002 .0079 Avg Stddev .0000 .0001 .0000 .0000 .0001 .0001 .0003 .0001 .0001 %RSD 8.282 30.60 6.212 3.282 15.96 14.99 204.5 30.42 1.135 -.0001 .0002 .0002 .0001 -.0009 .0003 -.0004 .0002 .0079 #2 -.0001 .0003 .0001 .0001 -.0007 .0004 .0001 .0001 .0080 Flem Mg2790 Fe2599 Pd3404 Si2124 Sn1899 K 7664 Na5895 B 2089 Mo2020 Units Cts/S .0002 Cts/S .0045 Cts/S .0004 Cts/S .0036 Cts/S .0008 8000. .0000 Avg Stddev .0001 0000 0001 0000 0001 0001 0001 000 0000 0001 %RSD 7.006 1.073 1.809 16.51 16.42 1324 .2315 132.4 0002 0000 0008 0044 0004 0009 0001 0036 0000 .0002 -.0002 .0008 .0007 .0001 .0001

Type: Cal

Cr2677

Cts/S

.0001

.0000

23.49

Custom ID3:

Cu3247

Cts/S

.0028

.0000

1.527

Mn2576

Cts/S

.0001

.0000

10.72

Ni2316

Cts/S

.0049

.0003

5.155

Flem Sr4077 TI3349 W 2079 Cts/S -.0019 Units Cts/S Cts/S Avg Stddev %RSD .0001 .0104 .0001 .0000 .0002 0021 0000 0103 -.0018 -.0001 .0106

Raw Data MA23143 page 9 of 245

Sample Name: STDB

◀ Zoom In ▶ Zoom Out

2.455

7771

1731

■ Zoom In I

Zoom Out

Ag3280

Cts/S

.0001

.0001

44.81

▼Zoom In ► Zoom Out

Method: Accutest1(v164) Mode: IR Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3: Comment: Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 Cts/S Cts/S 4.259 .077 Units Cts/S Cts/S Cts/S Cts/S Cts/S Cts/S Cts/S Avg Stddev 6.520 7.702 4.169 .076 3689 8869 2.020 4.352 .0740 .0002 .0036 .0003 %RSD 2.215 2.169 1.831 1.815 .0493 4078 .3758 1.862 .3490 6.418 6.623 7.584 7.820 .3688 4.409 .0742 4.314 4.204 2.026 2.015 4.223 #2 .3691 .8843 4.294 .0738 Elem V_2924 Zn2062 As1890 TI1908 Pb2203 Al3961 Ca3179 Se1960 Sb2068 Cts/S .5240 .0008 Cts/S .5903 .0100 Cts/S .3603 Cts/S .9287 Cts/S 2.313 Units Cts/S Cts/S Cts/S Cts/S 3.617 1.661 4.603 Avg Stddev .0049 .0062 .0165 .073 .030 .051 .095 %RSD 1580 2.031 1.698 2.030 1.812 1.709 2.195 2.072 2.277 .5974 .2454 1.682 9404 4.535 .5246 3.668 3646 #2 .5234 .5832 2384 1.639 .3559 .9170 2.349 4.670 Elem Fe2599 Mg2790 K 7664 Na5895 B 2089 Mo2020 Pd3404 Si2124 Sn1899 Cts/S 3.261 Cts/S .4150 Cts/S 1.424 Cts/S 5.168 Cts/S .8857 Cts/S 4.655 Cts/S .1728 Cts/S 2.427 Cts/S .7666 Units Avg Stddev 070 0089 027 102 0135 086 0005 039 0148 %RSD 2.135 2.136 1.918 1.981 1.850 .3045 1.935

8953

8762

4.716

Type: Cal

Acquired: 9/19/2009 11:31:00

| Sample Name: STDB | Acquired: 9/19/2009 11:31:00 | Type: Cal Method: Accutest1(v164) | Mode: IR | Corr. Factor: 1.000000 | User: admin | Custom ID1: | Custom ID2: | Custom ID3: Comment: | Int. Std. | Y_3600 | Y_3710 | Y_2243 | In2306 | Type: Cal Method: Acquired: Note: The control of the

IIII. Siu.	1_3000	1_3/10	1_2243	1112300
Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	102840.	17843.	2129.3	4495.5
Stddev	126.	253.	31.7	67.5
%RSD	.12247	1.4153	1.4900	1.5025
#1	102750.	18022.	2106.9	4447.8
#2	102930.	17665.	2151.8	4543.3

Raw Data MA23143 page 10 of 245

Raw Data MA23143 page 11 of 245

3.212

Sr4077

Cts/S 10.96

1.424

10.85

16

#2

Flem

Ava

Stddev

4087

.4212

Ti3349

7063

0027

7082

1.404

1.443

W_2079 Cts/S

1.462

019

1.278 1.475 1.449 5.095

5.240

Raw Data MA23143 page 12 of 245

Comment:

Int. Std. Units Avg Stddev %RSD

									◀ Zoom C
	me: STDB		ed: 9/19/20			e: Cal			
	cutest1(v1	. ,		Corr. Facto					
Jser: admi	n Cust	tom ID1:	Cust	om ID2:	Custo	m ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	6.510	7.702	4.163	4.260	.3746	.9032	2.050	4.350	.0755
Stddev	.077	.084	.063	.065	.0110	.0214	.048	.061	.0018
%RSD	1.187	1.096	1.516	1.526	2.924	2.366	2.352	1.410	2.433
#1	6.565	7.762	4.207	4.306	.3669	.8881	2.016	4.394	.0742
#2	6.456	7.643	4.118	4.214	.3824	.9183	2.084	4.307	.0768
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	.5332	3.622	.5905	.2413	1.660	.3595	.9276	2.324	4.604
Stddev	.0131	.051	.0092	.0031	.023	.0049	.0152	.018	.048
%RSD	2.463	1.423	1.550	1.279	1.373	1.354	1.635	.7733	1.033
#1	.5239	3.658	.5969	.2435	1.676	.3629	.9383	2.337	4.638
#2	.5425	3.585	.5840	.2391	1.644	.3560	.9169	2.311	4.571
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Units	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S	Cts/S
Avg	3.259	.4136	1.426	5.162	.8863	4.644	.1755	2.444	.7674
Stddev	.035	.0047	.008	.044	.0134	.068	.0043	.039	.0112
%RSD	1.088	1.147	.5612	.8520	1.513	1.467	2.437	1.586	1.465
#1	3.284	.4169	1.432	5.194	.8958	4.692	.1725	2.472	.7754
#2	3.234	.4102	1.420	5.131	.8769	4.596	.1785	2.417	.7595
Elem	Sr4077	Ti3349	W_2079						
Units	Cts/S	Cts/S	Cts/S						
Avg	10.85	.7206	1.518						
Stddev	.12	.0180	.018						
%RSD	1.088	2.500	1.151						
#1	10.93	.7079	1.531						
#2	10.76	.7333	1.506						

Raw Data MA23143	page 13 of 245
------------------	----------------

Raw Data MA23143 page 15 of 245

									■ Zoom
									Zoom
ample N	lame: HSTD	Access	rod: 0/10/2	009 11:46:	E4 Tran	o: OC			
	Accutest1(v1		ea: 9/19/2 de: CONC		Factor: 1.0	e: QC 00000			
Jser: adm		tom ID1:		tom ID2:		om ID3:			
Comment		NOM ID 1.	Cus	IOIII IDZ.	Ousi	om ibs.			
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Jnits	ppm	ppm	ppm	ppm	ppm	ppm	ppm		ppm
Avg	3.871	3.873	4.051	4.058	3.862	3.836	3.843	4.062	.4797
Stddev	.135	.133	.001	.003	.007	.004	.003	.004	.0018
%RSD	3.481	3.435	.0235	.0828	.1868	.1169	.0731	.1086	.3778
#1	3.966	3.968		4.056	3.867	3.839	3.841	4.059	.4810
#2	3.775	3.779	4.052	4.061	3.857	3.833	3.845	4.065	.4785
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
√alue Range									
Elem	V_2924	Zn2062		TI1908	Pb2203	Se1960			
Jnits	ppm	ppm		ppm	ppm	ppm	ppm		ppm
٩vg	3.841	4.076	4.056	4.069	4.058	4.045	4.045	76.68	77.62
Stddev	.013	.012		.005	.003	.003	.001	2.71	2.48
%RSD	.3308	.2850	.0450	.1235	.0733	.0800	.0285	3.539	3.200
#1	3.850	4.068		4.073	4.056	4.043			79.38
₹2	3.832	4.084	4.058	4.066	4.060	4.047	4.044	74.76	75.86
Check ? /alue Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Jnits	ppm	ppm	ppm	ppm	ppm	ppm	ppm		ppm
Avg	77.39	77.84	76.79	77.24	4.037	4.065	3.843	10.01	4.055
Stddev	2.63	2.53	2.45	2.55	.002	.003	.010		.005
%RSD	3.394	3.249	3.186	3.305	.0385	.0684	.2669	.0041	.1306
#1	79.25	79.63		79.05	4.036	4.063	3.850		
₹2	75.54	76.06	75.06	75.44	4.038	4.067	3.836	10.00	4.058
Check? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Raw Data MA23143	page 14 of 245

Raw Data MA23143 page 16 of 245

Sample Name: STDB Acquired: 9/19/2009 11:37:01 Type: Cal Method: Accutest1(v164) Mode: IR Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3

 Y_3600
 Y_3710
 Y_2243
 In2306

 Cts/S
 Cts/S
 Cts/S
 Cts/S

 101320
 17794
 2129.6
 4485.9

 2240
 108
 26.8
 48.8

 2.2109
 .60584
 1.2573
 1.0881

102910. 17718. 2110.7 4451.4 99738. 17871. 2148.6 4520.5

Custom ID3:

							◀ Zoom Zoom 0
Sample N	lame: HSTD	Acquire	ed: 9/19/200	9 11:46:56	Type: 0	QC .	
Method: A	Accutest1(v16	4) Mo	de: CONC	Corr. Fa	ctor: 1.0000	000	
User: adm	nin Cust	om ID1:	Custo	m ID2:	Custom	ID3:	
Comment	:						
Elem	Sr4077	Ti3349	W_2079				
Units	ppm	ppm	ppm				
Avg	3.920	3.816	4.053				
Stddev	.154	.020	.028				
%RSD	3.932	.5235	.6900				
#1	4.029	3.830	4.034				
#2	3.811	3.830 3.802	4.073				
Check?	Chk Pass	Chk Dace	Chi Dacc				
Value	Clik F d33	CIIK F d33	Clik i dasa				
Range							
-							
Int. Std.	Y_3600			In2306			
Units	Cts/S	Cts/S		Cts/S			
Avg Stddev	105360. 368.			4462.0 .3			
%RSD		403. 2 5154		.00628			
701100				.00020			
#1		18098.					
#2	105620.	18754.	2118.1	4462.2			

Inst QC: MA23143 ■ Zoom In ▶ Sample Name: HSTD Acquired: 9/19/2009 11:57:18 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3: Comment: Elem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 ppm 4.008 .004 ppm 4.018 .000 ppm 3.945 .012 ppm 3.942 .016 ppm 3.970 .006 Units ppm 4.023 ppm 4.021 ppm 4.020 ppm .4931 Avg Stddev .0015 .005 .002 .002 %RSD .1051 .1271 .0541 .0072 .3035 .3935 .1432 .0420 .3096 4.005 4.019 4.023 4.020 4.018 3.936 3.931 3.974 4.019 .4920 #2 4.011 4.026 4.018 3.953 3.953 3.966 4.021 .4942 Check? Chk Pass Value Range Elem V_2924 Zn2062 As1890 TI1908 Pb2203 Se1960 Sh2068 Al3961 Ca3179 Units ppm 3.953 ppm 4.025 ppm 4.019 ppm 4.020 ppm 4.024 ppm 4.020 ppm 4.017 ppm 80.41 ppm 80.64 Avg Stddev %RSD .006 .007 .005 .002 .001 .015 .3773 .008 .21 .2208 3.958 3.949 4.025 4.023 4.023 4.012 80.28 80.54 #1 #2 4.020 4.021 4.031 4.030 4.016 4.018 4.010 80.79 Check? Chk Pass Value Range Elem Fe2599 Mg2790 B_2089 Pd3404 Si2124 Sn1899 K_7664 Na5895 Mo2020 ppm 3.952 .024 Units ppm 80.46 ppm 80.61 ppm 80.50 ppm 80.68 ppm 4.018 ppm 10.02 ppm 4.014 Avg Stddev .19 .23 .18 .001 .002 .01 .005 %RSD .1349 .2378 .2811 .2246 .0213 .0561 .6110 .0619 .1211 80.38 80.47 80.34 80.55 4.018 4.019 3.935 10.02 4.011 #2 80.54 80.74 80.66 80.81 4.019 4.016 3.969 10.01 4.018 Check ? Chk Pass Chk Value Range

Raw Data MA23143	page 17 of 245

Raw Data MA23143 page 19 of 245

Treating Draw		o pago	0						
									Zoom In ▶ Zoom Out
									Loom out
Sample N	ame: CRIB	Acquire	ed: 9/19/200	0 12-05-01	Type:	00			
	.ccutest1(v1		de: CONC		actor: 1.00				
		. ,							
User: adm		tom ID1:	Cusio	om ID2:	Custo	m ID3:			
Comment									
Elem	Ba4554			Co2286	Cr2677		Mn2576		Ag3280
Units Avg	ppm .1947	ppm .0051	.0030	ppm .0536	.0099	ppm .0091	.0166	.0112	.0098
Stddev	.0003	.0001	.0000	.0000	.0000	.0003	.0000		.0003
%RSD	.1370	2.551	.9651	.0385	.2872		.2720		3.034
#1	.1949	.0050		.0536	.0099	.0089	.0166	.0111	.0100
#2	.1945	.0052	.0030	.0536	.0099	.0093	.0166	.0113	.0096
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Value									
Range									
E1	1/ 2024	7-20/2	4-1000	TI4000	DI- 0000	C-10/0	Chanra	412074	0-0170
Elem Units	V_2924	Zn2062 ppm		TI1908 ppm	Pb2203 ppm	Se1960 ppm	Sb2068 ppm	Al3961 ppm	Ca3179
Avq	ppm .0526	.0224		.0094	.0020	.0106	.0067	.1901	ppm 5.188
Stddev	.0001	.0002		.0004	.0000	.0005	.0003	.0084	.005
%RSD	.1035	.7558	.3508	4.462	.6779	4.553	4.586	4.426	.1050
#1 #2	.0526 .0526	.0226		.0096	.0020	.0102	.0065	.1841	5.192 5.184
#2	.0526	.0223	.0111	.0091	.0020	.0109	.0069	.1900	5.184
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Value									
Range									
Elem	Fe2599	Mg2790	K_7664	Na5895	B 2089	Mo2020	Pd3404	Si2124	Sn1899
Units	ppm	ppm		ppm	D_2009 ppm		ppm		ppm
Avg	.1282	5.031		10.19	.1055	.0236	.0457	.2032	.0103
Stddev	.0002	.015	.01	.01	.0002	.0005	.0006	.0009	.0008
%RSD	.1191	.3054	.1422	.0849	.2297	1.962	1.384	.4362	8.203
#1	.1283	5.042	10.19	10.18	.1056	.0239	.0452	.2026	.0109
#1	.1283	5.042		10.18	.1056	.0239	.0452	.2026	.0109
-	201	0.020	.0.17	.0.20		.02.02	.0.01	.2000	.0077
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Value									
Range									

ample Nar	me: HSTD	Acquir	ed: 9/19/20	09 11:57:18	Type: QC	
Method: Aco	cutest1(v16	4) Mo	de: CONC	Corr. Fa	ctor: 1.000000	
User: admir	n Cust	om ID1:	Custo	m ID2:	Custom ID	3:
Comment:						
Elem	Sr4077	Ti3349	W_2079			
Units	ppm	ppm	ppm			
Avg	4.061	3.958				
Stddev	.015	.008	.027			
%RSD	.3642	.2018	.6719			
#1	4.050	3.963	4.013			
#2	4.071	3.952	4.052			
Check ? Value Range	Chk Pass(Chk Pass	Chk Pass			
Int. Std.	Y 3600	Y 3710	Y_2243	In2306		
Units	Cts/S	Cts/S		Cts/S		
Avq	102820.	17731.		4499.1		
Stddev	26.	121.	.5	9.9		
%RSD	.02492	.68244	.02170	.21933		
	102840.	17817.		4506.1		
#1 #2	102800.	17645.	2135.9	4492.1		

Raw Data MA23143 page 18 of 245

■ Zoom In ▶
Zoom Out

	•	,			ctor: 1.000000	
User: adm Comment:		om ID1:	Custo	m ID2:	Custom ID3:	
Elem Units Avg Stddev %RSD	Sr4077 ppm .0103 .0000 .2961	ppm .0108 .0001	F .1281 .0049			
#1 #2	.0103 .0103					
Check ? Value Range	Chk Pass	Chk Pass	Chk Fail .0500 50.00%			
Int. Std. Units Avg Stddev %RSD	Y_3600 Cts/S 106540. 98. .09212	Cts/S 18018. 4.	Cts/S 2219.9 1.3	1.8		
#1 #2	106610. 106470.	18016. 18021.		4910.7 4908.2		

Raw Data MA23143 page 20 of 245

	Inst QC	IVI	A23143	•					■ Zoom II
									Zoom O
	lame: CRID		d: 9/19/200		٥.				
	Accutest1(v16	,	de: CONC		actor: 1.00				
User: adn Comment		om ID1:	Custo	om ID2:	Custo	m ID3:			
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576		
Units	.0037	.0010	.0011	ppm .0026	ppm .0020	ppm .0019	.0033	ppm .0045	.0009
Avg Stddev	.0037	.0010	.0001	.0026	.0020	.0019			.0009
%RSD	2.524	5.975	8.397	3.084	2.785	19.80			
#1	.0038	.0009	.0010	.0027	.0019				
#2	.0037	.0010	.0012	.0025	.0020	.0022	.0033	.0044	.0012
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Units	.0026	.0139	ppm .0044	ppm .0017	ppm .0018	ppm .0052	ppm .0032		ppm 1,003
Avg Stddev	.0026	.0003	.0044	.0017	.0003	.0052	.0032		
%RSD	4.013	2.007	15.67	61.26	18.63	20.55	16.03		
#1	.0026	.0138	.0049	.0024	.0021	.0060			1.004
#2	.0027	.0141	.0039	.0009	.0016	.0045	.0028	.0969	1.002
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Fe2599	Mg2790	K_7664		B_2089		Pd3404		
Units	ppm	ppm	ppm	ppm	ppm				
Avg Stddev	.0046	.1059	2.102	1.032	.0122	.0011	0008 0006	.0018	0002 .0007
%RSD	42.38	13.39	.4258	.4966	1.001	22.75	78.73	10.22	
#1	.0060	.1159	2.109	1.036	.0123	.0012	0012	.0017	.0003
#2	.0032	.0959	2.096	1.029	.0121	.0009	0004	.0020	0006
Check ? Value Range	None	Chk Pass	Chk Pass	Chk Pass	Chk Pass	None	None	None	None

Raw Data MA23143	page 21 of 245

Raw Data MA23143 page 23 of 245

Raw Dat	a IVIAZS 14	o page	21 01 245						
									◀ Zoom In ▶
									Zoom Out
Sample Na	ame: ICV	Acquired	9/19/2009	12:19:57	Type: C	2C			
Method: A	ccutest1(v1	54) Mo	de: CONC	Corr. F	actor: 1.00	0000			
User: adm		tom ID1:		om ID2:		m ID3:			
Comment:	043	tom ib i.	Cusii	JIII IDZ.	Custo	III ID3.			
Comment.									
	D 4554	D 0400	0.10000	0.000/	0.0/77	0.0047			
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Units Avq	ppm .9788	ppm .9979	ppm 1.008	ppm 1.032	ppm .9928	ppm .9938	ppm 1.038	ppm 1.040	ppm .5076
Stddev	.0006	.0031	.001	.001	.0272	.0233	.025	.001	.0107
%RSD	.0639	.3089	.0932	.0940	2.740	2.344	2.406	.0442	2.110
701(3D	.0037	.3007	.0732	.0740	2.740	2.344	2.400	.0442	2.110
#1	.9794	1.001	1.009	1.033	.9727	.9743	1.018	1.041	.4987
#2	.9789	.9985	1.007	1.033	.9819	.9876	1.031	1.040	.5047
#3	.9781	.9946	1.008	1.031	1.024	1.020	1.066	1.040	.5195
Check?	Chk Docc	Chk Pass	Chk Docc	Chk Docc					
Value	CIIK Pass	Clik Pass	Clik Pass	CIIK Pass	CIIK Pass				
Range									
range									
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Units	ppm								
Avg	.9698	1.023	.9883	.9936	F 1.051	.9852	.9974	5.104	4.907
Stddev	.0245	.001	.0009	.0098	.001	.0033	.0015	.025	.021
%RSD	2.527	.1280	.0866	.9861	.0711	.3375	.1499	.4955	.4245
#1	.9497	1.025	.9888	.9948	1.052	.9871	.9989	5.121	4.912
#2	.9626	1.023	.9887	1.003	1.051	.9872	.9972	5.115	4.926
#3	.9971	1.022	.9873	.9832	1.051	.9814	.9960	5.075	4.885
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass		Chk Pass	Chk Pass	Chk Pass	Chk Pass
Value					1.000				
Range					5.000%				
Elem	Fe2599	Mq2790	K 7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Units	ppm								
Avq	5.018	4.875	9.961	10.32	1.003	.9909	F 1.053	.9735	1.022
Stddev	.003	.014	.039	.04	.002	.0015	.026	.0013	.002
%RSD	.0529	.2860	.3862	.3832	.2116	.1513	2.482	.1384	.1765
	E 040	4.070	40.04	40.04	4 005		4 000	0754	4.000
#1	5.019	4.879	10.01	10.36	1.005	.9909	1.032	.9751	1.023
#2	5.020 5.015	4.886 4.859	9.939 9.938	10.32 10.28	1.001 1.003	.9924 .9894	1.045 1.083	.9730 .9725	1.023 1.020
#3	5.015	4.659	9.938	10.28	1.003	.9694	1.083	.9125	1.020
Check?	Chk Pass	Chk Fail	Chk Pass	Chk Pass					
Value	2 400	21 000	21 000	2	2	21 000	1.000	2 1 455	2 455
Range							5.000%		

ample Nam	ne: CRID		d: 9/19/2009	12:11:07	Type: QC		
Method: Acc	utest1(v16	 Mod 	de: CONC	Corr. Fac	ctor: 1.000000		
User: admin	Cust	om ID1:	Custor	n ID2:	Custom ID:	3:	
Comment:							
Elem	Sr4077	Ti3349	W_2079				
Units	ppm	ppm	ppm				
Avg	.0000	.0004	F .0434				
Stddev	.0000	.0000	.0027				
%RSD	83.45	6.905	6.193				
#1	.0000	.0004	.0453				
#2	.0001	.0004	.0415				
Check?	None	None	Chk Fail .0040				
Value Range			50.00%				
Kange			30.00%				
Int. Std.	Y_3600	Y_3710		In2306			
Units	Cts/S	Cts/S	Cts/S	Cts/S			
Avg	108010.	19170.	2235.6	5024.5			
Stddev	604.	108.	.2	10.3			
%RSD	.55926	.56531	.00934	.20423			
	108440.	19093.	2235.5	5017.3			
#1		19247.	2235.8	5031.8			

Raw Data MA23143	page 22 of 245
------------------	----------------

							◀ Zoom In Zoom Out
Sample N	lame: ICV	Acquired:	0/10/2000	12:10:57	Type: Q	C	
	Accutest1(v1		de: CONC		٥.		
User: adm			Custo		Custon		
Comment		torribi.	Cusio	III IDZ.	Custon	11103.	
Comment							
Elem	Sr4077	Ti3349	W_2079				
Units	ppm	ppm	_ ppm				
Avg	1.005		F 1.055				
Stddev	.001						
%RSD	.1046	2.419	.0645				
#1	1.005						
#2	1.006						
#3	1.004	1.018	1.054				
Check?	Chk Pass	Chk Pass	Chk Fail				
Value			1.000				
Range			5.000%				
Int. Std.	Y_3600	Y 3710	Y_2243	In2306			
Units	Cts/S			Cts/S			
Avg	108190.	18932.		4986.9			
Stďdev	2370.			5.3			
%RSD	2.1908	.46685	.04584	.10701			
#1	110130.	18954.	2241.2	4982.5			
#2	108890.			4992.9			
#3	105550.	19007.	2239.3	4985.5			

Raw Data MA23143 page 24 of 245

								■ Zoom in ►
								Zoom Out
mo: ICP	Acquired	. 0/10/2000	12.20.45	Tuno: C	00			
				٠.				
	,							
n Cus	tom ID1:	Custo	om ID2:	Custo	m ID3:			
Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
0001	.0000	0001	0002	0001	.0004	.0001	0002	.0000
.0001	.0001	.0001	.0000			.0000	.0003	.0002
47.21	4134.	136.9	19.32	2.810	72.00	21.36	196.9	1069.
- 0001	- 0001	0000	- 0002	- 0001	0002	0001	0001	.0002
0001	.0001	0001	0003	0001	.0002	.0001	0004	0001
Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
V 2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
.0004	0002	.0005	.0006	0007	0004	0001	0044	0022
.0002	.0002	.0000	.0005	.0005	.0013	.0002	.0031	.0028
40.46	74.48	1.668	82.29	78.95	329.7	388.9	70.20	128.4
0006	0001	0005	0002	0003	0005	0002	0066	0041
								0002
.0000	.0000	.0000	.0007	.0010	.0011	.0001	.0022	.5002
Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
	Ba4554 ppm -0001 .0001 .0001 -0001 -0001 Chk Pass V_2924 ppm .0004 .0002 40.46	Ba4554 Be3130 ppm	Ba4554 Be3130 Cd2288 ppm ppm ppm ppm 0.0001 .0005 .0002 .0005 .0002 .0005 .0003 .0005 .0003 .0005 .0003 .0005 .0003 .0005 .0003 .0005	Ba4554 Be3130 Cd2288 Co2286 Co250 Country Country	Ba4554 Be3130 Cd2288 Co2286 Cr2677 ppm ppm ppm ppm ppm .0001 .0000 .0001 .0001 .0001 .0001 .0001 .0001 .0000 .0001 .0001 .0001 .0001 .0000 .0001 .0001 .0001 .0000 .0002 .0001 .0001 .0001 .0001 .0001 .0002 .0001 .0001 .0001 .0001 .0003 .0001 <td> Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 </td> <td> Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 </td> <td> Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 </td>	Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247	Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576	Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316

Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Units	ppm								
Avg	0007	.0041	.0207	0036	.0012	.0005	0014	.0001	0002
Stddev	.0008	.0069	.0142	.0023	.0004	.0002	.0021	.0011	.0006
%RSD	120.0	168.7	68.31	62.62	32.10	45.94	150.9	1029.	390.5
#1	0001	.0089	.0107	0052	.0015	.0007	0029	.0009	0006
#2	0013	0008	.0307	0020	.0010	.0003	.0001	0007	.0003

Check ? Chk Pass Chk High Limit Low Limit

Raw Data MA23143 page 25 of 245

									⋖ Zoom
									Zoom
Samnle Na	ame: SAMP	LECONE	Acquire	ad: 9/19/20	09 12:34:43	B Type	OC		
	ccutest1(v1		de: CONC		Factor: 1.00	٠.	40		
User: admi	in Cus	tom ID1:	Cus	tom ID2:	Custo	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	1.950	1.965	2.022	2.029	1.984	1.995	2.069	2.034	.2472
Stddev	.068	.070	.021	.022	.081	.076	.081	.022	.0090
%RSD	3.479	3.543	1.036	1.064	4.100	3.811	3.911	1.062	3.652
#1	1.913	1.931	2.039	2.045	2.022	2.036	2.114	2.049	.2526
#2	1.933	1.948	1.994	2.000	1.982	1.995	2.071	2.004	.2472
#3	2.050	2.068	2.018	2.025	1.871	1.888	1.954	2.030	.2345
#4	1.903	1.915	2.038	2.045	2.060	2.059	2.135	2.050	.2545
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	1.978	2.001	2.003	2.014	2.031	2.005	2.014	38.52	38.67
Stddev	.077	.019	.024	.024	.023	.022	.023	1.38	1.36
%RSD	3.918	.9404	1.194	1.199	1.110	1.086	1.133	3.583	3.512
#1	2.020	2.017	2.022	2.034	2.047	2.022	2.031	37.81	38.03
#2	1.977	1.976	1.972	1.980	1.999	1.975	1.983	38.24	38.35
#3	1.870	1.999	1.997	2.013	2.030	2.001	2.010	40.54	40.66
#4	2.045	2.013	2.021	2.028	2.047	2.021	2.032	37.50	37.63
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Raw Data MA23143 page 27 of 245

Value Range

Jser: admi	n Cust	om ID1:	Custo	m ID2:	Custom IE	03:	
Comment:							
Elem	Sr4077	Ti3349	W_2079				
Jnits	ppm	ppm	ppm				
Avg Stddev	.0000	.0001					
%RSD	109.2	68.16					
#1	.0000	.0001	.0163				
#2	.0001	.0002	.0163				
Check?	Chk Pass	Chk Pass					
ligh Limit ow Limit			.0126 0126				
LOW LITTIL			0120				
nt. Std.		Y_3710		In2306			
Jnits	Cts/S	Cts/S	Cts/S 2244.8	Cts/S 5057.3			
Avg Stddev	1578.	18935. 6.	.1	2.3			
%RSD	1.4588	.03316	.00314	.04586			
¥1	109260.	18930.	2244.8	5055.7			
#2	107030.	18939.	2244.7	5059.0			

Raw Data MA23143 page 26 of 245

Custom ID1:

Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Custom ID2:

Sample Name: SAMPLECONF

User: admin

F1----

◀ Zoom In ▶ Zoom Out Acquired: 9/19/2009 12:34:43 Type: QC

Custom ID3:

Comment: Fe2599 Mg2790 K_7664 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn1899 ppm 38.99 1.39 3.571 ppm 38.33 1.35 3.525 ppm 38.84 1.24 ppm 39.44 1.28 ppm 2.040 .023 1.149 ppm 2.020 .022 1.089 ppm 2.009 .073 ppm 5.052 .059 ppm 2.030 .022 Units %RSD 3.200 3.242 3.660 1.167 1.068 37.60 37.97 40.33 37.43 38.79 39.13 41.32 38.51 2.057 2.010 2.033 2.061 2.045 2.011 1.906 2.074 38.27 38.70 38.28 38.52 5.108 4.979 2.047 2.001 #1 #2 2.036 1.990 #3 41.03 37.97 40.66 37.89 2.016 5.030 5.090 2.026

Check ? Value Chk Pass Range

Elem	514077	113349	VV_2079
Units	ppm	ppm	ppm
Avg	2.005	1.993	1.985
Stddev	.070	.080	.025
%RSD	3.477	3.993	1.262
#1	1.969	2.039	1.988
#2	1.989	1.992	1.952
#3	2.108	1.882	1.985
#4	1.955	2.060	2.013

Check? Chk Pass Chk Pass Chk Pass Value Range

Raw Data MA23143 page 28 of 245

Custom ID1:

3608.

3.4487

102740.

104540. 109710.

101520.

Y_3600 Y_3710 Y_2243 Cts/S Cts/S Cts/S 104630. 19115. 2181.3

Cts/S 19115. 549.

2.8707

19392.

19182. 18326.

19562.

User: admin

Comment:

Int. Std.

Units

Avg Stddev

%RSD

Sample Name: SAMPLECONF Acquired: 9/19/2009 12:34:43 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

17.1

.78517

2170.6

2204.6 2183.4

2166.6

Custom ID2:

In2306

Cts/S 4719.1

30.6

.64805

4703.4

4762.2 4718.2

4692.6

Custom ID3:

◀ Zoom In ▶ Zoom Out

Sample N	lame: SAMP	LECONF	Acquire	ed: 9/19/20	09 12:41:5	9 Type	: QC		
Method: A	Accutest1(v1	64) Mo	de: CONC	Corr.	Factor: 1.0	00000			
User: adn	nin Cus	tom ID1:	Cus	tom ID2:	Cust	om ID3:			
Comment									
Commicm									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	1.966	1.981	2.011	2.022	1.940	1.944	2.036	2.025	.2428
Stddev	.061	.065	.029	.029	.040	.031	.042	.029	.0038
%RSD	3.104	3.281	1.426	1.442	2.070	1.575	2.047	1.418	1.584
#1	1.997	2.013	1.972	1.982	2.000	1.990	2.098	1.986	.2485
#2	1.939	1.953	2.036	2.049	1.921	1.932	2.019	2.051	.2411
#3	1.896	1.906	2.028	2.037	1.921	1.930	2.017	2.041	.2413
#4	2.034	2.053	2.008	2.019	1.917	1.926	2.010	2.022	.2402
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	1.952	2.002	1.994	2.008	2.023	1.995	2.001	38.93	39.16
Stddev	.039	.029	.028	.033	.028	.027	.029	1.31	1.29
%RSD	2.017	1.466	1.414	1.655	1.374	1.331	1.471	3.354	3.283
#1	2.010	1.964	1.958	1.967	1.986	1.961	1.961	39.64	39.76
#2	1.940	2.032	2.023	2.031	2.051	2.019	2.029	38.34	38.64
#3	1.929	2.016	2.008	2.038	2.035	2.014	2.017	37.42	37.66
#4	1.928	1.997	1.989	1.995	2.019	1.988	1.998	40.33	40.60

Check? Chk Pass Value Range

Raw Data MA23143 page 29 of 245

Sample Name: SAMPLECONF Acquired: 9/19/2009 12:41:59 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Comment:

Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Units	ppm									
Avg	39.43	38.85	39.24	39.72	2.029	2.008	1.955	5.055	2.022	
Stddev	1.32	1.39	1.15	1.20	.029	.030	.028	.074	.030	
%RSD	3.345	3.568	2.925	3.026	1.433	1.497	1.453	1.461	1.470	
#1	40.02	39.49	39.87	40.36	1.989	1.967	1.998	4.956	1.984	
#2	38.84	38.23	38.70	39.16	2.053	2.034	1.947	5.126	2.050	
#3	37.91	37.26	37.93	38.34	2.047	2.027	1.942	5.092	2.040	
#4	40.92	40.41	40.48	41.03	2.025	2.005	1.936	5.046	2.014	

Check ? Value Chk Pass Range

Elem	Sr4077	Ti3349	W_2079
Units	ppm	ppm	ppn
Avg	2.022	1.966	2.032
Stddev	.064	.040	.029
%RSD	3.180	2.021	1.442
#1	2.054	2.025	1.989
#2	1.995	1.952	2.05
#3	1.947	1.946	2.04
#4	2.093	1.940	2.039

Check? Chk Pass Chk Pass Chk Pass

Value Range

Raw Data MA23143 page 30 of 245

◀ Zoom In ▶ Zoom Out

Sample Name: SAMPLECONF Acquired: 9/19/2009 12:41:59 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Comment:

Y_3600 Y_3710 Y_2243 In2306

Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	105950.	18656.	2183.7	4710.0
Stddev	1879.	580.	27.8	58.0
%RSD	1.7733	3.1077	1.2716	1.2321
#1	103150.	18412.	2222.2	4788.9
#2	106600.	18898.	2158.7	4654.3
#3	106890.	19325.	2169.3	4682.4
#4	107150.	17991.	2184.6	4714.5

Raw Data MA23143 page 32 of 245

Raw Data MA23143 page 31 of 245

									200111
Sample Na Method: Ad	me: ICCV		ed: 9/19/20 de: CONC		6 Type	e: QC 00000			
User: admi	n Cus	tom ID1:	Cust	om ID2:	Cust	om ID3:			
	045		ousi	01111021	oust	0111120.			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	1.989	2.009	1.998	2.011	1.982	1.982	2.086	2.016	.2471
Stddev	.040	.043	.023	.023	.044	.045	.041	.024	.0049
%RSD	2.032	2.116	1.148	1.147	2.215	2.263	1.984	1.193	1.979
#1	2.046	2.069	1.969	1.981	2.042	2.042	2.142	1.984	.2540
#2	1.951	1.970	1.997	2.011	1.988	1.990	2.092	2.016	.2471
#3	1.979	1.998	2.003	2.016	1.951	1.947	2.055	2.021	.2435
#4	1.980	1.997	2.024	2.037	1.948	1.947	2.054	2.042	.2438
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Value									
Pange									

rtungo									
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Units	ppm								
Avg	1.985	1.991	1.992	2.012	2.012	1.996	1.995	39.50	39.79
Stddev	.039	.018	.026	.021	.021	.025	.027	.86	.83
%RSD	1.987	.8911	1.307	1.038	1.066	1.236	1.369	2.179	2.075
#1	2.039	1.966	1.958	1.986	1.984	1.966	1.958	40.70	40.98
#2	1.991	1.994	1.992	2.017	2.014	1.993	1.999	38.65	39.06
#3	1.957	1.995	1.997	2.010	2.017	2.000	1.999	39.28	39.54
#4	1.954	2.009	2.022	2.036	2.036	2.026	2.024	39.39	39.57

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? Value Range

Raw Data MA23143 page 33 of 245

◀ Zoom In ▶ Zoom Out

Sample Name: ICCV Acquired: 9/19/2009 12:49:26 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3: Comment:

Int. Std.	Y_3600	Y_3710	Y_2243	In2306
Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	104000.	18353.	2193.3	4726.9
Stddev	1839.	352.	25.1	43.0
%RSD	1.7679	1.9170	1.1429	.90902
#1	101570.	17849.	2226.0	4783.7
#2	103620.	18656.	2192.8	4721.2
#3	105160.	18503.	2189.3	4723.4
#4	105660.	18405.	2165.0	4679.2

Sample Name: ICCV Acquired: 9/19/2009 12:49:26 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

User: admin Custom ID1: Custom ID2: Custom ID3:

Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Units	ppm								
Avg	40.01	39.51	39.77	40.19	2.023	2.001	1.988	5.045	2.013
Stddev	.87	.83	.78	.81	.026	.025	.039	.054	.022
%RSD	2.162	2.107	1.966	2.018	1.277	1.265	1.970	1.066	1.098
#1	41.24	40.71	40.86	41.34	1.991	1.969	2.040	4.973	1.984
#2	39.21	38.78	38.99	39.42	2.022	2.002	1.997	5.055	2.017
#3	39.77	39.26	39.58	40.01	2.026	2.005	1.955	5.049	2.015
#4	39.83	39.28	39.65	40.02	2.054	2.030	1.960	5.104	2.038

Check? Chk Pass Value

Elem	Sr4077	Ti3349	W_207
Units	ppm	ppm	ppr
Avg	2.046	2.007	2.05
Stddev	.043	.041	.02
%RSD	2.079	2.063	1.28
#1	2.107	2.062	2.02
#2	2.008	2.002	2.05
#3	2.034	1.975	2.06
#4	2.035	1 975	2 08

Check? Chk Pass Chk Pass Chk Pass

Value Range

Raw Data MA23143 page 34 of 245

◀ Zoom In ▶

Sample Name: CCB Acquired: 9/19/2009 13:01:01 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3: Comment:

Elem	Ba4554	Be3130	Cd2288	C02286	Cr26//	Cu3247	Mn25/6	NI2316	Ag3280	
Units	ppm									
Avg	.0002	.0002	.0005	.0003	.0002	.0002	.0004	.0002	0001	
Stddev	.0000	.0000	.0002	.0001	.0002	.0003	.0000	.0002	.0000	
%RSD	30.13	11.24	34.89	42.87	109.7	150.9	3.065	77.01	8.061	
#1	.0002	.0002	.0007	.0004	.0003	.0004	.0004	.0001	0001	
#2	.0001	.0003	.0004	.0002	.0000	.0000	.0004	.0003	0001	

Check? Chk Pass High Limit Low Limit

Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Units	ppm								
Avg	.0009	.0003	.0018	0001	.0004	.0008	.0004	.0017	.0036
Stddev	.0002	.0002	.0004	.0013	.0004	.0001	.0000	.0051	.0005
%RSD	21.68	54.42	23.14	1996.	96.09	16.10	.7112	292.9	12.76
#1	.0011	.0004	.0015	.0009	.0007	.0008	.0004	.0053	.0032
#2	0008	0002	0021	- 0010	0001	0007	0004	- 0018	0039

Check ? High Limit Chk Pass Low Limit

Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Units	ppm	mqq	ppm							
Avg	.0047	.0116	.1602	.0143	.0034	.0018	0001	.0020	.0009	
Stddev	.0005	.0008	.0135	.0006	.0002	.0005	.0005	.0005	.0007	
%RSD	9.700	7.016	8.428	4.360	4.540	27.39	505.6	26.93	81.30	
#1	.0044	.0122	.1697	.0139	.0033	.0021	.0003	.0024	.0014	
#2	.0051	.0110	.1507	.0148	.0035	.0014	0005	.0016	.0004	

Check? Chk Pass High Limit Low Limit

Raw Data MA23143 page 35 of 245

Raw Data MA23143 page 36 of 245

Ag3280

ppm .0003

.0001

27.58

-.0004

-.0003

Ca3179

ppm 377.9

.0031

377.9 377.9

Sn1899

.0010

17.63

-.0064

-.0050

User: admin

Comment:

Units

Avg Stddev

%RSD

Check?

Units

Avg Stddev

%RSD

Check?

Units

Avg Stddev

%RSD

Check? High Limit Low Limit

■ Zoom In ▶

High Limit Low Limit Elem

#2

High Limit Low Limit

#2

Sample Name: ICSA Acquired: 9/19/2009 13:05:45 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Cd2288

ppm -.0004 .0002

54.82

-.0002

-.0005

As1890

ppm -.0007

.0012

.0016

.0001

K_7664

ppm .4148

.0051

1.226

.4184

.4112

Custom ID2:

Co2286

ppm .0019

.0001

3.440

.0020

.0019

TI1908

ppm .0008

.0006

.0004

Na5895

ppm .1632

.0064

3.907

.1587

.1678

Custom ID3:

Cu3247

ppm -.0008 .0003

32.52

-.0010

-.0007

Se1960

.0010

.0033

.0013

-.0033

Mo2020

ppm .0028

.0001

4.614

-.0027

-.0029

Mn2576

ppm .0006

.0000

7.931

.0006

.0006

Sh2068

ppm .0004

.0018

.0017

-.0009

Pd3404

.0017

49.21

.0023

.0047

Ni2316

ppm .0010

.0005

44.29

.0007

.0014

Al3961

ppm 509.0

3.4

.6603

511.4

Si2124

ppm .0125

.0004

3.278

.0128

.0122

Cr2677

ppm .0000

.000

907.6

.0002

-.0003

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Ph2203

ppm .0026

.0017

.0038

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

B_2089

ppm .0002

.0002

121.2

-.0003

.0000

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Custom ID1:

Be3130

ppm .0000 .0000

71.61

.0001

.0000

7n2062

.0066

.0006 8.944

-.0070

Mg2790

ppm 520.4

.0400

520.2

520.5

Ba4554

ppm .0015

.0000

3.318

.0015

.0015

V 2924

ppm .0032

.0007

.0037

Fe2599

ppm 194.7

.0551

194.8

194.6

Raw Data MA23143 page 40 of 245

							◀ Zoom In Zoom Ou
							200111 00
Sample Na	ame: CCB	Acquired	I: 9/19/2009	13:01:01	Type: QC		
Method: A	ccutest1(v1	64) Mod	de: CONC	Corr. Fa	ctor: 1.000000		
User: adm	in Cus	tom ID1:	Custor	m ID2:	Custom ID3	3:	
Comment:							
Elem	Sr4077	Ti3349	W_2079				
Units	ppm	ppm	ppm				
Avg	.0003	.0007	F .0605				
Stddev	.0000		.0033				
%RSD	4.668	41.36	5.514				
#1	.0003	.0009	.0629				
#2	.0003	.0005	.0581				
Check?	Chk Pass	Chk Pass	Chk Fail				
High Limit			.0126				
Low Limit			0126				
Int. Std.	Y_3600		Y_2243	In2306			
Units	Cts/S		Cts/S	Cts/S			
Avg	112150.		2229.2	5011.4			
Stddev	1647.		1.3	5.5			
%RSD	1.4685	.18383	.05916	.10882			
#1	110990.	19212.	2228.3	5007.6			
#2	113320.	19163.	2230.1	5015.3			

Raw Dat	a MA2314	3 page	38 of 245						
									◀ Zoom In Zoom Ou
			red: 9/19/20 de: CONC Custo		actor: 1.00	e: QC 10000 m ID3:			
Elem Units Avg Stddev %RSD	Ba4554 ppm .5296 .0014 .2594	Be3130 ppm .5117 .0018 .3538	Cd2288 ppm 1.094 .017 1.509	Co2286 ppm .5005 .0071 1.413	Cr2677 ppm .4871 .0007 .1441	Cu3247 ppm .5016 .0031 .6106		Ni2316 ppm .9610 .0125 1.298	Ag3280 ppm 1.097 .004 .3693
#1 #2	.5306 .5287	.5130 .5104	1.082 1.106	.4955 .5055	.4876 .4866	.5038 .4994	.5206 .5187	.9521 .9698	1.100 1.094
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass					
Elem Units Avg Stddev %RSD	V_2924 ppm .5154 .0000 .0075	Zn2062 ppm .9562 .0113 1.180	As1890 ppm 1.045 .013 1.285	TI1908 ppm .9797 .0053 .5422		ppm 1.054 .014	ppm 1.074 .015	ppm 511.9 1.2	Ca3179 ppm 385.3 5.8 1.506
#1 #2	.5154 .5154	.9482 .9642	1.035 1.054	.9760 .9835	.9753 .9905	1.044 1.063	1.064 1.085	512.8 511.1	389.4 381.2
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass					
Elem Units Avg Stddev %RSD	Fe2599 ppm 203.1 .8 .3866	Mg2790 ppm 521.8 1.7 .3334	K_7664 ppm .3651 .0220 6.037	Na5895 ppm .1889 .0010 .5208	B_2089 ppm .0005 .0010 179.4	Mo2020 ppm .4973 .0074 1.496	ppm .5552	Si2124 ppm .0047 .0010 21.34	Sn1899 ppm 0070 .0007 10.05
#1 #2	203.7 202.6	523.1 520.6	.3807 .3496	.1882 .1896	0001 .0012	.4920 .5025	.5557 .5547	.0040 .0054	0065 0074
Check? Value Range	Chk Pass	Chk Pass	None	None	None	Chk Pass	Chk Pass	None	None

| Sample Name: ICSA | Acquired: 9/19/2009 13:05:45 | Type: QC | Method: Accutest1(v164) | Mode: CONC | Corr. Factor: 1.000000 | User: admin | Custom ID1: | Custom ID2: | Custom ID3: Comment: | Elem | Sr4077 | Ti3349 | W_2079 | Units | ppm |

Raw Data MA23143 page 37 of 245

Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit

Int. Std. Y_3600 Cts/S 97312. Y_3710 Cts/S 17879. Y_2243 Cts/S 1953.7 In2306 Cts/S 4021.0 Units Avg Stddev %RSD 16.2 .40196 .12189 .21925 97427 17863 1956.7 4032.4 97196. 17894. 1950.6 4009.6

Raw Data MA23143 page 39 of 245

107 of 189

ACCUTEST.

JA27477 Laboratories

Ag3280

ppm .2424

.0009

.3767

.2431

.2418

Ca3179

ppm 39.73

.03

39.74 39.71

Sn1899

.023

1.111

2.013

2.045

							◀ Zoom In Zoom Out
Sample Nam	ne: ICSAB	Acquir	ed: 9/19/200	09 13:12:00	Type:	QC	
Method: Acc	utest1(v16	 Mod 	de: CONC	Corr. Fac	ctor: 1.000	000	
User: admin	Custo	om ID1:	Custo	m ID2:	Custon	n ID3:	
Comment:							
Elem	Sr4077	Ti3349	W_2079				
Units	ppm	ppm	ppm				
Avg	.0059	.0036	F .6469				
Stddev	.0002	.0002	.0061				
%RSD	3.181	4.803	.9472				
#1	.0060	.0038	.6426				
#2	.0057	.0035	.6512				
Check?	None	None	Chk Fail				
Value	140110	140110	.5000				
Range			20.00%				
Int. Std.	Y_3600	Y_3710	Y_2243	In2306			
Units	Cts/S	Cts/S	Cts/S	Cts/S			
Avg	96918.	17760.	1985.2	4075.5			
Stddev	207.	34.	25.7	50.8			
%RSD	.21349	.18944	1.2931	1.2471			
#1	96772.	17737.	2003.4	4111.5			
#2	97065.	17784.	1967.1	4039.6			

Raw Data MA23143 page 41 of 245

				9 13:18:12	J.
		,			tor: 1.000000
User: admi	n Cust	om ID1:	Custo	m ID2:	Custom ID3:
Comment:					
Elem	Sr4077	Ti3349	W_2079		
Units	ppm	ppm	ppm		
Avg	2.054	1.971	1.987		
Stddev	.002	.007	.030		
%RSD	.1082	.3385	1.495		
#1 #2	2.052 2.055	1.976 1.967	1.966 2.008		
#2	2.055	1.907	2.008		
Check?	Chk Pass (Chk Pass	Chk Pass		
Value					
Range					
Int. Std.	V 2400	V 2710	Y 2243	In2306	
Units	Cts/S			Cts/S	
Ava	106390.				
Stddev	345.	26.	20.6		
%RSD	.32432	.14064	.94863	.83652	
#1	106150.	18633.			
#2	106630.	18596.	2158.8	4679.6	

Dow Data MA22142	page 42 of 24E

Raw Data MA23143 page 42 of 245

Raw Data MA23143 page 44 of 245

Sample Name: CCV Acquired: 9/19/2009 13:18:12 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Be3130 Cd2288

ppm 2.014

.002

.1019

2.013

2.016

ppm 1.995

.024

1.978 2.012

Mg2790

ppm 39.41

.2680

39.34

39.49

ppm 2.023 .025

1.233

2.006

2.041

As1890

ppm 2.012

.024 1.192

1.995 2.029

K_7664

ppm 40.04

.3448

39.94

40.13

Custom ID2:

Co2286

ppm 2.034

.025

1.247

2.016 2.052

TI1908

ppm 1.999

.010

1.992 2.006

Na5895

ppm 40.53

.08

.1895

40.47

40.58

Custom ID3:

Cu3247

ppm 1.954 .012

.6336

1.962 1.945

Se1960

ppm 2.015

.022

2.000 2.030

Mo2020

.025

1.243

2.004

2.039

Mn2576

ppm 2.028 .006

.3001

2.032

2.024

Sh2068

ppm 2.018

.023

2.002 2.034

Pd3404

.011

.5797

1.965

1.949

Ni2316

ppm 2.038

.025

1.212

2.021

2.056

Al3961

ppm 39.85

.07

39.80

39.90

Si2124

ppm 5.084 .054

1.059

5.045

5.122

Cr2677

ppm 1.929 .004

.2102

1.932 1.926

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Pb2203

ppm 2.030

.025 1.241

2.012 2.048

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

B_2089

ppm 2.050

.021

1.029

2.035

2.065

Chk Pass Chk

Custom ID1:

Ba4554

ppm 1.998 .003

.1542

1.996

2.000

ppm 1.964

.004

1.967 1.962

Fe2599

ppm 40.06

.04

.0926

40.03

40.09

V_2924 Zn2062

User: admin

Comment: Elem

Units

Avg Stddev

%RSD

Check?

Value Range Flem

Units

Avg Stddev

%RSD

Check?

Value Range Elem

Units

Avg Stddev

%RSD

Check ?

Value Range

Zoom In ▶
 Zoom Out

#2

								◀ Zoom In Zoom Out
•	64) Mo	de: CONC	Corr. F	actor: 1.00	0000			
Ba4554 ppm 0001 .0001 97.13	Be3130 ppm 0001 .0001 113.1	Cd2288 ppm .0001 .0001 64.70			ppm .0003 .0001	.0000 .0000	0001 .0004	Ag3280 ppm 0002 .0000 3.244
0002 .0000	0002 .0000	.0001 .0002	.0000 0002	.0001 0001				0002 0002
Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
ppm .0001 .0002	ppm 0002 .0000	As1890 ppm .0018 .0003 16.12	ppm	ppm	ppm .0008 .0001	ppm 0005 .0002	ppm 0015 .0142	Ca3179 ppm .0015 .0080 518.9
.0000 .0003	0002 0001	.0021 .0016	.0017 .0002	0010 0008	.0009 .0007	0003 0007	0115 .0085	0041 .0072
Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
ppm .0012 .0040	ppm .0012 .0109	K_7664 ppm .0765 .0112 14.63	0017 .0028	.0016 .0003	ppm .0012 .0002	ppm 0010 .0016	ppm .0012 .0003	Sn1899 ppm .0004 .0001 37.61
0016 .0040	0065 .0089	.0844 .0686	0036 .0003	.0019 .0014	.0013 .0011	0021 .0001	.0015 .0010	.0003 .0005
Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
	Ba4554 pm -0001 -0000 -0	Ba4554 Be3130 ppm -0001 -0002 -0000 Chk Pass Chk	Ba4554	Ba4554 Be3130 Cd2288 Co2286 Coustom ID1: Custom ID2:	Ba4554	Ba4554	Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Custom ID1: Custom ID2: Custom ID3:	Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 N

108 of 189 ACCUTEST. JA27477 Laboratories

Custom ID1:

Ti3349

ppm .0001

.0004

317.9

-.0002

.0004

Y 3710

18916

.42824

18973

18859

Cts/S

81

Sample Name: CCB

User: admin

Comment:

Units

Stddev

%RSD

Check?

Int Std

Units

Stddev

%RSD

Avq

#1 #2

High Limit Low Limit

#2

Method: Accutest1(v164)

Sr4077

ppm .0001

.0001

124.1

-.0002

.0000

Y_3600

106310.

3704. 3.4836

103690

108930.

Cts/S

Chk Pass Chk Pass

Acquired: 9/19/2009 13:24:10 Type: QC

Custom ID2:

W_2079

ppm F .0368

.0016

4.399

.0379

.0356

Chk Fail

-.0126

Y_2243

2236.8

.16551

2239.4

2234.2

Cts/S

Mode: CONC Corr. Factor: 1.000000

In2306

5041.0

.21617

5048.7

Cts/S

10.9

Custom ID3

Zoom Out

Sample Name: JA28294-3 2 Acquired: 9/19/2009 13:30:22 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 10.000000 Custom ID1: User: admin Custom ID2: Custom ID3: Comment:

Elem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 .2093 .0140 .0086 .0966 3457 .4131 1.538 3991 .0042 0008 .0000 .0000 .0001 .0021 .0016 .004 .0003 .0008 %RSD .3834 .1923 .2630 .0562 .6193 .3943 .2793 .0682 18.81 2087 .0140 .0086 .0966 3473 .4143 .4119 3993 .0036 3989 .2099 .0140 .0086 .0966 .3442 1.535 -.0047

Ca3179 Pb2203 Se1960 Elem V_2924 Zn2062 As1890 TI1908 Sb2068 AI3961 7477 9102 0879 -.0109 .0289 -.0229 -.0081 .0018 50.48 9.266 Avg Stddev 0016 0032 0071 0078 0085 0030 05 062 .2128 8.109 71.61 29.25 13.03 22.19 .0968 .6644 #1 7466 9079 0829 0054 0349 0208 0069 50.44 9 223 .7488 .9125 .0930 -.0165 -.0094 9.310 .0229 -.0250 50.51 #2 K_7664 Elem Fe2599 Mg2790 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn1899 776.9 1.025 .0097 .0018 4.647 .0046 Avq 6.713 .0086

#1 775 7 6.013 6.756 1.051 0107 0018 - 0204 4 642 0051 778.2 .0032 4.653 .0041 Flem Sr4077 T13349 W 2079 .0501 .0011 .2250 .0020 Avg Stddev .0002

.037

.0014

.0000

.0167

.007

.1614

.0007

15.43

■ Zoom In ▶

%RSD .5074 2.288 .8852 #1 .0428 .0492 .2264 #2 .0431 .0509 .2236 Y 3710 Int. Std. Y 3600 Y 2243 In2306 2452.8 6.9 5011.1 Avg Stddev 119150 20699 208. 65. %RSD 17453 31555 27984 02616

.104

1.747

.2287

.062

.9242

119000 20745. #2 119300 20653 2448.0 5010.2

Raw Data MA23143 page 45 of 245

Raw Data MA23143 page 46 of 245 ■ Zoom In ▶ Zoom Out

Sample Name: MP49662-MB1CONF Acquired: 9/19/2009 13:36:25 Type: Unk	Sample Name: JA26889-1 Acquired: 9/19/2009 13:42:33 Type: Unk
Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000	Method: Accutest1(v164) Mode: CONC Corr. Factor: 25.000000
User: admin Custom ID1: Custom ID2: Custom ID3:	User: admin Custom ID1: Custom ID2: Custom ID3:
Comment:	Comment:

■ Zoom In I Zoom Out

#2

Stddev

Elem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 -.0001 -.0003 Avq -.0002-.0002 -.0003.0001 -.0001 -.0001 .0009 Stdde .0002 71.48 0000 .0002 0003 0002 .0002 .0000 0010 .0000 78.69 5.271 103.7 124.3 92.86 158.7 138.9 %RSD 36.57 .0016 -.0001 -.0001 -.0004 -.0002 .0003 .0001 .0003 .0000 .0000 #2 -.0001 -.0002 -.0006 -.0002 -.0001 .0003 .0000 .0000 Elem V_2924 Zn2062 As1890 TI1908 Pb2203 Se1960 Sb2068 Al3961 Ca3179 .0000 .0000 Ava .0010 -.0006 .0007 -.0003.0013 Stddev 000 0003 0001 0016 000 0008 0032 0052 %RSD 957.2 26.33 249.7 16.11 .0000 .0008 .0005 .0019 .0002 -.0008 .0036 0286

#2 .0000 .0059 .0012 .0007 .0004 .0003 .0010 Fe2599 .0054 Mg2790 .0015 K_7664 -.0262 B_2089 .0011 ло2020 .0000 Si2124 .0287 Flem Na5895 Pd3404 Sn1899 Stddev .0001 .0048 .0079 .0036 .0009 .000 .0016 .0058 .0002 %RSD 2.345 329.7 30.05 46.89 77.69 19.24 107.7 20.11 39.68 #1 0055 0049 - 0207 0051 0017 0000 - 0004 0328 - 0008 #2 .0053 -.0020 -.0318 .0102 -.0027 .0246 .0005 .0000 -.0005

Flem Sr4077 Ti3349 W_2079 -.0001 .0000 .0246 Avg Stddev .0001 %RSD 6.950 102.4 32.30 -.0001 .0000 .0302

#2 -.0001 .0002 0190 Int. Std. Y 3710 Y 2243 Y 3600 In2306 18786 42 Avg Stddev 109310 2223.4 %RSD .07927 22308 .40111

109370. 18816. #2 109250 18757 4992.7

.23902 %RSD .55267 106090. #2 106920

Raw Data MA23143 page 47 of 245 Raw Data MA23143 page 48 of 245

Elem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 Avg Stddev -.0054-.0046 -.0078 -.0077 .0067 .0168 .0016 .0095 .0107 .0006 0011 .0009 .0021 0030 0048 .0011 .0001 0058 27.48 %RSD 10.98 45.53 23.82 28.69 68.40 1.299 54.48 11.16 -.0072 -.0084 -.0062 -.0092 -.0050 .0038 .0088 .0202 .0008 .0094 .0066 -.0059 -.0053 -.0045 .0134 .0024 .0096 -.0148 #2 Elem V_2924 Zn2062 As1890 TI1908 Pb2203 Se1960 Sb2068 Al3961 Ca3179 .0190 -.0197 -.0502 Ava .0068.0545 -.0221 -.0101 -.0571.3440 Stddev 0011 0061 0036 0172 0103 0075 0134 0570 0070 15.78 32.25 6.689 46.88 99.84 2.023 .0061 .0147 .0571 -.0318 -.0148 .0449 -.0196 -.0168 .3391 #2 .0519 3489 .0234 .0294 .0555 B_2089 .0998 .0029 Mg2790 .3812 _7664 24.22 Pd3404 -.0331 Sn1899 -.0170 Flem Fe2599 Na5895 Mo2020 Si2124 5503 Avg Stddev .0012 .0253 .0666 .2698 .29 15 .0109 .0135 %RSD 8.117 70.77 1.186 .2798 2.950 9.192 32.92 2.644 79.45 #1 7738 5719 24 43 5492 0977 0125 0254 9401 0266 .1904 24.02 5514 .1018 .0143 -.0408 .0075 .8680 .9760 W_2079 Flem Sr4077 Ti3349 .0580 1.250 Avg Stddev .0032 %RSD 2.908 59.69 2014 .0568 .0031 1.252 #2 .0592 .0075 1.249 Int. Std. Y 3600 Y 3710 Y 2243 In2306 4802.1 106500 .88487 1.0726 .79792 19098. 2236.5 18861 2202.8 4775.0

<u></u>

o

◀ Zoom In ▶ Zoom Out

									▼ Zoom II Zoom O
Sample Na				d: 9/19/200			Unk		
Method: Ac	cutest1(v1	64) Mo	de: CONC	Corr. F	actor: 5.00	00000			
User: admir Comment:	n Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Elem Avg Stddev %RSD	Ba4554 170.2 .3 .1714	Be3130 .0035 .0003 9.447	Cd2288 .0614 .0011 1.775	Co2286 .1107 .0029 2.635	Cr2677 .2864 .0017 .5967	Cu3247 .3556 .0017 .4768	Mn2576 4.457 .011 .2520	Ni2316 .2146 .0060 2.777	Ag3280 0009 .0001 12.13
#1 #2	170.4 170.0	.0037 .0032	.0606 .0621	.1087 .1128	.2876 .2852	.3544 .3568	4.464 4.449	.2104 .2188	0008 0010
Elem Avg Stddev %RSD	V_2924 .3424 .0022 .6361	Zn2062 6.623 .136 2.054	As1890 .0934 .0004 .4531	TI1908 .0174 .0060 34.71	Pb2203 1.140 .017 1.513	Se1960 .0047 .0004 8.688	Sb2068 .0057 .0032 56.47	Al3961 147.3 .3 .1912	Ca3179 29.23 .00 .0121
#1 #2	.3409 .3440	6.527 6.719	.0931 .0937	.0131 .0217	1.127 1.152	.0050 .0044	.0034 .0080	147.5 147.1	29.23 29.22
Elem Avg Stddev %RSD	Fe2599 212.0 .1 .0385	Mg2790 44.46 .04 .0857	K_7664 19.60 .08 .3863	Na5895 1.665 .013 .7501	B_2089 .1258 .0028 2.188	Mo2020 .0038 .0004 11.78	Pd3404 0685 .0061 8.969	Si2124 4.027 .096 2.392	Sn1899 .0457 .0001 .2118
#1 #2	212.1 212.0	44.43 44.49	19.65 19.55	1.656 1.674	.1239 .1277	.0035 .0041	0642 0729	3.959 4.095	.0456 .0458
Elem Avg Stddev %RSD	Sr4077 1.721 .002 .0940	Ti3349 4.335 .002 .0451	W_2079 .1436 .0050 3.509						
#1 #2	1.722 1.720	4.333 4.336	.1400 .1472						
Int. Std. Avg Stddev %RSD	Y_3600 108650. 28. .02551	Y_3710 18599. 44. .23788	Y_2243 2234.2 33.2 1.4880	In2306 4944.9 65.9 1.3329					
#1 #2	108670. 108630.	18630. 18568.	2257.8 2210.7	4991.5 4898.3					

			de: CONC		actor: 5.00	٠.	Unk		
Elem Avg Stddev %RSD	Ba4554 146.2 .3 .2087	Be3130 .0034 .0003 8.131	Cd2288 .1410 .0007 .5017	Co2286 .0971 .0006 .6457	Cr2677 .2980 .0020 .6732	Cu3247 .3778 .0007 .1984	Mn2576 3.712 .004 .1197	Ni2316 .2044 .0008 .3784	Ag3280 0013 .0008 64.12
#1 #2	146.5 146.0	.0036 .0032	.1405 .1415	.0967 .0976	.2994 .2966	.3773 .3783	3.709 3.715	.2038 .2049	0007 0019
Elem Avg Stddev %RSD	V_2924 .3077 .0019 .6106	Zn2062 4.847 .013 .2572	As1890 .0932 .0047 5.010	TI1908 .0200 .0031 15.69	Pb2203 1.909 .009 .4950	Se1960 .0019 .0002 10.04	.0052 .0055	Al3961 135.4 .1 .0800	Ca3179 39.97 .14 .3506
#1 #2	.3090 .3064	4.838 4.856	.0899 .0965	.0178 .0222	1.902 1.915	.0018 .0020	.0091 .0013	135.5 135.4	39.88 40.07
Elem Avg Stddev %RSD	Fe2599 190.7 .2 .0798	Mg2790 39.65 .04 .0992	K_7664 18.20 .03 .1508	Na5895 1.371 .002 .1643	B_2089 .1137 .0028 2.488	Mo2020 .0039 .0005 13.05	0492 .0004	Si2124 4.338 .004 .0975	Sn1899 .0572 .0027 4.783
#1 #2	190.8 190.6	39.62 39.68	18.22 18.18	1.369 1.372	.1157 .1117	.0036 .0043		4.335 4.341	.0591 .0552
Elem Avg Stddev %RSD	Sr4077 1.600 .001 .0679	Ti3349 3.751 .003 .0840	W_2079 .1012 .0015 1.478						
#1 #2	1.599 1.601	3.753 3.749	.1023 .1002						
Int. Std. Avg Stddev %RSD	Y_3600 109170. 101. .09240	Y_3710 18739. 28. .15163	2262.1 1.3	In2306 4999.0 4.3 .08620					
#1 #2	109240. 109100.	18759. 18719.	2263.0 2261.1	5002.0 4995.9					

Raw Data MA23143 page 49 of 245

Raw Data MA23143 page 51 of 245

									Zoom O	ıt
Sample Na	ame: MP496	83-MB1	Acquired	i: 9/19/200	9 14:01:08	Type:	Unk			
Method: A	ccutest1(v1	64) Mo	de: CONC	Corr. F	actor: 1.00	00000				
User: adm Comment:		tom ID1:	Cust	om ID2:	Custo	om ID3:				
Elem Avg Stddev %RSD	Ba4554 .0085 .0004 4.384	Be3130 0003 .0000 4.276	Cd2288 0003 .0001 17.89	Co2286 0002 .0002 85.41	Cr2677 0002 .0004 156.7	Cu3247 0004 .0001 33.61	Mn2576 .0000 .0001 195.9	Ni2316 0003 .0001 38.56	Ag3280 0003 .0000 1.246	
#1 #2	.0087 .0082	0003 0003	0002 0003	0001 0004	.0000 0005	0003 0005	.0001 .0000	0004 0002	0003 0003	
Elem Avg Stddev %RSD	V_2924 .0000 .000 1372.	Zn2062 .0004 .0002 65.68	As1890 .0000 .001 5580.	TI1908 .0000 .000 43.77	Pb2203 0003 .0001 31.46	Se1960 0018 .0004 20.16	Sb2068 0004 .0000 1.749	Al3961 .0040 .0001 2.628	Ca3179 .0071 .0015 21.31	
#1 #2	.0001 0001	.0005 .0002	.0008 8000	.0000 0001	0003 0002	0015 0020	0004 0004	.0039 .0041	.0082 .0061	
Elem Avg Stddev %RSD	Fe2599 .0080 .0019 23.77	Mg2790 0024 .0096 400.0	K_7664 0447 .0012 2.607	Na5895 0044 .0005 10.63	B_2089 0004 .0000 6.811	Mo2020 0004 .0000 10.49	Pd3404 0010 .0001 10.46	Si2124 .0108 .0002 1.665	Sn1899 0002 .0003 168.6	
#1 #2	.0094 .0067	0092 .0044	0439 0455	0048 0041	0004 0004	0004 0005	0010 0011	.0109 .0107	.0000 0005	
Elem Avg Stddev %RSD	Sr4077 .0000 .0000 1111.	Ti3349 0002 .0001 67.94	W_2079 0010 .0012 122.8							
#1 #2	.0000	0003 0001	0001 0019							
Int. Std. Avg Stddev %RSD	Y_3600 110020. 36. .03279	Y_3710 18837. 37. .19529	Y_2243 2265.4 1.8 .08151	In2306 5066.9 6.7 .13282						
#1 #2	110040. 109990.	18811. 18863.	2266.7 2264.1	5071.6 5062.1						

Raw Data MA23143 page 50 of 245

◀ Zoom In ▶

Sample Nam	ne: MP496	83-I C1	Acquired	: 9/19/2009	14:07:17	Type: I	lnk		
Method: Acc			de: CONC		actor: 1.00	٠.	JIIK		
User: admin	Cust	tom ID1:	Cust	om ID2:	Custo	m ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280
Avg	.4945	.5039	.5001	.5105	.4843	.4622	.5221	.5162	.1973
Stddev	.0000	.0012	.0000	.0002	.0042	.0016	.0005	.0007	.0002
%RSD	.0041	.2316	.0019	.0364	.8766	.3533	.0916	.1321	.1162
#1	.4945	.5048	.5001	.5106	.4813	.4634	.5224	.5157	.1974
#2	.4945	.5031	.5001	.5104	.4873	.4611	.5217	.5167	.1971
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.4710	.5103	.4725	.4903	.5248	.4842	.4880	4.932	5.670
Stddev	.0001	.0026	.0001	.0049	.0004	.0016	.0020	.004	.006
%RSD	.0143	.5053	.0224	1.004	.0722	.3229	.4143	.0779	.1044
#1	.4711	.5084	.4726	.4868	.5250	.4831	.4895	4.935	5.666
#2	.4710	.5121	.4725	.4937	.5245	.4853	.4866	4.930	5.674
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	5.407	5.491	9.928	10.33	.0026	.4980	0023	.0307	0002
Stddev	.011	.041	.009	.00	.0005	.0012	.0014	.0002	.0000
%RSD	.2003	.7371	.0880	.0390	20.19	.2386	62.47	.5294	17.69
#1	5.415	5.462	9.921	10.32	.0030	.4972	0013	.0308	0002
#2	5.399	5.520	9.934	10.33	.0022	.4988	0033	.0306	0002
Elem	Sr4077	Ti3349	W_2079						
Avg	.0000	.4858	.0136						
Stddev	.0000	.0009	.0009						
%RSD	56.05	.1898	6.541						
#1	.0000	.4864	.0142						
#2	.0001	.4851	.0130						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	109390.	18831.	2233.4	4961.3					
Stddev	167.	43.	4.0	.3					
%RSD	.15285	.22606	.17730	.00672					
#1	109510.	18801.	2230.6	4961.5					
#2	109270.	18861.	2236.2	4961.1					

Raw Data MA23143 page 52 of 245

Comment:

									▼ Zoom II Zoom O
Sample Nar	mo: MD404	.02 C1	Acquired	9/19/2009	14.12.17	Type: U	nk		
						٥.	IIK		
Method: Ac		,	de: CONC		actor: 1.00				
User: admir Comment:	n Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Elem Avg Stddev %RSD	Ba4554 1.845 .123 6.658	Be3130 .0462 .0032 7.014	Cd2288 .0479 .0004 .7533	Co2286 .4482 .0002 .0526	Cr2677 .1721 .0001 .0543	Cu3247 .2385 .0004 .1512	Mn2576 .4987 .0020 .3967	Ni2316 .4518 .0011 .2397	Ag3280 .0456 .0002 .4199
#1 #2	1.758 1.932	.0439 .0484	.0476 .0481	.4481 .4484	.1722 .1721	.2388 .2383	.5001 .4973	.4510 .4526	.0454 .0457
Elem Avg Stddev %RSD	V_2924 .4257 .0006 .1358	Zn2062 .4787 .0003 .0648	As1890 1.789 .003 .1501	TI1908 1.765 .004 .2495	Pb2203 .4510 .0003 .0647	Se1960 1.805 .002 .0938	Sb2068 .4627 .0006 .1357	Al3961 2.305 .140 6.064	Ca3179 118.5 7.4 6.284
#1 #2	.4262 .4253	.4785 .4789	1.790 1.787	1.762 1.768	.4512 .4508	1.807 1.804	.4631 .4622	2.206 2.404	113.2 123.7
Elem Avg Stddev %RSD	Fe2599 3.200 .211 6.596	Mg2790 38.87 2.54 6.534	K_7664 29.99 1.80 6.007	Na5895 208.9 11.7 5.608	B_2089 .6146 .0002 .0380	Mo2020 .0022 .0001 3.685	Pd3404 0028 .0014 50.58	Si2124 7.545 .033 .4367	Sn1899 0009 .0004 45.82
#1 #2	3.051 3.350	37.08 40.67	28.72 31.27	200.7 217.2	.6144 .6148	.0022 .0021	0018 0038	7.569 7.522	0006 0012
Elem Avg Stddev %RSD	Sr4077 .6165 .0407 6.598	Ti3349 .0283 .0001 .4515	W_2079 .0206 .0009 4.356						
#1 #2	.5877 .6452	.0284 .0282	.0213 .0200						
Int. Std. Avg Stddev %RSD	Y_3600 103900. 201. .19322	Y_3710 17886. 929. 5.1958	Y_2243 2107.7 1.1 .05196	In2306 4527.9 4.1 .08958					
#1 #2	103760. 104050.	18543. 17228.	2106.9 2108.5	4530.8 4525.1					

Elem Avg Stddev %RSD	Ba4554 1.800 .003 .1784	.0450 .0000 .0731	.0480 .0000 .0663	Co2286 .4500 .0000 .0012	Cr2677 .1721 .0003 .1611	Cu3247 .2423 .0013 .5449	.5010 .0007	Ni2316 .4534 .0003 .0565	Ag3280 .0462 .0003 .6628
#1 #2	1.797 1.802	.0449 .0450	.0480 .0480	.4500 .4499	.1720 .1723	.2432 .2413	.5005 .5014	.4536 .4532	.0460 .0464
Elem Avg Stddev %RSD	V_2924 .4289 .0018 .4123	Zn2062 .4867 .0005 .1091	As1890 1.785 .001 .0344	TI1908 1.769 .010 .5742	Pb2203 .4547 .0007 .1471	Se1960 1.794 .000 .0127	Sb2068 .4622 .0002 .0350	Al3961 2.219 .012 .5349	Ca3179 114.3 .3 .2739
#1 #2	.4276 .4301	.4863 .4871	1.785 1.784	1.776 1.762	.4542 .4551	1.794 1.794	.4623 .4621	2.211 2.227	114.1 114.6
Elem Avg Stddev %RSD	Fe2599 3.096 .002 .0510	Mg2790 37.39 .19 .5163		Na5895 198.5 1.1 .5761	B_2089 .6124 .0007 .1145	Mo2020 .0020 .0000 .4710	Pd3404 0042 .0005 13.13	Si2124 7.551 .009 .1223	Sn1899 .0020 .0002 8.173
#1 #2	3.095 3.097	37.26 37.53	28.96 29.08	197.7 199.3	.6129 .6119	.0020 .0020	0046 0038	7.558 7.545	.0021 .0018
Elem Avg Stddev %RSD	Sr4077 .5982 .0014 .2297	Ti3349 .0285 .0003 1.057	W_2079 .0200 .0005 2.468						
#1 #2	.5973 .5992	.0287 .0283	.0196 .0203						
Int. Std. Avg Stddev %RSD	Y_3600 104270. 232. .22224	Y_3710 18565. 6. .03469	Y_2243 2121.3 1.0 .04673	In2306 4550.1 .2 .00505					
#1 #2	104430. 104100.	18570. 18561.	2122.0 2120.6	4550.3 4550.0					

Sample Name: MP49683-S2 Acquired: 9/19/2009 14:19:21 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3:

Raw Data MA23143 page 53 of 245

Raw Data MA23143 page 55 of 245

									◀ Zoom
									Zoom
Samnle N	ame: CCV	Acquire	d- 0/10/200	09 14:25:26	5 Type	00			
	anie. CCV ccutest1(v1		de: CONC		Factor: 1.0				
Jser: adm		tom ID1:		om ID2:		om ID3:			
Comment		toni ib i.	Cusi	om ibz.	Cusi	om ibs.			
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280
Jnits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	2.084	2.124	2.026	2.028	1.945	1.946	2.069	2.026	.2431
tddev	.091	.094	.004	.001	.004	.001	.001	.001	.0006
6RSD	4.389	4.413	.1785	.0641	.2287	.0581	.0323	.0516	.2495
1	2.148	2.190	2.023	2.027	1.942	1.947	2.069	2.025	.2435
2	2.019	2.057	2.028	2.029	1.948	1.945	2.070	2.027	.2427
heck?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
'alue Pange									
lem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Inits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
wg	1.910	2.011	1.982	1.988	2.034	1.979	2.004	41.43	42.08
tddev 6RSD	.004	.006	.002	.010	.002	.001	.008	1.79 4.318	1.89
9K2D	.1808	.2989	.0771	.4898	.1188	.0632	.3923	4.318	4.487
1	1.907	2.015	1.981	1.995	2.032	1.978	1.998	42.70	43.41
2	1.912	2.007	1.983	1.981	2.035	1.980	2.010	40.17	40.74
Check ? 'alue Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
lem	Fe2599	Mg2790	K_7664	Na5895	B 2089	Mo2020	Pd3404	Si2124	Sn1899
Inits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
vg	42.20	41.87	41.12	41.74	2.026	2.000	1.963	5.125	2.023
Stddev	2.01	1.99	1.60	1.65	.003	.004	.000	.003	.001
6RSD	4.770	4.748	3.897	3.964	.1315	.1859	.0209	.0501	.0414
1	43.62	43.27	42.26	42.91	2.025	1.998	1.964	5.123	2.022
2	40.78	40.46	39.99	40.57	2.028	2.003	1.963	5.126	2.023
heck ? alue	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Raw Data MA23143	page 54 of 245
------------------	----------------

4 700111 III N
Zoom Out

	ame: CCV				Type: QC ctor: 1.000000
User: adm Comment	nin Cust	,	Custo		Custom ID3:
Elem Units Avg Stddev %RSD	Sr4077 ppm 2.146 .095 4.436	ppm 1.956	.009		
#1 #2	2.214 2.079	1.956 1.956	1.942 1.955		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass		
Int. Std. Units Avg Stddev %RSD	Y_3600 Cts/S 106830. 95. .08934	Y_3710 Cts/S 17802. 716. 4.0241	2.5	In2306 Cts/S 4752.2 1.4 .02990	
#1 #2	106890. 106760.	17295. 18308.		4751.2 4753.2	

Raw Data MA23143 page 56 of 245

.0002

.0010

-.0001

.0007

#1 #2

Inst QC: MA23143 ■ Zoom In I Acquired: 9/19/2009 14:31:25 Sample Name: CCB Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: admin Custom ID2: Custom ID3: Comment: Elem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 Units ppm .0006 ppm .0004 ppm .0005 ppm .0003 ppm .0004 ppm .0000 ppm .0006 ppm .0001 ppm .0001 Avg Stddev .0001 .0000 .0001 .0001 .0001 .0002 .0000 .0003 .0000 %RSD 12.39 3.884 20.74 25.46 36.02 12960 3.304 539.5 14.84 .0004 .0004 .0005 -.0002 .0003 .0005 .0005 .0006 -.0001 #2 .0006 .0003 .0004 .0003 .0003 .0002 .0006 -.0002 -.0001 Check? Chk Pass Chk High Limit Low Limit Flem V 2924 7n2062 As1890 TI1908 Ph2203 Se1960 Sh2068 AI3961 Ca3179 Units ppm .0007 ppm .0001 ppm .0011 ppm .0010 ppm .0006 ppm .0004 ppm .0004 ppm .0026 ppm .0219 Avg Stddev .0001 .0002 .0001 .0005 47.84 .0018 .0019 73.36 .0007 .0006 .0002 %RSD 93.24 50.60

Check? Chk Pass High Limit Low Limit

.0010

.0002

.0016

-.0009

.0005

.0002

0039

.0012

.0223

◀ Zoom In ▶

.0013

.0006

Mg2790 Elem Fe2599 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn1899 K_7664 Units ppm .0110 ppm .0236 ppm .1079 ppm .0006 ppm .0008 Avg Stddev .0033 0052 .0152 .0024 .0004 .0003 .0012 .0006 .0000 %RSD 29.70 22.18 14.11 3.120 77.83 29.89 151.3 14.07 4.365 .0199 .0087 .1187 .0741 .0009 .0013 .0001 .0044 .0004 #2 .0133 .0273 .0972 .0774 .0003 8000. -.0016 .0036 .0004

Check ? Chk Pass Chk High Limit Low Limit

Raw Data MA23143 page 57 of 245

Raw Data MA23143 page 59 of 245

Sample Name: JA27169-2 Acquired: 9/19/2009 14:37:37 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3: Comment Elem Ba4554 .0720 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 -.0003 Avq -.0003 -.0005 .0005 .0005 .0283 .0417 .0024 Stddev .0002 .2312 .0001 .0001 0000 .0000 .0002 .0000 .0002 .0002 19.41 8.341 5.897 80.25 %RSD 22.03 .5473 .0949 8.079 .0417 .0417 -.0004 -.0001 .0719 -.0003 .0004 0005 .0005 .0282 .0026 #1 #2 .0721 -.0002 -.0005 .0005 .0005 .0285 .0023 Elem V_2924 Zn2062 As1890 TI1908 Pb2203 Se1960 Sb2068 AI3961 Ca3179 .0036 Avg Stddev .0241 .0005 .0000 .0003.0067 .0000 .474089.62 0001 0006 0004 0003 0002 0005 001 0032 23 3.782 3939 .6831 .2596 .0037 .0245 .0008 .0003 .0002 .0063 -.0007 4717 89.78 #2 .0035 .0004 .4762 .0002 .0002 Fe2599 2.099 Mg2790 14.01 <_7664 5.255 B_2089 .6054 Mo2020 .0025 Pd3404 -.0026 Si2124 7.446 Sn1899 -.0012 Elem Na5895 178.4 Avg Stddev .004 .0001 .074 .00 .016 1.8 .0066 .0002 .0000 %RSD .1803 .0180 .3092 1.007 1.091 2.818 7.662 .9968 2.176 #1 2 102 14 01 5 266 179 7 6100 0025 - 0027 7 498 - 0011 #2 2.096 14.01 5.243 177.1 .6007 .0024 -.0024 7.393 -.0012 Flem W_2079 Sr4077 Ti3349 .5927 .0003 .0291 .0132 Avg Stddev %RSD .0548 1.449 13.30 .0294 .5925 .0144 #2 .5929 .0288 0119 Int. Std. Y 3600 Y 3710 Y 2243 In2306 Avg Stddev 105450 4660.0 223 %RSD .21135 44377 .87047 .64664 105290. 18928. 2128.3 #2 105610. 19047 2154.6 4681.3

Sample Name: C	CB Acquired:	9/19/2009 1	4:31:25	Type: QC
Method: Accutest	1(v164) Mode	e: CONC	Corr. Facto	r: 1.000000
User: admin	Custom ID1:	Custom	ID2:	Custom ID3:
Comment:				

Elem	Sr4077	Ti3349	W_2079
Units	ppm	ppm	ppm
Avg	.0005	.0003	.0108
Stďdev	.0000	.0002	.0012
%RSD	5.849	61.57	10.96
#1	.0005	.0002	.0117
#2	.0005	.0004	.0100

Check? Chk Pass Chk Pass Chk Pass

Low Limit

Int. Std. Units Avg Stddev	Y_3600 Cts/S 110240.	Y_3710 Cts/S 19063.	Y_2243 Cts/S 2266.9	In2306 Cts/S 5094.6 2.2
%RSD	.09134	.68109	.05856	.04373
#1 #2	110310. 110170	18971. 19155	2266.0	5093.0

Raw Data MA23143 page 58 of 245

									◀ Zoom In Zoom Oι
									200111 01
Sample Nar				: 9/19/2009		Type:	Unk		
Method: Acc	cutest1(v1	54) Mo	de: CONC	Corr. F	actor: 5.00	00000			
User: admin	Cus	tom ID1:	Custo	om ID2:	Custo	m ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.0749	0010	0012	0012	0003	.0282	.0433	.0003	0015
Stddev	.0002	.0000	.0016	.0009	.0004	.0004	.0000	.0012	.0015
%RSD	.2846	2.727	135.7	75.79	141.8	1.580	.0315	340.6	102.1
#1	.0748	0010	.0000	0006	0005	.0279	.0433	.0012	0004
#2	.0751	0011	0023	0018	.0000	.0285	.0433	0005	0026
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0037	.0244	.0002	0045	.0005	.0019	0014	.4720	93.67
Stddev	.0009	.0002	.0036	.0042	.0024	.0047	.0011	.0311	.15
%RSD	24.68	1.018	2022.	93.23	485.7	249.4	79.81	6.594	.1625
#1	.0044	.0246	0024	0015	.0022	.0052	0006	.4940	93.56
#2	.0031	.0243	.0028	0074	0012	0014	0021	.4500	93.78
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	2.188	14.74	5.362	189.8	.6311	.0015	0001	7.655	0048
Stddev	.002	.01	.073	.2	.0057	.0003	.0104	.015	.0004
%RSD	.1012	.0648	1.368	.0931	.9090	21.90	17250.	.1927	7.494
#1	2.189	14.74	5.310	189.9	.6271	.0017	0074	7.645	0045
#2	2.186	14.73	5.414	189.6	.6352	.0013	.0073	7.666	0050
Elem	Sr4077	Ti3349	W_2079						
Avq	.6132	.0296	.0031						
Stddev	.0003	.0003	.0075						
%RSD	.0548	.9336	243.5						
#1	.6129	.0298	.0083						
#2	.6134	.0294	0022						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	109230.	19279.	2228.6	4988.9					
Stddev	305.	6.	11.2	20.7					
%RSD	.27900	.03128	.50240	.41434					
	109440.	19283.	2236.5	5003.5					
#1			2220.7	4974.3					

Raw Data MA23143 page 60 of 245

Elem

Ag3280

.0002

.0002

144.3

o

■ Zoom In ▶

Acquired: 9/19/2009 14:49:59 Sample Name: JA27670-1 Type: Unk Mode: CONC Corr. Factor: 1.000000

Method: Accutest1(v164) Custom ID1: User: admin Custom ID2: Custom ID3 Comment:

Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 Avg Stddev .2977 .0000 .0001 .0016 .0061 .0379 4660 .0038 .0004 .0004 .000 .0001 .0000 .0003 .0003 .0006 .0001 .0000 %RSD .1237 88.02 65.27 .6080 5.070 .8912 .1261 2.797 10.79 .2979 .2974 0000 .0000 0016 0063 .0376 0039 .0004 #1 #2 .4656 .0000 .0001 .0016 .0058 .0381 .4664 .0038 -.0004 Al3961 Ca3179 Elem V_2924 Zn2062 As1890 TI1908 Pb2203 Sb2068 .0073 1894 1949 .0002 1645 -.0011 .0040 1.915 139.6 Ava Stddev 0000 0002 0002 0001 0003 0012 0001 006 .0998 .1199 76.58 110.1 .3135 .3472 .1686 1,911 #1 0073 1895 1951 0001 1643 - 0002 0039 139 3 #2 .1948 -.0019 139.9 .0073 -.0002 .1647 .0041 1.919 .1892Fe2599 Elem Mg2790 K_7664 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn1899 22.01 56.20 15.06 17.69 .0036 Avq .0009 .0025 13.13 Stddev .05 .22 .07 .01 .0008 .0000 .0007 .04 .0005 .2134 .3997 .4594 .0472 .2742 %RSD 2025 0009 - 0031 13 16 0032

2014

21 97 56.04 15.02 17.69 #2 22.04 Flem Sr4077 T13349 W 2079 .6943 .0002 Avg Stddev .0011 .0003 %RSD .0245 2.067 2.284

#2 .6945 .0510 .0147 Int. Std. Y 3600 Y 3710 Y 2243 In2306 4686.7 Avg Stddev 106710 2132.6 19237. 135. 12.5 %RSD 02274 70128 21251 26603

.0525

.0143

.6942

106700 #2 106730 19142 2135.8 4695.5

Raw Data MA23143 page 61 of 245

Mn2576

5496

0004

Ni2316

.0031

nnnn

Acquired: 9/19/2009 15:02:09 Sample Name: JA27670-3 Type: Unk Mode: CONC Corr. Factor: 1.000000 Method: Accutest1(v164) Custom ID1: Custom ID2: Custom ID3 User: admin

Comment Elem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 .2182 Avq -.0001 .0002 .0006 .0231 .0391 Stdde nnnn .0000 0001 0002 0002 .0551 .5427 11.99 .9383 29.55 %RSD 20.81

549.7 .0748 9435 .2183 .2181 .0002 5499 .0001 -.0001 0005 .0230 .0390 0030 #2 5494 -.0001 .0393 .0002 .0007 .0233 .0031 Elem V_2924 Zn2062 As1890 TI1908 Pb2203 Se1960 Sb2068 Al3961 Ca3179 Ava .0068 .0905 .1931.0004.0002.0016 1.513 78.29 Stddev 0001 0008 0001 0005 0005 0011 0002 006 03 %RSD .0736 115.4 .4354 .4268 .0396 .0068 .0899 1932 -.0008 1149 .0010 .0014 1.518 78.27 #2 .0069 1.509 1930 .0001 1156 Fe2599 13.30 Mg2790 28.77 K_7664 8.996 B_2089 .1463 Si2124 13.44 Flem Na5895 /lo2020 Pd3404 Sn1899 Stddev .01 .04 .027 .005 .0017 .0000 .0004 .05 .0007 %RSD .0752 .1399 .3027 .0522 1.140 2.743 18.42 .3683 16.26 #1 13 31 28.80 9.015 8 875 1451 0011 - 0025 13 41 0045 #2 13.29 8.976 13.48 28.74 8.868 1475 .0011 -.0020 .0036 Flem Sr4077 Ti3349 W_2079

.4412 Stddev .0002 .0005 %RSD 1679 4562 4.827 4417 .0376 .0098 #2 .4407 .0374 0092

Avg

Int. Std. Y 3710 Y 2243 Y 3600 In2306 Avg Stddev 108450 19342 4818.8 %RSD .12653 39947 46761 .44440

108540. 19287 2184.8 4834.0 #2 108350 19397 2170.4 4803.7

Raw Data MA23143 page 63 of 245

V_2924 Se1960 Ca3179 Elem Zn2062 As1890 TI1908 Pb2203 Sb2068 AI3961 0112 .2604 .0028 1.027 .0003 3185 -.0015 .0032 2.354 126.5 Avg Stddev 0004 011 0006 0039 0008 0001 000 3.843 1.087 1.072 217.6 1.238 57.38 4.284 .0050 .2311 #1 0109 2625 1.035 0001 3213 0021 0033 2 354 126.3 .2584 1.019 .3157 -.0009 2.354 126.7 .0115 -.0007 .0031 #2 Elem Fe2599 Mg2790 K_7664 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn1899 20.19 60.00 15.11 39.83 2145 .0074 15.75 Avq .0029 .0215 .0032 Stddev .01 10 .02 .03 .0002 .0001 .18 .0002 .0555 .1748 .0699 1.143 %RSD .1365 #1 20.19 59 92 15 13 39.85 2168 0075 - 0028 15.88 0216 20.20 60.07 .0073 .0030 Flem Sr4077 T13349 W 2079 .7355 .0012 .0225 Avg Stddev .0001 %RSD 1654 .2123 .1388

Mode: CONC Corr. Factor: 1.000000

Co2286

.0017

.0000

2.443

.0017

.0016

Custom ID2:

Cd2288

.0019

.0001

3.473

.0019

.0020

Type: Unk

Cu3247

.0979

.0008

.7733

.0974

.0985

Mn2576

.3199

.0023

.7104

3183

.3215

Ni2316

.0074

.0001

1.149

.0075

.0073

Custom ID3

Cr2677

.0680

.0003

4883

.0678

.0682

Sample Name: JA27670-2 Acquired: 9/19/2009 14:56:06

Custom ID1:

Be3130

.0000

.0000

562.1

.0000

.0000

Method: Accutest1(v164)

Ba4554

4871

.0008

.1564

4866

.4877

7346

.7363

Y 3600

106610. 675.

63328

107080

106130

.0686

.0688

Y 3710

19238. 78.

40429

19293

19183

.0224

.0225

Y 2243

2109.1

1.0521

2093.4

2124.8

In2306

4619.0 47.5

1 0285

4652.6

User: admin

Comment:

Elem

Avg Stddev

%RSD

#2

#1

Int. Std

Avg Stddev

%RSD

#2

■ Zoom In ▶

Ag3280

.0000

.000

Raw Data MA23143 page 62 of 245

Acquired: 9/19/2009 15:08:15 Sample Name: JA27670-4 Type: Unk Mode: CONC Corr. Factor: 1.000000 Method: Accutest1(v164) User: admin Custom ID1: Custom ID2: Custom ID3

Comment:

#2

■ Zoom In I Zoom Out

Ba4554 Be3130 Cd2288 Co2286 Cr2677 .2717 -.0001 -.0001 .0006 .0026 0001 nnnn nnnn 0000 0002

Elem Cu3247 Mn2576 Ni2316 Ag3280 Avg Stddev .0361 .4764 .0015 .0002 0001 nnnn 0003 0000 .0346 20.93 .0043 %RSD 22.84 30.33 24.46 6.169 .3136 13.20 .2718 .2716 4764 .0017 .0002 .0001 0027 .0362 .0002 3000 -.0001 -.0001 .0005 .4763 #2 .0025 .0360 .0014 -.0002 Elem V_2924 Zn2062 As1890 TI1908 Pb2203 Se1960 Sb2068 Al3961 Ca3179 -.0006 Ava .0024.0724.0028.0000.0656.00054825 139.1 Stddev 0004 0001 0004 000 0004 0004 0005 0075 16.79 .1731 15.69 271.6 6541 58.54 1.561 .1177 .0021 .0724 .0031 .0000 0653 .0004 .0008 4878 139.2 #2 .0659 139.0 0026 .0025 .0001 .0009 4772 Mg2790 38.79 _7664 9.671 _2089 .1469 Flem Fe2599 Na5895 Mo2020 Pd3404 Si2124 Sn1899 14.76 18.81 Avg Stddev .0001 .02 .06 .003 .00 .0008 .0004 .07 .0000 %RSD .1123 .1643 .0343 .0238 5592 3.861 4883 2.985 11.67 #1 18 82 38.84 9.668 14 76 1463 0019 0039 14 36 0015 38.75 9.673 14.76 18.79 1475 .0020 .0033 14.46 .0014 W_2079 Flem Sr4077 Ti3349 .6849 .0146 .0080 Avg Stddev %RSD .0468 1.039 .0145 .6851 .0080 #2 .6847 .0147 .0080 Int. Std. Y 3710 Y 3600 2243 In2306 19365 37 106610 4719.1 %RSD .03101 18941 .32028 .21230 106590. 19339. 2138.4 4726.2

Raw Data MA23143 page 64 of 245

19390.

2128.7

4712.0

106630

									■ Zoom In Zoom Out
Sample Na	me: F6794	4-7 Acc	quired: 9/19	9/2009 15:1	14:22 1	Гуре: Unk			
Method: Ac	cutest1(v16	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: admir	n Cust	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	1.159	.0002	0009	.0368	0058	.0009	13.89	.0722	0003
Stddev	.001	.0000	.0001	.0008	.0000	.0001	.03	.0016	.0005
%RSD	.0989	16.98	13.17	2.049	.7121	8.437	.2120	2.186	163.9
#1	1.159	.0002	0008	.0362	0058	.0008	13.91	.0711	.0000
#2	1.160	.0003	0010	.0373	0058	.0009	13.87	.0733	0006
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0007	.0028	0014	.0015	0010	.0040	.0006	0157	661.9
Stddev	.0004	.0004	.0010	.0000	.0001	.0005	.0013	.0016	.2
%RSD	48.28	15.23	71.92	1.815	13.15	12.16	201.2	9.977	.0259
#1	.0010	.0025	0021	.0015	0010	.0037	0003	0146	661.8
#2	.0005	.0031	0007	.0015	0011	.0044	.0015	0168	662.0
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089		Pd3404	Si2124	Sn1899
Avg	8.690	28.33	43.71	372.3	.0129	0014	.0000	6.167	0019
Stddev	.003	.02	.10	.9	.0007	.0001	.000	.141	.0011
%RSD	.0339	.0552	.2172	.2315	5.603	4.954	483.9	2.294	58.57
#1	8.692	28.32	43.65	372.9	.0134	0014	0002	6.067	0026
#2	8.688	28.34	43.78	371.7	.0124	0015	.0001	6.267	0011
Elem	Sr4077	Ti3349	W_2079						
Avg	2.063	.0036	.0402						
Stddev	.003	.0002	.0003						
%RSD	.1588	5.923	.7522						
#1	2.060	.0038	.0404						
#2	2.065	.0035	.0400						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	98440.	18351.	1948.2	4107.1					
Stddev	386.	12.	40.0	81.6					
%RSD	.39241	.06580	2.0545	1.9870					
#1	98167.	18360.	1976.5	4164.8					
#2	98713.	18343.	1919.9	4049.4					

Raw Data MA23143 page 67 of 245

									◀ Zoom In
									Zoom Ou
	ame: F6794		quired: 9/19			ype: Unk			
	ccutest1(v16	,	de: CONC		actor: 1.00				
User: adm	nin Cust	tom ID1:	Cust	om ID2:	Custo	m ID3:			
Comment	:								
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.4178	.0004	.0002	.0220	0057	.0008	15.17	.0632	0002
Stddev	.0003	.0000	.0002	.0002	.0001	.0004	.15	.0001	.0007
%RSD	.0679	2.894	69.33	.8635	1.585	44.27	.9865	.1263	383.1
#1	.4176	.0003	.0001	.0219	0056	.0011	15.06	.0632	.0003
#2	.4180	.0004	.0003	.0222	0057	.0006	15.27	.0633	0007
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg Stddev	.0018	.0391	.0040	0003 .0006	.0007	.0014	.0002	.2439	248.6 1.2
%RSD	6.039	.2956	10.53	215.3	35.54	43.79	53.49	1.545	.4625
701(3D	0.037	.2750	10.55	213.3	33.34	43.77	33.47	1.545	.4023
#1	.0017	.0390	.0037	0007	.0008	.0009	.0001	.2413	247.8
#2	.0018	.0392	.0043	.0001	.0005	.0018	.0003	.2466	249.4
Elem	Fe2599	Mq2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avq	17.47	30.20	7.505	79.34	.0151	0016	0006	5.142	0020
Stddev	.01	.08	.021	.09	.0003	.0000	.0001	.026	.0005
%RSD	.0386	.2678	.2840	.1181	2.117	.3965	15.59	.4978	24.39
#1	17.46	30.26	7.520	79.41	.0154	0016	0007	5.124	0016
#2	17.47	30.15	7.490	79.27	.0149	0016	0005	5.160	0023
Elem	Sr4077	Ti3349	W_2079						
Avg	.7295	.0065	.0400						
Stddev	.0011	.0004	.0012						
%RSD	.1450	5.813	3.113						
#1	.7302	.0062	.0391						
#2	.7302	.0062	.0409						
-	207	.0000	.0.07						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	102390.	19099.	2074.5	4506.2					
Stddev	1110.	13.	5.4	17.7					
%RSD	1.0845	.06594	.25853	.39366					
#1	103170.	19091.	2078.3	4518.8					
#2	101600.	19108.	2070.7	4493.7					

Sample Nar Method: Acc User: admir Comment:	cutest1(v1		quired: 9/19 de: CONC Custo		actor: 1.00	ype: Unk 00000 om ID3:			
Elem Avg Stddev %RSD	Ba4554 .2484 .0025 1.025	Be3130 .0003 .0000 13.91	Cd2288 0001 .0001 110.0	Co2286 .0318 .0001 .2797	Cr2677 0050 .0000 .4814	Cu3247 .0006 .0003 45.86	Mn2576 14.50 .03 .1999	Ni2316 .0324 .0000 .0026	Ag3280 .0004 .0001 25.10
#1 #2	.2466 .2502	.0003	0002 .0000	.0319 .0318	0050 0050	.0004 .0008	14.48 14.52	.0324 .0324	.0005
Elem Avg Stddev %RSD	V_2924 .0028 .0002 6.133	Zn2062 .0129 .0000 .3230	As1890 .0044 .0012 27.29	TI1908 0009 .0016 180.7	Pb2203 .0009 .0009 93.15	Se1960 .0016 .0003 20.87	Sb2068 0002 .0010 627.5	Al3961 .3685 .0036 .9647	Ca3179 209.0 1.6 .7804
#1 #2	.0026 .0029	.0128 .0129	.0036 .0053	.0002 0020	.0003 .0016	.0014 .0019	.0006 0009	.3660 .3710	207.8 210.1
Elem Avg Stddev %RSD	Fe2599 38.98 .33 .8418	Mg2790 9.538 .085 .8869	K_7664 11.26 .08 .7050	Na5895 51.91 .41 .7929	B_2089 .0077 .0005 7.042	Mo2020 0015 .0000 2.123	Pd3404 0008 .0003 35.04	Si2124 6.851 .006 .0927	Sn1899 0026 .0001 5.388
#1 #2	38.75 39.22	9.478 9.598	11.20 11.32	51.62 52.20	.0073 .0081	0015 0015	0010 0006	6.855 6.846	0027 0025
Elem Avg Stddev %RSD	Sr4077 .4726 .0037 .7763	Ti3349 .0075 .0000 .2981	W_2079 .0375 .0002 .4860						
#1 #2	.4700 .4752	.0075 .0075	.0374 .0377						
Int. Std. Avg Stddev %RSD	Y_3600 105710. 72. .06765	Y_3710 19402. 56. .28732	Y_2243 2111.1 7.1 .33681	In2306 4620.7 5.2 .11348					
#1 #2	105760. 105660.	19441. 19362.	2106.1 2116.1	4617.0 4624.4					

Raw Data MA23143 page 66 of 245

									◀ Zoom Zoom C
Sample N	ame: CCV	Acquire	d: 9/19/20	09 15:33:2	1 Type	: QC			
/lethod: A	ccutest1(v1	64) Mo	de: CONC	Corr.	Factor: 1.0	00000			
Jser: adm	nin Cus	tom ID1:	Cus	tom ID2:	Cust	om ID3:			
Comment	:								
lem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280
Jnits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
lvg	2.008	2.023	2.054	2.047	1.947	1.988	2.044	2.047	.2450
Stddev	.002	.002	.010	.012	.008	.002	.001	.013	.0010
6RSD	.0881	.0996	.4882	.5637	.4121	.0979	.0238	.6248	.4066
1	2.009	2.024	2.061	2.055	1.941	1.986	2.043	2.056	.2443
2	2.007	2.022	2.047	2.039	1.953	1.989	2.044	2.038	.2457
Check ? /alue Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
lem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Jnits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
lvg	1.931	2.003	2.023	2.042	2.051	2.036	2.054	39.31	39.65
Stddev	.003	.015	.009	.018	.011	.006	.009	.00	.02
6RSD	.1402	.7640	.4470	.8822	.5487	.2870	.4308	.0079	.0384
1	1.933	2.014	2.029	2.055	2.059	2.040	2.061	39.31	39.66
2	1.929	1.992	2.017	2.029	2.043	2.032	2.048	39.30	39.64
Check ? /alue Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
lem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Jnits	ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm
lvg	40.00	39.37	39.22	39.98	2.079	2.033	2.002	5.215	2.048
Stddev	.03	.01	.01	.06	.008	.012	.001	.027	.011
6RSD	.0681	.0155	.0185	.1453	.3821	.6000	.0704	.5130	.5208
1	39.98	39.38	39.21	40.02	2.084	2.042	2.001	5.234	2.055
2	40.01	39.37	39.22	39.94	2.073	2.025	2.003	5.196	2.040
Check ? /alue Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Raw Data MA23143 page 68 of 245

							◀ Zoom In Zoom Ou
Sample N	lame: CCV	Acquire	d: 9/19/200	9 15:33:21	Type: 0	2C	
Method: A	Accutest1(v16	54) Mo	de: CONC	Corr. Fa	actor: 1.000	0000	
User: adn	nin Cust	tom ID1:	Custo	m ID2:	Custor	m ID3:	
Commen	t:						
Elem	Sr4077	Ti3349	W_2079				
Units	ppm	ppm	ppm				
Avg	2.067	1.961	1.969				
Stddev	.002	.001	.004				
%RSD	.0941	.0456	.2015				
#1	2.069	1.962	1.972				
#2	2.066	1.960	1.966				
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass				
Int. Std.	Y_3600	Y_3710	Y_2243	In2306			
Units	Cts/S	Cts/S	Cts/S	Cts/S			
Avg	107010.	19084.	2179.3	4737.8			
Stddev	86.	7.	10.8	30.8			
%RSD	.08030	.03477	.49558	.64945			
#1	107070.	19080.	2171.6	4716.0			
#2	106950.	19089.	2186.9	4759.5			

page 69 of 245

Raw Data MA23143 page 71 of 245

							◀ Zo Zoo	om C
Sample Nar	ne: CCB	Acquired: 4	9/19/2009 1	5:39:20	Type: QC			
/lethod: Acc	cutest1(v164) Mode	: CONC	Corr. Facto	r: 1.000000			
Jser: admir	n Custo	m ID1:	Custom	ID2:	Custom ID	3:		
Comment:								
lem	Pd3404	Si2124	Sn1899	Sr4077	Ti3349	W_2079		
Jnits	ppm	ppm	ppm	ppm	ppm	ppm		
Avg Stddev	0008	.0046	.0005	.0007	.0001	.0059		
6RSD	40.20	8.507	99.87	16.21	114.6	48.46		
£1	0011	.0048	.0008	.0008	.0002	.0080		
2	0006	.0048	.0008	.0006	.0002	.0039		
Check?	Chl. Doos	Chl. Doos	Chl. Doos	Chl. Doos	Chk Pass	Chl. Doos		
High Limit	Clik Pass	CIIK Pass	CIIK Pass	CIIK Pass	CIIK Pass	CIIK Pass		
ow Limit								
nt. Std.	Y 3600	Y 3710	Y 2243	In2306				
Jnits	Cts/S	Cts/S	Cts/S	Cts/S				
Avg	107390.	17935.	2245.4	4992.6				
Stddev 6RSD	347. .32267	122. .68236	.9 .04132	1.8 .03531				
0K3D	.32207	.00230	.04132	.03331				
£1	107630.	17849.	2244.8	4991.4				
2	107140.	18022.	2246.1	4993.9				

Sample Nar Method: Acc User: admir Comment:	cutest1(v164		9/19/2009 1 : CONC Custom	Corr. Facto	Type: QC or: 1.000000 Custom ID			
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0006	.0005	F .0006	.0004	.0003	.0002	W .0015	.0003
Stddev	.0001	.0000	.0002	.0000	.0000	.0003	.0002	.0000
%RSD	11.99	7.446	30.14	9.759	3.065	165.9	15.83	12.82
#1	.0007	.0005	.0008	.0005	.0003	.0000	.0013	.0003
#2	.0006	.0005	.0005	.0004		.0004	.0017	.0004
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .0006 0006	Chk Pass	Chk Pass	Chk Pass	Chk Warn .0015 0015	Chk Pass
Elem	Ag3280	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0001	.0007	.0004	.0014	.0014	.0008	0002	.0011
Stddev	.0000	.0000	.0001	.0002	.0003	.0004	.0013	.0004
%RSD	39.43	6.747	36.16	17.67	24.27	57.64	613.5	35.05
#1	.0001	.0006	.0005	.0016	.0011	.0011	.0007	.0014
#2	.0001	.0007	.0003	.0012	.0016	.0005	0011	.0008
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Al3961	Ca3179	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0089	.0359	.0147	.0185	.0776	.0651	.0013	.0011
Stddev	.0033	.0055	.0019	.0001	.0393	.0076	.0002	.0002
%RSD	37.33	15.26	12.86	.6315	50.61	11.61	12.71	16.01
#1	.0112	.0397	.0160	.0185	.1054	.0704	.0014	.0012
#2	.0065	.0320	.0134	.0184	.0498	.0597	.0011	.0009
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Raw Data MA23143 page 70 of 245

									◀ Zoom In ▶ Zoom Out
Sample Na	me: MP496	73-MB1C0	ONF A	quired: 9/1	9/2009 15	:45:31	Type: Unk		
Method: Ad	ccutest1(v1	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: admi	in Cusi	tom ID1:	Custo	om ID2:	Custo	m ID3:			
Comment:									
Elem Avg Stddev	Ba4554 .0005 .0000	Be3130 .0004 .0000	Cd2288 .0003 .0000	Co2286 .0003 .0003	Cr2677 .0005 .0000	Cu3247 .0000 .0004	Mn2576 .0006 .0001	Ni2316 .0005 .0001	Ag3280 0001 .0001
%RSD	5.198	4.046	13.53	80.07	7.270	3116.	9.285	24.20	66.79
#1 #2	.0005 .0005	.0005 .0004	.0003	.0005 .0001	.0005 .0005	0002 .0003	.0005 .0006	.0004 .0006	0002 0001
Elem Avg Stddev %RSD	V_2924 .0003 .0002 88.85	Zn2062 .0003 .0001 24.26	As1890 .0014 .0004 29.61	TI1908 .0005 .0009 156.7	Pb2203 .0008 .0004 48.15	Se1960 0003 .0011 392.0	Sb2068 .0004 .0004 99.07	Al3961 .0163 .0011 6.810	Ca3179 .0266 .0015 5.816
#1 #2	.0004 .0001	.0004	.0011 .0017	.0012 0001	.0011 .0005	0011 .0005	.0001 .0007	.0171 .0155	.0255 .0277
Elem Avg Stddev %RSD	Fe2599 .0125 .0019 15.32	Mg2790 .0226 .0069 30.57	K_7664 0017 .0068 391.7	Na5895 .0337 .0069 20.61	B_2089 .0000 .0005 2755.	Mo2020 .0003 .0001 29.79	Pd3404 0007 .0013 181.4	Si2124 .0038 .0004 11.20	Sn1899 .0006 .0004 73.63
#1 #2	.0139 .0112	.0177 .0275	.0031 0066	.0288 .0386	.0004 0003	.0003 .0004	.0002 0017	.0035 .0041	.0003 .0009
Elem Avg Stddev %RSD	Sr4077 .0005 .0000 4.913	Ti3349 .0003 .0001 34.28	W_2079 0003 .0015 491.4						
#1 #2	.0005 .0005	.0002 .0004	.0008 0014						
Int. Std. Avg Stddev %RSD	Y_3600 107160. 2599. 2.4251	Y_3710 18013. 49. .27073	Y_2243 2238.0 .7 .02970	In2306 4961.0 4.1 .08291					
#1 #2	109000. 105320.	17978. 18047.	2238.4 2237.5	4963.9 4958.0					

Raw Data MA23143 page 72 of 245

◀ Zoom In ▶

	∢ Z Zo									
			e: Unk	2 Туре	09 15:51:4	ed: 9/19/20	Acquire	98-MB1 1	ne: MP496	Sample Nan
				00000	actor: 1.00	Corr. F	de: CONC	 Mo 	utest1(v16	Method: Acc
				m ID3:	Custo	om ID2:	Custo	om ID1:	Cust	User: admin
										Comment:
280	Ag32	Ni2316	Mn2576	Cu3247	Cr2677	Co2286	Cd2288	Be3130	Ba4554	Elem
002	00	0001	.0002	0005	0001	0002	0001	0001	.0000	Avg
001	.00	.0002	.0000	.0002	.0000	.0001	.0003	.0000	.0001	Stddev
3.53	53.	205.6	9.922	37.73	21.76	43.18	257.0	18.59	272.2	%RSD
	00	0002	.0002	0004	0001	0001	.0001	0001	.0001	#1
J01	00	.0000	.0003	0006	0001	0002	0003	0001	.0000	#2
	Ca31	Al3961	Sb2068	Se1960	Pb2203	TI1908	As1890	Zn2062	V_2924	Elem
166		0040	0002	0014	0001	0009	.0006	.0011	.0002	Avg
028		.0027	.0001	.0009	.0004	.0004	.0002	.0002	.0003	Stddev
5.99	16.	69.07	41.51	62.21	649.2	49.34	40.81	16.71	152.7	%RSD
146	.01	0020	0001	0008	.0002	0012	.0007	.0012	.0003	#1
186	.01	0059	0002	0020	0004	0006	.0004	.0010	.0000	₹2
	Sn18	Si2124			B_2089	Na5895	K_7664		Fe2599	Elem
002										Avg
003										Stddev
57.0	167	1.365	52.18	48.54	94.31	3.775	11.82	195.9	8.694	6RSD
000	.00	.0099	0018	0002	.0000	.0102	0319	0084	.0034	#1
004	.00	.0101	0009	0004	0002	.0096	0270	.0014	.0038	‡ 2
							W_2079		Sr4077	Iem
							0001	0004	.0000	Avg
							.0014	.0000	.000	Stddev
							1394.	10.78	91.28	6RSD
							.0009	0004	.0000	[‡] 1
							0011	0004	.0000	2
						In2306	Y_2243	Y_3710	Y_3600	nt. Std.
										wg
										Stddev
						.36023	.03277	.28997	.05131	%RSD
						4940.2	2219.7	17623.	106350.	±1
							2218.6	17695.		[‡] 2
	.00 .00 16	.0100 .0001 1.365	0013 .0007 52.18	0003 .0002 48.54 0002	0001 .0001 94.31	.0099 .0004 3.775 .0102 .0096 ln2306 4927.7 17.8 .36023	0294 .0035 11.82 0319 0270 W_2079 0001 .0014 1394. .0009 0011 Y_2243 2219.1 .7 .03277	0035 .0069 195.9 0084 .0014 Ti3349 0004 .0000 10.78 0004 0004 Y_3710 17659. 51. .28997	.0036 .0003 8.694 .0034 .0038 Sr4077 .0000 .0000 91.28 .0000 .0000 Y_3600 106390. .05131	dev SD m dev SD Std.

Method: Ad User: admi Comment:	ccutest1(v16 n Cust	54) Mo tom ID1:	de: CONC Custo	: 9/19/2009 Corr. F om ID2:	actor: 1.00	00000 om ID3:			
Elem Avg Stddev %RSD	Ba4554 .4925 .0179 3.636	Be3130 .4999 .0180 3.597	Cd2288 .4979 .0004 .0784	Co2286 .5159 .0017 .3303	Cr2677 .4826 .0398 8.248	Cu3247 .4434 .0356 8.036	Mn2576 .5090 .0407 8.004	Ni2316 .5232 .0011 .2076	Ag3280 .1910 .0142 7.441
#1 #2	.5051 .4798	.5126 .4872	.4976 .4982	.5147 .5171	.4545 .5108	.4182 .4686	.4802 .5378	.5224 .5240	.1810 .2011
Elem Avg Stddev %RSD	V_2924 .4674 .0372 7.956	Zn2062 .5228 .0022 .4185	As1890 .4766 .0019 .4089	TI1908 .4931 .0021 .4179	Pb2203 .5259 .0003 .0508	Se1960 .4850 .0041 .8354	Sb2068 .4887 .0002 .0500	Al3961 4.916 .181 3.679	Ca3179 5.660 .205 3.632
#1 #2	.4411 .4937	.5212 .5243	.4752 .4779	.4917 .4946	.5257 .5261	.4821 .4878	.4886 .4889	5.043 4.788	5.805 5.514
Elem Avg Stddev %RSD #1 #2	Fe2599 5.402 .182 3.374 5.531 5.274	Mg2790 5.538 .222 4.015 5.696 5.381	K_7664 9.936 .277 2.784 10.13 9.740	Na5895 10.27 .33 3.215 10.51 10.04	B_2089 .0041 .0005 12.48 .0044	Mo2020 .5064 .0015 .2923 .5053	Pd3404 0013 .0002 12.18 0011 0014	Si2124 .0397 .0002 .3895 .0398	Sn1899 0005 .0005 97.55 0008 0002
Elem Avg Stddev %RSD	Sr4077 .0000 .000 .35.11	Ti3349 .4774 .0391 8.180	W_2079 .0113 .0001 .5787						
#1 #2	0001 .0000	.4498 .5051	.0112 .0113						
Int. Std. Avg Stddev %RSD	Y_3600 110910. 7295. 6.5775	Y_3710 18377. 560. 3.0450	Y_2243 2219.0 .8 .03442	In2306 4905.4 1.2 .02362					
#1 #2	116070. 105750.	17982. 18773.	2218.5 2219.5	4904.5 4906.2					

Raw Data MA23143 page 73 of 245

Raw Data MA23143 page 75 of 245

									■ Zoom In I
									Zoom Out
	lame: JA2842		cquired: 9/			Type: Unk			
	Accutest1(v16	,	de: CONC		actor: 1.00				
User: adn		tom ID1:	Cust	om ID2:	Custo	om ID3:			
Comment	t:								
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg Stddev	.7773 .0012	0002 .0000	.0006	.0111	.0097	.1634	1.110	.0402	0006 .0004
%RSD	.1551	23.11	28.70	2.586	.6135	.2642	.3181	.0718	59.11
#1	.7781	0002	.0005	.0109	.0096	.1637	1.108	.0402	0009
#2	.7764	0002	.0007	.0113	.0097	.1631	1.113	.0401	0004
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0026	.4449	.0183	0006	.0410	.0007	.0016	.2026	25.22
Stddev	.0002	.0026	.0008	.0007	.0002	.0002	.0012	.0018	.00
%RSD	7.007	.5876	4.163	104.5	.4908	23.35	76.30	.9001	.0028
#1	.0024	.4430	.0189	0002	.0408	.0006	.0025	.2013	25.22
#2	.0027	.4467	.0178	0011	.0411	.0008	.0008	.2039	25.22
Elem	Fe2599	Mq2790	K_7664	Na5895	B 2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	102.4	6.282	8.513	17.13	.0259	.0020	.0004	4.292	.0132
Stddev	.1	.019	.003	.03	.0001	.0001	.0012	.014	.0004
%RSD	.0801	.3018	.0289	.1565	.4075	4.148	262.7	.3236	3.217
#1	102.4	6.268	8.515	17.11	.0260	.0019	.0013	4.301	.0135
#2	102.3	6.295	8.511	17.15	.0258	.0020	0004	4.282	.0129
	0.4077	T100.40	111 0070						
Elem Avg	Sr4077 .1475	Ti3349 .0142	W_2079 .0117						
Stddev	.0005	.0001	.0002						
%RSD	.3199	.6022	1.514						
#1	1470	0141	011/						
#1	.1479 .1472	.0141	.0116						
"2	.1472	.0143	.0117						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg Stddev	107010. 263.	18259. 57.	2199.1 2.8	4854.9 2.8					
%RSD	.24566	.30997	.12943	.05836					
#1	107190.	18299.	2197.1	4856.9					
#2	106820.	18219.	2201.1	4852.9					

Raw Data MA23143 page 74 of 245

									Zoom Ou
Sample Na	ame: JA2840	05-1 A	cquired: 9/1	19/2009 16	:09:57	Type: Unk			
Method: A	ccutest1(v1	64) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: adm	in Cus	tom ID1:	Custo	om ID2:	Custo	m ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.0716	0002	.0015	.0007	34.14	.0079	.4333	.0033	.0000
Stddev %RSD	.0008 1.054	.0001 41.47	.0002 11.29	.0002 22.87	.08 .2444	.0004 5.112	.0030 .6843	.0003 7.693	.000 430.9
#1	.0711	0003	.0014	.0006	34.08	.0076	.4312	.0031	.0001
#2	.0721	0002	.0017	.0008	34.20	.0082	.4354	.0035	0002
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0063	.0025	.0068	.0106	0134	.0024	0202	.3742	169.3
Stddev	.0001	.0007	.0004	.0002	.0007	.0011	.0013	.0078	.6
%RSD	.9118	27.24	6.486	2.220	5.188	46.09	6.542	2.078	.3285
#1	.0063	.0030	.0065	.0107	0129	.0016	0211	.3687	169.7
#2	.0062	.0020	.0071	.0104	0139	.0032	0193	.3797	168.9
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	1.335	118.0	64.68	903.1	.6313	.0065	0045	7.546	0024
Stddev	.010	.8	.36	15.0	.0039	.0001	.0004	.063	.0006
%RSD	.7224	.7150	.5501	1.662	.6209	.8180	9.728	.8368	26.70
#1	1.328	117.4	64.43	913.7	.6285	.0065	0048	7.501	0019
#2	1.342	118.6	64.93	892.5	.6341	.0066	0041	7.590	0029
Elem	Sr4077	Ti3349							
Avg	1.097	.0190	.0078						
Stddev	.009	.0001	.0008						
%RSD	.8050	.4635	9.641						
#1	1.091	.0190	.0073						
#2	1.103	.0189	.0084						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	92933.	17191.	1919.1	3902.3					
Stddev	577.	56.	13.4	31.1					
%RSD	.62097	.32829	.70064	.79627					
#1	93341.		1928.6	3924.3					
#2	92525.	17151.	1909.6	3880.4					

Raw Data MA23143 page 76 of 245

									■ Zoom In Zoom Out
									200111 0 01
Sample Nan	ne: JA2840	05-2 A	cquired: 9/	19/2009 16	:16:15	Type: Unk			
Method: Acc	utest1(v16	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: admin Comment:	Cust	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avq	.0331	0002	0014	.0008	.0387	.0013	.0645	.0029	0005
Stddev	.0001	.0000	.0002	.0005	.0012	.0000	.0004	.0002	.0003
%RSD	.3083	30.07	12.59	62.35	3.200	1.293	.6585	5.397	60.20
#1	.0332	0001	0016	.0012	.0378	.0013	.0642	.0030	0003
#2	.0330	0002	0013	.0005	.0396	.0013	.0648	.0028	0007
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0003	0043	0019	.0012	0008	.0024	.0010	.0626	411.6
Stďdev	.0000	.0002	.0020	.0002	.0007	.0021	.0003	.0222	1.6
%RSD	6.867	3.702	107.2	16.96	86.18	85.38	36.52	35.42	.3769
#1	.0003	0042	0005	.0014	0012	.0010	.0007	.0783	412.7
#2	.0004	0044	0033	.0011	0003	.0039	.0012	.0469	410.5
Elem	Fe2599		K_7664		B_2089		Pd3404	Si2124	Sn1899
Avg	.0838	109.3	62.36	952.6	.5486	.0049	0010	10.67	0017
Stddev	.0021	.2	.20	.1	.0301	.0000	.0034	.59	.0001
%RSD	2.504	.1699	.3249	.0063	5.488	.8239	355.5	5.579	3.257
#1	.0823	109.1	62.22	952.5	.5699	.0049	0034	11.09	0017
#2	.0852	109.4	62.50	952.6	.5273	.0049	.0014	10.24	0018
Elem	Sr4077	Ti3349	W_2079						
Avg	1.321	.0024	.0071						
Stďdev	.001	.0002	.0010						
%RSD	.0718	9.534	14.52						
#1	1.322	.0022	.0079						
#2	1.320	.0026	.0064						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	91016.	16635.	1910.0	3852.9					
Stďdev	503.	32.	95.7	181.4					
%RSD	.55265	.19473	5.0101	4.7090					
#1	91372.	16658.	1842.3	3724.6					
#2	90660.	16612.	1977.6	3981.1					

Raw Data MA23143 p	page 77 of 245
--------------------	----------------

Raw Data MA23143 page 79 of 245

	ta IVIAZS 14	- 19-	77 01 243						◀ Zoom In ▶
									Zoom Out
Sample N	lame: F6794	4-11 2	Acquired: 9	9/19/2009 1	6:28:38	Type: Ur	nk		
Method: A	Accutest1(v16	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: adn	nin Cust	tom ID1:	Cust	om ID2:	Custo	m ID3:			
Comment	:								
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.2347	0001	.0009	.0027	.0101	.0690	1.149	.0135	.0004
Stddev	.0006	.0001	.0002	.0003	.0003	.0007	.002	.0002	.0004
%RSD	.2686	91.25	18.15	10.35	2.687	.9497	.1360	1.580	119.9
#1	.2351	0002	.0008	.0025	.0099	.0685	1.148	.0136	.0007
#2	.2342	.0000	.0011	.0029	.0103	.0694	1.150	.0133	.0001
Elem	V 2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0094	.21062	0003	0019	.0331	.0034	.0096	4.783	261.4
Stddev	.0094	.0003	.0003	.0000	.0003	.0034	.0000	.022	2.8
%RSD	7.523	.1489	38.81	.7914	.8135	47.45	.0555	.4537	1.084
7011315	7.525	.1407	30.01	.,,,,,	.0133	47.45	.0555	.4337	1.004
#1	.0089	.2108	0003	0019	.0329	.0045	.0096	4.768	259.4
#2	.0099	.2104	0002	0019	.0333	.0022	.0095	4.799	263.4
Elem	Fe2599	Mq2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avq	4.348	33.07	49.67	163.1	.6978	.0096	0090	8.429	.0044
Stddev	.003	.10	.13	.1	.0007	.0002	.0003	.019	.0000
%RSD	.0686	.3025	.2629	.0425	.0964	1.794	3.452	.2252	.4680
#1	4.350	33.00	49.58	163.1	.6982	.0095	0087	8.442	.0044
#2	4.336	33.15	49.77	163.1	.6973	.0093	0092	8.416	.0044
"-	1.010	00.10		100.2	.0770	.0077	.0072	0.110	.0011
Elem	Sr4077	Ti3349	W_2079						
Avg	.8249	.0935	.0261						
Stddev	.0027	.0001	.0009						
%RSD	.3331	.0892	3.464						
#1	.8268	.0935	.0268						
#2	.8230	.0934	.0255						
Int. Std.	Y_3600	Y 3710	Y 2243	In2306					
Avq	101080.	17431.	2069.5	4421.6					
Stddev	106.	109.	6.3	9.9					
%RSD	.10489	.62521	.30645	.22387					
#1	101150.	17508.	2065.0	4414.6					
#2	101000.	17354.	2074.0	4428.6					

Sample Nar Method: Acc User: admin Comment:	cutest1(v16		cquired: 9/ de: CONC Cust		actor: 1.00	Type: Unk 00000 om ID3:			
Elem Avg Stddev %RSD	Ba4554 1.312 .000 .0313	Be3130 0002 .0001 57.81	Cd2288 .0015 .0003 18.50	Co2286 .0256 .0003 1.144	Cr2677 .0244 .0003 1.287	Cu3247 .3397 .0007 .2153	Mn2576 1.584 .008 .5097	Ni2316 .0933 .0000 .0251	Ag3280 0012 .0001 12.70
#1 #2	1.312 1.313	0002 0001	.0013 .0017	.0258 .0254	.0246 .0242	.3392 .3402	1.578 1.589	.0933 .0933	0013 0011
Elem Avg Stddev %RSD	V_2924 .0056 .0005 8.648	Zn2062 .7327 .0018 .2505	As1890 .0221 .0000 .0065	TI1908 0028 .0002 7.589	Pb2203 .1004 .0013 1.297	Se1960 0010 .0002 17.76	Sb2068 .0027 .0002 6.981	Al3961 .3595 .0006 .1604	Ca3179 27.14 .05 .1856
#1 #2	.0053 .0060	.7340 .7314	.0221 .0221	0030 0027	.1013 .0995	0012 0009	.0028 .0025	.3599 .3591	27.18 27.11
Elem Avg Stddev %RSD	Fe2599 196.6 .2 .1248	Mg2790 6.476 .007 .1143	K_7664 2.259 .016 .7039	Na5895 16.03 .01 .0483	B_2089 .0295 .0001 .2998	Mo2020 .0042 .0001 2.717	.0022	Si2124 4.931 .008 .1636	Sn1899 .0236 .0002 .9032
#1 #2	196.8 196.4	6.481 6.470	2.248 2.270	16.03 16.02	.0294 .0295	.0043 .0041	.0035	4.926 4.937	.0237 .0234
Elem Avg Stddev %RSD	Sr4077 .1638 .0001 .0652	Ti3349 .0435 .0007 1.607	W_2079 .0189 .0005 2.849						
#1 #2	.1637 .1638	.0430 .0440	.0193 .0185						
Int. Std. Avg Stddev %RSD	Y_3600 105460. 469. .44484	Y_3710 17804. 65. .36414	Y_2243 2172.7 3.4 .15627	In2306 4817.1 .3 .00599					
#1 #2	105790. 105130.	17759. 17850.	2175.1 2170.3	4817.3 4816.9					

Raw Data MA23143 page 78 of 245

									◀ Zoom In ▶
									Zoom Out
			de: CONC	09 16:34:5° Corr. tom ID2:	Factor: 1.0				
Elem Units Avg Stddev %RSD	Ba4554 ppm 2.006 .001 .0483	Be3130 ppm 2.044 .002 .0784	Cd2288 ppm 2.043 .026 1.266	2.074 .028	Cr2677 ppm 2.004 .000 .0115	Cu3247 ppm 1.922 .003 .1303	ppm 2.122 .002	Ni2316 ppm 2.080 .027 1.312	Ag3280 ppm .2445 .0008 .3440
#1 #2	2.005 2.007	2.045 2.042	2.061 2.025	2.094 2.055	2.004 2.004	1.924 1.920	2.120 2.123	2.100 2.061	.2451 .2439
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 1.973 .005 .2310	Zn2062 ppm 2.114 .031 1.475	As1890 ppm 2.028 .025 1.210			Se1960 ppm 2.019 .020 .9856	ppm 2.018 .028	Al3961 ppm 40.30 .01 .0130	Ca3179 ppm 41.20 .04 .0848
#1 #2	1.976 1.969	2.136 2.092	2.045 2.011	2.088 2.056	2.099 2.058	2.033 2.005	2.038 1.998	40.31 40.30	41.23 41.18
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Fe2599 ppm 40.87 .04 .0873	Mg2790 ppm 40.94 .11 .2767	K_7664 ppm 40.49 .09 .2314	Na5895 ppm 40.07 .18 .4556	ppm 2.035 .024	Mo2020 ppm 2.049 .025 1.202	Pd3404 ppm 1.932 .004 .1799	Si2124 ppm 5.159 .062 1.200	Sn1899 ppm 2.086 .030 1.453
#1 #2	40.89 40.84	41.02 40.86	40.55 40.42	40.20 39.94	2.052 2.018	2.067 2.032	1.930 1.935	5.203 5.116	2.107 2.064
Check? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Raw Data MA23143 page 80 of 245

Ag3280

ppm .0003

.0002

55.39

-.0002

-.0004

Ca3179

ppm .0055

.0026

.0037

Sn1899

.0002

41.79

-.0006

-.0003

User: admin

Comment: Elem

Units

Avg Stddev

%RSD

Check?

Units

Avg Stddev %RSD

Check?

High Limit Low Limit Elem

Units

Avg Stddev

%RSD

Check ?

High Limit Low Limit

#2

High Limit Low Limit Flem

#2

Sample Name: CCB Acquired: 9/19/2009 16:40:50 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Cd2288

ppm -.0003 .0002

54.31

-.0002

-.0004

As1890

ppm .0006

.0004

.0003

K_7664

ppm 1745

.0103

5.875

.1673

.1818

Custom ID2:

Co2286

ppm -.0003

.0001

50.91

-.0003

-.0002

TI1908

ppm .0007

.0000

.0007

Na5895

ppm .2121

.0056

2.630

.2161

Custom ID3:

Cu3247

ppm -.0005 .0002

51.37

-.0006

-.0003

Se1960

ppm -.0009

.0004

-.0011

Mo2020

.0002

48.88

.0004

.0002

Mn2576

ppm -.0001

.0001

58.95

-.0001

-.0001

Sh2068

ppm -.0002

.0012

.0006

Pd3404

.0035

177.6

-.0045

.0005

Ni2316

ppm -.0002 .0000

14.72

-.0002

-.0002

Al3961

ppm -.0071

.0029

-.0092 -.0051

Si2124

ppm .0043

.0004

8.897

.0046

.0041

Cr2677

ppm .0001 .0003

216.8

.0001

-.0003

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Pb2203

ppm .0003

.0000

.0003

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

B_2089

ppm .0015

.0001

9.560

.0016

.0014

Chk Pass Chk

Custom ID1:

Be3130

ppm .0000 .000

66.44

-.0001

.0000

ppm -.0002

.0000

-.0002

Mg2790

ppm .0138

.0115

83.56

.0056

.0219

Ba4554

ppm .0000

.000

198.2

-.0001

ppm -.0002

.0002 98.30

-.0003

Fe2599

ppm .0007

.0004

59.42

.0004

.0010

.0000

V_2924 Zn2062

							▼ Zoom I Zoom C
							200111 0
Sample Na	me: CCV	Acquire	d: 9/19/200	9 16:34:51	Type: QC	:	
Method: Ac	cutest1(v1	64) Ma	de: CONC	Corr. Fa	ctor: 1.0000	00	
User: admi	n Cus	tom ID1:	Custo	m ID2:	Custom I	D3:	
Comment:							
Elem	Sr4077	Ti3349	W_2079				
Units	ppm	ppm	ppm				
Avg	2.064	2.004	1.994				
Stddev	.000	.002	.018				
%RSD	.0121	.1085	.8852				
#1	2.064	2.005	2.007				
#2	2.064	2.002	1.982				
Check?	Chk Pass	Chk Pass	Chk Pass				
Value							
Range							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306			
Units	Cts/S	Cts/S	Cts/S	Cts/S			
Avg	103470.	17362.	2158.9	4603.2			
Stddev	207.	76.	23.7	49.1			
%RSD	.20025	.43673	1.0976	1.0657			
#1	103330.	17308.	2142.2	4568.5			
#2	103530.	17415.	2175.7	4637.9			
·- =							

Raw Data MA23143	page 81 of 245	5
		_

Raw Data MA23143 page 83 of 245

#2

	cutest1(v16	4) Mo	de: CONC		Type: QC ctor: 1.000000 Custom ID3:	
Elem Units Avg Stddev %RSD	Sr4077 ppm .0000 .0000 795.2	0002 .0000 10.02	.0002 .0016 782.2			
#1 #2 Check 2	.0000 .0000	0002	0009			
High Limit Low Limit	CIIK F d33 V	DIIK I daa	CIIK I daa			
Int. Std. Units Avg Stddev %RSD	Y_3600 Cts/S 105830. 179. .16937	Cts/S 17356. 115.	2226.7 4.3	Cts/S 4916.9 15.7		
#1	105950	17275	2229 7	4928.0		

2223.6

									◀ Zoom I Zoom O
	me: ICSA			09 16:47:0	٠.	e: QC			
	ccutest1(v1	. ,	de: CONC		Factor: 1.0				
Jser: adm Comment:	in Cus	tom ID1:	Cus	tom ID2:	Cust	om ID3:			
Jonneni:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Jnits	ppm	ppm	ppm					ppm	
Avg Stddev	.0014	0001 .0000	0004 .0001	.0014	.0001	0022 .0001	.0004	.0020	
%RSD	7.888	35.49						9.146	
	7.000		20.77						
#1	.0013	0001	0004					.0021	0010
#2	.0014	0001	0003	.0011	.0001	0022	.0005	.0019	0008
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit									
_ow Limit									
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Jnits	ppm	ppm						ppm	
Avg	.0035	0074	.0003	0007	.0007	0012		501.5	389.1
Stddev %RSD	.0000	.0003 3.715	.0013 523.0					4.6 .9240	
,,,,,	.0000	0.710	020.0	70.07	70.10	OLL.,	202.0	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.1010
#1	.0035	0076							
#2	.0035	0072	0007	0011	.0012	.0016	.0002	504.8	389.6
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit									
_ow Limit									
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Jnits	ppm	ppm						ppm	
Avg Stddev	196.8 .2	535.8	.0368					.0156	
%RSD	.0915	c. 8880.	8.410					30.76	
,,,,,	.0710	.0000	0.110	.,010	00.12	0.071	10.01	00.70	7.070
#1	196.7	535.5							
#2	196.9	536.2	.4630	.4868	0012	0035	.0057	.0190	0080
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit									
Low Limit									

Raw Data MA23143	page 84 of 245	

ppm 1.060

.001

.0886

1.059

1.061

Ca3179

ppm 389.4

.0281

389.3

389.4

Sn1899

.0007

12.66

.0064

-.0053

None

Sample Name: ICSAB Method: Accutest1(v164)

Ba4554

ppm .5156

.0012

.2401

.5147

.5164

V 2924

ppm 4931

.0005

.4927

Fe2599

ppm 202.5

.0387

202.5

202.4

Chk Pass Chk Pass

User: admin

Comment: Elem

Units

Avg Stddev

%RSD

Check ?

Value Range Flem

Units

Avg Stddev

%RSD

Check?

Value Range Elem

Units

Avg Stddev

%RSD

Check ?

Range

#2

◀ Zoom In ▶

#2

#2

Custom ID1:

Be3130

ppm .5058

.0012

.2463

.5050

.5067

7n2062

ppm 9905

.0018

.9918

Mg2790

ppm 530.4

.0264

530.3

530.5

o

							▼ Zoom In ► Zoom Out
			de: CONC	9 16:47:02 Corr. Fa om ID2:	Type: QC ctor: 1.00000 Custom II	0	
Elem Units Avg Stddev %RSD	Sr4077 ppm .0058 .0000 .3956	Ti3349 ppm .0028 .0002 6.790	W_2079 ppm .0439 .0001 .3241 .0438				
Check ? High Limit Low Limit	Chk Pass						
Int. Std. Units Avg Stddev %RSD	Y_3600 Cts/S 95947. 138. .14388	Y_3710 Cts/S 16704. 65. .38922	Y_2243 Cts/S 1997.1 1.1 .05751	In2306 Cts/S 4034.8 5.0 .12505			
#1 #2	95850. 96045.	16750. 16658.	1997.9 1996.3	4038.3 4031.2			

Raw Data MA23143	page 85 of 245
	1 3

Raw Data MA23143 page 87 of 245

Sample Nam					J.	
Method: Acci	utest1(v16	4) Mo	de: CONC	Corr. Fac	tor: 1.000000	
User: admin	Custo	om ID1:	Custo	m ID2:	Custom ID3:	
Comment:						
	0.4077	T100.40				
Elem	Sr4077	Ti3349				
Units	ppm	ppm				
Avg	.0058	.0035				
Stddev	.0001					
%RSD	1.619	10.13	.2524			
#1	.0057	.0038	.6004			
#2	.0059	.0033	.5983			
Check?	None	None	Chk Pass			
Value						
Range						
Int. Std.	Y 3600	Y 3710	Y 2243	In2306		
Units	Cts/S	Cts/S	Cts/S	Cts/S		
Avg	96252.					
Stddev	9.	42.	5.5	7.4		
%RSD	.00975	.24923	.27427	.18352		
#1	96259.	16699.	2010.1	4048.9		
#2	96246.	16758.	2002.3	4038.4		

Sample Nan	ne: CCV	Acquired	d: 9/19/2009
Method: Acc	utest1(v16	64) Mo	de: CONC
User: admin	Cust	om ID1:	Custo
Comment:			
Flem	Ba4554	Re3130	C42288

Raw Data MA23143 page 86 of 245

✓ Zoom In ► 9 16:59:27 Type: QC Corr. Factor: 1.000000 om ID2: Custom ID3: Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 ppm 2.016 .003 ppm 2.064 .005 ppm 2.025 .028 ppm 2.055 .028 ppm 2.042 .009 ppm 1.934 .014 ppm 2.127 .025 ppm 2.062 .029 Units ppm 2458 .0028 %RSD .1631 .2278 1.372 1.376 .4288 .7300 1.172 1.421 1.140 2.075 2.035 2.109 2.145 2.067 2.060 2.045 2.005 1.924 1.944 2.083 .2438 .2478 2.014 2.048 Chk Pass Check? Value Range Flem V_2924 Zn2062 As1890 TI1908 Pb2203 Se1960 Sh2068 AI3961 Ca3179 Units ppm 1.979 ppm 2.005 ppm 2.067 ppm 1.990 ppm 2.113 ppm 2.068 ppm 1.991 ppm 40.20 ppm 41.60 Avq .022 .030 .027 .03 015 04 .0966 1 968 2 131 2 024 2.084 2.085 2 011 2 011 41.62 2.096 41.58 1.989 1.986 2.052 2.048 1.969 40.23 1.972 Check? Chk Pass Value Range Fe2599 Mg2790 Na5895 B_2089 Mo2020 Si2124 Sn1899 Elem K_7664 Pd3404 ppm 40.15 ppm 5.084 Units ppm 41.29 ppm 41.69 ppm 40.40 __ppm 2.006 ppm 1.947 ppm 2.070 Avg Stddev .06 .00 .03 .00 .028 .029 .011 .071 .029 %RSD .1510 .0010 .0684 .0116 1.399 1.411 .5713 1.403 1.404 41.69 41.69 5.135 41.33 40.13 40.40 2.026 2.050 2.091 1.939 41.25 40.17 40.40 1.986 2.009 5.034 2.050 Check ? Chk Pass Chk Range

Custom ID2:

Cd2288

ppm 1.070

.003

.2302

1.069

1.072

As1890

ppm 1.015

.001

1.016

K_7664 ppm .2438 .0071

2.919

.2387

.2488

None

Mode: CONC Corr. Factor: 1.000000

Co2286

ppm 4954

.0010

.2069

.4947

4962

TI1908

ppm 1.003

.002

1.001

Na5895

ppm .4321

.0023

.5340

.4305

.4338

None

Custom ID3:

Cu3247

ppm .4715

.0011

.2340

.4707

.4723

Se1960

ppm 1.009

.002

1.010

Mo2020

.0015

.3010

.4869

.4890

None Chk Pass Chk Pass

Mn2576

ppm .5248

.0005

.0965

.5251

.5244

Sh2068

ppm 1.033

.004

.3832

1.036

Pd3404

.0003

.0624

.5270

.5274

Ni2316

ppm .9528

.0015

.1532

.9518

9538

AI3961

ppm 498.1

.2042

497.4

Si2124

ppm .0050

.0046

91.09

.0082

.0018

None

Cr2677

ppm .4930

.0011

.2246

4922

4938

Chk Pass Chk

Ph2203

ppm 9809

.0054

.9847

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

B_2089

ppm .0012

.0004

33.52

-.0015

.0009

Raw Data MA23143 page 88 of 245

◀ Zoom In ▶ Zoom Out

Sample Name: CCV Acquired: 9/19/2009 16:59:27 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3:													
Comment:													
Elem	Sr4077	Ti3349	W_2079										
Units	ppm	ppm 2.005	ppm										
Avg Stddev	2.078	.022	1.989										
%RSD	.1817	1.118	.7134										
#1	2.081	1.989											
#2	2.075	2.021	1.979										
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass										
Int. Std. Units Avg Stddev %RSD	Y_3600 Cts/S 102320. 758. .74081	Cts/S	Cts/S 2168.8 25.8	In2306 Cts/S 4612.0 45.1 .97779									
#1 #2	102860. 101790.	17101. 17115.	2150.6 2187.1	4580.2 4643.9									

Raw Data MA23143	page 89 of 245

Raw Data MA23143 page 91 of 245

Sample Na	ame: CCB	Acquire	d: 9/19/2009	7 17:05:26	Type: QC
Method: A	ccutest1(v16	4) Mo	de: CONC	Corr. Fa	ctor: 1.000000
User: adm	in Cust	om ID1:	Custo	m ID2:	Custom ID3
Comment:					
Flem	Sr4077	Ti3349	W 2070		
Units	514077 ppm	ppm	W_2079 ppm		
Avg	.0002	.0002			
Stddev	.0001				
%RSD	33.27	343.2	5.865		
#1	.0001	0002	.0052		
#2	.0002	.0005	.0047		
Check?	Chk Pass	Chk Pass	Chk Pass		
High Limit					
Low Limit					
Int. Std.	Y_3600	Y_3710	Y_2243	In2306	
Units	Cts/S		Cts/S	Cts/S	
Avg Stddev	106010. 893.	17351. 31.	2241.8 57.8	4939.4 118.5	
%RSD	.84271				
,OD	.54271		2.5704	2.0770	
#1	106650.				
#2	105380.	17328.	2200.9	4855.7	

Samr	Sample Name: CCB Acquired: 9/19/2009 17:05:26 Type: QC														
		ccutest1(v1		de: CONC		Factor: 1.0									
User:		,	stom ID1:	Cus	tom ID2:	Cust	om ID3:								
Comr	nent:														
Elem		Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280					
Units		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm					
Avg		.0001	.0001	.0004	.0004	.0003	0005	.0003	.0003	0003					
Stdde		.0002	.0001	.0001	.0003	.0001	.0003		.0004	.0003					
%RSI	D	211.4	95.96	19.75	85.55	28.29	53.82	14.46	117.5	90.82					
#1		.0000	.0000	.0005	.0002	.0004	0003	.0003	.0001	0001					
#2		.0002	.0001	.0004	.0006	.0003		.0002	.0006	0005					
Chec		Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass					
High I															
LOW L	JIIIII														
Elem		V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179					
Units		ppm	ppm	ppm	ppm				ppm	ppm					
Avg		.0001	.0003	.0014	.0016	.0010			.0097	.0175					
Stdde		.0001	.0001	.0002	.0007	.0008			.0115	.0093					
%RSI)	48.21	20.51	14.70	46.38	80.19	85.11	110.1	119.2	53.23					
#1		.0002	.0002	.0013	.0021	.0015	.0001	.0002	.0015	.0109					
#2		.0001	.0003	.0016	.0011	.0004	.0004	.0000	.0178	.0241					
		011.5	011.5	011.0	011.5	011.0	011.5	011.5	011.5	011.0					
Check High		CRK Pass	Chk Pass	CRK Pass	CRK Pass	CRK Pass	CRK Pass	CRK Pass	CRK Pass	CRK Pass					
Low L															
LOW L															
Elem		Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899					
Units		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm					

.0070 .0051 72.47 .0060 .0197 328.8 .0755 .0119 15.80 .1169 .0013 1.144 .0014 .0004 27.44 .0012 .0001 5.119 -.0011 .0008 75.27 .0053 .0005 9.919 Avg Stddev %RSD .0005 .0001 17.24 -.0079 .0199 .1159 .1178 .0017 .0012 -.0017 -.0005 .0050 .0034 .0671 .0840 .0006 .0005 .0106 .0057

Check? Chk Pass Chk P

Raw Data	a MA2314	3 page	90 of 245						47
									◀ Zoom I Zoom O
	me: JA276		Acquired: 9			Type: U	nk		
Metnod: Ad User: admi	cutest1(v1	54) Mo tom ID1:	de: CONC	Corr. F om ID2:	actor: 1.00	00000 om ID3:			
Comment:	II Cus	IOII ID I:	Cusi	OIII IDZ:	Cusio	נטו וווט:			
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.6840	0001	.0000	.0011	.0151	.0543	.3535	.0074	.0001
Stddev %RSD	.0014	.0000	.0001 400.4	.0003	.0003	.0000	.0003	.0005	.0003
%K3D	.2056	14.65	400.4	28.12	1.938	.0802	.0790	6.347	425.2
#1	.6850	0001	.0001	.0009	.0149	.0544	.3537	.0078	0002
#2	.6830	0001	.0000	.0013	.0153	.0543	.3533	.0071	.0003
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0032	.2651	.1317	.0000	.4319	0012	.0013	.9388	118.5
Stddev	.0003	.0001	.0002	.001	.0006	.0008	.0001	.0000	.2
%RSD	8.576	.0466	.1523	2076.	.1443	60.96	7.502	.0025	.1826
#1	.0030	.2652	.1315	.0005	.4323	0018	.0012	.9389	118.7
#2	.0033	.2651	.1318	0006	.4314	0007	.0013	.9388	118.3
Elem	Fe2599	Mg2790	K_7664	Na5895	B 2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	29.83	45.05	13.08	16.02	.1898	.0016	0026	15.44	.0214
Stddev	.10	.02	.03	.04	.0002	.0000	.0005	.02	.0002
%RSD	.3205	.0504	.1954	.2761	.0816	1.147	20.89	.1049	.8852
#1	29.90	45.07	13.10	16.05	.1899	.0016	0022	15.45	.0216
#2	29.76	45.04	13.07	15.98	.1897	.0016	0030	15.43	.0213
Elem	Sr4077	Ti3349	W_2079						
Avg	.7496	.0247	.0171						
Stddev	.0011	.0002	.0002						
%RSD	.1519	.9637	1.089						
#1	.7504	.0245	.0172						
#2	.7488	.0249	.0170						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	102670.	17209.	2130.5	4583.6					
Stddev	154.	8.	3.4	1.5					
%RSD	.15007	.04576	.15921	.03189					
#1	102560.	17203.	2128.1	4582.5					
#2	102770.	17215.	2132.9	4584.6					

Raw Data MA23143 page 92 of 245

Raw Data MA23143 page 93 of 245

Raw Data MA23143 page 95 of 245

Ag3280

.0001

.0001

.0001

Ca3179

.0073

4.571

0071

.0075

Sn1899 -.0001 .0003

554.9

0003

.0002

o

	mst QC	- 10	72317	,						
									◀ Zoom I	
									Zoom O	ut
Sample N	ame: JA276	70 6 A	cauired: 0/	19/2009 17	.17.44	Type: Unk				
						J.				
	ccutest1(v1	,	de: CONC		actor: 1.00	00000				
User: adm	in Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:				
Comment										
Common										
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280	
Avg	.2396	.0025	.0005	.0283	.1915	.0649	1.079	.0448	0008	
Stddev	.0084	.0002	.0002	.0003	.0008	.0006	.001	.0001	.0000	
%RSD	3.524	7.594	35.20	.9573	.4001	.8839	.0794	.2733	2.823	
#1	.2455	.0026	.0006	.0281	.1921	.0653	1.079	.0449	0008	
#2	.2336	.0024	.0004	.0285	.1910	.0645	1.078	.0447	0008	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	.1358	.1483	.0290	.0001	.0348	0002	.0008	40.67	56.74	
Stddev	.0008	.0005	.0012	.0002	.0005	.0020	.0004	1.46	1.97	
%RSD	.6089	.3690	4.064	105.4	1.579	1051.	53.37	3.601	3.477	
701130	.0007	.5070	4.004	105.4	1.577	1001.	55.57	3.001	3.477	
#1	.1352	.1480	.0282	.0003	.0352	.0012	.0011	41.70	58.14	
#2	.1364	.1487	.0298	.0000	.0344	0012	.0005	39.63	55.35	
#2	.1304	.1407	.0290	.0000	.0344	0010	.0003	39.03	33.33	
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Avq	75.87	26.44	13.29	46.77	.1340	.0025	0083	52.01	0009	
				1.58						
Stddev	2.76	1.03	.41		.0002	.0000	.0001	.05	.0000	
%RSD	3.640	3.912	3.105	3.381	.1512	.4718	.9277	.0932	1.998	
#1	77.00	07.10	10.50	47.00	1041	0005	0004	F1.00	0000	
	77.82	27.18	13.58	47.88	.1341	.0025	0084	51.98	0009	
#2	73.92	25.71	13.00	45.65	.1338	.0025	0083	52.04	0009	
Elem	Sr4077	Ti3349	W_2079							
Avg	.2623	.4905	.0268							
Stddev	.0096	.0000	.0003							
%RSD	3.670	.0080	.9585							
#1	.2691	.4905	.0270							
#2	.2555	.4905	.0267							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306						
Avq	106890.	17305.	2226.5	4698.6						
Stddev	164.	553.	3.2	5.6						
%RSD	.15350	3.1963	.14565	.11865						
,0.1.00		5.1705	1303	003						
#1	107010.	16914.	2228.8	4702.5						
#2	106770.	17696.	2224.2	4694.6						
π ∠	100770.	17090.	2224.2	4094.0						

Raw Data MA23143	page 94 of 245

Raw Data MA23143 page 96 of 245

Sample Name: JA27670-10 Acquired: 9/19/2009 17:23:47 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Cd2288

-.0004

.0001

-.0004 -.0003

As1890

.0001

0012

-.0012

K_7664 .0142 .0118

0225

.0059

W 2079

-.0076 .0004

4.956

-.0073

-.0079

Y 2243

2225.9

09079

2227.3

Custom ID2:

Co2286

-.0001

.0002

150.5

.0000

TI1908

-.0007 .0005

68.88

- 0003

-.0010

Na5895 .0906 .0073

0855

.0958

In2306

4928.2 00375

4928.1

4928.3

Custom ID3:

Cu3247

.0000

.0003

11560.

-.0002 .0002

Se1960

.0007

28.22

0005

.0003

.0000

- 0005

-.0005

Mo2020 -.0005

Mn2576

-.0001

.0000

34.95

-.0001 -.0001

Sb2068

.0004

0009

-.0001

Pd3404 .0011

- 0018

Ni2316

-.0004

.0001

38.58

-.0005 -.0003

Al3961

-.0012 .0011

94.70

- 0004

-.0020

Si2124 .0248 .0012

0239

.0257

Cr2677

.0003

.0003

132.5

.0005

Pb2203

.0004

114.3

0007

.0001

B_2089 -.0001 .0002

- 0002

.0000

Custom ID1:

Be3130

-.0001

.0000

34.30

-.0001 -.0001

Zn2062

.0017

9.030

0018

.0016

Mg2790 -.0017 .0099

- 0086

.0053

T13349

-.0003 .0002

71.96

-.0002

-.0005

Y_3710

17392. 50.

28634

17428.

Ba4554

-.0002

.0001

37.41

-.0001 -.0002

V_2924

-.0005 .0002

44.32

- 0007

-.0004

Fe2599 .0043

.0000

1.120

0043

.0042

Sr4077

-.0001 .0000

10.50

-.0001

-.0001

Y 3600

104960. 1352.

1.2886

104000.

105910.

User: admin

Comment: Elem

%RSD

#1 #2

#1

Elem

Avg Stddev

%RSD

Flem

Avg Stddev %RSD

Int. Std.

%RSD

#2

#1

Elem

Avg Stddev

		1.0										1000							
									◀ Zoom In ▶ Zoom Out										◀ Zoom In ► Zoom Out
Sample Nar Method: Acc User: admir Comment:	cutest1(v1		de: CONC	0/19/2009 1 Corr. F om ID2:	actor: 1.00	Type: Un 00000 om ID3:	ık						de: CONC	/19/2009 1 Corr. F om ID2:	actor: 1.00	Type: Un 00000 om ID3:	nk		
Elem Avg Stddev %RSD	Ba4554 .2607 .0009 .3290	Be3130 0002 .0000 9.381	Cd2288 0007 .0001 14.81	Co2286 .0001 .0004 336.8	Cr2677 .0000 .000 676.5	Cu3247 .0004 .0000 11.88	Mn2576 .5008 .0006 .1275	Ni2316 .0002 .0001 23.35	Ag3280 0002 .0003 132.2	Elem Avg Stddev %RSD	Ba4554 .3777 .0175 4.641	Be3130 0002 .0000 18.06	Cd2288 .0010 .0000 4.046	Co2286 .0001 .0001 177.8	Cr2677 .0009 .0003 30.02	Cu3247 0002 .0003 122.9	Mn2576 .2751 .0018 .6443	Ni2316 .0004 .0005 121.0	Ag3280 0002 .0002 115.3
#1 #2	.2613 .2601	0002 0002	0006 0007	0002 .0004	0002 .0002	.0003	.5003 .5012	.0003	0004 .0000	#1 #2	.3901 .3653	0002 0003	.0011	.0000	.0007 .0012	.0000	.2738 .2764	.0001	0003 .0000
Elem Avg Stddev %RSD	V_2924 .0008 .0000 5.774	Zn2062 .0012 .0002 13.57	As1890 .1551 .0014 .8811	TI1908 .0003 .0005 173.3	Pb2203 .0003 .0005 145.6	Se1960 0008 .0003 37.76	Sb2068 .0012 .0014 111.1	Al3961 .0319 .0046 14.34	Ca3179 169.1 1.2 .7147	Elem Avg Stddev %RSD	V_2924 .0002 .0000 10.62	Zn2062 .0008 .0000 3.953	As1890 1.086 .009 .8383	TI1908 .0002 .0007 351.8	Pb2203 0004 .0004 94.69	Se1960 0002 .0000 11.15	Sb2068 .0012 .0006 49.50	Al3961 .0185 .0029 15.65	Ca3179 134.8 5.9 4.363
#1 #2	.0008 8000.	.0011 .0014	.1561 .1541	.0006 0001	.0007 .0000	0010 0006	.0022 .0003	.0352 .0287	170.0 168.3	#1 #2	.0002 .0002	.0008 8000.	1.093 1.080	0003 .0007	0007 0001	0001 0002	.0008 .0016	.0206 .0165	139.0 130.7
Elem Avg Stddev %RSD	Fe2599 21.45 .07 .3358	Mg2790 65.52 .30 .4626	K_7664 16.98 .07 .4317	Na5895 21.12 .08 .4009	B_2089 .2156 .0011 .5171	Mo2020 .0004 .0002 40.54	Pd3404 0006 .0036 639.8	Si2124 11.91 .09 .7208	Sn1899 0020 .0002 10.96	Elem Avg Stddev %RSD	Fe2599 14.03 .61 4.324	Mg2790 63.29 2.88 4.546	K_7664 15.58 .60 3.849	Na5895 43.19 1.82 4.210	B_2089 .2155 .0029 1.331	Mo2020 .0055 .0001 2.147	Pd3404 0013 .0027 198.6	Si2124 12.23 .15 1.266	Sn1899 0020 .0007 34.80
#1 #2	21.50 21.40	65.74 65.31	17.03 16.93	21.18 21.06	.2164 .2148	.0006	.0020 0032	11.97 11.85	0021 0018	#1 #2	14.46 13.60	65.33 61.26	16.00 15.16	44.47 41.90	.2176 .2135	.0056 .0054	0032 .0005	12.34 12.12	0025 0015
Elem Avg Stddev %RSD	Sr4077 .7962 .0032 .3998	Ti3349 .0012 .0002 12.79	W_2079 .0115 .0012 10.61							Elem Avg Stddev %RSD	Sr4077 .7369 .0340 4.615	Ti3349 .0011 .0002 20.96	W_2079 .0097 .0016 16.68						
#1 #2	.7985 .7940	.0013 .0011	.0123 .0106							#1 #2	.7610 .7129	.0013 .0009	.0108 .0085						
Int. Std. Avg Stddev %RSD	Y_3600 101750. 70. .06889	Y_3710 17133. 72. .41912	Y_2243 2087.3 8.9 .42508	In2306 4492.4 18.8 .41918						Int. Std. Avg Stddev %RSD	Y_3600 104020. 447. .42932	Y_3710 17250. 558. 3.2375	Y_2243 2094.9 15.7 .74837	In2306 4499.6 26.3 .58437					
#1 #2	101700. 101800.	17082. 17183.	2081.0 2093.5	4479.1 4505.7						#1 #2	104330. 103700.	16855. 17645.	2083.9 2106.0	4481.0 4518.2					

.0002

.0001

26.47

-.0002 -.0002

Ca3179

148.0

.5168

147 5

148.5

Sn1899 -.0023 .0007

32.05

- 0028

o

									■ Zoon
									Zoom
				40,0000 4	7 40 00				
Sample Nan			•	/19/2009 1		Type: Un	K		
Method: Acc Jser: admin		om ID1:	de: CONC	Corr. F om ID2:	actor: 1.00	om ID3:			
Oser: aumin Comment:	Cusi	.OII ID 1:	Cusi	UIII ID2:	Cusic	JIII ID3:			
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.1781	0002	.0001	0004	.0001	.0006	.5106	0005	0001
Stddev	.0003	.0001	.0002	.0000	.0000	.0000	.0018	.0000	.0002
%RSD	.1421	31.25	370.0	8.511	14.91	4.395	.3497	.1643	166.1
#1	.1779	0003	0001	0004	.0001	.0007	.5094	0005	.0000
#2	.1783	0002	.0002	0005	.0001	.0006	.5119	0005	0002
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0004	0005	.2016	0014	0003	0003	0001	.0598	82.32
Stďdev	.0003	.0000	.0006	.0006	.0007	.0001	.0010	.0087	.06
%RSD	78.19	5.768	.3214	40.29	277.2	44.04	758.2	14.58	.0687
#1	.0002	0005	.2012	0018	0008	0004	.0006	.0537	82.28
#2	.0006	0005	.2021	0010	.0003	0002	0008	.0660	82.36
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	11.08	31.24	9.783	9.585	.1579	.0009	0006	11.59	0016
Stddev	.02	.02	.018	.047	.0032	.0000	.0031	.20	.0007
%RSD	.1365	.0635	.1843	.4897	2.055	3.485	546.1	1.711	44.63
#1	11.06	31.23	9.770	9.552	.1556	.0008	0028	11.45	0011
#2	11.09	31.25	9.796	9.619	.1602	.0009	.0016	11.73	0021
Elem	Sr4077	Ti3349	W_2079						
Avg	.4549	.0006	.0054						
Stďdev	.0008	.0001	.0004						
%RSD	.1728	21.19	8.111						
#1	.4543	.0007	.0057						
#2	.4554	.0005	.0051						
nt. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	103170.	17282.	2116.7	4748.0					
Stddev	327.	2.	4.4	37.1					
%RSD	.31684	.01135	.20891	.78060					
#1	103400.	17283.	2119.8	4721.8					
#2	102940.	17281.	2113.6	4774.2					

Raw Data MA23143	page 98 of 245
------------------	----------------

Raw Data MA23143 page 100 of 245

 Sample Name: JA27670-4F
 Acquired: 9/19/2009 17:48:14
 Type: Unk

 Method: Accutest1(v164)
 Mode: CONC
 Corr. Factor: 1.000000

Cd2288

-.0004

.0001

23.13

-.0005 -.0003

As1890

-.0006 .0009

137.8

0000

-.0013

K_7664 10.35 .02

10.33

.0037 .0008

20.29

.0042

.0032

Y 2243

27366

2085.4

Co2286

-.0002

.0002

90.00

-.0003

-.0001

-.0005 .0001

26.79

- 0004

-.0004

Na5895 15.76

.00

.0304

15.76

In2306

4630.3

13646

4625.8

Custom ID3:

Cu3247

.0005

.0002

39.54

.0007 .0004

Se1960

.0002

758.7

.0014

Mo2020 .0015 .0003

0018

Mn2576

.4321

.1189

.4318 .4325

-.0009 .0003

- 0007

-.0012

Pd3404 -.0004 .0005

- 0001

Ni2316

-.0001

.0002

-.0002

.0000

Al3961

.0417

3.995

0406

.0429

Si2124 14.27 .03

.2162

14 24

14.29

Cr2677

-.0001

.0003

266.0

-.0004 .0001

Pb2203

-.0004 .0007

189.8

0008

.0001

B_2089 .1531 .0006

1527

Custom ID1: Custom ID2:

Be3130

-.0002

.0000

5.323

-.0002 -.0002

Zn2062

-.0021 .0000

- 0021

-.0021

Mg2790 40.79

.04

.0980

40.82

40.76

.0011

26.71

.0009

.0013

Y_3710

32991

18707.

Ti3349 W_2079

User: admin

Ba4554

.2640

.0002

.0805

.2642 .2639

V_2924

.0008

14.14

0009

.0007

Fe2599 17.61 .03

.1907

17.63

Sr4077

.7246 .0003

.0369

.7248

.7244

Y 3600

104880. 15.

.01397

104890. 104870.

Comment: Elem

%RSD

#1 #2

Elem

Avg Stddev

#1

#2

Elem

Avg Stddev

%RSD

Flem

Avg Stddev %RSD

Int. Std.

%RSD

#1

									◀ Zoom (
									200111
Sample Na	me: JA271	59-3 A	cquired: 9/	19/2009 18	:00:33	Type: Unk			
Method: Ac	ccutest1(v1	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: admi	in Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.4248	.0008	.0011	.0636	.0340	.2430	3.929	.0748	.0005
Stddev	.0010	.0002	.0001	.0002	.0015	.0100	.194	.0001	.0005
%RSD	.2286	22.66	13.89	.3388	4.329	4.125	4.947	.1533	112.0
#1	.4241	.0010	.0010		.0350		4.067	.0747	.0001
#2	.4255	.0007	.0012	.0634	.0329	.2359	3.792	.0749	.0008
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.1511	.1667		0007	.0497	.0032	.0012	49.62	139.1
Stddev	.0070	.0002	.0006	.0002	.0001	.0006	.0009	.04	.2
%RSD	4.632	.1129	4.054	31.58	.1648	20.46	70.90	.0813	.1748
#1	.1560	.1669		0009				49.59	
#2	.1461	.1666	.0156	0006	.0496	.0036	.0006	49.65	139.3
Elem		Mg2790			B_2089		Pd3404	Si2124	Sn1899
Avg	95.51	32.12	12.57		.4186	.0012	0155	63.99	.0010
Stddev	.21	.15	.02	.1	.0022	.0002	.0015	.39	.0003
%RSD	.2213	.4700	.1231	.0186	.5339	12.75	9.401	.6017	29.86
#1	95.36	32.02			.4202		0165		
#2	95.66	32.23	12.56	287.1	.4170	.0013	0145	63.72	.0012
Elem	Sr4077		W_2079						
Avg	1.068	2.758	.0330						
Stddev	.004	.118	.0014						
%RSD	.3441	4.284	4.115						
#1	1.066	2.842	.0340						
#2	1.071	2.675	.0321						
Int. Std.	Y_3600			In2306					
Avg	102740.	19109.	2099.4	4346.8					
Stddev	3795.	26.	9.0	15.0					
%RSD	3.6933	.13633	.42730	.34562					
#1	100060.			4336.2					
#2	105430.	19091.	2105.7	4357.5					

Raw Data MA23143 page 99 of 245

Raw Dat	a MA2314	3 page	97 of 245							
									◀ Zoom	
									Zoom ()u
Sample Na	ame: JA271	69-1 A	cquired: 9/	19/2009 17	:54:27	Type: Unk				
	ccutest1(v1		de: CONC		actor: 1.00	٥.				
User: adm	•	tom ID1:		om ID2:		om ID3:				
Comment:		.0 15 1.	ousi	OIII 102.	Ousi	J 120.				
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280	
Avg	.0851	0001	0005	.0010	.0027	.0289	.1479	.0031	.0000	
Stddev	.0001	.0000	.0000	.0000	.0001	.0006	.0002	.0001	.0002	
%RSD	.1484	19.01	3.894	.8049	2.306	2.023	.1422	2.444	1141.	
#1	.0852	0001	0006	.0010	.0027	.0285	.1478	.0030	0001	
#2	.0850	0002	0005	.0010	.0026	.0293	.1481	.0031	.0001	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	.0047	.0315	.0002	0018	.0016	.0044	0011	2.278	49.20	
Stddev	.0003	.0005	.0017	.0001	.0001	.0000	.0001	.009	.17	
%RSD	5.776	1.520	961.8	5.154	5.976	.5094	13.17	.3997	.3359	
#1	.0046	.0312	0010	0017	.0015	.0044	0012	2.272	49.09	
#2	.0049	.0319	.0014	0018	.0017	.0043	0010	2.285	49.32	
Elem	Fe2599	Mq2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Avg	3.094	8.294	3.916	105.4	.1815	0003	0016	7.994	0014	
Stddev	.012	.040	.019	.4	.0015	.0000	.0004	.092	.0002	
%RSD	.3706	.4758	.4959	.3357	.8474	.3600	25.51	1.156	17.93	
#1	3.086	8.266	3.902	105.2	.1804	0003	0013	7.929	0012	
#2	3.102	8.322	3.929	105.7	.1826	0003	0019	8.060	0015	
Elem	Sr4077	Ti3349	W_2079							
Avg	.2558	.0674	0065							
Stddev	.0001	.0004	.0007							
%RSD	.0494	.6428	10.03							
#1	.2558	.0677	0070							
#2	.2557	.0670	0061							
Int. Std.	Y_3600	Y 3710	Y_2243	In2306						
Avg	105870.	19245.	2122.0	4689.8						
Stddev	266.	148.	18.7	40.1						
%RSD	.25160	.77021	.87899	.85561						
#1	106050.	19350.	2135.2	4718.2						
#2	105680.	19140.	2108.8	4661.4						

■ Zoom In ▶ Sample Name: JA27169-4 Acquired: 9/19/2009 18:06:46 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID3: Custom ID2: Comment: Elem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 Avg Stddev %RSD .0013 -.0002 -.0003 -.0006 .0004 .0269 .0008 -.0001 .0000 .0001 .0000 .0001 .0001 .0002 .0002 .0000 .0001 .000 8.291 20.73 25.13 11.06 65.62 .6494 1.674 121.3 .0013 -.0002 -.0002 -.0002 -.0006 .0002 .0268 .0271 8000. 8000. .0000 .0000 #1 #2 .0014 -.0003 -.0005 .0005 -.0001 V_2924 -.0002 .0001 Elem Zn2062 As1890 TI1908 Pb2203 Sb2068 Al3961 Ca3179 Avg Stddev .0288 .0001 -.0017 .0004 .0001 -.0006 .0014 -.0003 .0001 -.0062 .0015 .2950 .0059 552.8 16.43 24.74 25.80 235.6 #1 - 0003 0289 0006 - 0021 0002 - 0015 - 0004 - 0051 2908 #2 -.0003 .2992 .0287 -.0003 -.0014 .0000 .0004 -.0003 -.0073 B_2089 .0001 .0003 Elem Fe2599 .0254 K_7664 .0862 Sn1899 -.0003 Mg2790 Na5895 Mo2020 Pd3404 Si2124 -.0005 .0934 .0125 .2764 .0056 -.0022 .0246 Avg Stddev .0008 .0023 .0003 .0013 .0005 %RSD 2.024 14.66 0259 0846 2724 0004 - 0005 - 0025 0237 0878 0001 #2 .0248 .1023 .0001 Flem Sr4077 T13349 W 2079 .0011 .0002 -.0119 .0012 Avg Stddev %RSD 5.094 48.11 10.05 .0011 .0003 -.0111 #2 .0011 .0002 -.0128 Int. Std. Y 3600 Y 3710 Y 2243 In2306 108920. 268. 19217. 298. 2202.5 4992.4 Avg Stddev 43637 %RSD 24629 1 5486 59521 108730. 109110. 19006 2209.3 5013.4

Raw Data MA23143	page 101 of 245

Raw Data MA23143 page 103 of 245

4	ŧ	Z	0	0	n	1	lr	1
	•	7.				-	١.	

Sample Name: CCV Acquired: 9/19/2009 18:12:57 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: User: admin Comment: Sr4077 Ti3349 W_2079 ppm 2.064 .002 .0710 ppm 2.004 .009 ppm 1.985 .006 Units Avg Stddev %RSD .4702 .2871 2.065 2.063 1.998 2.011 1.981 1.989 #2 Chk Pass Chk Pass Chk Pass Check? Value Range Int. Std. Y_3600 Cts/S Y_3710 Cts/S 17433. Y_2243 Cts/S In2306 Cts/S Units 102810. Avg Stddev %RSD 2144.8 4603.6 400. .02898 2146.0 2143.7 103100. 17437 4609 4 102530. 17430. 4597.9

Raw Data MA23143	page 104 of 245

	ame: CCV		d: 9/19/20		٠.				
	ccutest1(v1		de: CONC		Factor: 1.0				
User: adm Comment		itom ID1:	Cus	iom ID2:	Cust	om ID3:			
Elem Units Avg Stddev %RSD	Ba4554 ppm 2.004 .001 .0289	ppm 2.038 .001	Cd2288 ppm 2.028 .002 .0746	Co2286 ppm 2.058 .001 .0256	ppm 2.022 .004	ppm 1.942 .002	ppm 2.027 .005	ppm 2.072 .000	ppr .245: .001
#1 #2	2.005 2.004	2.039 2.038	2.029 2.027	2.058 2.057		1.943 1.940			
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pas
Elem Units Avg Stddev %RSD	V_2924 ppm 2.053 .008 .4113	Zn2062 ppm 2.079 .001 .0689	As1890 ppm 2.025 .004 .1818	TI1908 ppm 2.059 .014 .6702	ppm 2.055 .003	ppm 2.016 .000	ppm 1.993 .001	ppm 40.44 .06	ppr 40.7 .0
#1 #2	2.047 2.059	2.078 2.080	2.027 2.022	2.049 2.069		2.016 2.016		40.48 40.40	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pas
Elem Units Avg Stddev %RSD	Fe2599 ppm 40.86 .01 .0228	ppm 40.60 .04	K_7664 ppm 40.77 .10 .2509	Na5895 ppm 40.46 .03 .0641	ppm 2.022 .002	ppm 2.052 .002	ppm 1.949 .003	4.926 .011	2.06 .00
#1 #2	40.86 40.85	40.62 40.57	40.84 40.70	40.48 40.45	2.024 2.021	2.051 2.053	1.952 1.947		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pas

Raw Data MA23143 page 102 of 245

									◀ Zoon
									Zoom
Comple No	ame: CCB	Acquire	d: 0/10/20	09 18:18:5	5 Type	. 00			
					٥.				
	ccutest1(v1		de: CONC		Factor: 1.0				
Jser: admi	in Cus	tom ID1:	Cus	tom ID2:	Cust	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280
Jnits	ppm	ppm	ppm			ppm	ppm		
Ava	.0005	.0006	.0005		.0006	.0007	.0010	.0005	
Stddev	.0001	.0002	.0001	.0001	.0003	.0002	.0001	.0001	.0000
%RSD	25.36	32.33	11.13	7.501	56.71	21.23	12.29	11.36	24.50
v -	0004		000/		0004			0005	0001
#1 #2	.0004	.0005	.0006			.0008	.0009	.0005	
t Z	.0006	.0007	.0005	.0008	.0009	.0006	.0011	.0005	.0001
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Jnits	v_2924 ppm	ppm							
Ava	.0007	.0007	.0012			0012		.0125	
Stddev	.0007	.0007	.0012			.00012		.0069	
%RSD	43.70	27.40						55.31	
JONSO	43.70	27.40	37.02	13.24	03.70	21.50	40.07	33.31	27.55
#1	.0005	.0009	.0007	.0013	.0013	0010	0003	.0076	.0193
#2	.0009	.0006	.0017	.0016	.0005	0014	0005	.0174	.0286
Check ? High Limit Low Limit		Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Jnits	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	.0163	.0244	.0635			.0011	.0007	.0057	
Stddev	.0029	.0110	.0005	.0101	.0002	.0001	.0015	.0006	.0001
%RSD	17.67	44.90	.8113	11.21	18.38	9.655	217.0	9.958	112.3
#1	.0143	.0322	.0639			.0012	0004	.0053	
#2	.0184	.0167	.0632	.0971	.0014	.0010	.0018	.0062	.0000
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

							◀ Zoom In ▶ Zoom Out
							200111 041
Sample N	ame: CCB	Acquire	d: 9/19/200	9 18:18:55	Type: Q0		
Method: A	ccutest1(v16	(4) Mo	de: CONC	Corr. Fa	ctor: 1.0000	00	
User: adm	in Cust	om ID1:	Custo	m ID2:	Custom	ID3:	
Comment	:						
Elem	Sr4077	Ti3349	W_2079				
Units	ppm	ppm	ppm				
Avg	.0006	.0009	0014				
Stddev	.0001	.0001	.0005				
%RSD	18.49	15.44	37.99				
#1	.0005	.0010	0010				
#2	.0007	.0008	0018				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std.	Y_3600	Y_3710	Y_2243	In2306			
Units	Cts/S	Cts/S	Cts/S	Cts/S			
Avg	105760.	16173.	2234.7	4943.6			
Stddev	1041.	591.	47.2	89.1			
%RSD	.98472	3.6526	2.1107	1.8030			
#1	105020.	16591.	2268.1	5006.6			
#		15755.	2201.4	4880.5			

Raw Data MA23143	page 105 of 245

Raw Data MA23143 page 107 of 245

	oom In I
Zo	
	om out
Sample Name: MP49698-S2	
Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000	
User: admin Custom ID1: Custom ID2: Custom ID3:	
Comment:	
Elem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Aq32	80
Avg 2.618 .0473 .0524 .4908 .2001 .3865 1.559 .5259 .044	
Stddev .001 .0002 .0003 .0003 .0004 .0006 .002 .0008 .000	
%RSD .0375 .3257 .4769 .0659 .1790 .1540 .1382 .1489 .070	09
#4 0.440 0470 0500 4005 0004 0000 4.557 5075 04	00
#1 2.618 .0472 .0523 .4905 .2004 .3869 1.557 .5265 .04 #2 2.617 .0474 .0526 .4910 .1999 .3860 1.560 .5254 .04	
#2 2.017 .0474 .0320 .4410 .1777 .3000 1.300 .3234 .041	60
Elem V_2924 Zn2062 As1890 Tl1908 Pb2203 Se1960 Sb2068 Al3961 Ca31	79
Avg .4765 .9290 1.873 1.896 .5211 1.855 .4692 2.111 50.	
	04
%RSD .1763 .3794 .0907 .0925 .1776 .2963 .1341 .2630 .07	95
#1 .4771 .9265 1.874 1.895 .5204 1.859 .4696 2.115 50.	20
#1 .4771 .9265 1.874 1.895 .3204 1.839 .4696 2.115 50. #2 .4759 .9315 1.872 1.897 .5217 1.851 .4687 2.107 50.	
#2 .4737 .7313 1.072 1.077 .3217 1.031 .4007 2.107 30.	30
Elem Fe2599 Mg2790 K_7664 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn18	99
Avg 106.5 31.23 33.45 41.85 .0267 .00170001 4.195 .013	34
Stiddev .1 .04 .04 .05 .0004 .0001 .0000 .008 .000	
%RSD .0683 .1264 .1260 .1239 1.324 6.918 24.99 .1817 .65	71
#1 106.6 31.26 33.48 41.89 .0264 .00170001 4.200 .01	22
#2 106.5 31.20 33.42 41.81 .0269 .00180001 4.200 .011	
#2 100.3 31.20 33.42 41.01 .0207 .00100001 4.170 .01	34
Elem Sr4077 Ti3349 W 2079	
Avg .1502 .0154 .0283	
Stddev .0003 .0008 .0016	
%RSD .1860 5.139 5.760	
#1 .1500 .0149 .0295	
#2 .1504 .0160 .0272	
.0100 .0272	
Int. Std. Y_3600 Y_3710 Y_2243 In2306	
Avg 101660. 17152. 2121.3 4636.1	
Stddev 57. 14. 1.9 .9	
%RSD .05588 .08429 .09177 .01894	
#1 101620. 17142. 2120.0 4636.8	
#2 101700. 17142. 2120.0 4030.0	
101.00. 17102. 2122.7 4000.0	

User: adm	ccutest1(v1		ue. CONC Cust		Custo				
Comment:		iom IDT:	Cusi	om ID2:	Cusio	om ID3:			
Elem Avg Stddev %RSD	Ba4554 2.614 .006 .2476	Be3130 .0471 .0000 .0032	Cd2288 .0528 .0001 .1613	Co2286 .4930 .0009 .1916	Cr2677 .2011 .0005 .2289	.3823		Ni2316 .5285 .0001 .0160	Ag328 .048 .000 .867
#1 #2	2.609 2.618	.0471 .0471	.0529 .0528	.4924 .4937	.2008 .2014	.3824 .3823		.5286 .5285	.048 .047
Elem Avg Stddev %RSD	V_2924 .4804 .0003 .0582	Zn2062 .9301 .0007 .0764	1.887 .002	.005	Pb2203 .5211 .0012 .2240	1.866 .006	.4693 .0017	007	Ca317 49.9 .1 .386
#1 #2	.4802 .4806	.9296 .9306	1.888 1.886	1.896 1.903	.5203 .5219	1.870 1.862	.4681 .4705	2.092 2.082	49.8 50.1
Elem Avg Stddev %RSD	Fe2599 106.5 .4 .3623	Mg2790 31.16 .14 .4545		41.71 .03	B_2089 .0259 .0003 1.299	Mo2020 .0019 .0002 11.60	.0000	Si2124 4.130 .005 .1250	Sn189 .013 .000 6.45
#1 #2	106.2 106.7	31.06 31.26		41.69 41.73	.0257 .0261	.0017 .0020			.013 .014
Elem Avg Stddev %RSD	Sr4077 .1480 .0007 .4718	Ti3349 .0154 .0004 2.833	W_2079 .0311 .0002 .7415						
#1 #2	.1475 .1485	.0151 .0157	.0309 .0313						
Int. Std. Avg Stddev %RSD	Y_3600 102570. 67. .06530	Y_3710 17263. 56. .32564	2140.9 1.7						
#1 #2	102520. 102610.	17303. 17224.		4663.2 4652.9					

Raw Data MA23143 page 106 of 245

									◀ Zoom Zoom (
Sample Nam	e: MP496	98-SD1	Acquired	: 9/19/2009	18:37:04	Type:	Unk		
Method: Acc	utest1(v16	54) Mo	de: CONC	Corr. F	actor: 5.00	00000			
User: admin	Cust	tom ID1:	Custo	om ID2:	Custo	m ID3:			
Comment:									
		D 0400	0.10000		0.0/77	0 0017			
Elem Ava	.7658	Be3130 0009	Cd2288 0017	.0115	Cr2677 .0100	.1740	Mn2576 1.161	Ni2316 .0388	Ag3280 .0021
Stddev	.0029	.0000	.0008	.0004	.0018	.0157	.114	.0002	.00021
%RSD	.3764	3.142	44.70	3.247	18.27	9.019	9.822	.6006	12.49
#1	.7638	0009	0012	.0118	.0087	.1629	1.080	.0386	.0019
#2	.7679	0008	0023	.0112	.0113	.1851	1.241	.0389	.0023
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Ava	.0001	.4707	.0202	.0106	.0424	.0021	.0019	.1758	25.54
Stddev	.0003	.0005	.0039	.0033	.0007	.0003	.0048	.0588	.06
%RSD	343.8	.1118	19.15	31.01	1.697	15.94	250.5	33.43	.2223
#1	0001	.4703	.0229	.0129	.0429	.0018	.0053	.1343	25.50
#2	.0003	.4710	.0175	.0083	.0419	.0023	0015	.2174	25.59
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	103.6	6.469	8.971	17.24	.0227	0004	0056	4.040	.0127
Stddev	.0	.026	.003	.01	.0006	.0002	.0003	.010	.0015
%RSD	.0192	.4042	.0316	.0701	2.436	39.36	4.506	.2464	11.76
#1	103.6	6.450	8.973	17.23	.0223	0005	0055	4.047	.0117
#2	103.6	6.487	8.969	17.25	.0231	0003	0058	4.033	.0138
Elem	Sr4077	Ti3349	W 2079						
Avg	.1458	.0133	0447						
Stddev	.0007	.0017	.0042						
%RSD	.5045	12.92	9.383						
#1	.1453	.0121	0418						
#2	.1463	.0145	0477						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	98208.	17178.	2201.3	4882.4					
Stddev	8230.	5.	4.7	10.7					
%RSD	8.3799	.02702	.21449	.21867					
	104030.	17175.	2204.7	4889.9					
#1 #2	92389.	17182.	2198.0	4874.8					

◀ Zoom In ▶ Zoom Out

									◀ Zoom In ▶ Zoom Out
Sample N	ame: JA271	69-5 2	Acquired: 9	9/19/2009 1	18:43:11	Type: Ui	nk		
Method: A	ccutest1(v1	,	de: CONC	Corr. F	actor: 1.00	00000			
User: adm	nin Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Comment	:								
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.0851	0001	0005	.0014	.0107	.0259	.7887	.0116	.0001
Stddev	.0008	.0000	.0000	.0004	.0007	.0001	.0037	.0002	.0000
%RSD	.9082	26.21	3.121	30.00	6.962	.4738	.4641	1.733	1.317
#1	.0846	0001	0005	.0011	.0102	.0258	.7861	.0114	.0001
#2	.0857	0002	0005	.0017	.0112	.0260	.7913	.0117	.0001
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0016	.1137	.0008	.0009	.0010	.0039	.0009	1.114	82.07
Stddev	.0001	.0004	.0000	.0003	.0003	.0021	.0009	.012	.62
%RSD	8.483	.3564	.0722	31.73	28.20	53.70	105.8	1.059	.7508
#1	.0015	.1134	.0008	.0007	.0008	.0024	.0002	1.106	81.63
#2	.0016	.1140	.0008	.0011	.0011	.0054	.0015	1.123	82.51
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	2.091	9.108	7.366	46.39	.2409	.0145	0026	7.166	0011
Stddev	.021	.006	.083	.34	.0007	.0002	.0002	.020	.0001
%RSD	.9861	.0713	1.120	.7334	.2800	1.197	6.033	.2833	4.766
#1	2.077	9.103	7.308	46.15	.2404	.0144	0028	7.151	0011
#2	2.106	9.113	7.424	46.63	.2413	.0146	0025	7.180	0011
Elem	Sr4077	Ti3349	W_2079						
Avg	.1757	.0264	0020						
Stddev	.0013	.0006	.0004						
%RSD	.7168	2.259	17.98						
#1	.1748	.0268	0018						
#2	.1766	.0260	0023						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	104120.	17134.	2144.1	4703.5					
Stddev	378.	82.	2.9	10.7					
%RSD	.36255	.47743	.13321	.22688					
#1	104390.	17192.	2146.1	4711.0					
#2	103860.	17076.	2142.1	4695.9					

User: adm Comment:		tom ID1:	de: CONC Cust	om ID2:	actor: 1.00 Custo	om ID3:			
Elem Avg Stddev %RSD	Ba4554 .1137 .0001 .0639	Be3130 0001 .0000 55.20		Co2286 .0096 .0002 1.837	Cr2677 .0004 .0000 1.899	Cu3247 .0084 .0002 1.846	Mn2576 2.997 .003 .0875	Ni2316 .0065 .0003 4.055	Ag3280 .0004 .0002 62.19
#1 #2	.1138 .1137	.0000 0001	0004 .0001	.0097 .0095	.0004 .0004	.0085 .0083		.0067 .0063	.0002
Elem Avg Stddev %RSD	V_2924 .0006 .0003 46.73	Zn2062 .0211 .0001 .2688	As1890 .0027 .0002 5.899	TI1908 .0006 .0007 110.6	Pb2203 .0030 .0002 5.025	Se1960 .0024 .0019 79.46	0001 .0006	Al3961 .1345 .0004 .3141	Ca3179 61.56 .11
#1 #2	.0008 .0004	.0211 .0210	.0026 .0028	.0011 .0001	.0031 .0029	.0010 .0037	0005 .0004	.1342 .1348	61.49 61.64
Elem Avg Stddev %RSD	Fe2599 4.667 .002 .0498	Mg2790 8.135 .014 .1713	6.452	92.11 .26	B_2089 .5268 .0007 .1414	Mo2020 .0010 .0001 10.93		Si2124 7.559 .005 .0693	Sn1899 0011 .0002 14.63
#1 #2	4.666 4.669	8.145 8.125	6.424 6.481	91.93 92.30	.5262 .5273	.0010 .0009	0023 0006	7.563 7.555	0010 0012
Elem Avg Stddev %RSD	Sr4077 .3231 .0002 .0513	Ti3349 .0052 .0003 5.924	W_2079 .0004 .0002 47.52						
#1 #2	.3230 .3232	.0054 .0050	.0003 .0006						
Int. Std. Avg Stddev %RSD	Y_3600 103240. 259. .25075	Y_3710 17625. 86. .48976	2151.1	In2306 4720.2 11.1 .23614					
#1 #2	103050. 103420.	17687. 17564.		4712.3 4728.1					

Raw Data MA23143 page 109 of 245

Raw Data MA23143 page 111 of 245

									◀ Zoom I Zoom O	
Sample N	ame: JA271	69-7 A	cquired: 9/	19/2009 18	·55·18	Type: Unk				
	ccutest1(v1		de: CONC		actor: 1.00	٥.				
User: adm		tom ID1:		om ID2:		om ID3:				
Comment		tom ib i.	Cusi	om ibz.	Cusic	JIII IDJ.				
Comment										
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280	
Avg	.3634	0002	0006	.0002	0001	.0015	.7072	.0022	.0000	
Stddev %RSD	.0007 .1798	.0000 12.49	.0000 7.536	.0000 7.481	.0002 174.0	.0001 8.811	.0026 .3614	.0001 6.744	.000 365.0	
70K3D	.1790	12.49	7.550	7.401	174.0	0.011	.3014	0.744	303.0	
#1	.3638	0002	0006	.0002	.0000	.0016	.7090	.0023	0001	
#2	.3629	0002	0006	.0002	0002	.0014	.7054	.0021	.0000	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	.0010	.0015	0009	0004	.0007	.0005	0005	.0742	101.8	
Stddev	.0001	.0000	.0000	.0002	.0002	.0004	.0000	.0019	.1	
%RSD	13.77	.1420	2.148	47.89	33.91	82.80	5.017	2.580	.1431	
#1	.0009	.0015	0009	0002	.0006	.0008	0005	.0756	101.9	
#2	.0011	.0015	0009	0005	.0009	.0002	0005	.0729	101.7	
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Avg	2.735	29.98	2.369	52.39	.0791	0001	0026	6.600	0013	
Stddev	.001	.00	.016	.05	.0002	.0001	.0015	.002	.0002	
%RSD	.0377	.0134	.6702	.0991	.1951	110.1	58.75	.0332	17.03	
#1	2.736	29.97	2.380	52.43	.0793	0002	0037	6.601	0015	
#2	2.735	29.98	2.358	52.35	.0790	.0002	0015	6.598	0012	
Elem	Sr4077	Ti3349	W_2079							
Avg	.1916	.0023	0038							
Stddev	.0003	.0002	.0006							
%RSD	.1518	8.289	14.73							
#1	.1918	.0025	0041							
#2	.1914	.0023	0034							
"-		···	.0001							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306						
Avg	102930.	17863.	2130.7	4674.5						
Stddev	158.	46.	1.8	2.8						
%RSD	.15352	.25647	.08622	.05974						
#1	102820.	17831.	2129.4	4676.4						
#2	103050.	17895.	2132.0	4672.5						
-	.00000.		2.02.0	.0,2.0						

Raw Data MA23143 page 110 of 245

Sample Nam Method: Acci User: admin Comment:	utest1(v16		de: CONC	19/2009 19 Corr. F om ID2:	actor: 1.00	Type: Unk 10000 nm ID3:			
Elem Avg Stddev %RSD	Ba4554 .3497 .0019 .5415	Be3130 0002 .0000 .2070	Cd2288 0004 .0003 66.29	Co2286 .0002 .0001 83.09	Cr2677 .0009 .0004 46.71	Cu3247 .0238 .0003 1.194	Mn2576 .7020 .0112 1.602	Ni2316 .0028 .0001 4.130	Ag3280 0001 .0002 177.7
#1 #2	.3510 .3483	0002 0002	0002 0006	.0003 .0001	.0006 .0013	.0240 .0236	.7099 .6940	.0028 .0027	0003 .0000
Elem Avg Stddev %RSD	V_2924 .0011 .0004 38.71	Zn2062 .0153 .0002 1.052	As1890 .0013 .0009 71.55	TI1908 0001 .0006 1099.	Pb2203 .0006 .0007 110.3	Se1960 0023 .0008 33.22	Sb2068 0002 .0003 156.6	Al3961 .1056 .0030 2.832	Ca3179 97.61 .47 .4840
#1 #2	.0008 .0014	.0152 .0154	.0006 .0019	0005 .0004	.0001 .0011	0028 0018	.0000 0004	.1035 .1077	97.94 97.27
Elem Avg Stddev %RSD	Fe2599 3.894 .016 .3987	Mg2790 28.32 .11 .3737	K_7664 2.223 .007 .3135	Na5895 49.30 .18 .3620	B_2089 .0740 .0003 .4707	Mo2020 0001 .0002 137.9	Pd3404 0016 .0002 9.817	Si2124 6.542 .022 .3365	Sn1899 0014 .0004 26.04
#1 #2	3.905 3.883	28.40 28.25	2.228 2.218	49.42 49.17	.0738 .0742	.0000	0017 0015	6.526 6.557	0017 0012
Elem Avg Stddev %RSD	Sr4077 .1825 .0008 .4359	Ti3349 .0030 .0001 4.982	W_2079 0050 .0007 13.25						
#1 #2	.1830 .1819	.0031 .0029	0054 0045						
Int. Std. Avg Stddev %RSD	Y_3600 102250. 1309. 1.2799	Y_3710 17886. 66. .36816	Y_2243 2133.1 5.3 .24748	In2306 4689.4 8.6 .18347					
#1 #2	101330. 103180.	17840. 17933.	2136.8 2129.4	4695.5 4683.3					

Raw Data MA23143 page 112 of 245

=	
	3
_	-

									■ Zoom In I
Sample Nar				cquired: 9/1			Type: Unk		
Method: Acc	cutest1(v16	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: admir Comment:	ı Cusi	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.0000	0002	0002	0004	.0004	.0001	.0003	.0002	.0000
Stddev	.0000	.0000	.0001	.0002	.0001	.0005	.0000	.0000	.000
%RSD	129.1	10.47	74.00	52.75	16.17	629.6	.9895	3.187	712.4
#1	.0001	0002	0003	0006	.0004	0003	.0003	.0002	0002
#2	.0000	0002	0001	0003	.0005	.0004	.0003	.0002	.0002
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	0003	.0064	0001	.0004	.0004	0016	0007	.0299	.1224
Stďdev	.0003	.0001	.0000	.0003	.0001	.0016	.0004	.0008	.0008
%RSD	111.7	2.178	47.03	83.04	23.01	95.71	58.74	2.776	.6489
#1	0001	.0063	0001	.0006	.0005	0028	0010	.0293	.1218
#2	0005	.0065	0001	.0002	.0004	0005	0004	.0304	.1230
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	.0130	.0116	0355	.0453	0003	0006	0021	.0126	.0092
Stddev	.0006	.0056	.0139	.0047	.0004	.0000	.0005	.0003	.0003
%RSD	4.220	47.72	39.14	10.31	174.0	1.808	23.21	2.509	3.245
#1	.0126	.0156	0454	.0420	0006	0007	0018	.0124	.0095
#2	.0134	.0077	0257	.0486	.0001	0006	0025	.0129	.0090
Elem	Sr4077	Ti3349	W_2079						
Avg	.0000	.0008	0145						
Stďdev	.000	.0002	.0002						
%RSD	496.7	20.37	1.317						
#1	.0000	.0007	0146						
#2	.0000	.0009	0143						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	106830.	18110.	2274.0	5088.3					
Stddev	519.	52.	22.5	42.6					
%RSD	.48592	.28826	.99127	.83798					
#1	107200.	18073.	2289.9	5118.5					
#2	106460.	18147.	2258.0	5058.2					

Raw Data MA23143	page 113 of 245

Raw Data MA23143 page 115 of 245

									■ Zoom	ln
									Zoom ()u
Sample Na	ame: MP496	81-LC1	Acquired	: 9/19/2009	19-19-49	Type:	Unk			
	.ccutest1(v1		de: CONC		actor: 1.00	٠.	O			
User: adm		tom ID1:		om ID2:		om ID3:				
Comment		.0 15 1.	ousi	0111102.	Oubit	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Comment										
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280	
Avg	.4975	.5133	.4915	.5098	.5138	.4553	.5219	.5223	.1981	
Stddev	.0003	.0003	.0011	.0008	.0001	.0006	.0000	.0001	.0003	
%RSD	.0631	.0493	.2182	.1520	.0232	.1387	.0012	.0274	.1522	
#1	.4977	.5135	.4923	.5103	.5138	.4557	.5219	.5222	.1979	
#2	.4973	.5131	.4907	.5093	.5137	.4548	.5219	.5224	.1983	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	.4977	.5311	.4709	.5015	.5232	.4795	.4735	5.055	5.870	
Stddev	.0006	.0005	.0021	.0015	.0001	.0015	.0006	.001	.028	
%RSD	.1180	.0855	.4385	.3052	.0121	.3080	.1361	.0270	.4829	
#1	.4981	.5308	.4724	.5026	.5231	.4805	.4739	5.056	5.890	
#2	.4973	.5314	.4695	.5004	.5232	.4785	.4730	5.054	5.850	
Elem	Fe2599	Mq2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Avg	5.607	5.780	10.14	10.41	.0018	.5017	0007	.0596	0003	
Stddev	.023	.013	.04	.02	.0003	.0010	.0016	.0010	.0002	
%RSD	.4084	.2308	.3783	.2076	15.11	.1914	224.9	1.666	58.97	
#1	5.623	5.771	10.17	10.43	.0020	.5023	.0004	.0603	0004	
#2	5.590	5.790	10.11	10.40	.0016	.5010	0018	.0589	0002	
Elem	Sr4077	Ti3349	W_2079							
Avg	.0000	.4969	0017							
Stddev	.0000	.0003	.0001							
%RSD	96.86	.0559	8.262							
#1	.0001	.4971	0016							
#2	.0000	.4967	0018							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306						
Avg	104090.	17075.	2207.5	4838.1						
Stddev	29.	123.	5.6	8.2						
%RSD	.02768	.72137	.25322	.16863						
#1	104070.	16988.	2203.6	4832.3						
#2	104120.	17162.	2211.5	4843.9						

Sample Nai Method: Ac User: admir	cutest1(v16		de: CONC	l: 9/19/200 Corr. F om ID2:	actor: 1.00	٠.	Unk		
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	0002	0002	0003	0002	.0002	0002	0001	.0002	0002
Stddev	.0000	.0001	.0002	.0002	.0001	.0000	.0000	.0000	.0003
%RSD	9.301	35.36	59.07	91.84	45.83	1.173	28.06	18.20	179.8
#1	0002	0002	0004	0004	.0001	0002	0001	.0002	0004
#2	0002	0003	0002	0001	.0003	0002	0001	.0003	.0000
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0001	.0017	0001	.0000	.0000	0011	0003	0041	.0183
Stddev	.0004	.0000	.0009	.0003	.001	.0002	.0007	.0056	.0002
%RSD	661.6	.1840	745.8	1248.	2745.	13.99	291.1	138.4	.8549
#1	0002	.0017	.0005	0002	.0003	0012	0008	0001	.0181
#2	.0004	.0017	0008	.0002	0003	0010	.0003	0081	.0184
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	.0006	.0046	0486	.0227	0007	0006	0012	.0136	0003
Stddev	.0011	.0042	.0135	.0053	.0003	.0001	.0020	.0001	.0008
%RSD	191.7	91.83	27.83	23.29	46.24	13.47	167.3	.7088	255.1
#1	.0013	.0076	0581	.0264	0009	0005	.0002	.0136	0008
#2	0002	.0016	0390	.0190	0005	0007	0026	.0135	.0002
Elem Avg Stddev %RSD	Sr4077 0001 .0000 15.26	Ti3349 0003 .0001 28.64	W_2079 0146 .0008 5.460						
#1 #2	0001 0001	0003 0002	0140 0151						
Int. Std. Avg Stddev %RSD	Y_3600 106550. 368. .34503	Y_3710 17950. 83. .46228	Y_2243 2236.2 42.2 1.8887	In2306 4988.5 92.1 1.8462					
#1 #2	106290. 106810.	17891. 18009.	2266.1 2206.4	5053.7 4923.4					

Raw Data MA23143 page 114 of 245

									◀ Zoom In I Zoom Out
			de: CONC	09 19:25:4 Corr. tom ID2:	Factor: 1.0				
Elem Units Avg Stddev %RSD	Ba4554 ppm 1.959 .003 .1362	Be3130 ppm 2.025 .002 .0837	Cd2288 ppm 1.982 .000 .0031	ppm 2.018 .001	ppm 2.017 .010	ppm 1.872 .003	ppm 2.032 .004	2.033	
#1 #2	1.957 1.961	2.026 2.024	1.982 1.982			1.874 1.870	2.029 2.035	2.033 2.032	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 1.984 .000 .0059	Zn2062 ppm 2.092 .002 .0807		ppm 2.034 .011	ppm 2.030 .002	ppm 1.947 .003		ppm 39.62 .03	ppm 40.91 .06
#1 #2	1.984 1.984	2.091 2.093	1.962 1.967	2.026 2.041	2.029 2.032		1.932 1.928	39.59 39.64	40.95 40.87
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Fe2599 ppm 40.51 .01	Mg2790 ppm 41.01 .06 .1386		ppm 39.92 .02	ppm 1.955 .001	ppm 2.000 .002	Pd3404 ppm 1.885 .002 .1272	4.826 .002	ppm 2.038 .004
#1 #2	40.51 40.50	40.97 41.05	39.73 39.84	39.91 39.94	1.956 1.955	1.999 2.002	1.886 1.883	4.825 4.828	2.035 2.041
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Raw Data MA23143 page 116 of 245

ppm .0001

.0000

19.88

.0001

-.0001

Ca3179

ppm .0070

.0058 82.90

.0110

Sn1899

.0002

631.9

.0002

.0001

							◀ Zoom In Zoom Ou
Sample N	lame: CCV	Acquire	d: 9/19/200	9 19:25:49	Type: QC	:	
Method: A	Accutest1(v16	64) Mo	de: CONC	Corr. Fa	ctor: 1.0000	00	
User: adn	nin Cust	tom ID1:	Custo	m ID2:	Custom I	D3:	
Commen	t:						
Elem	Sr4077	Ti3349	W_2079				
Units	ppm	ppm	ppm				
Avg	2.022	1.959	1.946				
Stddev	.000	.001	.008				
%RSD	.0118	.0307	.4185				
#1	2.022	1.959	1.940				
#2	2.022	1.960	1.951				
Check? Value Range	Chk Pass	Chk Pass	Chk Pass				
Int. Std.	Y_3600	Y_3710	Y_2243	In2306			
Units	Cts/S	Cts/S	Cts/S	Cts/S			
Avg	102270.	16828.	2169.7	4614.5			
Stddev	434.	22.	1.6	5.4			
%RSD	.42452	.12886	.07411	.11640			
#1	102570.	16843.	2168.6	4618.3			
#2	101960.	16813.	2170.8	4610.7			

Raw Data MA23143 page 117 of 245

	cutest1(v16		de: CONC	9 19:31:48 Corr. Fac om ID2:	Type: QC stor: 1.000000 Custom ID3:
Elem Units Avg Stddev %RSD	Sr4077 ppm .0002 .0002 114.5	Ti3349 ppm .0002 .0000 .3626			
#1 #2	.0000 .0004	.0002 .0002	0033 0063		
Check ? High Limit Low Limit	Chk Pass (Chk Pass	Chk Pass		
Int. Std. Units Avg Stddev %RSD	Y_3600 Cts/S 104850. 214. .20363		Y_2243 Cts/S 2247.5 2.2 .09927	Cts/S 4958.1 6.1	
#1 #2	104700. 105000.	16970. 16919.	2249.0 2245.9		

Raw Data MA23143	page 119 of 245

Sample Name: CCB Acquired: 9/19/2009 19:31:48 Type: QC

Cd2288

ppm .0000

.000

48.90

.0000

.0000

As1890

ppm .0018

.0009

.0024

K_7664

ppm .0279

.0137

49.10

.0182

.0375

Custom ID1:

Be3130

ppm .0002

.0002

111.0

.0000

.0003

7n2062

ppm .0000

.0001

.0000

Mg2790

ppm .0164

.0108

65.89

.0087

.0240

Mode: CONC Corr. Factor: 1.000000

Co2286

ppm .0001

.0000

32.44

.0001

.0001

TI1908

ppm .0006

.0001 15.56

.0007

Na5895

ppm .0250

.0057

22.72

.0210

.0290

Custom ID3:

Cu3247

ppm .0001 .0002

146.2

.0002

.0000

Se1960

.0003

.0004

.0000

-.0006

Mo2020

ppm .0006

.0004

65.80

.0008

.0003

Mn2576

ppm .0002

.0001

51.53

.0003

.0001

Sh2068

ppm .0000

.001

-.0004

Pd3404

.002

3479

-.0011

.0011

Ni2316

ppm .0001

.0000

16.92

.0001

.0001

AI3961

ppm .0042

.0048

.0076

-.0008

Si2124

ppm .0041

.0010

24.42

.0048

.0034

Cr2677

ppm .0001

.0002

150.2

.0003

.0000

Chk Pass Chk

Ph2203

ppm .0000

.000

.0002

.0001

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

B_2089

ppm .0006

.0004

66.92

.0003

.0008

Chk Pass Chk

Custom ID2:

Method: Accutest1(v164)

Ba4554

ppm .0002

.0002

121.6

.0000

.0004

V 2924

ppm .0000

.000

.0001

-.0001

Fe2599

ppm .0038

.0046

121.0

.0006

.0071

User: admin

Comment: Elem

Units

Avg Stddev

%RSD

Check?

Units

Avg Stddev

%RSD

Check?

Units

Avg Stddev

%RSD

Check ?

∢ Zoom In ▶

High Limit Low Limit

High Limit Low Limit Elem

#2

High Limit Low Limit Flem

#2

Raw Data MA23143 page 118 of 245 ✓ Zoom In ► Sample Name: MP49681-S1 Acquired: 9/19/2009 19:38:01 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3: Comment: Elem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 Avg Stddev 1.913 .0481 .0502 .4797 2021 .2284 .5987 .4897 .0474 .002 .0000 .0001 .0004 .0893 .0002 .0005 .0027 .0001 .0004 .7577 .0897 .0083 .1722 %RSD .4566 .0287 .2281 1.914 1.911 .0481 .0481 .2023 .2019 .2287 .2280 .0501 .4800 4896 .0476 .0502 .4794 .0471 #2 .5968 .4898 Elem V_2924 Zn2062 As1890 TI1908 Pb2203 Se1960 Sb2068 Al3961 Ca3179 1.977 1.840 Avg Stddev .4657.5766 1.845 4868 .46212.699 37.52 0021 0012 000 004 0005 002 0012 009 00 .2179 1065 .3478 .0020 1.841 1.839 37.52 37.52 4672 .5774 1.845 4864 4629 2.706 #2 .4641 2.693 4872 Fe2599 21.49 Mg2790 27.93 _7664 27.63 _2089 .1489 Mo2020 .0001 Pd3404 -.0030 Si2124 2.151 Sn1899 -.0009 Flem Na5895 70.83 Avg Stddev .0002 .02 .05 .01 .01 .0001 .0026 .000 .0003 %RSD .0725 .1749 .0502 .0188 .0622 176.4 85.82 .0037 31.02 #1 21.50 27.89 27.62 70.82 1489 0002 - 0012 2 151 0010 21.48 27.96 27.64 70.84 1488 .0000 -.0049 .0007 W_2079 Flem Sr4077 Ti3349 .1013 .0001 .0142 .0011 Avg Stddev %RSD .0936 7.464 .0149 .1014 .0002 #2 .1012 .0001 .0134 Y 3710 Int. Std. Y 3600 Y 2243 In2306 17365 13 4664.9 104500 %RSD .22731 .07464 .12419 .12273 104330. 4660.9 #2 104660. 17374 2225.6 4669.0

Raw Data MA23143 page 120 of 245

	127 of 189
E AC	CUTEST.
JA27477	Laboratories

◀ Zoom In ▶ Zoom Out

■ Zoom In ▶
Zoom Out

									Zoom Oi
Sample Na			Acquired:			Type: U	nk		
Method: Ac	cutest1(v16	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: admir	n Cust	tom ID1:	Cust	om ID2:	Custo	m ID3:			
Comment:									
Flore	Do 4EE 4	D-2120	Cd2288	Ce220/	C*2/77	Cu2247	Ma 2E7/	NUO217	A ~ 2 2 0 0
Elem Avg	Ba4554 1.903	Be3130 .0481	.0500	Co2286 .4779	Cr2677 .1997	.2275	Mn2576 .5953	Ni2316 .4883	Ag3280 .0468
Stddev	.001	.0002	.0002	.0007	.0001	.0007	.0008	.0004	.0002
%RSD	.0441	.3776	.3997	.1467	.0663	.3223	.1346	.0766	.3908
#1	1.904	.0483	.0498	.4784	.1998	.2270	.5947	.4885	.0469
#2	1.903	.0480	.0501	.4774	.1996	.2280	.5958	.4880	.0467
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Ava	.4658	.5738	1.842	1.960	.4849	1.833	.4600	2.724	37.40
Stddev	.0017	.0028	.001	.000	.0003	.002	.0020	.007	.08
%RSD	.3736	.4964	.0747	.0030	.0531	.1235	.4298	.2666	.2256
#1	.4671	.5758	1.842	1.961	.4851	1.834	.4614	2.729	37.34
#2	.4646	.5718	1.841	1.960	.4847	1.831	.4586	2.719	37.46
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	21.59	27.65	27.79	71.06	.1500	.0000	0030	2.148	0009
Stddev	.03	.01	.02	.04	.0004	.0001	.0002	.007	.0001
%RSD	.1410	.0186	.0689	.0577	.2484	217.2	7.548	.3176	10.40
#1	21.57	27.65	27.77	71.03	.1497	.0000	0029	2.153	0008
#2	21.61	27.64	27.80	71.09	.1502	.0001	0032	2.143	0010
Elem	Sr4077	Ti3349	W_2079						
Avg	.1012	0005	.0111						
Stddev	.0001	.0000	.0008						
%RSD	.1444	.3399	7.110						
#1	.1013	0005	.0117						
#2	.1011	0005	.0105						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	105160.	17302.	2230.5	4680.8					
Stddev	404.	53.	5.4	13.6					
%RSD	.38370	.30413	.24341	.29000					
#1	104870.	17339.	2226.6	4671.2					
#2	105450.	17265.	2234.3	4690.4					

ļ	Elem Avg Stddev %RSD	Ba4554 .1007 .0005 .4775	Be3130 0001 .0000 47.40	Cd2288 0005 .0001 14.55	Co2286 .0036 .0001 3.237	Cr2677 .0080 .0000 .2684	Cu3247 .0153 .0003 2.069	Mn2576 .1150 .0004 .3845	Ni2316 .0068 .0003 4.856	Ag3280 0003 .0001 46.88	
	±1 ±2	.1010 .1004	0001 0001	0005 0004	.0035 .0037	.0080 .0800	.0151 .0155	.1153 .1146	.0070 .0066	0002 0004	
ļ	Elem Avg Stddev %RSD	V_2924 .0003 .0002 53.97	Zn2062 .0874 .0009 1.066	As1890 .0047 .0004 9.575	TI1908 .0002 .0003 174.5	Pb2203 .0066 .0005 7.914	Se1960 .0004 .0007 200.8	Sb2068 .0002 .0006 224.3	Al3961 .8386 .0064 .7664	Ca3179 12.25 .06 .5177	
	‡1 ‡2	.0004 .0002	.0881 .0867	.0050 .0044	.0000 .0004	.0070 .0062	0002 .0009	.0006 0001	.8341 .8432	12.29 12.20	
ļ	Elem Avg Stddev %RSD	Fe2599 20.38 .10 .5004	Mg2790 2.397 .002 .0827	K_7664 3.102 .022 .7037	Na5895 46.28 .04 .0934	B_2089 .1458 .0013 .8756	Mo2020 .0000 .0001 260.9	Pd3404 0008 .0004 56.38	Si2124 2.075 .019 .9320	Sn1899 0004 .0004 86.52	
	±1 ±2	20.45 20.30	2.399 2.396	3.086 3.117	46.31 46.25	.1467 .1449	.0000	0011 0005	2.088 2.061	0007 0002	
ļ	Elem Avg Stddev %RSD	Sr4077 .0999 .0004 .4038	Ti3349 0007 .0001 21.03	W_2079 0064 .0008 12.54							
	‡1 ‡2	.1002 .0997	0008 0006	0070 0059							
ļ	nt. Std. Avg Stddev %RSD	Y_3600 106590. 243. .22796	Y_3710 17550. 88. .50353	Y_2243 2281.2 17.7 .77682	In2306 4893.5 28.2 .57627						
	‡1 ‡2	106420. 106760.	17487. 17612.	2268.7 2293.7	4873.5 4913.4						

Sample Name: JA28143-2 Acquired: 9/19/2009 19:50:00 Type: Unk
Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000
User: admin Custom ID1: Custom ID2: Custom ID3:

Raw Data MA23143 page 121 of 245

									Zoom C)ut
Sample N	lame: MP496	.81.SD1	Acquired	: 9/19/2009	19:56:06	Type:	l Ink			
	Accutest1(v1		de: CONC		actor: 5.00	٠.	OTIK			
User: adn		tom ID1:		om ID2:		om ID3:				
Comment		.0 1.	ousi	OIII 102.	Ousi	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
001111110111										
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280	
Avg	.1073	0010	0016	.0028	.0076	.0182	.1189	.0069	0005	
Stddev	.0094	.0003	.0006	.0013	.0010	.0001	.0002	.0011	.0004	
%RSD	8.802	25.63	37.21	45.46	13.73	.6952	.1383	15.25	81.35	
#1	.1006	0012	0012	.0038	.0083	.0181	.1190	.0076	0008	
#2	.1140	0008	0021	.0019	.0069	.0183	.1188	.0062	0002	
Elem	V 2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	0030	.0906	.0108	0001	.0069	0012	0003	.8816	13.12	
Stddev	.0023	.0008	.0071	.0038	.0025	.0032	.0029	.1051	1.07	
%RSD	76.72	.9095	66.09	6810.	35.98	267.7	1166.	11.92	8.181	
#1	0014	.0911	.0158	0028	.0086	.0011	0023	.8073	12.36	
#2	0046	.0900	.0057	.0026	.0051	0034	.0018	.9559	13.88	
Elem	Fe2599	Mg2790	K 7664	Na5895	B 2089	Mo2020	Pd3404	Si2124	Sn1899	
Avg	21.76	2.551	3.422	49.67	.1491	0027	0099	2.143	0011	
Stddev	1.81	.193	.313	3.85	.0022	.0006	.0043	.030	.0004	
%RSD	8.336	7.581	9.137	7.759	1.448	22.68	43.65	1.425	36.85	
#1	20.48	2.414	3.201	46.94	.1476	0031	0130	2.165	0008	
#2	23.04	2.687	3.643	52.39	.1506	0022	0068	2.122	0013	
Elem	Sr4077	Ti3349	W_2079							
Avg	.1050	0016	0685							
Stddev	.0086	.0008	.0035							
%RSD	8.178	50.63	5.142							
#1	.0990	0022	0660							
#2	.1111	0010	0710							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306						
Avg	105920.	16978.	2295.9	5042.7						
Stddev	400.	1117.	27.3	64.6						
%RSD	.37811	6.5805	1.1875	1.2813						
#1	105630.	17768.	2276.6	4997.0						
#2	106200.	16188.	2315.2	5088.4						

Raw Data MA23143 page 122 of 245

◀ Zoom In ▶

◀ Zoom In ▶

Comment:

									Zoom Out
Sample Nam Method: Acci	utest1(v16	64) Mo	de: CONC		actor: 1.00				
User: admin Comment:	Cust	om ID1:	Custo	om ID2:	Custo	om ID3:			
Elem Avg Stddev %RSD	Ba4554 .5145 .0014 .2808	Be3130 0002 .0000 9.828	Cd2288 0009 .0001 5.661	Co2286 .0001 .0001 54.61	Cr2677 0007 .0003 38.59	Cu3247 .0054 .0001 1.018	Mn2576 2.220 .001 .0554	Ni2316 .0017 .0000 1.330	Ag3280 .0003 .0000 4.799
#1 #2	.5134 .5155	0002 0002	0008 0009	.0001 .0002	0005 0009	.0053 .0054	2.221 2.219	.0017 .0017	.0004 .0003
Elem Avg Stddev %RSD	V_2924 .0008 .0001 17.10	Zn2062 0026 .0002 7.779	As1890 .0019 .0000 1.603	TI1908 .0003 .0003 95.02	Pb2203 0007 .0000 3.932	Se1960 0007 .0012 180.2	Sb2068 0010 .0008 81.18	Al3961 .0262 .0019 7.450	Ca3179 133.7 .2 .1807
#1 #2	.0009 .0007	0028 0025	.0019 .0019	.0006 .0001	0007 0007	0016 .0002	0016 0004	.0248 .0276	133.6 133.9
Elem Avg Stddev %RSD	Fe2599 1.088 .003 .2671	Mg2790 17.53 .06 .3369	K_7664 207.6 .2 .0970	Na5895 593.8 3.0 .5002	B_2089 .1996 .0008 .4116	Mo2020 .0020 .0002 7.449	Pd3404 0017 .0001 5.282	Si2124 7.936 .003 .0431	Sn1899 0013 .0004 27.15
#1 #2	1.086 1.090	17.49 17.57	207.8 207.5	591.7 595.9	.1990 .2002	.0019 .0021	0018 0016	7.933 7.938	0011 0016
Elem Avg Stddev %RSD	Sr4077 .4910 .0011 .2317	Ti3349 .0010 .0002 15.84	W_2079 0012 .0005 45.58						
#1 #2	.4902 .4918	.0012 .0009	0008 0016						
Int. Std. Avg Stddev %RSD	Y_3600 94388. 38. .04003	Y_3710 16459. 8. .05126	Y_2243 2019.7 4.1 .20326	In2306 4118.7 3.1 .07543					
#1 #2	94361. 94414.	16465. 16453.	2022.6 2016.8	4120.9 4116.5					

Raw Data MA23143 page 124 of 245

Raw Data MA23143 page 123 of 245

.0001

388.2

-.0002 .0005

Ca3179

27.01 2.33

8.637

28.66

25.36

Sn1899 .0024 .0001

2.607

0024

o

									◀ Zoom
									Zoom C
Commis N-	IA 2711	20.2	anulead. 0/1	0/2000 20	.00.24	Tuno, U-1			
	me: JA2712		cquired: 9/1 de: CONC		:08:24 actor: 1.00	Type: Unk			
Jser: admi	cutest1(v1	tom ID1:		COII. F om ID2:		om ID3:			
Oser: aurii Comment:	II Cusi	IOIII ID I:	Cusio	JIII IDZ:	Cusic	JIII ID3:			
Jomment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.1475	0002	0008	0002	.0007	.0059	.0596	.0014	0001
Stddev	.0004	.0000	.0003	.0002	.0003	.0003	.0001	.0001	.0001
%RSD	.2876	5.656	32.82	120.0	38.64	5.702	.1064	8.487	63.62
#1	.1478	0002	0006	.0000	.0005	.0061	.0596	.0013	0001
#2	.1472	0002	0010	0003	.0009	.0057	.0596	.0015	0001
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0049	0032	.0005	0004	0002	0002	.0005	.0164	118.1
Stddev	.0002	.0000	.0013	.0008	.0001	.0020	.0003	.0045	.1
%RSD	3.036	.2537	257.2	195.2	36.97	1107.	64.38	27.13	.1120
#1	.0048	0032	0004	.0002	0001	.0012	.0007	.0196	118.2
#2	.0050	0032	.0015	0010	0002	0016	.0003	.0133	118.0
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	.0203	19.18	7.541	575.9	.4344	.0019	0006	7.949	0015
Stddev	.0004	.03	.005	.7	.0008	.0001	.0010	.001	.0003
%RSD	1.775	.1742	.0631	.1234	.1823	7.196	159.6	.0069	20.68
#1	.0206	19.21	7.545	575.4	.4349	.0018	.0001	7.949	0017
#2	.0201	19.16	7.538	576.4	.4338	.0020	0013	7.948	0013
Elem	Sr4077	Ti3349	W_2079						
Avg	.3711	.0006	0061						
Stddev	.0003	.0001	.0013						
%RSD	.0746	13.91	20.69						
#1	.3713	.0007	0070						
#2	.3710	.0005	0052						
nt. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	95707.	16383.	2052.4	4214.2					
Stddev	61.	31.	2.2	5.0					
%RSD	.06356	.18889	.10582	.11834					
#1	95664.	16405.	2053.9	4217.7					
#2	95750.	16361.	2050.8	4210.7					

Raw Data MA23143	page 126 of 245
------------------	-----------------

Raw Data MA23143 page 128 of 245

Sample Name: JA27129-3 Acquired: 9/19/2009 20:14:35 Type: Unk
Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Cd2288

-.0007

.0001

15.44

-.0007 -.0008

As1890

.0012

30.16

0009

.0014

K_7664 3.457 .279

3 654

3.260

-.0077 .0013

16.20

-.0086

-.0069

Y 2243

.44610

2158.7

2145.1

Co2286

.0015

.0001 9.718

.0014

.0016

TI1908

-.0002 .0004

223.8

0001

-.0005

Na5895

246.1 17.5

7.098

258.5

233.8

In2306

4551.5 29.4

.64559

4530.7

Custom ID3:

Cu3247

.0799

.0024

.0782

.0816

Se1960

.0028

13.53

0031

.0026

Mo2020 .0029

.0001

0029

.0030

Mn2576

.0225

.0007

3.035

.0220

.0229

-.0006 .0002

34.63

- 0008

-.0005

Pd3404

-.0032 .0003

- 0030

-.0034

Ni2316

.0418

.0002

.4978

.0417 .0420

Al3961

.7166 .0582

8.119

7577

.6754

Si2124 8.639 .049

.5678

8 604

8.674

Cr2677

.5617

.0163

2.906

.5502 .5732

Pb2203

.0050

0041

.0058

B_2089 .2103 .0010

2096

.2110

Be3130

-.0002

.0001

38.80

-.0001 -.0002

Zn2062

.0150

0148

.0152

Mg2790

3.083 .297

9.619

3 293

2.874

.0167

2.144

.0164

.0169

Y_3710

17686. 1333.

7.5355

18628.

Ti3349 W_2079

Ba4554

.0885

.0075

8.456

.0938 .0832

V_2924

.0060

.0001 1.385

0060

.0061

Fe2599 2.957 .260

8.802

3 141

Sr4077

.1700 .0151

8.856

.1806

.1593

Y 3600

97121. 2614.

2.6912

95273.

Comment: Elem

%RSD

#1 #2

#1

Elem

Avg Stddev

%RSD

Flem

Avg Stddev %RSD

Int. Std.

%RSD

Elem

Avg Stddev

									Zoom (
Sample Na	ame: JA271	29-5 A	cquired: 9/	19/2009 20	:26:52	Type: Unk			
Method: Ad	ccutest1(v1	64) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: admi	in Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280
Avg	.1674	0002	0011	.0001	.0013	.0289	.0097	.0011	.0001
Stddev	.0001	.0000	.0000	.0000	.0002	.0001	.0001	.0004	.0003
%RSD	.0483	8.920	1.742	19.25	14.81	.1987	.7823	31.46	313.7
#1	.1675	0002	0011	.0001	.0011	.0288	.0097	.0009	0001
#2	.1673	0002	0012	.0001	.0014	.0289	.0098	.0014	.0003
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0011	.0284	.0009	.0009	.0013	0010	0004	.1184	173.2
Stddev	.0001	.0001	.0006	.0002	.0001	.0008	.0005	.0030	.1
%RSD	10.53	.2769	63.59	19.35	5.393	77.53	102.4	2.500	.0721
#1	.0011	.0284	.0005	.0010	.0012	0005	0008	.1205	173.1
#2	.0010	.0285	.0014	.0008	.0013	0016	0001	.1163	173.3
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020		Si2124	Sn1899
Avg	.2110	31.16	5.084	240.9	.1467	.0001	0036	7.959	0013
Stddev	.0018	.12	.041	3.9	.0006	.0002	.0022	.007	.0002
%RSD	.8579	.3749	.8010	1.636	.4234	425.6	61.79	.0918	17.02
#1	.2123	31.25	5.113	243.7	.1462	0001	0051	7.954	0012
#2	.2097	31.08	5.056	238.1	.1471	.0002	0020	7.964	0015
Elem	Sr4077	Ti3349	W_2079						
Avg	.4506	.0064	0062						
Stddev	.0004	.0002	.0010						
%RSD	.0954	2.502	15.65						
#1	.4509	.0065	0055						
#2	.4503	.0063	0069						
Int. Std.	Y_3600	Y_3710		In2306					
Avg	98690.	16643.	2094.8	4408.9					
Stddev	38.	125.	.4	5.0					
%RSD	.03855	.75087	.01834	.11387					
#1	98663.	16555.	2094.5	4412.4					
#2	98717.	16731.	2095.1	4405.3					

Raw Data MA23143 page 125 of 245

Raw Data MA23143 page 127 of 245

Raw Data	I MA2314	3 page	125 of 24	5						
									◀ Zoom I	
Sample Nar	me: JA2712	29-4 A	cquired: 9/	19/2009 20	:20:45	Type: Unk				
Method: Acc	cutest1(v1	54) Mo	de: CONC	Corr. F	actor: 1.00	00000				
User: admir	n Cust	tom ID1:	Cust	om ID2:	Custo	om ID3:				
Comment:										
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280	
Avg	.1661	0002	0011	0001	.0022	.0284	.0118	.0012	0001	
Stddev	.0002	.0000	.0001	.0002	.0002	.0007	.0000	.0002	.0000	
%RSD	.1446	18.75	5.133	278.7	8.667	2.369	.4212	12.16	35.74	
#1	.1659	0002	0011	.0001	.0020	.0289	.0118	.0013	0002	
#2	.1663	0003	0011	0002	.0023	.0280	.0119	.0011	0001	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	.0012	.0190	.0009	.0007	.0013	.0009	.0002	.1450	97.47	
Stddev										
%RSD	.4846	2.145	43.98	21.09	33.13	20.30	459.7	.2313	.0634	
#1	.0012	.0193	.0012	.0008	.0010	.0008	0004	.1448	97.42	
#2	.0012	.0187	.0006	.0006	.0016	.0011	.0008	.1452	97.51	
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Avg						.0003				
Stddev										
%RSD	1.702	.0720	.5025	.1032	.2417	25.00	45.63	.3306	14.10	
#1	.1941	17.51	1.493	24.80	.0630	.0003	0027	7.609	0005	
#2	.1989	17.50	1.504	24.76	.0632	.0002	0014	7.574	0007	
Elem	Sr4077	Ti3349	W_2079							
Avg	.1077	.0031	0063							
Stddev	.0000	.0002	.0006							
%RSD	.0242	5.272	10.16							
#1	.1077	.0032	0067							
#2	.1076	.0030	0058							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306						
Avg	102530.									
Stddev										
%RSD	.17754	.04930	.27979	.27474						
#1	102400.	16839.	2176.4	4737.4						
#2	102660.	16851.	2185.0	4755.8						

		_		<u> </u>					◀ Zoom In Zoom Out
Sample Na	me: JA271:	29-6 A	cquired: 9/	19/2009 20	:33:10	Type: Unk			
Method: Ad	cutest1(v1	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: admi	n Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.1202	0002	0010	.0000	.0017	.0313	.0066	.0011	0004
Stddev	.0001	.0001	.0001	.0002	.0003	.0002	.0001	.0001	.0002
%RSD	.0987	26.52	12.22	449.9	17.03	.5478	1.569	7.963	59.79
#1	.1201	0002	0009	.0002	.0019	.0314	.0065	.0011	0005
#2	.1203	0002	0010	0001	.0015	.0312	.0067	.0012	0002
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0015	.0115	.0008	.0000	.0004	0014	.0007	.0953	96.18
Stddev	.0001	.0007	.0002	.0002	.0009	.0010	.0006	.0089	.24
%RSD	6.505	6.275	25.66	907.5	262.8	69.84	87.88	9.377	.2543
#1	.0015	.0110	.0010	.0002	.0010	0007	.0003	.0890	96.01
#2	.0016	.0120	.0007	0001	0003	0020	.0012	.1017	96.36
Elem	Fe2599		K_7664		B_2089		Pd3404	Si2124	Sn1899
Avg	.1464	17.86	4.915	179.5	.1059	.0036	0005	7.406	0016
Stddev	.0012	.05	.004	1.1	.0033	.0001	.0020	.302	.0002
%RSD	.8091	.2845	.0824	.6371	3.091	4.076	367.8	4.074	14.48
#1	.1473	17.82	4.918	178.7	.1036	.0035	.0009	7.193	0014
#2	.1456	17.89	4.912	180.3	.1082	.0037	0019	7.619	0017
Elem	Sr4077	Ti3349	W_2079						
Avg	.2689	.0024	.0190						
Stddev	.0005	.0001	.0016						
%RSD	.1957	5.715	8.630						
#1	.2685	.0023	.0178						
#2	.2693	.0025	.0201						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	100700.	16649.	2155.8	4581.8					
Stddev	376.	70.	72.9	157.8					
%RSD	.37354	.41815	3.3814	3.4444					
#1	100970.	16698.	2207.3	4693.4					
#2	100430.	16599.	2104.3	4470.2					

Raw Data MA23143	page 129 of 245

Raw Data MA23143 page 131 of 245

⋖	Zo	on	١I	n
- 2	Zoc	m	0	ut

						Zoom Out
	ame: CCV				Type: QC	
	ccutest1(v16				ctor: 1.000000	
User: adm		om ID1:	Custo	m ID2:	Custom ID3:	
Comment:						
Elem	Sr4077	Ti3349	W_2079			
Units	ppm	ppm	ppm			
Avg	2.054	2.008	1.983			
Stddev	.001	.002	.050			
%RSD	.0247	.0925	2.537			
	0.055		4.047			
#1	2.055	2.009	1.947			
#2	2.054	2.006	2.018			
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass			
Int Ctri	V 2/00	V 2710	V 2042	1-000/		
Int. Std. Units	7_3600 Cts/S	Y_3710 Cts/S	Y_2243 Cts/S	In2306 Cts/S		
Avq	102230.	16764.	2191.9	4647.4		
Stddev	271.	3.	42.4	77.3		
%RSD	.26536	.02051	1.9333	1.6633		
MICSE	.20330	.02031	1.7555	1.0033		
#1	102430.	16762.	2221.9	4702.1		
#2	102040.	16767.	2162.0	4592.7		

Method: A	ccutest1(v1	64) Mo	de: CONC	Corr.	Factor: 1.0	00000			
User: adm	nin Cus	tom ID1:	Cus	tom ID2:	Cust	om ID3:			
Comment	:								
Elem Units Avg Stddev	Ba4554 ppm 1.988 .001	Be3130 ppm 2.077 .001	Cd2288 ppm 2.003	Co2286 ppm 2.048 .043	Cr2677 ppm 2.070 .009	Cu3247 ppm 1.906 .001	Mn2576 ppm 2.046 .001	ppm	Ag3280 ppm .2447 .0005
%RSD	.0572	.0244	2.182	2.088	.4193	.0615	.0562		.1988
#1 #2	1.987 1.989		1.972 2.034	2.018 2.078	2.064 2.076	1.905 1.906			.2444 .2450
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 2.072 .003 .1556	Zn2062 ppm 2.131 .047 2.192	As1890 ppm 2.004 .042 2.110		Pb2203 ppm 2.058 .044 2.145	Se1960 ppm 1.989 .039 1.965	ppm 1.942	ppm 40.46 .02	ppm 42.04 .01
#1 #2	2.069 2.074	2.098 2.164	1.974 2.034	2.048 2.122	2.027 2.089	1.962 2.017	1.913 1.972	40.45 40.47	42.04 42.05
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Fe2599 ppm 41.67 .01 .0201	Mg2790 ppm 42.15 .05 .1177	K_7664 ppm 40.75 .04 .1020		B_2089 ppm 1.974 .039 1.997	Mo2020 ppm 2.039 .047 2.312	ppm	ppm 4.739 .075	
#1 #2	41.68 41.67	42.12 42.19	40.72 40.78	40.01 39.98	1.946 2.001	2.006 2.072	1.917 1.927	4.686 4.792	2.040 2.102
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Sample Name: CCV Acquired: 9/19/2009 20:39:24 Type: QC

Raw	Data I	MA231/13	nage 130 of 245	

Naw Date	a MA2314	3 page	130 of 2	45					
									◀ Zoom
									Zoom
Sample Na	me: CCB	Acquire	d: 9/19/200	09 20:45:2	4 Type	: QC			
	cutest1(v1		de: CONC		Factor: 1.0				
User: admi	n Cus	tom ID1:	Cus	tom ID2:	Cust	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677				Ag3280
Units Ava	.0003	.0002	.0000	ppm .0004	.0006	.0005	.0004	.0003	ppm 0002
Avg Stddev	.0003	.0002			.0006			.0003	.0002
%RSD	38.35	4.363	7523.	2.017	22.04				
#1	.0004	.0002	.0001	.0004	.0007				
#2	.0002	.0002	0001	.0004	.0005	.0002	.0005	.0003	.0000
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				
High Limit									
Low Limit									
Elem	V 2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Units	ppm	ppm	ppm						
Avg	.0001	.0002	.0016	.0009	.0001	0008	.0003	.0048	
Stddev	.0002	.0003	.0007	.0001					
%RSD	157.0	133.9	43.97	16.11	287.8	16.31	80.59	34.64	11.33
#1	.0000	.0005	.0021	.0010	.0002	0007	.0005	.0060	.0241
#2	.0002	.0000	.0011	.0008	0001	0009		.0036	
Check ? Hiah Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				
Low Limit									
Elem	Fe2599	Mg2790	K_7664		B_2089				
Units Ava	ppm .0061	ppm .0171	ppm .0905	ppm .1363	ppm .0013				
Stddev	.0003	.0214	.0063						
%RSD	4.733	124.9	7.010		21.23				
#1	0050	0020	0050	1200	0015	0011	0010	0047	0000
#1 #2	.0059	.0020	.0950	.1390	.0015	.0011		.0047	
-	.0003	.0323	.0000	.1555	.0011	.0000	.0021	.0037	.0000
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass				
High Limit									
Low Limit									

Raw Data MA23143 page 132 of 245

◀ Zoom In ▶

							Zoom In ▶ Zoom Out
			d: 9/19/200 de: CONC Custo		Type: (actor: 1.000 Custor	0000	
Elem Units Avg Stddev %RSD	Sr4077 ppm .0002 .0000 2.021	Ti3349 ppm .0003 .0001 35.15	W_2079 ppm 0037 .0004 11.40				
#2 Check ? High Limit Low Limit	.0002 Chk Pass	.0003 Chk Pass	0040 Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_3600 Cts/S 106000. 988. .93213	Y_3710 Cts/S 16909. 7. .04013	Y_2243 Cts/S 2234.0 4.3 .19469	In2306 Cts/S 4925.2 5.4 .10878			
#1 #2	105300. 106700.	16905. 16914.	2237.1 2231.0	4929.0 4921.5			

Raw Data MA23143	page 133 of 245
Naw Data WA25145	page 133 01 243

Raw Data MA23143 page 135 of 245

									Zoom C	
Sample N	lame: JA280	84-1 A	cquired: 9/	19/2009 20	:57:52	Type: Unk				
Method: A	Accutest1(v1	64) Mo	de: CONC	Corr. F	actor: 1.00	00000				
User: adm	nin Cus	tom ID1:		om ID2:		om ID3:				
Elem Avg Stddev	Ba4554 .3940 .0006	Be3130 0001 .0000	Cd2288 0011 .0001	Co2286 .0001 .0000	Cr2677 .0000 .0001	Cu3247 .0534 .0007	Mn2576 2.475 .022	Ni2316 .0018 .0003	Ag3280 .0002 .0003	
%RSD	.1625	17.78	6.867	11.32	567.3	1.349	.8958	15.92	108.6	
#1 #2	.3935 .3944	0001 0001	0011 0012	.0001 .0001	.0000 .0001	.0539 .0529	2.491 2.460	.0020 .0016	.0004 .0001	
Elem Avg	V_2924 .0002	Zn2062 .0004	As1890 .0008	TI1908 .0012	Pb2203 .0063	Se1960 0013	Sb2068 .0001	Al3961 .0254	Ca3179 165.9	
Stddev %RSD	.0003 145.0	.0005 117.7	.0004 52.96	.0003 26.49	.0000 .6517	.0007 56.81	.0006 494.0	.0016 6.297	.2 .0975	
#1 #2	.0000 .0004	.0007 .0001	.0005 .0011	.0014 .0010	.0063 .0062	0008 0018	.0006 0003	.0242 .0265	165.8 166.0	
Elem Avg Stddev %RSD	Fe2599 1.409 .009 .6452	Mg2790 23.82 .01 .0467	K_7664 119.8 .0 .0067	Na5895 608.4 4.1 .6774	B_2089 .2234 .0014 .6362	Mo2020 .0009 .0000 4.717	Pd3404 0039 .0006 14.89	Si2124 9.564 .090 .9397	Sn1899 .0006 .0003 50.07	
#1 #2	1.403 1.416	23.81 23.83	119.8 119.8	611.3 605.5	.2244 .2224	.0009	0043 0035	9.627 9.500	.0004	
Elem Avg Stddev %RSD	Sr4077 .5192 .0008 .1488	Ti3349 .0016 .0001 3.557	W_2079 .0044 .0013 30.47							
#1 #2	.5197 .5186	.0016 .0016	.0054 .0035							
Int. Std. Avg Stddev %RSD	Y_3600 95003. 648. .68195	Y_3710 16447. 2. .01084	Y_2243 2010.1 11.2 .55632	In2306 4107.0 21.2 .51606						
#1 #2	94545. 95462.	16448. 16446.	2002.1 2018.0	4092.0 4122.0						

Method: A User: adm Comment:		54) Mo tom ID1:	de: CONC Custo	Corr. F om ID2:	actor: 1.00 Custo	00000 om ID3:			
Elem Avg Stddev %RSD	Ba4554 .3116 .0009 .2965	Be3130 0001 .0000 38.54	Cd2288 0011 .0002 16.67	Co2286 .0009 .0001 7.975	Cr2677 0004 .0004 97.38	Cu3247 .0254 .0001 .2432	Mn2576 1.199 .005 .4627	Ni2316 .0028 .0001 3.206	Ag3280 0001 .0001 159.9
#1 #2	.3123 .3109	0001 0001	0010 0013	.0008	0007 0001	.0254 .0254		.0028 .0029	0002 .0000
Elem Avg Stddev %RSD	V_2924 .0007 .0001 19.15	Zn2062 .0089 .0000 .2381	As1890 .0000 .0005 9113.	TI1908 0002 .0012 629.0	Pb2203 .0013 .0006 47.54	Se1960 0013 .0016 119.6	Sb2068 .0005 .0011 211.7	Al3961 .0293 .0072 24.67	Ca3179 213.4 .2 .0919
#1 #2	.0006 .0008	.0090 .0089	0003 .0004	0010 .0006	.0018 .0009	0002 0024	.0013 0003	.0242 .0345	213.5 213.2
Elem Avg Stddev %RSD	Fe2599 .0643 .0014 2.151	Mg2790 39.47 .10 .2536	K_7664 5.042 .011 .2164	394.3 .7	B_2089 .1677 .0017 .9959	Mo2020 .0009 .0001 11.09	Pd3404 0025 .0007 26.49	Si2124 8.151 .081 .9940	Sn1899 0013 .0001 9.809
#1 #2	.0653 .0633	39.54 39.40	5.050 5.035	393.8 394.7	.1689 .1666	.0008 .0010	0029 0020	8.209 8.094	0014 0012
Elem Avg Stddev %RSD	Sr4077 .4488 .0014 .3216	Ti3349 .0018 .0001 4.504	W_2079 .0038 .0001 2.898						
#1 #2	.4498 .4478	.0017 .0019	.0037 .0039						
Int. Std. Avg Stddev %RSD	Y_3600 96791. 237. .24470	Y_3710 16481. 11. .06546	Y_2243 2047.1 22.0 1.0728	In2306 4250.7 45.8 1.0782					
#1 #2	96959. 96624.	16488. 16473.	2031.5 2062.6	4218.3 4283.1					

Raw Data MA23143 page 134 of 245

◀ Zoom In ▶

									Zoom
Sample Na	ame: JA2808	84-2 A	cquired: 9/	19/2009 21	:04:04	Type: Unk			
Method: A	ccutest1(v1	64) Mo	de: CONC	Corr. F	actor: 1.00	00000			
Jser: adm	in Cus	tom ID1:	Cust	om ID2:	Custo	m ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280
Ava	.1699	0001	0005	.0007	.0018	.0165	.4573	.0048	.0001
Stddev	.0002	.0000	.0003	.00007	.0001	.0002	.0015	.0002	.0004
%RSD	.1237	22.05	42.31	3.391	5.939	.9357	.3365	4.233	382.4
¥1	.1700	0002	0004	.0007	.0018	.0166	.4584	.0047	0002
#2	.1697	0001	0007	.0006	.0019	.0164	.4563	.0050	.0004
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
٩vg	.0056	0007	.0014	0006	.0028	0011	0004	.2370	145.0
Stďdev	.0004	.0002	.0004	.0002	.0002	.0008	.0015	.0052	.4
%RSD	7.098	28.40	27.22	35.35	6.820	77.39	403.6	2.195	.2809
#1	.0053	0005	.0011	0004	.0029	0017	.0007	.2406	145.3
#2	.0058	0008	.0017	0007	.0026	0005	0014	.2333	144.8
Elem	Fe2599		K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	.4965	24.00	6.202	461.6	.3350	.0026	0023	8.156	0006
Stddev	.0016	.09	.085	14.5	.0034	.0001	.0018	.087	.0002
%RSD	.3126	.3710	1.377	3.153	1.027	3.327	77.53	1.068	30.54
#1	.4954	24.06	6.263	471.9	.3326	.0025	0036	8.094	0005
#2	.4976	23.94	6.142	451.3	.3374	.0026	0011	8.217	0007
Elem	Sr4077	Ti3349	W_2079						
Avq	.4174	.0088	0038						
Stddev	.0009	.0000	.0007						
%RSD	.2162	.1578	19.44						
#1	.4180	.0088	0043						
#2	.4167	.0088	0033						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	98788.	17007.	2076.8	4310.1					
Stddev %RSD	352. .35623	138. .81006	18.3 .87934	41.3 .95737					
#1 #2	98539. 99037.	16910. 17105.	2089.7 2063.9	4339.3 4280.9					
72	77037.	17105.	2003.9	4200.9					
aw Dat	а МА2314	3 nage	136 of 24	15					

Raw Data MA23143 page 136 of 245

									■ Zoom In
									Zoom Ou
Sample Na	mo: IA2000	242 4.	cquired: 9/	10/2000 21	.10.14	Type: Unk			
Sample Na Method: Ac			de: CONC		actor: 1.00	٥.			
User: admir		tom ID1:		om ID2:		om ID3:			
Comment:	ii Cusi	IOIII ID I.	Cusi	om ibz.	Cusic	лпъз.			
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.1123	0002	0009	0001	.0363	.0836	.0067	.0117	.0020
Stddev	.0004	.0000	.0000	.0000	.0016	.0035	.0002	.0005	.0002
%RSD	.3218	9.024	1.180	9.217	4.376	4.204	2.826	4.366	9.484
#1	.1125	0002	0009	0001	.0351	.0811	.0066	.0120	.0021
#2	.1120	0002	0009	0001	.0374	.0861	.0069	.0113	.0019
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0013	.0082	.0005	0005	.0041	.0009	.0009	.4079	36.47
Stddev	.0001	.0001	.0008	.0002	.0007	.0004	.0000	.0040	.01
%RSD	7.220	1.615	160.3	29.66	18.15	46.89	.6329	.9729	.0293
#1	.0014	.0081	.0011	0004	.0046	.0011	.0009	.4051	36.46
#2	.0012	.0083	0001	0006	.0035	.0006	.0009	.4107	36.48
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	.4927	4.485	3.808	285.3	.2139	.0019	0013	8.278	.0009
Stddev	.0017	.009	.011	.7	.0024	.0001	.0008	.070	.0005
%RSD	.3362	.1988	.2866	.2366	1.101	6.332	58.54	.8502	53.29
#1	.4915	4.491	3.800	284.8	.2156	.0020	0018	8.327	.0005
#2	.4939	4.478	3.816	285.8	.2122	.0019	0008	8.228	.0012
Elem	Sr4077	Ti3349	W_2079						
Avg	.2225	.0099	0068						
Stďdev	.0004	.0001	.0006						
%RSD	.1880	.9707	9.161						
#1	.2228	.0099	0073						
#2	.2222	.0100	0064						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	98479.	17191.	2157.4	4586.7					
Stddev	3107.	111.	22.0	40.7					
%RSD	3.1554	.64519	1.0180	.88687					
#1	100680.	17269.	2141.9	4558.0					
#2	96282.	17112.	2172.9	4615.5					

Raw Data MA23143	page 137 of 245
------------------	-----------------

Raw Data MA23143 page 139 of 245

									◀ Zoom I	
									Zoom O	ut
Commis No	ame: JA2808	045 4	oaudrod: O/	19/2009 21	.22.27	Type: Unk				
	.ccutest1(v1		de: CONC		:22:37 actor: 1.00	٠.				
		,								
User: adm		tom ID1:	Cust	om ID2:	Cusio	om ID3:				
Comment:										
Flows	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	A ~ 2 2 0 0	
Elem Avg	.2661	0002	0010	.0002	.0034	.0105	.0190	.0012	Ag3280 0001	
Stddev	.0003	.0000	.0001	.0002	.0000	.0001	.0000	.0001	.0003	
%RSD	.1198	24.55	10.76	74.85	.0568	1.145	.2371	9.181	390.9	
#1	.2663	0001	0009	.0004	.0034	.0106	.0189	.0012	0003	
#2	.2659	0002	0010	.0001	.0034	.0104	.0190	.0011	.0001	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	.0017	0021	0007	.0002	.0010	0020	.0014	.1964	239.0	
Stddev	.0001	.0001	.0004	.0004	.0004	.0013	.0011	.0032	10.3	
%RSD	4.750	2.834	59.32	167.3	34.32	65.93	75.40	1.612	4.287	
#1	.0017	0021	0004	.0005	.0008	0030	.0022	.1986	246.3	
#2	.0016	0020	0011	.0000	.0013	0011	.0007	.1941	231.8	
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Avg	.3322	41.48	6.780	382.9	.1598	.0002	0023	8.941	0013	
Stddev	.0083	.45	.080	15.6	.0001	.0002	.0003	.003	.0003	
%RSD	2.486	1.094	1.185	4.070	.0745	108.8	13.71	.0275	25.73	
#1	.3381	41.80	6.837	394.0	.1597	.0003	0025	8.942	0016	
#2	.3264	41.16	6.724	371.9	.1599	.0000	0020	8.939	0011	
Elem	Sr4077	Ti3349	W_2079							
Avg	.6288	.0100	0040							
Stddev	.0012	.0002	.0005							
%RSD	.1924	1.637	13.12							
#1	.6296	.0099	0044							
#2	.6279	.0101	0036							
Int Ctri	V 2/00	V 2710	1/ 2042	In2306						
Int. Std. Avg	Y_3600 98246.	Y_3710 16587.	Y_2243 2054.7	4308.4						
Stddev	10.	528.	.7	6.4						
%RSD	.00968	3.1814	.03189	.14888						
#1	98253.	16214.	2054.2	4303.8						
#2	98239.	16960.	2055.2	4303.6						
-	,0207.	.0,00.	2000.2							

Sample Nan Method: Acc User: admin Comment:	cutest1(v16		de: CONC	19/2009 21 Corr. F om ID2:	actor: 1.00	Type: Unk 00000 om ID3:			
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.1845	0002	0009	0003	.0012	.1313	.0037	.0017	0002
Stddev	.0045	.0000	.0001	.0002	.0001	.0009	.0000	.0000	.0003
%RSD	2.419	21.77	16.13	71.29	7.648	.7161	.4032	1.188	143.6
#1	.1876	0002	0010	0001	.0011	.1306	.0037	.0017	.0000
#2	.1813	0002	0008	0004	.0012	.1320	.0037	.0017	0004
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0011	.0086	.0004	0002	.0130	0004	.0008	.0535	111.7
Stddev	.0001	.0001	.0008	.0001	.0002	.0001	.0001	.0019	2.7
%RSD	10.70	.9180	212.1	40.84	1.750	32.80	11.45	3.515	2.445
#1	.0010	.0086	.0009	0001	.0128	0003	.0007	.0521	113.7
#2	.0012	.0085	0002	0002	.0132	0005		.0548	109.8
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	.1801	20.55	1.335	24.61	.0642	.0001	0035	8.200	.0043
Stddev	.0064	.49	.050	.57	.0008	.0001	.0005	.050	.0004
%RSD	3.569	2.366	3.733	2.306	1.185	73.16	14.61	.6088	8.331
#1	.1846	20.90	1.370	25.01	.0647	.0000	0031	8.235	.0045
#2	.1755	20.21	1.300	24.21	.0636	.0001	0038	8.165	.0040
Elem Avg Stddev %RSD	Sr4077 .1197 .0026 2.146	Ti3349 .0020 .0001 5.932	W_2079 0020 .0014 67.76						
#1 #2	.1215 .1179	.0019 .0020	0030 0011						
Int. Std. Avg Stddev %RSD	Y_3600 103720. 915. .88236	Y_3710 17460. 379. 2.1681	Y_2243 2153.6 3.5 .16073	In2306 4726.6 8.1 .17100					
#1 #2	104370. 103070.	17193. 17728.	2151.1 2156.0	4720.9 4732.3					

Sample Name: JA28084-6	Sample Name: JA28084-6	■ Zoom										
Method: Accutest1(v164)	Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 Juser: admin Custom ID1: Custom ID2: Custom ID3:	Zoom (
Method: Accutest1 (v164) Mode: CONC Corr. Factor: 1.000000 Jser: admin Custom ID1: Custom ID2: Custom ID3: Comment: Custom ID3: Custom ID3:	Method: Accutest1(v164)											
Disperse Custom Disperse Disperse Custom Disperse Disperse	Seriadmin Custom ID1: Custom ID2: Custom ID3: Custom ID3:					٠.						
Elem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 N12316 Ag328 Agy 250100020009 .0003 .0031 .0397 .0228 .0018 .000	Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag328 Ag326 Ag32										,	
Ellem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag328 Avg 250100020009 .0003 .0031 .0397 .0228 .0018 .000 .0013 .0000 .0013 .0000 .0001 .0000 .0003 .0000 .0001 .0003 .000 .000	Ellem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag328 Avg .250100020009 .0003 .0031 .0397 .0228 .0018 .000 .0013 .0000 .0001 .0000 .0001 .0003 .0000 .0001 .0003 .000 .000					m ID3:	Custo	om ID2:	Custo	om ID1:	Cust	
Avg 2501 0002 0009 .0003 .0031 .0397 .0228 .0018 .0033 .0000 .0003 .0000 .0003 .0000 .0003 .0000 .0003 .0000 .0003 .0000 .0003 .0000 .0003 .0000 .0003 .0000 .0003 .0001 .0000 .0003 .0003 .0003 .0003 .0029 .0397 .0229 .0021 .000 #1 .2491 .0002 .0008 .0003 .0033 .0398 .0228 .0016 .000 Elem V_2924 Zn2062 As1890 T11908 Pb2203 Se1960 Sb2068 Al3961 Ca317 Avg .0018 .0059 .0005 .0001 .0002 .0014 .0007 .3521 178 Stddev .0003 .0003 .0005 .0001 .0002 .0011 .0007 .3521 178 #1 .0016 .0057 .0008 .0007 .00	Avg 2501 0002 0009 .0003 .0031 .0397 .0228 .0018 .003 .0000 .0001 .0000 .0003 .0031 .0397 .0228 .0018 .0003 .0000 .0003 .0000 .0003 .0000 .0001 .0003 .0000 .0001 .0003 .0000 .0001 .0003 .0029 .0397 .0229 .0021 .000 .0003 .0033 .0398 .0228 .0016 .000 #1 .2491 .0002 .0008 .0003 .0033 .0398 .0228 .0016 .000 #1 .2510 .0002 .0008 .0003 .0033 .0398 .0228 .0016 .000 Avg .0018 .0059 .0005 .0001 .0002 .0014 .0007 .3521 178 \$Kddev .0016 .0057 .0008 .0000 .0002 .0013 .0006 .3539 177 #1 .0016											Comment:
Avg 2501 0002 0009 .0003 .0031 .0397 .0228 .0018 .0033 .0000 .0003 .0000 .0003 .0000 .0003 .0000 .0003 .0000 .0003 .0000 .0003 .0000 .0003 .0000 .0003 .0000 .0003 .0001 .0000 .0003 .0003 .0003 .0003 .0029 .0397 .0229 .0021 .000 #1 .2491 .0002 .0008 .0003 .0033 .0398 .0228 .0016 .000 Elem V_2924 Zn2062 As1890 T11908 Pb2203 Se1960 Sb2068 Al3961 Ca317 Avg .0018 .0059 .0005 .0001 .0002 .0014 .0007 .3521 178 Stddev .0003 .0003 .0005 .0001 .0002 .0011 .0007 .3521 178 #1 .0016 .0057 .0008 .0007 .00	Avg 2501 0002 0009 .0003 .0031 .0397 .0228 .0018 .003 .0000 .0001 .0000 .0003 .0031 .0397 .0228 .0018 .0003 .0000 .0003 .0000 .0003 .0000 .0001 .0003 .0000 .0001 .0003 .0000 .0001 .0003 .0029 .0397 .0229 .0021 .000 .0003 .0033 .0398 .0228 .0016 .000 #1 .2491 .0002 .0008 .0003 .0033 .0398 .0228 .0016 .000 #1 .2510 .0002 .0008 .0003 .0033 .0398 .0228 .0016 .000 Avg .0018 .0059 .0005 .0001 .0002 .0014 .0007 .3521 178 \$Kddev .0016 .0057 .0008 .0000 .0002 .0013 .0006 .3539 177 #1 .0016	3280	_	Ni2316	Mn2576	Cu3247	Cr2677	Co2286	C42288	Be3130	Ra4554	Flem
Slddev .0013 .0000 .0001 .0000 .0003 .0000 .0001 .0003 .000 %RSD .5221 8.255 12.83 5.986 8.355 .1212 .3301 18.08 78.0 #1 .2491 0002 0010 .0003 .0029 .0397 .0229 .0021 .000 #2 .2510 0002 0008 .0003 .0033 .0398 .0228 .0016 .000 Elem V_2924 Zn2062 As1890 Tl1908 Pb2203 Se1960 Sb2068 Al3961 Ca317 Avg .0018 .0059 0005 .0001 .0002 .0014 .0007 .3521 178 #1 .0016 .0057 0008 .0007 .0022 .0013 .0006 .3539 177 #2 .0020 .0061 0001 0005 .0023 .0015 .0007 .3530 178 Elem Fe2599	Stddev .0013 .0000 .0001 .0000 .0003 .0000 .0001 .0000 .0001 .0000 .0001 .0000 .0001 .0000 .0001 .0000 .0001 .0003 .0003 .0000 .0001 .0003 .0003 .0003 .0003 .0003 .0029 .0027 .0021 .000 #2 .2510 .0002 .0008 .0003 .0033 .0398 .0228 .0016 .000 Avg .0018 .0059 .0005 .0001 .0022 .0014 .0007 .3521 178 Stddev .0003 .0003 .0005 .0008 .0000 .0002 .0014 .0007 .3521 178 #1 .0016 .0057 0008 .0007 .0022 .0013 .0006 .3539 177 #2 .0020 .0061 0001 0005 .0003 .0003 .0007 .0022 .0013 .0006 .3539 177	0004	,									
#1	#1	0003										
#2	#2	78.01		18.08	.3301	.1212	8.355	5.986	12.83	8.255	.5221	%RSD
Elem V_2924 Zn2062 As1890 T11908 Pb2203 Se1960 Sb2068 Al3961 Ca317 Avg .0018 .00590005 .0001 .0022 .0014 .0007 .3521 178 Stddev .0003 .0003 .0005 .0008 .0000 .0002 .0001 .0025 .0008 .0000 .0000 .0001 .0025 .0008 .0008 .0000 .0001 .0025 .0008 .0008 .0000 .0001 .0025 .0008 .0008 .0000 .0001 .0025 .0008 .0008 .0000 .0001 .0025 .0008 .0008 .0009 .0001 .0025 .0008 .0008 .0009 .0001 .0025 .0008 .0008 .0009 .0001 .0025 .0008 .0008 .0009 .0001 .0025 .0008 .0008 .0009 .0001 .0025 .0008 .0008 .0009 .0009 .0001 .0025 .0008 .0009 .0009 .0007 .0022 .0013 .0006 .3539 .177 .228 .0000 .0061 .0001 .0005 .0023 .0015 .0007 .3503 .178 .0009 .0009 .0001 .0007 .3503 .0018 .0016 .0009 .0009 .0001 .0009 .0001 .0009 .0009 .0001 .0009 .0009 .0001 .0009 .0009 .0001 .0009 .0009 .0009 .0001 .0009 .000	Elem V_2924 Zn2062 As1890 T11908 Pb2203 Se1960 Sb2068 Al3961 Ca317 Avg .0018 .0059 0005 .0001 .0022 0014 .0007 .3521 178 Stddev .0003 .0003 .0005 .0008 .0000 .0001 .0025 #1 .0016 .0057 0008 .0007 .0022 0013 .0006 .3539 177 #2 .0020 .0061 0001 0005 .0022 0013 .0006 .3539 178 Elem Fe2599 Mg2790 K_7664 Na5895 B_2089 Mc2020 Pd3404 Si2124 Sn188 Avg 5.023 31.76 6.314 303.1 1.410 .0023 0013 8.704 002 %RSD .3136 .8430 .4147 .2972 .6717 3.098 9.270 .2664 136 #1 .5034 31.57 6.295 </td <td>0002</td> <td></td> <td>.0021</td> <td>.0229</td> <td>.0397</td> <td>.0029</td> <td>.0003</td> <td>0010</td> <td>0002</td> <td>.2491</td> <td>#1</td>	0002		.0021	.0229	.0397	.0029	.0003	0010	0002	.2491	#1
Avg Total 8 0059 -0005 .0001 .0022 -0014 .0007 .3521 178 Slddev .0003 .0003 .0005 .0008 .0000 .0002 .0001 .0025 %RSD 114.43 4.800 103.1 1178 2.068 12.13 19.26 .7190 .266 #1 .0016 .0057 0008 .0007 .0022 0013 .0006 .3539 177 #2 .0020 .0061 0001 0005 .0023 0015 .0007 .3503 178 Elem Fe2599 Mg2790 K_7664 Na5895 B. 2089 Mo2020 Pd3404 Si2124 Sn184 Avg 5.023 31.76 6.314 303.1 1410 .0023 0013 8.704 00 %RSD .3136 .8430 .4147 .2972 .6717 3.098 9.270 .2644 136 #1 .5034 31.57	Avg -0018 .0059 0005 .0001 .0022 0014 .0007 .3521 178. Slddev .0003 .0003 .0005 .0008 .0000 .0002 .0001 .0025 %RSD 114.43 4.800 103.1 1178. 2.068 12.13 19.26 .7190 .266 #1 .0016 .0057 0008 .0007 .0022 0013 .0006 .3539 177 #2 .0020 .0061 0001 0005 .0023 .0015 .0007 .3503 178 Elem Fe2599 Mg2790 K_7664 Na5895 B. 2089 Mo2020 Pd3404 Si2124 Sn184 Avg 5.023 31.76 6.314 303.1 1410 .0023 0013 8.704 006 %RSD .3136 .8430 .4147 .2972 .6717 3.098 9.270 .2694 136 #1 .5034 31.57	0006		.0016	.0228	.0398	.0033	.0003	0008	0002	.2510	#2
Stddev 0003 0003 0003 0005 0008 0000 0002 0001 0025 0068 0079 0079 0079 0079 0079 0079 0079 007	Stddev 0003 0003 0005 0008 0000 0002 0001 0025 068RSD 14.43 4.800 103.1 1178 2.068 12.13 19.26 7.190 2.666 12.13 19.26 7.190 2.666 12.13 19.26 7.190 2.666 12.13 19.26 7.190 2.666 12.13 19.26 7.190 2.666 12.13 19.26 7.190 2.666 12.13 19.26 7.190 2.666 12.13 19.26 7.190 2.666 12.13 19.26 7.190 2.666 12.13 19.26 7.190 2.266 7.190 2.266 7.190 2.266 7.190 2.260 7.190 2.266 7.266 7.190 2.266 7.190 2.266 7.190 2.266 7.190 2.266 7.190 2.266 7	3179	C	Al3961	Sb2068	Se1960	Pb2203	TI1908	As1890	Zn2062	V_2924	Elem
Stddev 0003 0003 0005 0008 0000 00002 0001 0025 008	Stddev .0003 .0003 .0003 .0005 .0008 .0000 .0002 .0001 .0025 %RSD 14.43 4.800 103.1 1178 2.068 12.13 19.26 .7190 .266 #1 .0016 .0057 0008 .0007 .0022 0013 .0006 .3539 177 #2 .0020 .0061 0001 0005 .0023 0013 .0006 .3539 178 Elem Fe2599 Mg2790 K_7664 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn188 Avg .5023 31.76 6.314 303.1 .1410 .0023 .0013 8.704 .000 Siddev .0016 .27 .026 .9 .0009 .0001 .001 .023 .001 #1 .5034 31.57 6.295 302.4 .1416 .0023 .0012 8.687 .000 Elem Sr4077	78.2										Avg
#1	#1	.5					.0000		.0005	.0003	.0003	
#2	#2	2663		.7190	19.26	12.13	2.068	1178.	103.1	4.800	14.43	%RSD
Elem Fe2599 Mg2790 K_7664 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn188 Avg .5023 31.76 6.314 303.1 .1410 .0023 .0013 8.704 .000 Stddev .0016 .27 .026 .9 .0009 .0001 .0001 .023 .001 .023 .001 .023 .001 .023 .001 .023 .001 .023 .001 .023 .001 .023 .001 .023 .001 .023 .001 .023 .001 .024 .001 .001 .001 .023 .001 .001 .001 .023 .001 .001 .001 .023 .001 .001 .001 .001 .001 .001 .001 .00	Elem Fe2599 Mg2790 K_7664 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn185 Avg .5023 31.76 6.314 303.1 .1410 .0023 .0013 8.704 .0005 Slddev .0016 .27 .026 .9 .0009 .0001 .0001 .023 .001	177.8										
Avg 5.023 31.76 6.314 303.1 1.410 .0023 .0013 8.704 -0.00 \$Iddev .0016 .27 .026 .9 .0009 .0001 .0021 .002 .001 \$KRSD .3136 .8430 .4147 .2972 .6717 3.098 9.270 .2694 136 \$#1 .5034 31.57 6.295 302.4 .1416 .0023 .0013 8.720 001 \$#2 .5012 31.95 6.332 303.7 .1403 .0022 0012 8.687 .000 Stddev .5203 .0074 .0046 .0021 .0004 .005 .0050 .0050 .0050 .0050 .0050 .0043 .0050 .0043 .0050 .0043 .0050 .0071 .0043 .0050 .00	Avg 5.023 \$31.76 6.314 303.1 \$1.410 .0023 .0013 8.704 -000 \$Iddev .0016 .27 .026 .9 .0009 .0001 .0001 .023 .001 \$KRSD .3136 .8430 .4147 .2972 .6717 3.098 9.270 .2664 136 #1 .5034 31.57 6.295 302.4 .1416 .0023 .0013 8.720 -001 #2 .5012 31.95 6.332 303.7 .1403 .0022 -0012 8.687 .000 Elem Sr4077 Ti3349 W_2079 Avg .5203 .0074 .0046 Slddev .0021 .0004 .0005 %RSD .4085 4.714 11.06 #1 .5188 .0072 .0050	178.5		.3503	.0007	0015	.0023	0005	0001	.0061	.0020	#2
Stödev .0016 .27 .026 .9 .0001 .0001 .0001 .0021 .002 %RSD .3136 .8430 .4147 .2972 .6717 3.098 9.270 .2694 136 #1 .5034 31.57 6.295 302.4 .1416 .0023 .0013 8.720 -001 #2 .5012 31.95 6.332 303.7 .1403 .0022 -0012 8.687 .000 Avg .5203 .0074 .0046 .0021 .0004 .0005 .0050	Stddev .0016 .27 .026 .9 .0001 .0001 .0011 .023 .001 %RSD .3136 .8430 .4147 .2972 .6717 3.098 9.270 .2694 136 #1 .5034 31.57 6.295 302.4 .1416 .0023 .0013 8.720 001 #2 .5012 31.95 6.332 303.7 .1403 .0022 0012 8.687 .000 Belem Sr4077 T13349 W_2079 Avg .5203 .0074 .0046 .0021 .0000 .0050 </td <td></td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Elem</td>		5									Elem
%RSD	%RSD .3136 .8430 .4147 .2972 .6717 3.098 9.270 .2694 136 #1 .5034 31.57 6.295 302.4 .1416 .0023 .0013 8.720 .001 #2 .5012 31.95 6.332 303.7 .1403 .0022 .0012 8.687 .000 Elem Sr4077 Ti3349 W_2079 Avg .5203 .0074 .0046 Stddev .0021 .0004 .005 %RSD .4085 4.714 11.06 #1 .5188 .0072 .0050											
#1	#1 .5034 31.57 6.295 302.4 .1416 .00230013 8.7200012 #2 .5012 31.95 6.332 303.7 .1403 .00220012 8.687 .000 Elem Sr4077 Ti3349 W_2079 Avg .5203 .0074 .0046 Stddev .0021 .0004 .0005 %RSD .4085 4.714 11.06 #1 .5188 .0072 .0050	0010										
#2 .5012 31.95 6.332 303.7 .1403 .00220012 8.687 .000 Elem Sr4077 Ti3349 W_2079 Avg .5203 .0074 .0046 Stddev .0021 .0004 .0005 %RSD .4085 4.714 11.06 #1 .5188 .0072 .0050 #2 .5218 .0077 .0043 Int. Std. Y_3600 Y_3710 Y_2243 In2306 Avg 100780 .17640 .2090.7 4409.7 Stddev 159 .64 2.7 4.5 %RSD .15739 .36027 .13082 .10098	#2 .5012 31.95 6.332 303.7 .1403 .00220012 8.687 .000 Elem Sr4077 T13349 W_2079 Avg .5203 .0074 .0046 Stddev .0021 .0004 .0005 %RSD .4085 4.714 11.06 #1 .5188 .0072 .0050	136.6		.2694	9.270	3.098	.6717	.2972	.4147	.8430	.3136	%RSD
Elem Sr4077 Ti3349 W_2079 Avg .5203 .0074 .0046 Slddev .0021 .0004 .0005 %RSD .4085 4.714 11.06 #1 .5188 .0072 .0050 #2 .5218 .0077 .0043 Int. Sld. Y_3600 Y_3710 Y_2243 In2306 Avg 100780. 17640. 2090.7 4409.7 Slddev 159 64 2.7 4.5 %RSD .15739 .36027 .13082 .10098	Elem Sr4077 Ti3349 W_2079 Avg .5203 .0074 .0046 SIddev .0021 .0004 .0005 %RSD .4085 4.714 11.06 #1 .5188 .0072 .0050	0014										
Avg 5203 0074 0046 Slddev 0.0021 0.0004 0.0005 %RSD 4.085 4.774 111.06 #1 5188 0.072 0.0050 #2 5218 0.077 0.043 Int. Sld. Y_3600 Y_3710 Y_2243 In2306 Avg 100780 17640 2090.7 4409.7 Slddev 159 64 2.7 4.5 %RSD .15739 .36027 .13082 .10098	Avg 5.203 0.074 .0046 Slddev .0021 .0004 .0005 %RSD .4085 4.774 11.06 #1 .5188 .0072 .0050	0000		8.687	0012	.0022	.1403	303.7	6.332	31.95	.5012	#2
Stddev .0021 .0004 .0005 %RSD .4085 4.714 11.06 #1 .5188 .0072 .0050 #2 .5218 .0077 .0043 Int. Std. Y_3600 Y_3710 Y_2243 In2306 Avg 100780 .17640 .2990.7 .4409.7 Stddev 159 .64 .2.7 .4.5 %RSD .15739 .36027 .13082 .10098	Stďdev .0021 .0004 .0005 %RSD .4085 4.714 11.06 #1 .5188 .0072 .0050								W_2079		Sr4077	Elem
%RSD	%RSD .4085 4.714 11.06 #1 .5188 .0072 .0050											
#1 .5188 .0072 .0050 #2 .5218 .0077 .0043 Int. Std. Y_3600 Y_3710 Y_2243 In2306 Avg 100780. 17640. 2090.7 4409.7 Stddev 159 .64 2.7 4.5 %RSD .15739 .36027 .13082 .10098	#1 .5188 .0072 .0050											
#2 .5218 .0077 .0043 Int. Std. Y_3600 Y_3710 Y_2243 In2306 Avg 100780. 17640. 2090.7 4409.7 Stddev 159 64. 2.7 4.5 %RSD .15739 .36027 .13082 .10098									11.06	4.714	.4085	%RSD
Int. Std. Y_3600 Y_3710 Y_2243 In2306 Avg 100780. 17640. 2090.7 4409.7 Stddev 159. 64. 2.7 4.5 %RSD .15739 .36027 .13082 .10098	#2 .5218 .0077 .0043											
Avg 100780. 17640. 2090.7 4409.7 Stddev 159. 64. 2.7 4.5 %RSD .15739 .36027 .13082 .10098									.0043	.0077	.5218	#2
Slddev 159. 64. 2.7 4.5 %RSD .15739 .36027 .13082 .10098												
%RSD .15739 .36027 .13082 .10098												
#1 100660 17685 2088.8 4406.6												
#2 100890. 17595. 2092.6 4412.9												
#Z 100070. 1/373. 2072.0 4412.7	#Z 100070. 1/373. 2072.0 4412.7							4412.7	2072.0	17373.	100070.	n &

Sample Nam Method: Accu									Zoom Ou
•									
Mothod: Acci	e: JA2808	34-7 A	cquired: 9/	19/2009 21	:35:12	Type: Unk			
			de: CONC		actor: 1.00	٥.			
User: admin		om ID1:		om ID2:		m ID3:			
	Cusi	OH ID I:	Cusi	UIII ID2:	Cusic	III ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avq	.3940	0002	0006	.0010	.0012	.0258	1.564	.0037	.0000
Stddev	.0059	.0000	.0002	.0000	.0000	.0002	.001	.0002	.000
%RSD	1.506	15.02	41.27	3.772	.6939	.9354	.0706	5.356	902.6
70.102	1.000	10.02		0.772	.0707	.,,,,,	.0700	0.000	702.0
#1	.3898	0001	0007	.0011	.0012	.0260	1.563	.0038	.0001
#2	.3982	0002	0004	.0010	.0011	.0256	1.565	.0036	0001
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
	.0013	.0067	0002	0003	.0018	.0001	0001	.2313	258.2
Avg				.0003					
Stddev	.0001	.0002	.0011		.0003	.0007	.0002	.0114	6.3
%RSD	9.297	2.518	475.4	145.4	14.63	535.1	306.1	4.939	2.439
#1	.0014	.0069	.0006	0006	.0016	.0007	0002	.2232	253.7
#2	.0012	.0066	0010	.0000	.0020	0004	.0001	.2394	262.6
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avq	.8307	49.72	4.762	348.9	.1177	.0005	0035	9.227	0012
Stddev	.0142	.78	.057	5.9	.0001	.0001	.0002	.020	.0003
%RSD	1.714	1.562	1.194	1.682	.1074	26.63	6.736	.2177	23.52
#1	.8206	49.17	4.721	344.8	.1176	.0004	0034	9.242	0014
#2	.8408	50.27	4.802	353.1	.1178	.0006	0037	9.213	0010
Elem	Sr4077	Ti3349	W_2079						
Avq	.5075	.0100	0019						
Stddev	.0081	.0000	.0005						
%RSD	1.596	.0172	23.70						
#1	.5017	.0100	0016						
#1 #2	.5132	.0100	0016						
#2	.5132	.0100	0022						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	98294.	17571.	2049.2	4293.7					
Stďdev	170.	217.	3.9	6.7					
%RSD	.17343	1.2340	.19109	.15547					
#1	98173.	17725.	2046.4	4289.0					
#2	98414.	17418.	2052.0	4298.4					

Raw Data MA23143	page 141 of 245

									◀ Zoom Ir
									Zoom Ou
	ame: JA281			19/2009 21		Type: Unk			
	ccutest1(v16	,	de: CONC		actor: 1.00				
User: adm		tom ID1:	Cust	om ID2:	Custo	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.0462	0002	0001	.0007	0002	.0014	.3189	.0008	.0004
Stddev	.0001	.0000	.0002	.0001	.0003	.0003	.0005	.0002	.0004
%RSD	.2867	9.534	238.6	17.20	117.0	19.62	.1531	20.93	103.9
#1	.0462	0002	.0001	.0006	0004	.0016	.3185	.0007	.0006
#2	.0463	0002	0002	.0008	.0000	.0012	.3192	.0009	.0001
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	0004	.0410	.0055	0021	.0004	.0007	.0008	0106	15.19
Stddev	.0002	.0005	.0006	.0015	.0006	.0006	.0003	.0006	.05
%RSD	44.07	1.212	11.31	69.96	159.9	82.40	39.66	5.828	.2987
#1	0005	.0407	.0059	0032	.0008	.0011	.0010	0101	15.22
#2	0003	.0414	.0051	0011	.0000	.0003	.0006	0110	15.16
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	44.51	3.259	3.821	45.74	.1584	0009	0014	11.51	0019
Stddev	.11	.020	.018	.03	.0002	.0001	.0001	.03	.0002
%RSD	.2560	.6141	.4664	.0731	.1018	12.84	6.166	.2519	12.97
#1	44.59	3.274	3.809	45.76	.1585	0008	0015	11.49	0017
#2	44.43	3.245	3.834	45.72	.1583	0010	0013	11.53	0020
Elem	Sr4077	Ti3349	W_2079						
Avg	.1899	0002	0085						
Stddev	.0009	.0001	.0003						
%RSD	.4563	48.18	3.786						
#1	.1905	0003	0083						
#2	.1893	0002	0087						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	106740.	17934.	2242.9	4935.2					
Stddev	16.	5.	6.3	18.1					
%RSD	.01495	.02772	.28068	.36766					
#1	106730.	17937.	2247.3	4948.0					
#2	106750.	17930.	2238.4	4922.3					

Raw Data MA23143	page 143 of 245

Elem Avg Stddev %RSD	.0904 .0004 .4117	Be3130 0001 .0001 153.2	Cd2288 0003 .0001 31.48	Co2286 .0018 .0003 17.43	Cr2677 .0007 .0001 17.05	Cu3247 .0657 .0000 .0229	Mn2576 .0944 .0003 .2885	Ni2316 .0023 .0001 4.845	Ag3280 .0003 .0000 2.655
#1 #2	.0907 .0902	0001 .0000	0004 0002	.0016 .0020	.0006	.0657 .0657	.0942 .0946	.0023 .0022	.0003
Elem Avg Stddev %RSD	V_2924 .0000 .0000 8.520	Zn2062 .0361 .0000 .1205	As1890 .0043 .0005 12.39	TI1908 0009 .0007 80.38	Pb2203 .0015 .0007 49.19	Se1960 .0029 .0003 11.23	Sb2068 0005 .0002 35.29	Al3961 .8606 .0046 .5348	Ca3179 10.93 .00 .0436
#1 #2	.0000	.0360 .0361	.0039 .0046	0004 0014	.0010 .0020	.0027 .0031	0003 0006	.8574 .8639	10.92 10.93
Elem Avg Stddev %RSD	Fe2599 17.21 .04 .2341	Mg2790 2.141 .009 .4424	K_7664 2.731 .003 .0897	Na5895 40.43 .08 .2062	B_2089 .1337 .0010 .7169	Mo2020 0007 .0001 10.53	Pd3404 0024 .0010 41.55	Si2124 1.826 .009 .4680	Sn1899 0013 .0000 2.838
#1 #2	17.24 17.18	2.134 2.148	2.733 2.730	40.49 40.37	.1330 .1344	0006 0007	0032 0017	1.820 1.832	0013 0014
Elem Avg Stddev %RSD	Sr4077 .0896 .0001 .1266	Ti3349 0003 .0001 32.02	W_2079 0132 .0011 8.217						
#1 #2	.0895 .0897	0004 0002	0124 0139						
Int. Std. Avg Stddev %RSD	Y_3600 109110. 246. .22507	Y_3710 18436. 23. .12312	Y_2243 2282.3 6.7 .29431	In2306 4966.8 18.2 .36576					
#1 #2	109280. 108930.	18452. 18420.	2287.1 2277.6	4979.6 4953.9					

Sample Name: JA28143-1 Acquired: 9/19/2009 21:41:28 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3:

Comment:

Raw Data MA23143 page 142 of 245

									◀ Zoon
									Zoom
					_				
	ame: CCV		d: 9/19/200		٠.				
Nethod: A	ccutest1(v1	64) Mo	ode: CONC	Corr.	Factor: 1.0	00000			
Jser: adm	nin Cus	tom ID1:	Cus	tom ID2:	Cust	om ID3:			
Comment	:								
Flem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280
Units	ppm	ppm				ppm	ppm		
Avg	2.070	2.164	2.036	2.069	2.023	1.898	1.987	2.087	.2418
Stďdev	.111	.118	.026	.027	.011	.015	.017	.029	.0013
%RSD	5.383	5.468	1.267	1.319	.5186	.7987	.8313	1.363	.5452
#1	2.148	2.248	2.054	2.088	2.030	1.909	1.998	2.107	.2427
#1	1.991	2.246	2.034	2.066		1.888	1.975	2.107	
-									
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Value									
Range									
Elem	V 2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Units	ppm	ppm							
Avq	2.032	2.113	2.028			2.023			
Stddev	.018	.031	.023	.018	.024	.024	.025	2.29	2.28
%RSD	.8875	1.469	1.151	.8668	1.179	1.168	1.248	5.453	5.275
#1	2.045	2.135	2.045	2.102	2.091	2.040	2.006	43.60	44.76
#2	2.020	2.091				2.006		40.36	
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Value									
Range									
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	43.07	43.08				2.060			
Stddev	2.38	2.36						.057	
%RSD	5.537	5.478	4.611	4.917	1.008	1.276	.5486	1.160	1.301
#1	44.76	44.74	43.39	42.85	2.031	2.079	1.926	4.910	2,101
#2	41.39	41.41		39.97					
	011.5	011.5	011.5	011.0	011.0	011.0	011.5	011.5	011.0
Check?	Cnk Pass	Cnk Pass	Cnk Pass	Cnk Pass	Cnk Pass	Cnk Pass	Cnk Pass	Cnk Pass	Chk Pass
Value									
Range									

Raw Data MA23143 page 144 of 245

ppm .0003

.0002

54.59

.0004

.0002

Ca3179

ppm .0234

.0058

24.71

.0193

.0275

Sn1899

.0002

36.88

.0008

.0004

User: admin

Comment:

Elem

Units

Avg Stddev

%RSD

Check?

Flem

Units

Avg Stddev

%RSD

Check?

Units

Avg Stddev

%RSD

Check ?

Low Limit

High Limit Low Limit Elem

#2

High Limit Low Limit

#2

Raw Data MA23143	page 145 of 245
------------------	-----------------

Raw Data MA23143 page 147 of 245

	ame: CCB ccutest1(v16				Type: QC ctor: 1.000000
User: adm	in Cust	om ID1:	Custo	om ID2:	Custom ID3
Comment:					
Elem	Sr4077	Ti3349	W_2079		
Units	ppm				
Avg Stddev	.0003	.0005			
%RSD	19.61	56.56			
701100	17.01	00.00	27.00		
#1	.0003	.0003			
#2	.0004	.0007	0056		
High Limit	Chk Pass	Chk Pass	Chk Pass		
Low Limit					
Int. Std.	Y_3600	Y_3710	Y_2243	In2306	
Units	Cts/S	Cts/S	Cts/S		
Avg		17897.			
Stddev %RSD	61. .05678	.01716	8.2 .35565		
701C3D	.03070	.01710	.33303	.30300	
#1	107990.	17895.	2300.9	5108.0	
#2	108080.	17899.	2312.5	5130.1	

Sample Name: CCB Acquired: 9/19/2009 21:59:38 Type: QC

Custom ID1:

Be3130

ppm .0003

.0001

31.55

.0002

.0004

7n2062

ppm .0003

.0005 153.6

.0000

Mg2790

ppm .0191

.0137

72.04

.0094

.0288

Ba4554

ppm .0004

.0002

59.99

.0002

.0006

V 2924

ppm .0005

.0001

.0004

Fe2599

ppm .0125 .0024

19.06

.0108

.0142

Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Cd2288

ppm .0004 .0005

130.5

.0007

.0000

As1890

ppm .0016

.0012

.0008

K_7664

ppm .0877

.0012

1.342

.0869

.0886

Custom ID2:

Co2286

ppm .0005

.0003

66.37

.0008

.0003

TI1908

ppm .0014

.0002

.0013

Na5895

ppm .1542

.0076

4.934

.1488

.1596

Custom ID3:

Cu3247

ppm .0005 .0002

42.95

.0007

.0004

Se1960

ppm -.0003

.0005

.0007

.0000

Mo2020

ppm .0009

.0004

41.14

.0012

.0006

Mn2576

ppm .0006

.0001

10.82

.0005

.0006

Sh2068

ppm .0002

.0002

.0004

Pd3404

.0024

261.4

.0008

-.0026

Ni2316

ppm .0001

.0001

136.5

.0002

.0000

Al3961

ppm .0043

.0058

.0001

.0084

Si2124

ppm .0052

.0016

31.28

.0063

.0040

Cr2677

ppm .0004

.0002

67.85

.0002

.0005

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Ph2203

ppm .0002

.0008

.0008

-.0004

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

B_2089

ppm .0014

.0001

5.979

.0015

.0014

Chk Pass Chk

rian Da	ta MA2314	o pago	146 of 24						∢ Zoom	L. N
									Zoom C	
Sample N	lame: JA281	44-1 A	cquired: 9/	19/2009 22	:05:50	Type: Unk				
Method: A	Accutest1(v1	64) Ma	de: CONC	Corr. F	actor: 1.00	00000				
User: adm	nin Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:				
Comment	:									
Elem Avg	Ba4554 .0899	Be3130 0001	Cd2288 0002	Co2286 .0017	Cr2677 .0005	Cu3247 .1816	Mn2576 .1026	Ni2316 .0031	Ag3280 .0000	
Stddev	.0001	.0001	.0002	.0001	.0000	.0004	.0001	.0001	.0001	
%RSD	.1503	144.9	3.008	5.872	3.684	.2060	.1274	7.182	643.8	
#1	.0900	0001	0002	.0016	.0005	.1819	.1027	.0033	0001	
#2	.0898	.0000	0002	.0018	.0005	.1813	.1027	.0033	.0001	
		7 00/0		T14000	DI 0000	0.40/0	01.0070		0.0470	
Elem Avg	V_2924 0001	Zn2062 .0849	As1890 .0046	TI1908 0006	Pb2203 .0035	Se1960 .0022	Sb2068 0003	Al3961 .8331	Ca3179 10.96	
Stddev	.0001	.0003	.0001	.0001	.0003	.0022	.0003	.0033	.01	
%RSD	100.1	.3715	1.616	11.36	7.034	77.06	140.5	.3992	.0763	
#1	0001	.0851	.0045	0005	.0036	.0010	0006	.8307	10.96	
#2	.0000	.0847	.0046	0006	.0033	.0034	.0000	.8354	10.97	
	E 0500				D 0000		D 10101	010404	0.4000	
Elem Avq	Fe2599 19.20	Mg2790 2.179	K_7664 2.744	Na5895 41.11	B_2089 .1324	Mo2020 0004	Pd3404 0015	Si2124 1.838	Sn1899 0010	
Stddev	.02	.007	.020	.13	.0004	.0001	.0011	.002	.0001	
%RSD	.0876	.3085	.7211	.3148	.2665	16.32	72.00	.1197	6.178	
#1	19.21	2.184	2.730	41.02	.1326	0004	0022	1.836	0010	
#2	19.18	2.174	2.758	41.20	.1321	0003	0007	1.839	0011	
Elem	Sr4077	Ti3349	W_2079							
Avg	.0889	0002	0053							
Stddev	.0002	.0000	.0013							
%RSD	.2767	10.46	24.23							
#1	.0890	0002	0044							
#2	.0887	0002	0062							
Int. Std.	Y 3600	Y 3710	Y 2243	In2306						
Avg	109440.	18414.	2309.0	5008.9						
Stddev	254.	16.	3.7	12.9						
%RSD	.23205	.08833	.15877	.25700						
#1	109260.	18403.	2306.4	4999.8						
#2	109620.	18426.	2311.6	5018.0						

Raw Data MA23143 page 148 of 245

.0001

.0005

643.8

.0004

-.0003

o

Raw Data MA23143	page 150 of 245
------------------	-----------------

Raw Data MA23143 page 152 of 245

								◀ Zoom Zoom 0
ne: MP496	75-I C1	Acquired	9/19/2009	22:30:19	Type.	Jnk		
					٥.	Jiii.		
,	. ,							
Cus	tom iD i:	Cusi	JIII IDZ:	Cusic	JIII ID3:			
Ba4554	Be3130	Cd2288	Co2286	Cr2677			Ni2316	Ag3280
								.1946
								.0001
.2505	.0186	.3758	.1645	.4115	.0981	.2056	.0552	.0509
.4859	.5073	.4842	.5019	.5064	.4476	.5028	.5139	.1945
.4842	.5072	.4816	.5007	.5034	.4482	.5014	.5135	.1947
V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
.4922	.5242	.4660	.4879	.5148	.4710	.4668	4.902	5.781
.0016	.0009	.0015	.0028	.0007	.0028	.0012	.019	.007
.3282	.1674	.3301	.5807	.1456	.5892	.2624	.3876	.1249
.4934	.5236	.4671	.4859	.5143	.4729	.4677	4.889	5.787
.4911	.5248	.4649	.4899	.5153	.4690	.4660	4.915	5.776
Fe2599	Ma2790	K 7664	Na5895	B 2089	Mo2020	Pd3404	Si2124	Sn1899
5.444	5.661	9.875	10.09	.0017	.4926	0024	.0229	0002
.021	.019	.004	.00	.0006	.0001	.0013	.0007	.0006
.3889	.3431	.0366	.0287	36.70	.0234	53.84	3.222	299.3
5.429	5.675	9.877	10.09	.0022	.4927	0015	.0234	.0002
5.459	5.647	9.872	10.10	.0013	.4926	0034	.0224	0006
Sr4077	Ti3349	W 2079						
0001	.4839	0007						
.0001	.0002	.0002						
87.51	.0508	30.97						
.0000	.4841	0009						
0002	.4837	0006						
Y 3600	Y 3710	Y 2243	In2306					
107340.	17867.	2267.2	4982.7					
339.	13.	7.1	9.8					
.31570	.07316	.31226	.19616					
107100.	17876.	2262.2	4975.8					
	17858.	2272.2	4989.6					
	Ba4554 4850 .0012 .2505 .4859 .4842 V_2924 .4922 .0016 .3282 .4934 .4911 Fe2599 5.459 5.459 Sr4077 .0001 .0001 .0002 Y_3600 107340 .3399.	Ba4554 Be3130 .4850 .5072 .0012 .0001 .2505 .0186 .4859 .5073 .4842 .5072 V_2924 Zn2062 .4922 .5242 .0016 .0009 .3282 .1674 .4934 .5236 .4911 .5248 Fe2599 M92790 5.444 .019 .3889 .3431 5.429 .5475 5.459 5.647 Sr4077 Ti3349 .0001 .0002 .87.51 .0508 .0000 .4841 .0002 .4837 Y_3600 Y_3710 107340 .73867 .339. 13.	Ba4554 Be3130 Cd2288	Ba4554 Be3130 Cd2288 Co2286 Co2286 A850 .5072 .4829 .5013 .0018 .0008 .5073 .4829 .5013 .0008 .5073 .4829 .5013 .0008 .5008 .5073 .4842 .5019 .4842 .5019 .4842 .5019 .4842 .5019 .4842 .5019 .4842 .5019 .4842 .5019 .4842 .5019 .4842 .5019 .4842 .5019 .4842 .5019 .4842 .5019 .4849 .4849 .4849 .4849 .4879 .0016 .0009 .0015 .0028 .3282 .1647 .4859 .4931 .5236 .4671 .4859 .4931 .5236 .4671 .4859 .4939 .4934 .5236 .4671 .4859 .9875 .1009 .9875 .1009 .9875 .1009 .9875 .1009 .3889 .3431 .0366 .0287 .5459 .5647 9.872 .10.10 5.459 <t< td=""><td> Record Court Cou</td><td> Ba4554</td><td>Ba4554 Be3130 Cd2288 Co2286 Cr2677 Custom ID3: Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 A850 .5072 .4829 .5013 .5049 .4479 .5021 .0012 .0001 .0018 .0008 .0021 .0004 .0010 .2505 .0186 .3758 .1645 .4115 .0981 .2056 .4859 .5073 .4842 .5019 .5064 .4476 .5028 .4842 .5072 .4816 .5007 .5034 .4482 .5014 V_2924 Zn2062 As1890 T11908 Pb2203 Se1960 Sb2068 .4922 .5242 .4660 .4879 .5148 .4710 .4668 .0016 .0009 .0015 .0028 .0007 .0028 .0012 .4934 .5236 .4671 .4859 .5143 .4729 .4677 .4911 .5248</td><td> Ba4554</td></t<>	Record Court Cou	Ba4554	Ba4554 Be3130 Cd2288 Co2286 Cr2677 Custom ID3: Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 A850 .5072 .4829 .5013 .5049 .4479 .5021 .0012 .0001 .0018 .0008 .0021 .0004 .0010 .2505 .0186 .3758 .1645 .4115 .0981 .2056 .4859 .5073 .4842 .5019 .5064 .4476 .5028 .4842 .5072 .4816 .5007 .5034 .4482 .5014 V_2924 Zn2062 As1890 T11908 Pb2203 Se1960 Sb2068 .4922 .5242 .4660 .4879 .5148 .4710 .4668 .0016 .0009 .0015 .0028 .0007 .0028 .0012 .4934 .5236 .4671 .4859 .5143 .4729 .4677 .4911 .5248	Ba4554

Raw Data MA23143 page 149 of 245

Raw Dat	ta MA2314	3 page	149 of 24	5					
									◀ Zoom In Zoom Out
									200111 Out
Sample Na	ame: MP496	75-MB1	Acquired	I: 9/19/200	9 22:24:09	Type:	Unk		
Method: A	ccutest1(v1	64) Ma	de: CONC	Corr. F	actor: 1.00	00000			
User: adm	in Cus	tom ID1:	Custo	om ID2:	Custo	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280
Avg	0001	0002	0002	0001	.0002	.0000	.0000	.0007	0003
Stddev %RSD	.0001 109.6	.0001 27.97	.0001 33.92	.0002 323.2	.0000 21.36	.000 2800.	.0000 3.193	.0001 16.24	.0003 107.4
76K3D	109.6	21.91	33.92	323.2	21.30	2800.	3.193	10.24	107.4
#1	.0000	0002	0002	0002	.0002	0002	.0000	.0006	0005
#2	0002	0002	0003	.0001	.0002	.0002	.0000	.0008	0001
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	0004	.0029	.0009	0003	.0001	0022	0005	0008	.0573
Stddev %RSD	.0001 13.42	.0001 4.620	.0005 63.62	.0003 74.51	.0013 1589.	.0013 57.98	.0008 166.9	.0010 123.8	.0025 4.374
/0K3D	13.42	4.020	03.02	74.51	1309.	37.70	100.9	123.0	4.374
#1	0005	.0028	.0005	0005	0009	0013	0010	0016	.0590
#2	0004	.0030	.0012	0002	.0010	0031	.0001	0001	.0555
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	.0090	0020	0240	.1126	0005	0006	.0002	.0173	0004
Stddev	.0001	.0219	.0359	.0007	.0005	.0001	.0015	.0007	.0008
%RSD	1.313	1070.	149.8	.5910	97.42	18.56	824.6	3.963	181.9
#1	.0091	0175	.0014	.1131	0008	0006	0009	.0178	.0001
#2	.0089	.0134	0494	.1121	0001	0005	.0012	.0168	0010
Elem	Sr4077	Ti3349	W 2079						
Avg	0001	.0000	0143						
Stddev	.0001	.0002	.0007						
%RSD	39.17	507.0	5.072						
#1	0002	0001	0138						
#2	0001	.0002	0148						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	109680.	18308.	2338.2	5179.0					
Stddev	187.	131.	49.9	107.8					
%RSD	.17055	.71509	2.1324	2.0815					
#1	109540.	18401.	2373.5	5255.3					
#2	109810.	18216.	2303.0	5102.8					

Elem V_2924 Zn2062 As1890 TI1908 Pb2203 Se1960 Al3961 Ca3179 Sb2068 Avg Stddev .0005 .0201 .0052 .0000 .0006 .0004 .0009 -.0061 14.18 0001 0000 0002 0006 0002 .1268 17.52 .2420 3.577 9822. 253.5 28.18 2.904 #1 - 0004 0201 0053 - 0002 0002 0003 0007 - 0060 14 17 -.0005 .0202 .0050 .0002 .0010 .0011 .0011 14.20 -.0062 #2 Mo2020 -.0008 Elem Fe2599 Mg2790 K_7664 Na5895 B_2089 Pd3404 Si2124 Sn1899 43.45 2.805 44.66 1413 .0002 10.67 .0015 Avq 3.313 Stddev .019 .01 .015 .07 .0002 .0001 .0005 .00 .0005 %RSD .0120 .6920 .1475 .0026 32.60 43 44 2 791 3 303 44 61 1415 - 0009 - 0006 10.67 - 0012 43.45 3.324 44.70 .1411 -.0007 Flem Sr4077 Ti3349 W 2079 -.0002 .0001 -.0044 .0000 Avg Stddev .0002 %RSD .1242 41.75 .1581 #1 -.0003 .1762 -.0044 #2 .1765 -.0002 -.0044 Int. Std. Y 3710 Y 3600 Y 2243 In2306 107650. 362. 18234. 47. 5006.2 %RSD 33631 26046 33143 19514 107400. 18267 2270.2 #2 107910. 18200. 2280.9 5013.1

Type: Unk

Cu3247

.0009

.0000

.7970

.0009

.0010

Mn2576

.2575

.0000

.0135

.2575

Ni2316

.0008

.0002

21.21

.0007

.0009

Custom ID3:

Cr2677

.0000

.000

1346

.0001

Cd2288

-.0001

.0001

71.66

.0000

Custom ID2:

Co2286

.0002

.0001

60.75

.0001

.0003

Custom ID1:

Be3130

-.0002

.0001

25.51

.0002

-.0003

Ba4554

.0481

.0003

.5883

.0479

.0483

User: admin

Comment:

Elem

Avg Stddev

%RSD

#1 #2

Raw Data MA23143 page 151 of 245

Comment: Elem

%RSD

Ag3280

.0455

.7430

									Zoom C)u
	ame: MP496		Acquired:			Type: U	nk			
Method: A	.ccutest1(v16		de: CONC		actor: 1.00	00000				
User: adm	in Cust	tom ID1:	Cust	om ID2:	Custo	om ID3:				
Comment:										
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280	
Avg	2.067	.0445	.0501	.4493	.1738	.2237	5.197	.5525	.0450	
Stddev	.001	.0002	.0002	.0006	.0001	.0002	.006	.0016	.0002	
%RSD	.0599	.3442	.3203	.1247	.0428	.0890	.1116	.2816	.5332	
#1	2.066	.0444	.0500	.4489	.1738	.2239	5.193	.5514	.0451	
#2	2.068	.0446	.0502	.4497	.1737	.2236	5.201	.5536	.0448	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avq	.4401	.4940	1.752	1.749	.4385	1.755	.4383	1.890	156.6	
Stddev	.0011	.0010	.003	.010	.0024	.005	.0022	.001	.1	
%RSD	.2394	.2098	.1414	.5857	.5574	.2956	.5115	.0254	.0341	
#1	.4409	.4933	1.750	1.756	.4367	1.751	.4367	1.891	156.6	
#2	.4394	.4948	1.754	1.742	.4402	1.759	.4399	1.890	156.5	
Elem	Fe2599	Mq2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Avq	6.246	82.02	27.80	212.9	.4560	.0007	0034	7.520	0013	
Stddev	.001	.03	.08	1.7	.0002	.0007	.0034	.003	.0002	
%RSD	.0123	.0308	.3007	.7755	.0334	.0074	37.91	.0395	16.48	
/0K3D	.0123	.0306	.3007	.7755	.0334	.0074	37.71	.0393	10.40	
#1	6.247	82.01	27.86	214.0	.4561	.0007	0025	7.518	0012	
#2	6.246	82.04	27.74	211.7	.4559	.0007	0043	7.522	0015	
Elem	Sr4077	Ti3349	W_2079							
Avq	.6574	.0051	.0196							
Stddev	.0008	.0004	.0012							
%RSD	.1181	6.925	6.172							
#1	.6569	.0048	.0188							
#2	.6580	.0053	.0205							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306						
Avq	102240.	17606.	2129.3	4492.6						
Stddev	156.	22.	5.1	8.6						
%RSD	.15219	.12566	.23956	.19124						
			.23730							
#1	102130.	17621.	2132.9	4498.6						
#2	102350.	17590.	2125.7	4486.5						

Raw Data MA23143 page 154 of 245

Raw Data MA23143 page 156 of 245

Itaw Da	ta MAZJIT	o page	13-7 01 2-1						
									◀ Zoom In
									Zoom Ou
Sample N	ame: MP496	75-SD1	Acquired	: 9/19/2009	9 22:54:56	Type:	Unk		
Method: A	ccutest1(v1	64) Mo	de: CONC		actor: 5.00				
User: adm	•	tom ID1:		om ID2:		om ID3:			
		IOIII ID I:	Cusi	OIII IDZ:	Cusio	נטו וווע:			
Comment	:								
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.3898	0007	0017	.0141	0009	.0227	5.238	.1135	.0005
Stddev	.0025	.0007	.0007	.0017	.0005	.0011	.079	.0003	.0007
%RSD	.6519	99.96	43.50	12.18	54.17	4.798	1.513	.2365	157.9
#1	.3916	0012	0022	.0129	0005	.0234	5.294	.1137	0001
#2	.3880	0002	0012	.0153	0012	.0219	5.181	.1133	.0010
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	0010	.0527	.0049	0001	.0011	0079	0004	.1625	135.0
Stddev	.0009	.0000	.0010	.0001	.0011	.0129	.0004	.0293	.5
%RSD	91.16	.0945	19.92	136.0	99.40	162.5	101.8	18.00	.3813
701130	71.10	.0743	17.72	130.0	77.40	102.5	101.0	10.00	.5015
#1	0004	.0528	.0042	.0000	.0003	0170	0006	.1832	135.4
#2	0016	.0527	.0056	0002	.0019	.0012	0001	.1419	134.7
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	5.157	58.75	4.508	200.6	.4441	0022	0019	7.209	0041
Stddev	.002	.30	.012	1.2	.0048	.0003	.0015	.003	.0024
%RSD	.0332	.5028	.2628	.6213	1.077	14.55	79.10	.0440	58.59
	- 4-0	50.07		004.5				7.044	
#1	5.158	58.96	4.517	201.5	.4407	0024	0009	7.211	0024
#2	5.156	58.54	4.500	199.7	.4475	0020	0030	7.207	0058
Elem	Sr4077	T13340	W_2079						
Avg	.6512	.0023	0606						
Stddev	.0043	.0001	.0023						
%RSD	.6569	4.620	3.874						
701102	.0007	1.020	0.071						
#1	.6542	.0024	0589						
#2	.6481	.0022	0623						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	101380.	17480.	2248.5	4916.1					
Stddev	1215.	50.	5.2	1.3					
%RSD	1.1984	.28864	.22970	.02648					
41	100520	17444	2252.2	401F 2					
#1 #2	100520. 102240.	17444. 17516.	2252.2 2244.9	4915.2 4917.0					
#2	102240.	1/316.	2244.9	4917.0					

Paw Data MA23143 page 153 of 245

.0007 .0000 2.341	Corr. F	actor: 1.00	Cu3247 .0207 .0000	Mn2576 4.757 .012	Ni2316 .1127	■ Zoom O
Cd2288 (.0007 .0000 2.341 .0006	Corr. F n ID2: Co2286 .0149 .0002 1.208	Cr2677 0018	000000 om ID3: Cu3247 .0207 .0000	Mn2576 4.757	.1127	
Cd2288 (0007 .0000 2.341 .0006	Co2286 .0149 .0002 1.208	Cr2677 0018 .0001	Cu3247 .0207 .0000	4.757	.1127	
.0007 .0000 2.341	.0149 .0002 1.208	0018 .0001	.0207 .0000	4.757	.1127	
	0140		.0742	.2416	.0001 .0709	.0003 165.1
.0007	.0150	0017 0018	.0207 .0207	4.765 4.749	.1126 .1128	.0000 .0004
As1890 .0043 .0002 5.553	TI1908 .0016 .0003 17.31	Pb2203 .0012 .0003 29.31	Se1960 .0013 .0014 113.5	Sb2068 .0002 .0002 133.5	Al3961 .1390 .0001 .1010	Ca3179 132.6 .0 .0285
.0045 .0042	.0017 .0014	.0014	.0003 .0023	.0004 .0000	.1391 .1389	132.6 132.5
K_7664 N 4.560 .032 .6933	Na5895 191.1 3.2 1.673	B_2089 .4507 .0005 .1126	Mo2020 .0005 .0000 .8848	Pd3404 0017 .0001 6.918	Si2124 7.338 .007 .1019	Sn1899 0011 .0000 3.376
4.582 4.537	193.3 188.8	.4503 .4510	.0005 .0005	0018 0016	7.332 7.343	0011 0010
W_2079 .0042 .0005 11.17						
.0039 .0045						
Y_2243 2126.6 .1 .00450	In2306 4528.9 .5 .01043					
2126.7 2126.5	4529.2 4528.5					
	.0043 .0002 .5.553 .0045 .0042 K_7664 N 4.560 .032 .6933 4.582 4.582 4.582 .0045 11.17 .0039 .0045 Y_2243 2126.6 .1 .00450	.0043 .0016 .0002 .0003 5.553 17.31 .0045 .0017 .0042 .0014 K_7664 Na5895 4.560 191.1 .032 3.2 .6933 1.673 4.582 193.3 4.537 188.8 W_2079 .0042 .0005 11.17 .0039 .0045 4528.9 Y_2243 In2306 4528.9 .0124 4529.2	.0043 .0016 .0012 .0003 .0003 .0003 .553 17.31 29.31 .0045 .0017 .0014 .0009 .4507 .32 3.2 .0005 .4502 .0005 .11.17 .0039 .0045 .0016 .001	.0043 .0016 .0012 .0013 .0003 .0003 .0003 .0003 .0003 .0014 .0003 .0015 .0017 .0014 .0003 .0042 .0014 .0009 .0023 .0014 .0009 .0023 .0014 .0009 .0023 .0014 .0009 .0023 .0014 .0009 .0023 .0014 .0009 .0023 .0014 .0005 .0000 .0016 .0023 .0020 .005 .0000 .0032 .0023 .0005 .0000 .0032 .0023 .0005 .0000 .0032 .0025 .0000 .0032 .0025 .0000 .0032 .0005 .0000 .0005 .0000 .0005 .0000 .0005 .0000 .0005 .0000 .0005 .0000 .0005 .0000 .	.0043 .0016 .0012 .0013 .0002 .0002 .0002 .0003 .0004 .0002 .0003 .0014 .0002 .0015 .0014 .0002 .0014 .0009 .0023 .0000 .0014 .0009 .0023 .0000 .0014 .0009 .0023 .0000 .0014 .0009 .0023 .0000 .0016 .0016 .0016 .0016 .0016 .0016 .0016 .0017 .0016 .0017 .0016 .0017 .0017 .0016 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0017 .0016 .0017	

#1 #2 2.065 2.057 .0445 .0445 .0500 .0498 .4525 .1717 .1729 .2239 5.259 5.244 .5575 .0458 .0453 .4440 .5454 .2241 Elem V_2924 Zn2062 TI1908 Pb2203 Se1960 Sb2068 Al3961 Ca3179 Avg Stddev 4433 .4962 1.753 1.748 .4367 1.759 .4381 1.890 156.9 0003 008 .0764 .9689 1.265 .4342 .2249 #1 1.771 1.735 1.760 1.736 1.775 1.743 4431 5004 4406 4421 1.896 157 1 .4436 .4920 .4342 156.6 #2 .4328 1.884 Fe2599 6.162 .004 Mg2790 82.10 .19 K_7664 27.98 .04 Si2124 7.458 .091 Sn1899 -.0007 .0006 Elem Mo2020 .0005 Na5895 B_2089 Pd3404 213.7 .4561 .0064 -.0022 .0002 Avg Stddev .0001 %RSD .0725 .2355 .4025 6 158 82 23 27.96 213.1 4607 0006 - 0021 7.523 - 0011 .4516 7.394 တ Flem Sr4077 Ti3349 W_2079 .6589 .0020 .0037 .0204 Avg Stddev %RSD .3062 6.565 1.620 #1 .6603 .0036 .0207 .6575 .0039 .0202 Int. Std. Y_3710 Y 2243 Y 3600 In2306 100870. 17308. 49. 2116.3 21.6 4467.1 34.6 .01960 1.0216 %RSD 28054 .77385 100890. 17274. 2101.0 100860. 17343. 2131.6 4491.6

Custom ID3:

Cu3247

.2240

.0002

.0810

Mn2576

5.252 .010

.1929

Ni2316

.5514

.0086

1.553

Cr2677

.1723

.0008

.4804

Sample Name: MP49675-S2 Acquired: 9/19/2009 22:42:29 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

.0499

.0001

.2608

Co2286

.4483

.0060

1.330

Be3130 Cd2288

.0445

.0000

.0805

Ba4554

2.061

.006

Raw Data MA23143 page 155 of 245

6.1

									■ Zoom In Zoom Out
Sample Na	ame: JA274	45-2F	Acquired: 9	/19/2009 2	3:01:02	Type: Un	ık		
Method: A	ccutest1(v16	54) Mo	de: CONC	Corr. F	actor: 5.00	00000			
User: adm	in Cust	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Comment:									
Elem	Ba4554		Cd2288	Co2286	Cr2677			Ni2316	Ag3280
Avg	.1323	0009	0032	.0015	.0053	.0543	.2766	.0083	.0002
Stddev	.0050	.0003	.0006	.0005	.0021	.0012	.0001	.0003	.0012
%RSD	3.810	33.97	17.88	32.29	40.49	2.119	.0435	3.428	502.1
#1	.1287	0007	0036	.0011	.0038	.0535	.2765	.0085	0006
#2	.1358	0011	0028	.0018	.0068	.0551	.2766	.0081	.0011
lem	V_2924		As1890	TI1908				Al3961	
Avg	.0069	.0596	.0027	.0032	.0121	0037	.0023	2.167	162.9
Stddev %RSD	.0009 12.60	.0003	.0014	.0035 110.0		.0060 164.6	.0003 12.40	.128 5.917	6.6 4.054
งหวบ -	12.00	.4791	52.62	110.0	33.38	104.0	12.40	5.917	4.054
#1	.0075	.0594	.0037	.0056	.0151	0080	.0025	2.076	158.2
[‡] 2	.0063	.0598	.0017	.0007	.0091	.0006	.0021	2.258	167.5
Elem	Fe2599		K_7664		B_2089			Si2124	
lvg	3.332	369.8	34.04	1865.	1.087	.0076	0128	12.06	0010
Stddev	.122	14.9		40.	.002	.0002	.0052	.03	.0023
6RSD	3.659	4.032	3.163	2.132	.1486	2.679	40.54	.2334	221.4
#1	3.246	359.3	33.28	1837.	1.085	.0074	0165	12.08	.0006
	3.419	380.4	34.80	1893.	1.088	.0077	0091	12.04	0027
lem	Sr4077		W_2079						
Avg	3.036	.0571	0452						
Stddev	.124	.0020	.0010						
%RSD	4.096	3.528	2.293						
#1	2.948	.0557	0460						
#2	3.124	.0585	0445						
nt. Std.	Y_3600		Y_2243	In2306					
Avg	99698.	16901.	2124.3	4439.2					
Stddev	274.	575.	2.0	3.1					
6RSD	.27509	3.4026	.09351	.06888					
¥1	99504.	17308.	2122.9	4437.0					
#2	99892.	16495.	2125.7	4441.3					

Raw Data MA23143	page 157 of 245
------------------	-----------------

Sample Nam	e: CCV	Acquire	d: 9/19/2009	23:07:14	Type: QC
Method: Accu	utest1(v16	4) Mo	de: CONC	Corr. Fac	ctor: 1.000000
User: admin	Custo	om ID1:	Custor	n ID2:	Custom ID3:
Comment:					
Elem	Sr4077	Ti3349	W_2079		
Units	ppm	ppm	ppm		
Avg	2.051	2.000	1.991		
Ctddou	004	004	022		

Avg	2.051	2.000	1.991
Stďdev	.004	.004	.023
%RSD	.1969	.1813	1.167
#1	2.054	2.003	1.975
#2	2.048	1.998	2.008
Check?	Chk Pass	Chk Pass	Chk Pass

Value Range

Int. Std.	Y_3600	Y_3710	Y_2243	In2306
Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	105070.	17452.	2226.8	4747.9
Stddev	141.	25.	10.0	19.7
%RSD	.13420	.14067	.45083	.41508
#1	104970.	17435.	2233.9	4761.9
#2	105170.	17470.	2219.7	4734.0

Raw Data MA23143 page 159 of 245

Method: A User: adm Comment	nin Cus	stom ID1:	de: CONC Cus	Corr. Iom ID2:	Cust	om ID3:			
Elem Units Avg Stddev %RSD	Ba4554 ppm 1.982 .004 .1994		Cd2288 ppm 2.008 .018 .8988	Co2286 ppm 2.052 .017 .8203	ppm 2.033 .001	ppm 1.907 .004	ppm 1.994 .005	Ni2316 ppm 2.071 .016 .7778	ppr .242 .000
#1 #2	1.985 1.979	2.067 2.063	1.995 2.021	2.040 2.064	2.034 2.033	1.904 1.910	1.998 1.991	2.059 2.082	.242 .243
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pas
Elem Units Avg Stddev %RSD	V_2924 ppm 2.086 .000 .0016	ppm 2.093	As1890 ppm 2.013 .015 .7200	TI1908 ppm 2.051 .007 .3562	ppm 2.052 .017	ppm 2.000	ppm 1.960 .016	40.42 .10	ррі 41.3
#1 #2	2.086 2.086		2.003 2.023	2.046 2.056			1.948 1.971	40.49 40.35	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pas
Elem Units Avg Stddev %RSD	Fe2599 ppm 41.21 .06 .1422	Mg2790 ppm 41.20 .06 .1417	K_7664 ppm 40.83 .07 .1749	Na5895 ppm 39.91 .03 .0811	B_2089 ppm 1.991 .018 .9012		ppm 1.921 .007	Si2124 ppm 4.759 .036 .7503	.01
#1 #2	41.26 41.17	41.25 41.16	40.89 40.78	39.93 39.88	1.978 2.003	2.031 2.053	1.916 1.926	4.734 4.784	2.04 2.06
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pas

◀ Zoom In ▶ Zoom Out

									◀ Zoo
									Zoon
	0.00								
	ame: CCB			09 23:13:1	٥.				
Method: A	ccutest1(v1		ode: CONC		Factor: 1.0				
User: adm	in Cus	tom ID1:	Cus	tom ID2:	Cust	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Jnits	ppm	ppm	ppm			ppm	ppm		ppm
Avg	.0005	.0004	.0004	.0007	.0007	.0009		.0006	
Stddev	.0002	.0000	.0002			.0000		.0002	
%RSD	38.02	4.564	48.92	47.81	8.446	1.323	18.58	35.84	136.3
#1	.0006	.0004	.0005			.0009		.0007	
#2	.0004	.0004	.0003	.0005	.0008	.0009	.0008	.0004	.0002
Check?		Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit									
ow Limit									
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Jnits	ppm	ppm	ppm			ppm	ppm	ppm	
Avg	.0005	.0004	.0018	.0015		.0009			
Stddev	.0001	.0001	.0000		.0006	.0001	.0008		
%RSD	25.09	22.17	.6807	4.761	42.45	11.16	86.92	201.2	14.47
#1	.0006	.0005	.0018						
#2	.0004	.0004	.0018	.0014	.0010	.0010	.0014	.0155	.0225
Check?		Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit									
Low Limit									
Elem	Fe2599								
Jnits	ppm	ppm	ppm			ppm		ppm	
Avg	.0130	.0213	.0832	.1660		.0010	.0009	.0052	
Stddev %RSD	.0001 .6987	5.485	.0150 18.09	.0038 2.261		.0004 40.94	.0012 140.1	27.83	
локор	.0907	3.463	10.09	2.201	10.71	40.94	140.1	27.03	20.17
#1	.0130	.0222	.0938	.1633		.0013	.0000	.0063	
‡2	.0129	.0205	.0725	.1686	.0007	.0007	.0017	.0042	.0007
Check?		Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit									
Low Limit									

Raw Data MA23143 page 160 of 245

ppm .0007

.0000

6.488

.0008

.0007

Ca3179

ppm 386.9

2.2

388.5 385.3

Sn1899

.0002

2.647

-.0063

-.0061

User: admin

Comment: Elem

Units

Avg Stddev

%RSD

Check?

Units

Avg Stddev %RSD

Check?

Units

Avg Stddev

%RSD

Check ?

High Limit Low Limit

Zoom In ▶
 Zoom Out

High Limit Low Limit Elem

#2

High Limit Low Limit

#2

							◀ Zoom I
							Zoom O
Sample Na	ame: CCB	Acquire	d: 9/19/200	9 23:13:13	Type: 0	2C	
Method: A	ccutest1(v1		de: CONC	Corr. Fa	ctor: 1.000	0000	
User: adm	in Cus	tom ID1:	Custo	om ID2:	Custor	n ID3:	
Comment:							
Elem	Sr4077	Ti3349	W_2079				
Units	ppm	ppm	ppm				
Avg	.0004	.0007	0041				
Stddev	.0001	.0002	.0018				
%RSD	25.66	22.47	44.74				
#1	.0003	.0006	0028				
#2	.0005	.0008	0054				
Check?	Chk Pass	Chk Pass	Chk Pass				
High Limit Low Limit							
LOW LITTIE							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306			
Units	Cts/S	Cts/S	Cts/S	Cts/S			
Avg	107500.	17586.	2268.8	5032.2			
Stddev	193.	13.	26.8	53.3			
%RSD	.17943	.07423	1.1827	1.0598			
#1	107360.	17577.	2287.8	5069.9			
#2	107630.	17595.	2249.8	4994.5			
			17.0				

Raw Data MA23143 page 161 of 245

Raw Data MA23143 page 163 of 245

Sample Na	me: ICSA	Acquire	d: 9/19/200	9 23:19:26	Type: QC	
					tor: 1.000000	
User: admir		-+) IVIO nm ID1:		m ID2:		
	ii Cusii	ו טוו ווט ו:	Cusio	III ID2:	Custom ID3:	
Comment:						
Elem Units Avg Stddev %RSD	Sr4077 ppm .0057 .0000	.0000				
70K3D	.1223	.1064	7.501			
#1	.0057	.0028	.0411			
#2	.0057	.0028	.0370			
Check ? High Limit Low Limit	Chk Pass (Chk Pass	Chk Pass			
Int. Std.	Y 3600	Y 3710	Y 2243	In2306		
Units	Cts/S					
Avg	97523.					
Stddev	56.			3.9		
%RSD	.05751	1.0009	.13929	.09443		
#1 #2	97563. 97484.	17025. 17268.	2015.1 2011.1	4087.6 4093.1		

Raw [Data N	Δ23143	nage 16	62 of 245

Sample Name: ICSA Acquired: 9/19/2009 23:19:26 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Cd2288

ppm .0000 .000

441.6

.0001

-.0002

As1890

ppm -.0016

.0018

-.0028 -.0003

K_7664

ppm .2527 .0424

16.79

.2227

.2827

Custom ID2:

Co2286

ppm .0012

.0002

19.83

.0010

.0014

TI1908

ppm .0019

.0017 91.66

.0031

Na5895

ppm .3198

.0032

1.003

.3221

.3175

Custom ID3:

Cu3247

ppm .0005 .0003

65.95

.0002

.0007

Se1960

ppm .0016

.0026

.0035

-.0002

Mo2020

.0001

1.458

-.0037

-.0037

Mn2576

ppm .0004

.0001

13.57

.0005

.0004

Sh2068

ppm .0041

.0023

.0024

Pd3404

.0025

121.1

.0003

.0038

Ni2316

ppm .0004 .0001

32.89

.0005

.0003

Al3961

ppm 504.9

.1651

505.4 504.3

Si2124

ppm .0135

.0021

15.51

.0150

.0120

Cr2677

ppm .0001 .0002

359.7

.0002

-.0001

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Pb2203

ppm -.0005

.0006

-.0009 -.0001

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

B_2089

ppm -.0015

.0002

11.38

-.0016

-.0014

Chk Pass Chk

Custom ID1:

Be3130

ppm .0000

.0000

4.493

.0000

.0000

ppm -.0061

.0003

-.0059

-.0063

Mg2790

ppm 536.3 1.1

.2047

537.1

535.5

Ba4554

ppm .0011

.0001

7.952

.0011

.0012

ppm -.0004

.0003

-.0006

-.0002

Fe2599

ppm 199.2

.1206

199.4

199.0

V_2924 Zn2062

									◀ Zoom In
									Zoom Ou
	ame: ICSAB ccutest1(v1) in Cus		red: 9/19/20 de: CONC Custo		actor: 1.00	e: QC 0000 m ID3:			
Elem Jnits Avg Stddev 6RSD	Ba4554 ppm .5169 .0008 .1519	ppm .5162 .0003	ppm 1.081 .000	Co2286 ppm .5011 .0002 .0308	ppm .5054 .0008	Cu3247 ppm .4852 .0002 .0396	ppm .4969 .0003	ppm .9716 .0003	ppm 1.079 .001
1 2	.5163 .5174			.5010 .5012		.4851 .4853	.4971 .4967	.9714 .9718	
Check ? /alue Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Jnits Avg Stddev 6RSD	V_2924 ppm .5319 .0006 .1181		ppm 1.035 .001	TI1908 ppm 1.004 .005 .5070	ppm .9870 .0009	ppm 1.043 .001	Sb2068 ppm 1.035 .002 .2214	ppm 512.7 1.9	391.1 1.3
1 12	.5323 .5314	.9920 .9929	1.036 1.034	1.001 1.008	.9876 .9864	1.044 1.042	1.033 1.037	511.4 514.1	390.2 392.0
Check ? /alue Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Jnits Avg Stddev 6RSD	Fe2599 ppm 206.3 .3 .1594		ppm .1597 .0077	Na5895 ppm .3259 .0010 .3214	ppm 0016	ppm .5004 .0005	Pd3404 ppm .5354 .0002 .0347	ppm .0034 .0007	ppm 0070 .0002
1 2	206.1 206.5	534.6 535.4		.3267 .3252			.5355 .5352	.0029 .0039	0072 0069
Check ? /alue Range	Chk Pass	Chk Pass	None	None	None	Chk Pass	Chk Pass	None	None

Raw Data MA23143 page 164 of 245

ppm .2413 .0009

.3888

.2420

.2407

Ca3179

ppm 40.82

.08

40.76

40.87

Sn1899

ppm 2.041 .009

.4206 2.035

2.047

User: admin

Comment: Elem

Units

Avg Stddev

%RSD

Check?

Value Range Flem

Units

Avg Stddev

%RSD

Check?

Value Range Elem

Units

Avg Stddev

%RSD

Check ?

Value Range

Zoom In ▶
 Zoom Out

#2

Sample Name: CCV Acquired: 9/19/2009 23:31:50 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Cd2288

ppm 1.992 .009

.4488

1.985 1.998

As1890

ppm 1.999

.010

1.992

2.006

K_7664

ppm 40.37

.1477

40.33

40.41

.06

Custom ID2:

Co2286

ppm 2.034

.012

.5902

2.025

2.042

TI1908

ppm 2.033

.015

2.022 2.043

Na5895

ppm 39.92

.04

.1012

39.89

39.95

Custom ID3:

Cu3247

ppm 1.897

.004

.2055

1.900

1.895

Se1960

ppm 1.992

.012

1.984

2.001

Mo2020

.012

.5868

2.022

2.039

Mn2576

ppm 1.970

.003

.1288

1.972

1.968

Sh2068

ppm 1.944

.010

.5265

1.936 1.951

Pd3404

ppm 1.907 .000

.0165

1.906

1.907

Ni2316

ppm 2.055 .012

.5602

2.047

2.063

Al3961

ppm 39.98

.06

39.94

40.02

Si2124

ppm 4.690 .028

.5902

4.671

4.710

Cr2677

ppm 2.017

.003

.1650

2.019

2.014

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Pb2203

ppm 2.029

.012 .6112

2.020 2.038

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

B_2089

ppm 1.974

.010

.5108

1.967

1.982

Chk Pass Chk

Custom ID1:

Be3130

ppm 2.046

.003

.1331

2.044

2.047

ppm 2.079

.013 .6428

2.069 2.088

Mg2790

ppm 40.70

.0894

40.68

40.73

.04

Ba4554

ppm 1.963 .001

.0313

1.964 1.963

ppm 2.062

.000 .0124

2.062 2.062

Fe2599

ppm 40.76

.0701

40.74

40.78

.03

V_2924 Zn2062

							◀ Zoom I Zoom C
							2001110
Sample Na	ame: ICSAB	Acquir	ed: 9/19/20	09 23:25:39	Type: C	OC.	
Method: A	ccutest1(v16	4) Mod	le: CONC	Corr. Fac	tor: 1.00000	00	
User: adm	in Custo	om ID1:	Custo	m ID2:	Custom I	D3:	
Comment:							
Elem	Sr4077	Ti3349	W_2079				
Units	ppm	ppm	ppm				
Avg	.0057	.0033	F .6026				
Stddev %RSD	.0000 .2219	.0003 8.433	.0026 .4238				
70K3D	.2219	0.433	.4230				
#1	.0057	.0031	.6008				
#2	.0057	.0035	.6044				
Check?	None	None	Chk Fail				
Value			.5000				
Range			20.00%				
Int. Std.	Y_3600	Y_3710	Y_2243	In2306			
Units	Cts/S	Cts/S	Cts/S	Cts/S			
Avg Stddev	96584. 84 .	16892. 60.	2016.6	4093.7 4.7			
%RSD	.08731	.35409	.00145	.11485			
#1	96644.	16935.	2016.7	4097.0			
#2	96524.	16850.	2016.7	4097.0			
""	70324.	10030.	2010.0	4070.5			

Raw Data MA23143 page 165 of 245

Stddev %RSD

169. .16114

104640.

104880.

.30206

17587

17512.

Raw Data MA23143 page 167 of 245

2212 9

2196.8

4720.5

4704.7

	nin Cust	4) Ma	de: CONC	Corr. Fa	Type: QC ctor: 1.000000 Custom ID3:
Elem Units Avg Stddev %RSD	Sr4077 ppm 2.031 .002 .1077	ppm	ppm 1.980 .021		
#1 #2	2.033 2.030	1.981 1.978			
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass		
Int. Std. Units Avg Stddev %RSD	Cts/S	17550.	Cts/S 2204.8	Cts/S 4712.6	

									◀ Zoom In Zoom Ou
Sample Na Method: Ac User: admi Comment:	cutest1(v1		d: 9/19/200 de: CONC Custo		actor: 1.00				
Elem Units Avg Stddev %RSD	Ba4554 ppm .0002 .0000 12.27	Be3130 ppm .0002 .0002 104.2	Cd2288 ppm 0001 .0000 5.760	Co2286 ppm .0003 .0001 40.49	Cr2677 ppm .0004 .0000 4.589	Cu3247 ppm .0008 .0002 26.92	.0004	Ni2316 ppm .0000 .000 1624.	
#1 #2	.0001 .0002	.0000	0001 0001	.0004 .0002	.0004 .0004	.0006 .0009	.0004 .0003	0001 .0001	.0002 .0001
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass					
Elem Units Avg Stddev %RSD	V_2924 ppm .0002 .0003 134.0	Zn2062 ppm .0002 .0001 56.01	As1890 ppm .0023 .0008 33.83	TI1908 ppm .0012 .0007 60.29	Pb2203 ppm .0007 .0008 107.6	Se1960 ppm 0010 .0007 68.01	ppm 0003	Al3961 ppm F .0257 .0084 32.67	Ca3179 ppm .0322 .0115 35.77
#1 #2	.0004 .0000	.0003 .0001	.0028 .0017	.0016 .0007	.0012 .0002	0005 0015	0001 0005	.0198 .0316	.0241 .0404
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Fail .0200 0200	Chk Pass					
Elem Units Avg Stddev %RSD	Fe2599 ppm .0180 .0068 38.01	Mg2790 ppm .0346 .0090 25.90	K_7664 ppm .0384 .0042 10.81	Na5895 ppm .0632 .0025 3.945	B_2089 ppm .0009 .0003 31.83	Mo2020 ppm .0006 .0005 72.74	ppm 0004 .0019	Si2124 ppm .0027 .0000 .2203	ppm .0001 .0002
#1 #2	.0131 .0228	.0283 .0409	.0355 .0414	.0615 .0650	.0011 .0007	.0010 .0003	.0010 0017	.0027 .0027	.0000
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass					

Raw Data MA23143	page 168 of 245

							Zoom In ▶ Zoom Out
Sample Na Method: Ad User: admi Comment:	cutest1(v1		d: 9/19/2009 de: CONC Custo	Corr. Fa	Type: actor: 1.00 Custo		
Elem Units Avg Stddev %RSD	Sr4077 ppm .0002 .0001 59.23	Ti3349 ppm .0002 .0001 32.63	W_2079 ppm 0023 .0022 95.10				
#1 #2	.0001 .0002	.0002 .0003	0008 0038				
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass				
Int. Std. Units Avg Stddev %RSD	Y_3600 Cts/S 104130. 3888. 3.7340	Y_3710 Cts/S 17525. 258. 1.4725	Y_2243 Cts/S 2281.4 3.3 .14535	In2306 Cts/S 5038.7 3.6 .07175			
#1 #2	106880. 101380.	17343. 17708.	2283.8 2279.1	5041.3 5036.2			

Raw Data MA23143	page 169 of 245

Raw Data MA23143 page 171 of 245

									◀ Zoom In
									Zoom Ou
Camarda N	14074	45 45	A I I O	11010000	2 50 04	Town 116	I.		
	ame: JA274		Acquired: 9			Type: Un	IK		
Method: A	ccutest1(v1	,	de: CONC		actor: 5.00	00000			
User: adm	nin Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.1276	0010	.0060	.0252	.1235	.1135	.5171	.0811	.0076
Stddev	.0004	.0005	.0013	.0011	.0007	.0014	.0021	.0014	.0006
%RSD	.3263	45.63	22.06	4.217	.5660	1.250	.3987	1.668	8.467
#1	.1279	0013	.0050	.0259	.1230	.1125	.5185	.0821	.0080
#2	.1273	0007	.0069	.0244	.1240	.1145	.5156	.0802	.0071
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0034	.1501	.0082	0060	.1328	0014	.0000	1.677	302.8
Stddev	.0025	.0009	.0021	.0015	.0074	.0002	.003	.061	2.6
%RSD	75.27	.6266	25.69	24.85	5.596	15.23	9408.	3.629	.8451
#1	.0052	.1508	.0067	0049	.1381	0016	0024	1.720	304.6
#2	.0016	.1495	.0097	0071	.1276	0013	.0023	1.634	301.0
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	6.886	576.3	30.54	978.0	3.171	.0196	0128	14.29	.0012
Stddev	.092	4.5	.17	.5	.010	.0007	.0132	.03	.0018
%RSD	1.338	.7867	.5473	.0501	.3056	3.421	102.8	.2148	140.4
#1	6.951	579.5	30.66	978.3	3.164	.0200	0035	14.27	.0025
#2	6.821	573.1	30.42	977.6	3.177	.0191	0221	14.31	.0000
Elem	Sr4077	Ti3349	W_2079						
Avg	1.342	.0435	.0267						
Stddev	.010	.0004	.0043						
%RSD	.7374	.8337	16.18						
#1	1.349	.0433	.0297						
#2	1.335	.0438	.0236						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	100970.	17430.	2121.0	4538.1					
Stddev	639.	115.	8.9	31.6					
%RSD	.63242	.66096	.41872	.69731					
#1	100520.	17349.	2114.7	4515.8					
#2	101430.	17512.	2127.3	4560.5					

	ame: JA274 ccutest1(v16 in Cusi		de: CONC		actor: 5.00		ık		
Elem Avg Stddev %RSD	Ba4554 .0590 .0013 2.240	Be3130 0010 .0004 35.65	Cd2288 0017 .0001 6.706	Co2286 .0219 .0002 .7097	Cr2677 .0657 .0002 .2764	Cu3247 .0707 .0032 4.464	Mn2576 .6238 .0008 .1254	Ni2316 .0569 .0008 1.441	Ag3280 .0025 .0020 77.33
#1 #2	.0581 .0599	0013 0007		.0220 .0217	.0658 .0656	.0684 .0729			.0039 .0012
Elem Avg Stddev %RSD	V_2924 .0029 .0002 8.136	Zn2062 .1105 .0023 2.120	.0121	TI1908 .0026 .0003 10.47	Pb2203 .0519 .0028 5.306	Se1960 .0017 .0019 108.3	0030 .0076	Al3961 1.287 .012 .9517	Ca3179 334.2 6.0 1.782
#1 #2	.0027 .0031	.1121 .1088	.0118 .0124	.0028 .0024	.0538 .0499	.0004 .0030	0083 .0024	1.279 1.296	330.0 338.4
Elem Avg Stddev %RSD	Fe2599 5.641 .117 2.072	Mg2790 266.0 5.3 1.975	K_7664 22.46 .29 1.276	Na5895 707.9 11.8 1.665	B_2089 2.475 .044 1.775	Mo2020 .0209 .0006 2.913		.29	Sn1899 0026 .0013 52.51
#1 #2	5.558 5.723	262.2 269.7	22.26 22.66	699.6 716.2	2.506 2.444	.0214 .0205	.0030 0073	15.05 14.64	0016 0035
Elem Avg Stddev %RSD	Sr4077 1.421 .027 1.892	Ti3349 .0289 .0006 2.002	W_2079 .0195 .0072 36.84						
#1 #2	1.402 1.440	.0293 .0285							
Int. Std. Avg Stddev %RSD	Y_3600 101690. 43. .04272	Y_3710 16815. 216. 1.2863	Y_2243 2166.4 34.7 1.6007	In2306 4628.1 72.0 1.5555					
#1 #2	101660. 101720.	16968. 16662.		4577.2 4679.0					

Raw Data MA23143 page 170 of 245

1(v164) Custom ID1 554 Be31; 445 001 245 10.6 445 001 444 002 444 002 245 10.6 002 3445 002 002 3445 0	1440043 .0014 .55 33.40 .0130033 .150053 .52 As1890 .22 .0093 .12 .0015 .25 16.01 .31 .0082 .14 .0103 .0082 .14 .0103 .0082 .14 .0103	Co2286 .0057 .0006 10.65 .0052 .0061 TI1908 .0020 .0085 425.5 .0080 .0040 Na5895 840.5	Cr2677 .0026 .0021 80.55 .0041 .0011 Pb2203 .0027 .0067 .248.5 .0075 .0020 B_2089 .1487 .0014	Cu3247 .0462 .0000 .0581 .0462 .0461 Se1960 .0052 .0028 54.66	Mn2576 .0261 .0001 .3052 .0260 .0262 Sb2068 .0032 .0004 12.80	1.019 1.043 Al3961 .4272 .0365 8.531 .4530 .4015	Ag3280 0006 .0025 444.3 .0012 .0023 Ca3179 738.0 1.2 .1667 738.9 737.1 Sn1899 .0059
1(v164) Custom ID1	Mode: CONC : Cusi 30 Cd22888 14 - 0043 31 .0014 55 33.40 130033 150053 16 .0015 17 .0014 18 .0014 19 .0015 10 .0015 10 .0016 10 .0082 10 .0082 11 .0082 11 .0082 12 .0093 13 .0082 14 .0103 16 .0082 17 .0082 18 .0082 19 .0082 10 .0082	Co2286 .0057 .0006 10.65 .0052 .0061 TI1908 .0020 .0085 425.5 .0080 .0040 Na5895 840.5	Cr2677 .0026 .0021 80.55 .0041 .0011 Pb2203 .0027 .0067 .248.5 .0075 .0020 B_2089 .1487 .0014	Cu3247 .0462 .0000 .0581 .0462 .0461 Se1960 .0052 .0028 54.66 .0032 .0072 Mo2020 .0130	Mn2576 .0261 .0201 .3052 .0260 .0262 Sb2008 .0004 12.80 .0029 .0035	1.031 .016 1.587 1.019 1.043 Al3961 .4272 .0365 8.531 .4530 .4015 Si2124 1.001	.0006 .0025 444.3 0012 .0023 Ca3179 738.0 1.2 .1667 738.9 737.1 Sn1899 0059
1(v164) Custom ID1	Mode: CONC : Cusi 30 Cd22888 14 - 0043 31 .0014 55 33.40 130033 150053 16 .0015 17 .0014 18 .0014 19 .0015 10 .0015 10 .0016 10 .0082 10 .0082 11 .0082 11 .0082 12 .0093 13 .0082 14 .0103 16 .0082 17 .0082 18 .0082 19 .0082 10 .0082	Co2286 .0057 .0006 10.65 .0052 .0061 TI1908 .0020 .0085 425.5 .0080 .0040 Na5895 840.5	Cr2677 .0026 .0021 80.55 .0041 .0011 Pb2203 .0027 .0067 .248.5 .0075 .0020 B_2089 .1487 .0014	Cu3247 .0462 .0000 .0581 .0462 .0461 Se1960 .0052 .0028 54.66 .0032 .0072 Mo2020 .0130	Mn2576 .0261 .0201 .3052 .0260 .0262 Sb2008 .0004 12.80 .0029 .0035	1.031 .016 1.587 1.019 1.043 Al3961 .4272 .0365 8.531 .4530 .4015 Si2124 1.001	.0006 .0025 444.3 0012 .0023 Ca3179 738.0 1.2 .1667 738.9 737.1 Sn1899 0059
Custom ID1 554 Be31: 445 -001 0001 .000 445 10.0 444001 924 Zn200 448 .062 008 .001 154 .061 5599 Mg276 7772 1.46	Cusi	Co2286 .0057 .0006 10.65 .0052 .0061 TI1908 .0020 .0085 425.5 .0080 .0040 Na5895 840.5 25.4	Cr2677 .0026 .0021 80.55 .0041 .0011 Pb203 .0027 .0067 248.5 .0075 .0020 B_2089 .1487 .0014	Cu3247 .0462 .0000 .0581 .0462 .0461 Se1960 .0052 .0028 54.66 .0032 .0072 Mo2020	.0261 .0001 .3052 .0260 .0262 Sb2068 .0032 .0004 12.80 .0029 .0035 Pd3404 0110	1.031 .016 1.587 1.019 1.043 Al3961 .4272 .0365 8.531 .4530 .4015 Si2124 1.001	.0006 .0025 444.3 0012 .0023 Ca3179 738.0 1.2 .1667 738.9 737.1 Sn1899 0059
5554 Be31: 4445001 001 .000 2445001 4444001 444001 444001 444001 448 .066 0008 .001 154 .061 599 Mg276 272 1.46	30 Cd2288 140043 15 .0014 15 33.40 180053 150053 150053 16 22 .0093 17 .0015 18 .0082 19 .0015 10 .0082 11 .0082 12 .0015 13 .0082 14 .0103 16 .0082 17 .0082 18 .0082 19 .0082 10 .0082	Co2286 .0057 .0006 10.65 .0052 .0061 TI1908 .0020 .0085 425.5 .0080 .0040 Na5895 840.5 25.4	Cr2677 .0026 .0021 80.55 .0041 .0011 Pb2203 .0027 .0067 248.5 .0075 .0020 B_2089 .1487 .0014	Cu3247 .0462 .0000 .0581 .0462 .0461 Se1960 .0052 .0028 54.66 .0032 .0072 Mo2020 .0130	.0261 .0001 .3052 .0260 .0262 Sb2068 .0032 .0004 12.80 .0029 .0035 Pd3404 0110	1.031 .016 1.587 1.019 1.043 Al3961 .4272 .0365 8.531 .4530 .4015 Si2124 1.001	.0006 .0025 444.3 0012 .0023 Ca3179 738.0 1.2 .1667 738.9 737.1 Sn1899 0059
445001 .000 245 10.6 445001 4444001 924 Zn206 148 .062 008 .001 090 1.92 143 .063 154 .061 599 Mg275 272 1.48	1440043 .0014 .55 33.40 .0130033 .150053 .52 As1890 .22 .0093 .12 .0015 .25 16.01 .31 .0082 .14 .0103 .0082 .14 .0103 .0082 .14 .0103	.0057 .0006 10.65 .0052 .0061 TI1908 .0020 .0085 425.5 0080 .0040 Na5895 840.5 25.4	.0026 .0021 .0021 .0041 .0011 Pb2203 .0027 .0067 .248.5 .0075 .0020 B_2089 .1487 .0014	.0462 .0000 .0581 .0462 .0461 Se1960 .0052 .0028 54.66 .0032 .0072 Mo2020 .0130	.0261 .0001 .3052 .0260 .0262 Sb2068 .0032 .0004 12.80 .0029 .0035 Pd3404 0110	1.031 .016 1.587 1.019 1.043 Al3961 .4272 .0365 8.531 .4530 .4015 Si2124 1.001	.0006 .0025 444.3 0012 .0023 Ca3179 738.0 1.2 .1667 738.9 737.1 Sn1899 0059
445001 .000 245 10.6 445001 4444001 924 Zn206 148 .062 008 .001 090 1.92 143 .063 154 .061 599 Mg275 272 1.48	1440043 .0014 .55 33.40 .0130033 .150053 .52 As1890 .22 .0093 .12 .0015 .25 16.01 .31 .0082 .14 .0103 .0082 .14 .0103 .0082 .14 .0103	.0057 .0006 10.65 .0052 .0061 TI1908 .0020 .0085 425.5 0080 .0040 Na5895 840.5 25.4	.0026 .0021 .0021 .0041 .0011 Pb2203 .0027 .0067 .248.5 .0075 .0020 B_2089 .1487 .0014	.0462 .0000 .0581 .0462 .0461 Se1960 .0052 .0028 54.66 .0032 .0072 Mo2020 .0130	.0261 .0001 .3052 .0260 .0262 Sb2068 .0032 .0004 12.80 .0029 .0035 Pd3404 0110	1.031 .016 1.587 1.019 1.043 Al3961 .4272 .0365 8.531 .4530 .4015 Si2124 1.001	.0006 .0025 444.3 0012 .0023 Ca3179 738.0 1.2 .1667 738.9 737.1 Sn1899 0059
001 .000 245 10.6 4445001 4444001 924 Zn206 148 .062 0008 .001 0090 1.92 143 .063 154 .061 599 Mg279 272 1.48	011 .0014 33.40 13 .0033 15 .0053 15 .0053 22 .0093 22 .0015 25 .16.01 31 .0082 14 .0103 90 K_7664 130.1 166 .3	.0006 10.65 .0052 .0061 TI1908 0020 .0085 425.5 0080 .0040 Na5895 840.5 25.4	.0021 80.55 .0041 .0011 Pb2203 .0027 .0067 248.5 .0075 .0020 B_2089 .1487 .0014	.0000 .0581 .0462 .0461 Se1960 .0052 .0028 54.66 .0032 .0072 Mo2020 .0130	.0001 .3052 .0260 .0262 Sb2068 .0032 .0004 12.80 .0029 .0035 Pd3404 0110	.016 1.587 1.019 1.043 Al3961 .4272 .0365 8.531 .4530 .4015 Si2124 1.001	.0025 444.3 0012 .0023 Ca3179 738.0 1.2 .1667 738.9 737.1 Sn1899 0059
245 10.6 445001 444001 924 Zn206 148 .062 008 .001 0990 1.92 143 .063 154 .061 5599 Mg279 272 1.48	55 33.40 130033 150053 52 As1890 22 .0093 12 .0015 25 16.01 31 .0082 14 .0103 00 K_7664 32 130.1 16 .3	10.65 .0052 .0061 TI1908 0020 .0085 425.5 0080 .0040 Na5895 840.5 25.4	80.55 .0041 .0011 Pb2203 .0027 .0067 248.5 .0075 0020 B_2089 .1487 .0014	.0581 .0462 .0461 Se1960 .0052 .0028 54.66 .0032 .0072 Mo2020 .0130	.3052 .0260 .0262 Sb2068 .0032 .0004 12.80 .0029 .0035 Pd3404 0110	1.587 1.019 1.043 Al3961 .4272 .0365 8.531 .4530 .4015 Si2124 1.001	444.3 0012 .0023 Ca3179 738.0 1.2 .1667 738.9 737.1 Sn1899 0059
445001 444001 924 Zn206 148 .062 008 .001 090 1.92 143 .063 154 .061 5599 Mg279 272 1.48	.0033 .0053 .0053 .0053 .0093 .0093 .0093 .0095 .0015 .0015 .0082 .14 .0103 .0082 .14 .0103 .0082 .14 .0103 .0082 .14 .0103	.0052 .0061 TI1908 0020 .0085 425.5 0080 .0040 Na5895 840.5 25.4	.0041 .0011 Pb2203 .0027 .0067 248.5 .0075 0020 B_2089 .1487 .0014	.0462 .0461 Se1960 .0052 .0028 54.66 .0032 .0072 Mo2020 .0130	.0260 .0262 Sb2068 .0032 .0004 12.80 .0029 .0035 Pd3404 0110	1.019 1.043 Al3961 .4272 .0365 8.531 .4530 .4015 Si2124 1.001	0012 .0023 Ca3179 738.0 1.2 .1667 738.9 737.1 Sn1899 0059
444001 924 Zn206 148 .066 008 .001 090 1.92 143 .066 154 .061 5599 Mg279 272 1.48	150053 52 As1890 12 .0015 15 16.01 31 .0082 14 .0103 90 K_7664 32 130.1 16 .3	.0061 TI1908 0020 .0085 425.5 0080 .0040 Na5895 840.5 25.4	.0011 Pb2203 .0027 .0067 248.5 .0075 0020 B_2089 .1487 .0014	.0461 Se1960 .0052 .0028 54.66 .0032 .0072 Mo2020 .0130	.0262 Sb2068 .0032 .0004 12.80 .0029 .0035 Pd3404 0110	1.043 Al3961 .4272 .0365 8.531 .4530 .4015 Si2124 1.001	.0023 Ca3179 738.0 1.2 .1667 738.9 737.1 Sn1899 0059
924 Zn206 148 .062 008 .001 090 1.92 143 .063 154 .061 5599 Mg279 272 1.48	As1890 22 .0093 12 .0015 25 16.01 31 .0082 14 .0103 90 K_7664 32 130.1 16 .3	TI19080020 .0085 425.50080 .0040 Na5895 840.5 25.4	Pb2203 .0027 .0067 248.5 .0075 0020 B_2089 .1487 .0014	Se1960 .0052 .0028 54.66 .0032 .0072 Mo2020 .0130	Sb2068 .0032 .0004 12.80 .0029 .0035 Pd3404 0110	Al3961 .4272 .0365 8.531 .4530 .4015 Si2124 1.001	Ca3179 738.0 1.2 .1667 738.9 737.1 Sn1899 0059
148 .062 008 .001 090 1.92 143 .063 154 .061 599 Mg279 272 1.48 070 .01	22 .0093 12 .0015 25 16.01 31 .0082 14 .0103 90 K_7664 32 130.1 16 .3	0020 .0085 425.5 0080 .0040 Na5895 840.5 25.4	.0027 .0067 248.5 .0075 0020 B_2089 .1487 .0014	.0052 .0028 54.66 .0032 .0072 Mo2020 .0130	.0032 .0004 12.80 .0029 .0035 Pd3404 0110	.4272 .0365 8.531 .4530 .4015 Si2124 1.001	738.0 1.2 .1667 738.9 737.1 Sn1899 0059
008 .001 090 1.92 143 .063 154 .061 599 Mg279 272 1.48 070 .01	12 .0015 25 16.01 31 .0082 14 .0103 90 K_7664 32 130.1 16 .3	.0085 425.5 0080 .0040 Na5895 840.5 25.4	.0067 248.5 .0075 0020 B_2089 .1487 .0014	.0028 54.66 .0032 .0072 Mo2020 .0130	.0004 12.80 .0029 .0035 Pd3404 0110	.0365 8.531 .4530 .4015 Si2124 1.001	1.2 .1667 738.9 737.1 Sn1899 0059
090 1.92 143 .063 154 .061 599 Mg279 272 1.48 070 .01	25 16.01 31 .0082 14 .0103 90 K_7664 32 130.1 16 .3	425.5 0080 .0040 Na5895 840.5 25.4	248.5 .0075 0020 B_2089 .1487 .0014	54.66 .0032 .0072 Mo2020 .0130	.0029 .0035 Pd3404 0110	8.531 .4530 .4015 Si2124 1.001	.1667 738.9 737.1 Sn1899 0059
143 .063 154 .061 599 Mg279 272 1.48 070 .01	31 .0082 14 .0103 90 K_7664 32 130.1 16 .3	0080 .0040 Na5895 840.5 25.4	.0075 0020 B_2089 .1487 .0014	.0032 .0072 Mo2020 .0130	.0029 .0035 Pd3404 0110	.4530 .4015 Si2124 1.001	738.9 737.1 Sn1899 0059
154 .061 599 Mg279 272 1.48 070 .01	.0103 90 K_7664 32 130.1 16 .3	.0040 Na5895 840.5 25.4	0020 B_2089 .1487 .0014	.0072 Mo2020 .0130	.0035 Pd3404 0110	.4015 Si2124 1.001	737.1 Sn1899 0059
599 Mg279 272 1.48 070 .01	90 K_7664 32 130.1 16 .3	Na5895 840.5 25.4	B_2089 .1487 .0014	Mo2020 .0130	Pd3404 0110	Si2124 1.001	Sn1899 0059
272 1.48 070 .01	32 130.1 16 .3	840.5 25.4	.1487 .0014	.0130	0110	1.001	0059
070 .01	16 .3	25.4	.0014				
				.0005	0046	016	0027
693 1.04	45 .2628	3.022					
			.9124	3.871	41.88	1.639	45.48
	71 130.3	858.4	.1478	.0126	0078	.9891	0078
222 1.49	93 129.8	822.5	.1497	.0133	0143	1.012	0040
077 Ti334	49 W_2079						
.41 .012	0422						
.55 .001	17 .0030						
357 14.1	14 7.103						
.02 .013	0443						
.80 .010	080401						
600 Y_371	10 Y_2243	In2306					
50. 1789	8. 2108.3	4531.7					
9. 10	7. 23.8	51.2					
375 .5976	58 1.1271	1.1288					
1782	3. 2125.1	4567.9					
	4. 2091.5	4495.5					
	077 Ti334 .41 .012 .55 .00 357 14. .02 .011 .80 .010 500 Y_37 50. 1789 09. 10 375 .5976 00. 1782	077 T13349 W_2079 .41 .01200422 .55 .0017 .0030 357 14.14 7.103 .02 .01330443 .80 .01080401 500 Y_3710 Y_2243 50. 17898. 2108.3 50. 17898. 2108.3 375 .59768 1.1271 00. 17823. 2125.1	077 Ti3349 W_2079 .41 .0120	077 T13349 W_2079 .41 .0120 -0422 .55 .0017 .0030 .57 14.14 7.103 .02 .0133 -0443 .80 .0108 -0401 .500 Y_3710 Y_2243 In2306 .50. 17898 .2108.3 4531.7 .509 107. 23.8 51.2 .875 .59768 1.1271 1.1288 .88 .00. 17823. 2125.1 4567.9	077 Ti3349 W_2079 .41 .0120 -0422 .55 .0017 .0030 .57 14.14 7.103 .02 .0133 -0443 .80 .0108 -0401 .500 Y_3710 Y_2243 In2306 .50. 17898. 2198.3 4531.7 .99 107. 23.8 51.2 .875 .59768 1.1271 1.1288 .00. 17823. 2125.1 4567.9	077 Ti3349 W_2079 .41 .0120	077 Ti3349 W_2079 .41 .0120

Raw Data MA23143 page 172 of 245

									◀ Zoom In Zoom Out	
			de: CONC	20/2009 0:0 Corr. F om ID2:	actor: 1.00	Type: Unk 00000 om ID3:				
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280	
Avg	1.602	0001	.0011	.0375	.0001	.0253	4.347	.0342	.0000	
Stddev	.002	.0001	.0000	.0009	.0002	.0004	.009	.0009	.0003	
%RSD	.1249	145.2	2.306	2.306	210.4	1.624	.2169	2.683	756.0	
#1	1.600	.0000	.0011	.0381	0001	.0250	4.340	.0349	.0003	
#2	1.603	0001	.0011	.0369	.0003	.0255	4.353	.0336	0002	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	.0052	.0482	.0162	0006	.0239	.0006	.0004	1.701	110.7	
Stddev	.0004	.0010	.0007	.0005	.0003	.0004	.0002	.006	.1	
%RSD	8.039	1.982	4.306	80.89	1.361	65.47	53.71	.3305	.1207	
#1 #2	.0049 .0055	.0488 .0475	.0157 .0166	0009 0003	.0242 .0237	.0009	.0005 .0002	1.697 1.705	110.8 110.6	
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	6.1
Avg	6.852	41.18	2.363	71.33	.1494	0003	0014	9.864	0007	
Stddev	.003	.04	.005	.00	.0038	.0000	.0008	.242	.0003	
%RSD	.0437	.0894	.2331	.0051	2.526	9.665	53.02	2.452	52.38	
#1	6.850	41.20	2.367	71.33	.1520	0003	0009	10.04	0009	
#2	6.854	41.15	2.359	71.32	.1467	0003	0020	9.693	0004	
Elem Avg Stddev %RSD	Sr4077 .5538 .0009 .1596	Ti3349 .0401 .0001 .3309	W_2079 .0054 .0009 16.28							0

◀ Zoom In ▶

User: admin Comment:	Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Elem Avg Stddev %RSD	Ba4554 1.602 .002 .1249	Be3130 0001 .0001 145.2	Cd2288 .0011 .0000 2.306	Co2286 .0375 .0009 2.306	Cr2677 .0001 .0002 210.4	Cu3247 .0253 .0004 1.624	Mn2576 4.347 .009 .2169	Ni2316 .0342 .0009 2.683	Ag328 .000 .000 756.
#1 #2	1.600 1.603	.0000 0001	.0011 .0011	.0381 .0369	0001 .0003	.0250 .0255	4.340 4.353	.0349 .0336	.000.
Elem Avg Stddev %RSD	V_2924 .0052 .0004 8.039	Zn2062 .0482 .0010 1.982	As1890 .0162 .0007 4.306	TI1908 0006 .0005 80.89	Pb2203 .0239 .0003 1.361	Se1960 .0006 .0004 65.47	Sb2068 .0004 .0002 53.71	Al3961 1.701 .006 .3305	Ca317 110. .120
#1 #2	.0049 .0055	.0488 .0475	.0157 .0166	0009 0003	.0242 .0237	.0009	.0005 .0002	1.697 1.705	110. 110.
Elem Avg Stddev %RSD	Fe2599 6.852 .003 .0437	Mg2790 41.18 .04 .0894	K_7664 2.363 .005 .2331	Na5895 71.33 .00 .0051	B_2089 .1494 .0038 2.526	Mo2020 0003 .0000 9.665	Pd3404 0014 .0008 53.02	Si2124 9.864 .242 2.452	5n189 000 .000 52.3
#1 #2	6.850 6.854	41.20 41.15	2.367 2.359	71.33 71.32	.1520 .1467	0003 0003	0009 0020	10.04 9.693	000
Elem Avg Stddev %RSD	Sr4077 .5538 .0009 .1596	Ti3349 .0401 .0001 .3309	W_2079 .0054 .0009 16.28						

✓ Zoom In ► Zoom Out Sample Name: JA27495-1 Acquired: 9/20/2009 0:02:32 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3: Comment: Elem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 Avg Stddev %RSD .1720 .0000 .0024 .0051 .0064 .0320 .2612 .0131 .0005 .0003 .0001 .0001 .0001 .0002 .0001 .0004 .0001 .0004 80.28 .1844 152.6 2.202 1.346 3.639 .1749 .1491 .8310 .1717 .1722 .0000 .0024 .0051 .0062 .0321 .2609 .0130 .0008 #1 #2 .0023 .0052 .0065 .0320 .2615 .0131 .0002 V_2924 .0057 .0001 Elem Zn2062 As1890 TI1908 Pb2203 Sb2068 Al3961 Ca3179 Avg Stddev .0280 .0028 -.0007 .0001 .0093 -.0004 .0010 .0001 2.812 40.86 10 1.749 .3586 .2454 11.61 .0057 .0056 #1 0280 0031 - 0006 0095 - 0011 0000 2 819 40.93 #2 .0003 .0281 .0026 -.0007 .0091 .0003 2.805 40.79 K_7664 2.204 .001 Mo2020 -.0003 .0001 Pd3404 -.0034 .0004 Elem Fe2599 4.467 Na5895 31.40 B_2089 .1854 Si2124 11.98 Sn1899 -.0007 Mg2790 15.33 Avg Stddev .010 .08 .06 .0015 .02 .0004 %RSD .5471 .1821 .1515 4 474 15 39 31 44 1843 - 0002 - 0037 11 97 - 0009 2 203 #2 4.460 31.36 1865 -.0003 Flem Sr4077 W_2079 Ti3349 .2271 .0713 -.0031 .0003 Avg Stddev %RSD .0668 .2201 8.264 .2272 .0715 -.0033 #2 .2270 .0712 -.0029 Y_3710 Int. Std. Y 3600 Y 2243 In2306 106880. 196. 18218. 139. 2223.9 Avg Stddev .18355 .03176 %RSD .76054 05908 107020. 18120. #2 106740. 18316. 2223.4 4921.6

Raw Data MA23143 page 173 of 245

Raw Data MA23143 page 175 of 245

									200111 0	Ju
Sample Na	me: JA274	95-3 A	cauired: 9/2	20/2009 0:1	14:47 7	Type: Unk				
	cutest1(v1		de: CONC		actor: 1.00	J.				
User: admi	n Cust	tom ID1:	Cust	om ID2:	Custo	om ID3:				
Comment:										
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280	
Avq	.9576	0002	.0078	.0085	.0004	.0442	.7778	.0311	.0005	
Stddev	.0014	.0000	.0000	.0001	.0000	.0003	.0033	.0001	.0001	
%RSD	.1467	13.26	.5376	.6371	9.141	.7212	.4220	.4780	20.42	
#1	.9586	0002	.0079	.0084	.0004	.0444	.7802	.0310	.0005	
#2	.9566	0002	.0078	.0085	.0004	.0440	.7755	.0312	.0004	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	.0004	.0111	.0055	0001	.0071	0012	.0009	.4050	72.45	
Stddev	.0004	.0002	.0008	.0007	.0007	.0004	.0002	.0065	.25	
%RSD	88.44	1.657	14.62	711.3	10.08	35.89	20.88	1.594	.3417	
#1	.0002	.0113	.0049	.0004	.0066	0009	.0008	.4095	72.62	
#2	.0007	.0110	.0060	0006	.0076	0015	.0011	.4004	72.27	
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089		Pd3404	Si2124	Sn1899	
Avg	8.341	26.98	2.444	45.67	.0977	0001	0025	10.43	0002	
Stddev	.023	.16	.003	.02	.0004	.0000	.0009	.00	.0001	
%RSD	.2803	.5784	.1148	.0468	.3956	9.586	35.17	.0272	31.86	
#1	8.357	27.09	2.442	45.66	.0974	0001	0031	10.44	0002	
#2	8.324	26.87	2.446	45.69	.0980	0001	0019	10.43	0003	
Elem	Sr4077	Ti3349	W_2079							
Avg	.4123	.0100	0018							
Stddev	.0009	.0000	.0007							
%RSD	.2091	.2879	41.26							
#1	.4129	.0100	0023							
#2	.4117	.0100	0013							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306						
Avg	106740.	18409.	2192.0	4834.8						
Stddev %RSD	574. .53771	55. .29906	5.9 .27116	8.9 .18451						
				. 10431						
#1	106340.	18370.	2196.2	4841.1						
#2	107150.	18448.	2187.8	4828.5						

Raw Data MA23143 page 174 of 245

.0400

.0402

Y_3710

18252. 32.

17625

18230.

18275.

.0061

.0048

In2306

1.9648

4742.6

Y 2243

2144.8 43.6

2.0308

2114.0

2175.6

.5532

.5544

Y 3600

106380. 679.

63800

106860.

105900.

Int. Std.

%RSD

#2

◀ Zoom In ▶

									Zoom Out
Sample Nai Method: Ac User: admir Comment:	cutest1(v16		cquired: 9/2 de: CONC Custo		actor: 1.00	ype: Unk 00000 om ID3:			
Elem Avg Stddev %RSD	Ba4554 .1354 .0000 .0072	Be3130 0001 .0000 11.40	Cd2288 .0014 .0000 .5255	Co2286 .0006 .0001 19.66	Cr2677 .0017 .0003 18.47	Cu3247 .0249 .0001 .3724	Mn2576 .4979 .0003 .0670	Ni2316 .0176 .0000 .2034	Ag3280 .0003 .0002 44.48
#1 #2	.1354 .1354	0001 .0000	.0014 .0014	.0007 .0005	.0015 .0020	.0250 .0248	.4982 .4977	.0176 .0176	.0005 .0002
Elem Avg Stddev %RSD	V_2924 .0020 .0002 11.99	Zn2062 .0335 .0001 .2655	As1890 .0012 .0000 3.235	TI1908 .0002 .0001 27.30	Pb2203 .0013 .0001 6.975	Se1960 0013 .0013 95.36	Sb2068 .0001 .0002 133.3	Al3961 .7471 .0098 1.317	Ca3179 29.45 .07 .2327
#1 #2	.0019 .0022	.0334 .0335	.0012 .0013	.0003 .0002	.0014 .0012	0004 0022	.0002 .0000	.7540 .7401	29.50 29.40
Elem Avg Stddev %RSD	Fe2599 1.323 .002 .1375	Mg2790 11.05 .03 .2467	K_7664 .8707 .0146 1.678	Na5895 22.57 .10 .4283	B_2089 .0754 .0002 .2068	Mo2020 0005 .0000 3.824	Pd3404 0025 .0006 22.65	Si2124 11.32 .05 .4007	Sn1899 0005 .0003 57.32
#1 #2	1.324 1.322	11.07 11.03	.8604 .8810	22.64 22.50	.0755 .0753	0005 0005	0021 0029	11.29 11.35	0003 0006
Elem Avg Stddev %RSD	Sr4077 .1413 .0003 .1845	Ti3349 .0141 .0001 .6901	W_2079 0069 .0006 9.358						
#1 #2	.1412 .1415	.0141 .0140	0074 0065						
Int. Std. Avg Stddev %RSD	Y_3600 107820. 134. .12421	Y_3710 18512. 45. .24471	Y_2243 2235.6 6.5 .29088	In2306 4999.5 12.1 .24235					
#1 #2	107920. 107730.	18480. 18544.	2240.2 2231.0	5008.0 4990.9					

Raw Data MA23143 page 176 of 245

Ag3280 -.0001 .0003 428.0

Ca3179

14.90 .01

.0742

14 90

14.89

Sn1899 .0006 .0000

2.317

0006

.0007

								◀ Zoom
								Zoom
140746								
	,							
Cust	om IDT:	Cusio	om ID2:	Cusio	om ID3:			
Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
.3680	.0000	.0033	.0197	.0035	.0324	2.291	.1379	.0006
								.0001
.1889	93.02	2.968	.4885	7.639	.2909	.1488	.7363	7.937
.3685	.0000	.0032	.0197	.0033	.0323	2.293	.1386	.0007
.3675	.0000	.0033	.0198	.0037	.0324	2.288	.1372	.0006
V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
.0017	.0533	.0004	0006	.0105	0005	.0004	.8013	54.30
.0003	.0006	.0005	.0006	.0002	.0009	.0003	.0113	.26
17.14	1.091	111.3	96.03	1.464	181.8	68.04	1.406	.4780
.0019	.0538	.0007	0002	.0106	0011	.0002	.7934	54.49
.0015	.0529	.0001	0010	.0104	.0001	.0006	.8093	54.12
Fe2599	Mq2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
1.692	26.34	2.577	68.70	.0403	0007	0028	16.29	0003
.007	.11	.008	.04	.0004	.0001	.0003	.10	.0003
.4160	.4223	.3219	.0564	.9713	17.88	11.50	.6249	91.67
1.697	26.42	2.583	68.73	.0406	0006	0026	16.36	0005
1.687	26.26	2.571	68.68	.0400	0008	0031	16.21	0001
Sr4077	Ti3349	W 2079						
.2796	.0253	.0003						
.0007	.0001	.0001						
.2331	.3197	19.49						
.2801	.0252	.0002						
.2792	.0253	.0003						
Y_3600	Y_3710	Y_2243	In2306					
106880.	18532.	2195.3	4835.8					
346.	72.	10.7	28.8					
.32362	.38777	.48516	.59583					
106630.	18481.	2187.8	4815.5					
107120.	18582.	2202.9	4856.2					
	Ba4554 .3680 .0007 .1889 .3685 .3675 V_2924 .0017 .0003 .17.14 .0019 .0015 Fe2599 1.692 .007 .4160 1.697 .1687 Sr4077 .2796 .0007 .2331 .2801 .2801 .2792 Y_3600 106880 .3466 .32362	Ba4554 Be3130 .3680 .0000 .0007 .0000 .3675 .0000 .0003 .0006 .0003 .0006 .0007 .0009 .000	Best1(v164) Mode: CONC Custom ID1: Cus	Best1(v164) Mode: CONC Corr. F Custom ID1: Custom ID2:	Hest1(v164) Mode: CONC Corr. Factor: 1.00 Custom ID1: Custom ID2: Custom Ba4554 Be3130 Cd2288 Co2286 Cr2677 .3680 .0000 .0033 .0197 .0035 .0007 .0000 .0001 .0001 .0001 .3889 93.02 2.968 .4885 7.639 .3685 .0000 .0032 .0197 .0033 .3675 .0000 .0033 .0198 .0037 V_2924 Zn2062 As1890 T11908 Pb2203 .0017 .0533 .0004 .0006 .0105 .0003 .0006 .0005 .0006 .0002 .17.14 1.091 111.3 96.03 1.464 .0019 .0538 .0007 .0002 .0104 .0015 .0529 .0001 .0010 .0104 Fe2599 Mg2790 K_7664 Na5895 B_2089 1.692 26.34 2.577 68.70 .0403 .007 .11 .008 .04 .0004 .4160 .4223 .3219 .0564 .9713 .1.697 26.42 2.583 68.73 .0406 .1.687 26.26 2.571 68.68 .0400 Sr4077 T13349 W_2079 .2796 .0253 .0003 .0007 .0001 .0001 .2331 .3197 19.49 .2801 .0252 .0002 .2792 .0253 .0003 .0007 .0001 .0001 .2331 .3197 19.49 .2801 .0252 .0002 .2792 .0253 .0003 .73600 Y_3710 Y_2243 In2306 106880. 18532. 2195.3 4835.8 .346. 72. 10.7 2.88 .32362 .38777 .48516 .59583 106630. 18481. 2187.8 4815.5	Best1(v164) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: Custom ID3:	Best1(v164) Mode: CONC Corr. Factor: 1.000000	Best1(v164) Mode: CONC Corr. Factor: 1.000000

Raw Data MA23143	page 177 of 245
------------------	-----------------

Raw Data MA23143 page 179 of 245

									■ Zoom In I Zoom Out
Sample Nam	ie: JA274	95-8 A	cquired: 9/2	20/2009 0:3	39:13 T	Type: Unk			
Method: Acci	utest1(v16	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: admin Comment:	Cust	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Elem Avg Stddev %RSD	Ba4554 1.458 .044 3.024	Be3130 .0000 .000 112.4	Cd2288 0001 .0000 32.99	Co2286 .0659 .0001 .1030	Cr2677 0003 .0001 42.66	Cu3247 .0268 .0009 3.496	Mn2576 3.283 .113 3.436	Ni2316 .0875 .0003 .3892	Ag3280 .0004 .0001 35.16
#1 #2	1.427 1.489	0001 .0000	0001 0001	.0658 .0659	0004 0002	.0274 .0261	3.363 3.203	.0878 .0873	.0005 .0003
Elem Avg Stddev %RSD	V_2924 .0008 .0002 27.24	Zn2062 .0626 .0002 .2411	As1890 .0114 .0008 6.712	TI1908 0007 .0003 42.79	Pb2203 .0052 .0004 7.770	Se1960 .0014 .0008 54.02	Sb2068 .0006 .0009 168.9	Al3961 .2826 .0111 3.939	Ca3179 156.4 5.1 3.290
#1 #2	.0010 .0007	.0627 .0625	.0119 .0108	0009 0005	.0055 .0049	.0019	.0012 0001	.2747 .2905	152.8 160.1
Elem Avg Stddev %RSD	Fe2599 38.85 1.13 2.919	Mg2790 69.20 2.20 3.185	K_7664 4.764 .117 2.449	Na5895 194.5 4.4 2.264	B_2089 .3567 .0003 .0840	Mo2020 0010 .0001 13.43	Pd3404 0005 .0011 243.9	Si2124 8.690 .035 .4046	Sn1899 0019 .0006 31.68
#1 #2	38.04 39.65	67.64 70.75	4.682 4.847	191.4 197.6	.3565 .3570	0009 0011	0013 .0003	8.715 8.665	0015 0023
Elem Avg Stddev %RSD	Sr4077 .7969 .0235 2.950	Ti3349 .0067 .0002 2.669	W_2079 .0043 .0002 3.698						
#1 #2	.7803 .8135	.0069 .0066	.0042 .0044						
Int. Std. Avg Stddev %RSD	Y_3600 102480. 1930. 1.8829	Y_3710 18146. 504. 2.7778	Y_2243 2108.6 8.6 .41011	In2306 4543.8 17.6 .38765					
#1 #2	101110. 103840.	18502. 17789.	2102.4 2114.7	4531.3 4556.2					

								◀ Zoom Zoom
								20011
,	64) Mo	de: CONC	Corr.	Factor: 1.0	00000			
in Cus	tom ID1:	Cus	tom ID2:	Cust	om ID3:			
1.970								
.003	.001	.000	.001	.003	.002	.002	.000	.0006
.1524	.0584	.0162	.0270	.1639	.0931	.0883	.0171	.2339
1.972	2.031							
1.968	2.030	2.014	2.025	1.986	1.956	1.942	2.040	.2427
Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
		As1890						
.1726	.0087							
Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
.1417	.1310							
40.25	39.70	39.78	39.55	2.023	2.028	1.976	4.799	2.025
40.17	39.63	39.86				1.975	4.786	2.027
Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
	Ba4554 ppm 1.970 .003 .1524 1.972 1.968 Chk Pass V_2924 ppm 2.037 .004 .1726 2.039 2.034 Chk Pass	Ba4554 Be3130 ppm 1.970 2.030 .003 .001 .1524 0.584 1.972 2.031 1.968 2.030 Chk Pass Chk Pass V_2924 Zn2062 ppm 2.037 .004 .000 .1726 .0087 2.039 2.007 Chk Pass Chk Pass Fe2599 Mg2790 ppm 40.21 39.66 .06 .05 .1417 .1310 40.25 39.70 40.17 39.63	Ba4554 Be3130 Cd2288 ppm ppm ppm 1.970 2.030 2.014 0.003 0.001 0.000 1.524 0.584 0.162 2.034 2.037 2.004 2.034 2.037 2.004 2.034 2.037 2.004 2.034 2.037 2.004 2.034 2.037 2.004 2.034 2.037 2.004 2.034 2.037 2.004 2.035 2.034 2.037 2.004 2.034 2.037 2.0	Ba4554 Be3130 Cd2288 Co2286 Coustom ID1: Custom ID2:	Ba4554	Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247	Ba4554	Ba4554

Sample Name: JA27495-6 Acquired: 9/20/2009 0:33:06 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Cd2288

.0083

.0001

1.756

.0082 .0084

As1890

.0023

0021

.0024

K_7664 2.161 .028 1.276

2 141

-.0082 .0002

2.545

-.0081

-.0084

Y 2243

07922

2253.7

Custom ID2:

Co2286

.0016

.0001

6.742

.0016 .0015

TI1908

-.0002 .0001

35.34

- 0003

-.0003

Na5895 22.70

.06

22.65

In2306

5068.1

.09670

5071.5

Custom ID3:

Cu3247

.0259

.0005

1.797

.0255 .0262

Se1960

-.0002 .0002

146.8

0000

-.0003

Mo2020 .0001 .0002

126.3

0000

.0003

Mn2576

.4545 .0005

.1086

.4548 .4541

.0009

26.51

0007

.0010

Pd3404 -.0025 .0010

40.84

- 0032

Ni2316

.0053

.0002

3.657

.0052 .0055

Al3961

1.466

1 465

1.468

Si2124 9.076

.038

9.049

9.102

Cr2677

.0034

.0002

5.316

.0035

Pb2203

.0030

26.43

0035

.0024

B_2089 .0797 .0002

0796

Custom ID1:

Be3130

-.0002

.0000

8.616

-.0002 -.0002

Zn2062

.0299

0299

.0298

.014

.2534

5.356

5.375

.0262

1.398

.0265

.0259

Y_3710

18998. 2.

.01244

19000.

Ti3349 W_2079

Mg2790 5.365

Ba4554

.0824

.0003

.3380

.0822

.0826

V_2924

.0041

.7599

0041

.0041

Fe2599 2.524 .009

.3555

2 530

Sr4077

.0866

.2664

.0868

.0864

Y 3600

109420. 147.

.13393

109520.

109320.

User: admin

Comment: Elem

Avg Stddev

%RSD

#1 #2

#1

#2

Elem

Avg Stddev

%RSD

Flem

Avg Stddev %RSD

Int. Std.

%RSD

#2

#1

Elem

Avg Stddev

Raw Data MA23143 page 180 of 245

ppm .0000

.0002

3299.

.0002

-.0001

Ca3179

ppm .0167

.0028

.0147

.0187

Sn1899

.0001

80.50

.0002

.0000

143 of 189 ACCUTEST. JA27477 Laborator

User: admin

Comment: Elem

Units

Avg Stddev

%RSD

Check? High Limit Low Limit Flem

Units

Avg Stddev

%RSD

Check?

Units

Avg Stddev

%RSD

Check ?

High Limit Low Limit

∢ Zoom In ▶

High Limit Low Limit Elem

#2

#2

								Zoom (
Sample N	lame: CCV	Acquire	d: 9/20/200	9 0:45:36	Type:	QC		
Method:	Accutest1(v1	64) Mc	de: CONC	Corr. F	actor: 1.0	00000		
User: adr	nin Cus	tom ID1:	Custo	m ID2:	Custo	om ID3:		
Commen								
Commen								
Elem	Sr4077	Ti3349	W_2079					
Units	ppm	ppm	ppm					
Avg	2.038	1.967	1.968					
Stddev	.004	.000	.001					
%RSD	.2133	.0054	.0671					
#1	2.041	1.967	1.968					
#2	2.035	1.967	1.969					
Check?	Chk Pass	Chk Pass	Chk Pass					
Value	Ome i doo	011101 000	Orner doo					
Range								
Int. Std.	Y_3600	Y_3710	Y_2243	In2306				
Units	Cts/S	Cts/S	Cts/S	Cts/S				
Avg	107550.	18605.	2234.9	4845.8				
Stddev	136.	5.	3.8	9.4				
%RSD	.12631	.02593	.16884	.19450				
#1	107640.	18601.	2232.2	4839.1				
#2	107450.	18608.	2237.5	4852.5				

Raw Data MA23143 page 181 of 245

110940.

18895.

Raw Data MA23143 page 183 of 245

Sample Name: CCB Acquired: 9/20/2009 0:51:34 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: User: admin Comment: Sr4077 Ti3349 W_2079 ppm .0002 .0001 ppm .0003 .0002 Units ppm -.0051 Avg Stddev .0008 %RSD 34.06 84.98 16.11 .0001 .0001 -.0045 -.0057 #2 .0004 Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit Int. Std. Y_3600 Cts/S Y_3710 Cts/S Y_2243 Cts/S In2306 Units Cts/S 110880. Avg Stddev %RSD 5197.6 18844 2310.8 .08044 .38267 .01816 .08974 110810 18793 5200.9

2310.5

5194.3

Raw Data MA23143 page 182 of 245

Sample Name: CCB Acquired: 9/20/2009 0:51:34 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Cd2288

ppm .0001 .0001

107.3

.0002

.0000

As1890

ppm .0011

.0000

.0012 .0011

K_7664

ppm .0317

.0022

7.096

.0301

.0333

Custom ID2:

Co2286

ppm .0000

.0001

156.4

.0001

.0000

TI1908

ppm .0007

.0002

.0005

Na5895

ppm .0815

.0028

3.412

.0835

.0796

Custom ID3:

Cu3247

ppm .0009 .0003

33.37

.0011

.0007

Se1960

ppm -.0007

.0019

.0021

.0006

Mo2020

ppm .0006

.0002

36.53

.0008

.0005

Mn2576

ppm .0004

.0000

12.63

.0004

.0004

Sh2068

ppm -.0001

.0003

.0001

Pd3404

.0006

.0004

-.0004

13860.

Ni2316

ppm -.0003

.0002

72.43

-.0001

-.0004

AI3961

ppm -.0028

.0028 98.34

.0009

-.0048

Si2124

ppm .0039

.0007

18.00

.0044

.0034

Cr2677

ppm .0001

.0003

334.8

.0003

-.0001

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

Ph2203

ppm .0005

.0008

.0011

.0000

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

B_2089

ppm .0008

.0009

115.7

.0015

.0001

Chk Pass Chk

Custom ID1:

Be3130

ppm .0002

.0000

4.080

.0002

.0002

7n2062

ppm .0002

.0001 48.30

.0002

Mg2790

ppm .0213

.0112

52.52

.0292

.0134

Ba4554

ppm .0003

.0002

67.25

.0001

.0004

V 2924

ppm -.0001

.0001 86.05

-.0001

-.0002

Fe2599

ppm .0075

.0024

32.13

.0058

.0092

									◀ Zoom Zoom (
									200111	,,,
	lame: JA275		cquired: 9/2			ype: Unk				
Method: A	Accutest1(v1		de: CONC	Corr. F	actor: 1.00	00000				
User: adn	nin Cus	tom ID1:	Cust	om ID2:	Custo	m ID3:				
Commen	t:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280	
Avg	.1879	0001	0011	.0007	.0005	.0009	.0018	0011	.0002	
Stddev	.0001	.0000	.0001	.0002	.0006	.0006	.0000	.0000	.0005	
%RSD	.0472	43.56	13.23	25.26	122.0	64.41	1.232	1.978	242.7	
#1	.1880	0001	0010	.0008	.0009	.0013	.0018	0010	0002	
#2	.1879	.0000	0012	.0006	.0001	.0005	.0018	0011	.0002	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	.0023	0010	.0013	0022	0039	.0015	0017	.0183	76.82	
Stddev	.0002	.0002	.0005	.0013	.0009	.0002	.0011	.0034	.21	
%RSD	7.172	19.58	36.91	60.28	22.03	13.95	65.60	18.89	.2679	
#1	.0024	0011	.0009	0031	0045	.0013	0025	.0207	76.96	
#2	.0022	0008	.0016	0013	0033	.0016	0009	.0158	76.67	
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Avg	.5162	791.3	275.6	1593.	9.702	0016	0018	5.979	.0050	
Stddev	.0070	2.0	1.3	37.	.078	.0000	.0014	.044	.0002	
%RSD	1.347	.2474	.4629	2.299	.8067	3.174	74.82	.7341	3.759	
#1	.5211	792.7	276.5	1619.	9.647	0015	0028	5.948	.0052	
#2	.5113	789.9	274.7	1567.	9.757	0016	0009	6.010	.0049	
Elem	Sr4077	Ti3349	W_2079							
Avg	6.385	.0018	.0286							
Stddev	.034	.0001	.0003							
%RSD	.5288	7.142	.9361							
#1	6.361	.0019	.0287							
#2	6.409	.0017	.0284							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306						
Avg	75478.	16226.	1536.1	2935.9						
Stddev	134.	104.	7.4	13.3						
%RSD	.17746	.64192	.47881	.45247						
#1	75572.	16152.	1541.3	2945.3						
#2	75383.	16300.	1530.9	2926.5						

Raw Data MA23143 page 184 of 245

									Zoom O	Jt
Sample Na	ame: JA275	92-1 A	cquired: 9/2	20/2009 0:5	57:46 1	Гуре: Unk				
Method: A	ccutest1(v1	64) Mo	de: CONC	Corr. F	actor: 1.00	00000				
User: adm	in Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:				
Comment:										
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280	
Avg	.1879	0001	0011	.0007	.0005	.0009	.0018	0011	.0002	
Stddev	.0001	.0000	.0001	.0002	.0006	.0006	.0000	.0000	.0005	
%RSD	.0472	43.56	13.23	25.26	122.0	64.41	1.232	1.978	242.7	
#1	.1880	0001	0010	.0008	.0009	.0013	.0018	0010	0002	
#2	.1879	.0000	0012	.0006	.0001	.0005	.0018	0011	.0006	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	.0023	0010	.0013	0022	0039	.0015	0017	.0183	76.82	
Stddev	.0002	.0002	.0005	.0013	.0009	.0002	.0011	.0034	.21	
%RSD	7.172	19.58	36.91	60.28	22.03	13.95	65.60	18.89	.2679	
#1	0024	0011	0000	0021	0045	0012	0005	0207	7/ 0/	
#1	.0024	0011 0008	.0009 .0016	0031 0013	0045 0033	.0013	0025 0009	.0207 .0158	76.96 76.67	
π2	.0022	0000	.0010	0013	0033	.0010	0007	.0130	70.07	
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Avg	.5162	791.3	275.6	1593.	9.702	0016	0018	5.979	.0050	
Stddev	.0070	2.0	1.3	37.	.078	.0000	.0014	.044	.0002	
%RSD	1.347	.2474	.4629	2.299	.8067	3.174	74.82	.7341	3.759	
#1	.5211	792.7	276.5	1619.	9.647	0015	0028	5.948	.0052	
#2	.5113	789.9	274.7	1567.	9.757	0015	0028	6.010	.0032	
	.0110	707.7	27	1007.	7.707	.0010	.0007	0.010	.0017	
Elem	Sr4077	Ti3349	W_2079							
Avg	6.385	.0018	.0286							
Stddev	.034	.0001	.0003							
%RSD	.5288	7.142	.9361							
#1	6.361	.0019	.0287							
#2	6.409	.0017	.0284							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306						
Avg	75478.	16226.	1536.1	2935.9						
Stddev %RSD	134. .17746	104. .64192	7.4 .47881	13.3 .45247						
701(3D	.17740	.04172	.47001	.43247						
#1	75572.	16152.	1541.3	2945.3						
#2	75383.	16300.	1530.9	2926.5						

.0003

136.8

.0000

Ca3179

102.2

.1455

102.3

102.3

Sn1899 -.0013 .0001

- 0013

User: admin

Comment: Elem

Avg Stddev

%RSD

#1 #2

#1

#2

Elem

Avg Stddev

%RSD

Flem

Avg Stddev %RSD

Int. Std.

%RSD

#1

Elem

Avg Stddev

o

									▼ Zoom II
Sample Nar	ne: JA275	92-2 A	cquired: 9/2	20/2009 1:0	04:04 7	ype: Unk			
Method: Acc			de: CONC		actor: 1.00				
User: admin		tom ID1:		om ID2:		om ID3:			
	i Cus	tom ib i.	Cusi	UIII IDZ.	Cusic	JIII ID3.			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.0497	0002	0004	.0006	.0003	.0251	.0785	.0008	.0006
Stddev	.0001	.0000	.0001	.0000	.0002	.0001	.0002	.0004	.0004
%RSD	.1080	7.803	14.19	4.845	62.18	.4689	.3045	45.33	67.09
70IC3D	.1000	7.003	14.17		02.10		.3043	43.33	07.07
#1	.0496	0002	0005	.0006	.0001	.0252	.0786	.0005	.0003
#2	.0497	0002	0004	.0005	.0004	.0251	.0783	.0010	.0008
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avq	.0024	.0098	.0012	.0000	0019	.0021	.0005	.0539	226.7
Stddev	.0003	.0001	.0012	.0003	.0026	.0021	.0000	.0052	.9
%RSD	11.21	1.161	94.44	1298.	133.8	143.7	8.893	9.628	.3922
/0K3D	11.21	1.101	94.44	1290.	133.0	143.7	0.073	9.020	.3922
#1	.0026	.0097	.0020	.0002	0038	.0043	.0005	.0502	226.1
#2	.0022	.0099	.0004	0002	0001	.0000	.0005	.0576	227.3
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avq	2.161	426.7	143.3	1294.	5.480	.0098	0019	9.195	0004
Stddev	.006	.1	.3	14.	.010	.0001	.0013	.031	.0003
%RSD	.2669	.0328	.2046	1.088	.1882	1.138	67.11	.3378	81.59
#1	2.165	426.8	143.1	1304.	5.473	.0099	0010	9.173	0002
#2	2.157	426.6	143.5	1284.	5.488	.0097	0028	9.217	0006
Elem	Sr4077	Ti3349	W_2079						
Avq	7.432	.0037	.0148						
Stddev	.032	.0002	.0013						
%RSD	.4343	4.859	8.860						
#1	7.409	.0036	.0158						
#2	7.454	.0038	.0139						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	83299.	16836.	1702.7	3387.5					
Stďdev	12.	27.	1.6	3.6					
%RSD	.01402	.15928	.09666	.10529					
#1	83290.	16855.	1703.9	3390.1					
#2	83307.	16817.	1701.6	3385.0					
	22007.			2200.0					

Raw Data MA23143	page 186 of 245

Sample Name: JA27592-3 Acquired: 9/20/2009 1:10:27 Type: Unk
Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Cd2288

-.0003

.0001

33.36

-.0002 -.0004

As1890

.0877

.5624

0874

.0881

K_7664 100.9

.1485

101.0

.0038

2.788

.0038

.0037

Y 2243

1883.8

17315

1881.5

1886.1

Custom ID2:

Co2286

.0010

.0000

1.000

.0010 .0010

TI1908

-.0028 .0012

41.23

- 0020

-.0020

Na5895 1030. 17.

1018

1042.

In2306

3816.5 6.8

17752

3821.3

Custom ID3:

Cu3247

.0035

.0001

3.354

.0034

.0035

Se1960

.0019

2.999

0019

.0019

Mo2020 .0996

.0001

0995

Mn2576

.0379

.0001

.2263

.0379

.0378

.0006

0007

.0004

Pd3404 -.0020 .0023

- 0003

Ni2316

.0064

.0001

1.556

.0063 .0065

Al3961

.0155

7.523

0163

.0146

Si2124 8.288 .031

.3735

8 310

Cr2677

-.0002

.0002

88.41

-.0001 -.0003

Pb2203

-.0019

- 0013

-.0026

B_2089 3.693 .007

3 698

Custom ID1:

Be3130

-.0002

.0000

29.82

-.0002 -.0001

Zn2062

.0011

8.860

0012

.0012

.0173

209.8

.0004

114.6

.0001

.0008

Y_3710

17522. 5.

02697

17519.

Ti3349 W_2079

Mg2790 209.8

Ba4554

.0189

.0000

.0175

.0189

.0189

V_2924

.0001

196.1

0000

.0001

Fe2599 2.317 .002

.0770

2 318

Sr4077

3.450

.3076

3.457

3.442

Y 3600

90960. 1. 00115

90961

90959.

			Naw Date	a IVIAZJ 14	o paye	100 01 24	20						
		◀ Zoom In ▶										◀ Zoom I	
		Zoom Out										Zoom O	ut
				me: JA280		cquired: 9/2			ype: Unk				
				cutest1(v1		de: CONC		actor: 1.00					
			User: admi	n Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:				
			Comment:										
In2576	Ni2316	Ag3280	Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280	
.0194	.1728	.0001	Avg	.0936	0002	.0000	.0020	.0003	.2511	.0980	.0017	.0002	
.0001	.0005	.0001	Stddev	.0002	.0000	.0000	.0001	.0001	.0001	.0002	.0001	.0000	
.4707	.2972	47.21	%RSD	.2508	17.29	37.24	3.888	26.67	.0290	.2217	8.380	12.97	
.0194	.1731	.0001	#1	.0934	0002	.0000	.0019	.0003	.2510	.0979	.0016	.0003	
.0193	.1724	.0002	#2	.0937	0001	.0000	.0020	.0002	.2511	.0982	.0018	.0002	
Sb2068	Al3961	Ca3179	Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
.0010	0057	267.6	Avg	.0000	.0354	.0038	0023	.0019	.0028	.0001	.8866	11.58	
.0001 8.168	.0080 139.6	2.4 .9079	Stddev %RSD	.000 970.7	.0001	.0003 8.439	.0006 27.41	.0007 36.57	.0014 51.57	.0001 99.63	.0022 .2520	.04	
0.100	139.0	.9079	70K3D	970.7	.2394	8.439	27.41	30.57	51.57	99.03	.2520	.3211	
.0009	0113	269.3	#1	0002	.0355	.0036	0027	.0014	.0038	.0000	.8882	11.60	
.0010	0001	265.9	#2	.0001	.0354	.0041	0018	.0023	.0018	.0003	.8850	11.55	
Pd3404	Si2124	Sn1899	Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
0006	6.870	0016	Avg	19.26	2.192	3.265	37.58	.1527	0004	0020	1.952	0005	
.0016 295.0	.014	.0001 4.954	Stddev %RSD	.01	.024 1.105	.006	.13 .3527	.0009 .5595	.0002	.0002 9.414	.001	.0007	
295.0	.2030	4.954	70K3D	.0617	1.105	.1090	.3527	.5595	48.61	9.414	.0726	142.0	
.0006	6.860	0015	#1	19.27	2.175	3.270	37.68	.1533	0002	0021	1.953	0010	
0017	6.880	0016	#2	19.25	2.209	3.261	37.49	.1521	0005	0018	1.951	.0000	
			Elem	Sr4077	Ti3349								
			Avg	.0975	0005	0112							
			Stddev	.0001	.0001	.0004							
			%RSD	.1159	25.45	3.829							
			#1	.0974	0006	0109							
			#2	.0975	0004	0115							
			Int. Std.	Y_3600	Y_3710	Y_2243	In2306						
			Avg	111370.	19396.	2292.5	5052.4						
			Stddev	209.	38.	6.7	3.8						
			%RSD	.18766	.19839	.29359	.07488						
			#1	111520.	19369.	2287.7	5049.7						
			#2	111220.	19423.	2297.2	5055.1						

Raw Data MA23143 page 188 of 245

Raw Data MA23143 page 185 of 245

Raw Data MA23143 page 187 of 245

									◀ Zoom Zoom C	
Sample Na	me: JA275	93-1 A	cquired: 9/2	20/2009 1:1	16:44	Гуре: Unk				
Method: Ad	ccutest1(v1	64) Mo	de: CONC	Corr. F	actor: 1.00	00000				
User: admi	n Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:				
Comment:										
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280	
Avg	.0772	0002	0007	.0030	.0168	.0018	.0194	.1728	.0001	
Stddev %RSD	.0000	.0000 16.09	.0001 13.26	.0000 1.651	.0001 .4112	.0004 23.87	.0001 .4707	.0005	.0001 47.21	
#1	.0772	0002	0008	.0030	.0169	.0015	.0194	.1731	.0001	
#2	.0772	0003	0007	.0030	.0168	.0021	.0193	.1724	.0002	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	.0033	0002	0014	0023	.0000	.0013	.0010	0057	267.6	
Stddev	.0004	.0001	.0006	.0008	.001	.0001	.0001	.0080	2.4	
%RSD	10.92	32.61	44.52	35.13	1606.	8.208	8.168	139.6	.9079	
#1	.0036	0002	0018	0028	.0005	.0013	.0009	0113	269.3	
#2	.0031	0003	0009	0017	0006	.0012	.0010	0001	265.9	
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Avg	.2265	194.4	80.02	489.5	1.195	.2464	0006	6.870	0016	
Stddev	.0013	.5	.18	1.2	.000	.0002	.0016	.014	.0001	
%RSD	.5639	.2325	.2190	.2398	.0253	.0880	295.0	.2030	4.954	
#1	.2256	194.7	80.15	490.4	1.195	.2465	.0006	6.860	0015	
#2	.2274	194.1	79.90	488.7	1.194	.2462	0017	6.880	0016	
Elem	Sr4077	Ti3349	W_2079							
Avq	15.54	.0015	.0021							
Stddev	.07	.0004	.0009							
%RSD	.4641	25.89	41.26							
#1	15.59	.0012	.0027							
#2	15.49	.0018	.0015							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306						
Avg	96509.	17785.	1955.8	4108.8						
Stddev	100.	16.	1.8	3.9						
%RSD	.10371	.09037	.09121	.09601						
#1	96438.	17774.	1954.5	4111.5						
#2	96580.	17797.	1957.1	4106.0						

.0002

.0003

199.7

-.0001 .0004

Ca3179

16.18

.0904

16.17 16.19

Sn1899 -.0021 .0002

- 0022

o

									■ Zoom In Zoom Ou
Sample Nan	ne: JA2800	08-2 A	cquired: 9/2	20/2009 1:2	29:13	ype: Unk			
Method: Acc	utest1(v1	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: admin	Cust	tom ID1:	Cust	om ID2:	Custo	m ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.1024	0001	.0028	.0018	.0011	.0105	.1041	.0033	.0009
Stddev	.0000	.0000	.0001	.0001	.0004	.0000	.0002	.0000	.0001
%RSD	.0323	9.425	3.507	3.133	35.76	.1960	.2196	.0942	11.58
#1	.1024	0001	.0027	.0018	.0008	.0105	.1039	.0033	.0008
#2	.1024	0001	.0029	.0018	.0013	.0106	.1042	.0033	.0009
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0000	.0506	.0027	0012	.0270	0002	0001	.6090	12.20
Stddev	.0001	.0004	.0000	.0004	.0004	.0003	.0002	.0134	.04
%RSD	2703.	.7337	.1515	34.63	1.345	143.2	321.8	2.199	.3097
#1	0001	.0509	.0027	0009	.0268	0004	.0001	.6185	12.17
#2	.0001	.0503	.0026	0015	.0273	.0000	0002	.5995	12.23
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	19.65	2.397	3.452	40.20	.1558	0005	0030	2.111	0006
Stddev	.05	.005	.015	.03	.0003	.0001	.0011	.011	.0001
%RSD	.2600	.2243	.4342	.0746	.1682	21.10	37.24	.5390	9.256
#1	19.61	2.401	3.463	40.18	.1560	0004	0038	2.119	0006
#2	19.68	2.393	3.442	40.22	.1556	0006	0022	2.103	0006
Elem	Sr4077	Ti3349	W_2079						
Avg	.1033	0004	0116						
Stddev	.0001	.0000	.0006						
%RSD	.0514	2.115	4.743						
#1	.1033	0004	0112						
#2	.1033	0004	0120						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	110540.	19282.	2282.7	5020.1					
Stddev	148.	29.	8.5	22.7					
%RSD	.13375	.15103	.37034	.45168					
#1	110640.	19303.	2276.7	5004.0					
#2	110440.	19262.	2288.6	5036.1					

Raw Data MA23143	page 189 of 245
------------------	-----------------

Raw Data MA23143 page 191 of 245

									◀ Zoom II Zoom O	
	Name: JA281 Accutest1(v1		cquired: 9/2		11:26 Tactor: 1.00	Type: Unk 00000				
User: adi		tom ID1:	Cust	om ID2:	Custo	om ID3:				
Elem Avg Stddev %RSD	Ba4554 .1651 .0004 .2410	Be3130 0002 .0000 19.19	Cd2288 0001 .0002 201.5	Co2286 .0004 .0000 2.454	Cr2677 .0090 .0004 4.184	Cu3247 .0342 .0002 .5562	Mn2576 .1611 .0003 .1985	Ni2316 .0049 .0001 1.388	Ag3280 .0003 .0001 50.12	
#1 #2	.1654 .1648	0003 0002	.0000 0002	.0004 .0004	.0093 .0087	.0343 .0340	.1609 .1613	.0049 .0050	.0002 .0004	
Elem Avg Stddev %RSD	V_2924 .0021 .0000 1.733	Zn2062 .0584 .0004 .7288	As1890 .0021 .0006 26.37	TI1908 0005 .0009 161.4	Pb2203 .0068 .0014 21.04	Se1960 0003 .0000 1.358	Sb2068 .0088 .0004 4.429	Al3961 1.011 .012 1.161	Ca3179 83.26 .19 .2249	
#1 #2	.0021 .0022	.0587 .0581	.0025 .0017	0012 .0001	.0078 .0058	0003 0003	.0091 .0085	1.019 1.003	83.39 83.13	
Elem Avg Stddev %RSD	Fe2599 .8647 .0021 .2391	Mg2790 38.31 .05 .1195	K_7664 30.57 .02 .0648	Na5895 116.5 .1 .1063	B_2089 .4550 .0011 .2340	Mo2020 .0499 .0000 .0199	Pd3404 0015 .0008 55.62	Si2124 4.678 .011 .2270	Sn1899 0010 .0006 65.83	
#1 #2	.8633 .8662	38.28 38.34	30.58 30.56	116.6 116.4	.4542 .4557	.0499 .0499	0009 0021	4.671 4.686	0014 0005	
Elem Avg Stddev %RSD	Sr4077 3.288 .007 .2027	Ti3349 .0094 .0000 .0223	W_2079 0058 .0007 11.77							
#1 #2	3.283 3.293	.0094 .0094	0063 0053							
Int. Std. Avg Stddev %RSD	Y_3600 105840. 156. .14710	Y_3710 18685. 39. .21061	Y_2243 2166.3 2.7 .12278	In2306 4735.1 1.4 .02988						
#1 #2	105950. 105730.	18713. 18657.	2168.1 2164.4	4736.1 4734.1						

Raw Data MA23143	page 190 of 245

 Sample Name: JA28008-3
 Acquired: 9/20/2009 1:35:20
 Type: Unk

 Method: Accutest1(v164)
 Mode: CONC
 Corr. Factor: 1.000000

Cd2288

.0001

.0001

134.1

.0000

As1890

.0060

24.69

0070

.0050

K_7664 4.136 .008

4 130

-.0051 .0008

16.40

-.0045

-.0056

Y 2243

2243.6 3.8

.16856

2241.0

Co2286

.0007

.0000

6.788

.0007

.0007

TI1908

-.0013 .0005

36.85

- 0010

-.0016

Na5895 43.39

.02

.0439

43 38

In2306

5011.5

.09691

5008.1

5014.9

Custom ID3:

Cu3247

.0014

.0001 9.532

.0013 .0015

Se1960

.0005

- 0010

.0021

Mo2020 -.0008

.0000

- 0008

Mn2576

.4436

.0007

.1633

.4441 .4430

.0005

0006

.0003

Pd3404 -.0005 .0013

- 0014

Ni2316

.0010

5.933

.0011

.0010

Al3961

-.0099 .0026

26.12

- 0081

-.0118

Si2124

16.65

.0148

16.65

Cr2677

-.0005

.0003

58.62

-.0003 -.0007

Pb2203

.0003

0000

.0005

.0002

.1670

1387

.1384

B_2089

-.0002

.0000

6.202

-.0002 -.0002

Zn2062

.0189

0189

.0189

Mg2790

4.421

4 434

4.408

1429.

.0001

-.0001

Y_3710

18865. 11.

05667

18873.

18858.

Ti3349 W_2079 .0000

.018

Ba4554 Be3130

.0441

.0001

.3030

.0440 .0442

V_2924

-.0005 .0002

46.84

- 0004

-.0007

Fe2599 49.79 .05

.0997

49 75

Sr4077

.2207

.1776

.2204

.2210

Y 3600

108810.

.03938

108840.

108780.

Comment: Elem

%RSD

#1 #2

#1

#2

Elem

Avg Stddev

%RSD

Flem

#1

Avg Stddev %RSD

Int. Std.

%RSD

Elem

Avg Stddev

				_						
									◀ Zoom In Zoom Ou	
									Zoom Ou	1
Sample Na	ame: MP496	77-MR1	Acquired	i: 9/20/200	9 1-47-37	Type: U	Ink			
	ccutest1(v1		de: CONC		actor: 1.00		/ IIK			
User: admi	•	tom ID1:		om ID2:		om ID3:				
Comment:										
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280	
Avg	0002	0002	0001	0004	0003	.0004	.0003	0003	.0002	
Stddev %RSD	.0001 33.75	.0001 28.19	.0003 211.6	.0000 8.014	.0001 58.36	.0004 80.24	.0000 9.407	.0000 5.348	.0002 83.78	
701(3D	33.73	20.17	211.0	0.014	30.30	00.24	7.407	3.340	03.70	
#1	0002	0002	0004	0004	0004	.0002	.0003	0002	.0003	
#2	0003	0003	.0001	0004	0001	.0007	.0002	0003	.0001	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	0004	.0006	0009	0005	.0003	0007	0011	0090	.1581	
Stddev	.0002	.0002	.0004	.0001	.0006	.0007	.0010	.0022	.0039	
%RSD	65.64	31.55	42.69	17.95	175.5	109.1	91.89	24.68	2.465	
#1	0002	.0005	0007	0004	.0008	0002	0004	0074	.1553	
#2	0005	.0008	0012	0005	0001	0012	0018	0106	.1608	
Elem	Fe2599	Mg2790	K 7664	Na5895	B 2089	Mo2020	Pd3404	Si2124	Sn1899	
Avg	.0149	.0370	.1094	.5617	.0010	0005	0004	.0178	0003	
Stddev	.0012	.0015	.0197	.0086	.0003	.0000	.0013	.0005	.0001	
%RSD	8.309	3.979	18.03	1.524	26.84	2.269	364.4	2.566	32.59	
#1	.0158	.0360	.1233	.5677	.0012	0005	0013	.0182	0004	
#2	.0140	.0380	.0954	.5556	.0008	0005	.0006	.0175	0002	
Elem	Sr4077	Ti3349	W_2079							
Avg	.0008	0004	0175							
Stddev	.0001	.0000	.0002							
%RSD	15.71	10.26	.9835							
#1	.0009	0004	0174							
#2	.0007	0004	0176							
Int. Std.	Y_3600	Y 3710	Y_2243	In2306						
Avg	109950.	18976.	2281.9	5155.5						
Stddev	879.	105.	11.9	28.9						
%RSD	.79926	.55587	.52189	.55968						
#1	110570.	19050.	2273.5	5135.1						
#2	109330.	18901.	2290.3	5175.9						

Raw Data MA23143 page 192 of 245

Custom ID1:

Be3130

.5131

.0008

.1581

.5125

Zn2062

5086

0038

5059

.5113

Mg2790

.016

5 540

T13349

.4903 .0029

5992

4924

4882

Y 3710

18859

00461

18860

Acquired: 9/20/2009 1:53:47

Custom ID2:

Cd2288

.5007

.0039

.7832

4979

.5034

As1890

4810

0033

.6772

4787

.4833

<_7664

10.18

.1042

10.19

W 2079

.0002

6.905

-.0031

-.0028

Y 2243

2266.6 11.4

50487

2258.5

.01

Mode: CONC Corr. Factor: 1.000000

Co2286

.5123

.0031

.6104

5101

.5145

TI1908

4910

0001

4909

.4910

Na5895

10.15

.00

.0438

10.15

In2306

5083.1

41494

5068.2

Type: Unk

Cu3247

.4712

.0008

.1777

4718

.4706

4941

0012

.2500

4932

.4950

.5083

.0034

.6693

5059

5107

Mo2020

Mn2576

.4912

.0024

.4971

.4929

.4895

4879

0028

4859

.4899

Pd3404

.0019

.0011

- 0011

Sb2068

Ni2316

.5225

.0038

.7239

5198

.5252

Al3961

4.997

008

.1678

5.003

4.991

Si2124

.0314

.0001

0315

Custom ID3:

Cr2677

.5068

.0027

.5281

.5087

.5049

Pb2203

5240

0036

.6884

5214

.5265

.0023

.0004

0020

B_2089

Sample Name: MP49677-LC1

Ba4554

.4986

.0010

.2105

4993

.4978

5063

0048

5097

.5029

Fe2599

5.510

5 498

Sr4077

-.0001 .0000

33.03

-.0001

-.0001

Y 3600

109970. 680.

109490

110450

61794

.018

V_2924

Method: Accutest1(v164)

User: admin

Comment:

Elem

Avg Stddev

%RSD

#1 #2

#1

#2

Elem

Avq

Stddev

%RSD

Flem

Avg Stddev

%RSD

Int. Std.

Avg Stddev

%RSD

Elem

#2

Elem

Avg Stddev

■ Zoom In I Zoom Out

Ag3280

1998

.0003

.1332

2000

.1996

Ca3179

5.683

.1027

5 679

5.687

Sn1899

.0002

.0006

- 0006

006

Sample Name: CCV Acquired: 9/20/2009 1:59:47 Type: QC

Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 Custom ID1: User: admin Custom ID2: Custom ID3: Comment:

Elem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 Units ppm 2.009 ppm 2.067 ppm 2.053 ppm 2.063 ppm 2.032 ppm 1.995 ppm 1.970 ppm 2.078 ppm .2481 Avg Stddev .001 .004 .001 .001 .007 .003 .001 .001 .0002 %RSD .0390 .1838 .0375 .0240 .3345 .1568 .0322 .0324 0888 2.070 2.053 2.037 1.997 2.078 2.009 2.064 .2482 #2 2.008 2.065 2.054 2.063 2.028 1.993 1.970 2.077 .2479

Check? Chk Pass Chk Value Range

Flem V 2924 7n2062 As1890 TI1908 Ph2203 Se1960 Sh2068 AI3961 Ca3179 Units ppm 2.075 ppm 2.035 ppm 2.034 ppm 2.030 ppm 2.062 ppm 2.038 ppm 2.022 ppm 40.22 ppm 40.61 Avg Stddev .004 .006 .3140 .003 .001 .001 .006 .2770 .00 .003 .06 .1464 .1428 %RSD 2.037 40.61 2.078 2.031 2.032 2.031 2.034 #2 2.061 2.024 40.26 40.61

Check? Chk Pass Value

Range

Mg2790 Elem Fe2599 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn1899 K_7664 Units ppm 40.96 ppm 40.50 ppm 40.58 ppm 38.85 ppm 2.061 ppm 4.890 Avg Stddev .01 .12 .13 .004 .000 .009 .001 .001 %RSD .0285 .3018 .3294 .4295 .1905 .0195 .4283 .0148 .0515 40.97 40.59 40.49 38.73 2.063 2.062 2.020 4.890 2.060 40.95 40.42 40.68 38 97 2.058 2.062 2.007 4.891 2.058

Check ? Chk Pass Chk Range

Raw Data MA23143 page 193 of 245

■ Zoom In ▶

:47 Type: QC
orr. Factor: 1.000000
2: Custom ID3:

Ti3349 W 2079

Units	ppm	ppm	ppm
Avg	2.078	1.997	2.003
Stďdev	.003	.002	.007
%RSD	.1243	.0751	.3337
#1	2.080	1.996	1.999
#2	2.076	1.999	2.008

Check? Chk Pass Chk Pass Chk Pass Value Range

107380.

Int. Std. Units	Y_3600 Cts/S	Y_3710 Cts/S	Y_2243 Cts/S	In2306 Cts/S
UTIILS				
Avg	107280.	18622.	2226.5	4826.4
Stddev	137.	32.	.4	3.8
%RSD	.12756	.16932	.01839	.07939
#1	107190.	18645.	2226.8	4829.1

18600

2226.2

Sample Name:	CCB A	cquired	: 9/20/2009 2	2:05:46	Type: QC
Method: Accute	st1(v164)	Mod	le: CONC	Corr.	Factor: 1.000000
User: admin	Custom	ID1:	Custom	ID2:	Custom ID3:
Comment:					

Raw Data MA23143 page 194 of 245

Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	0002	0001	0001	0002	.0002	.0003	.0000	0004	0002
Stddev	.0002	.0001	.0000	.0000	.0003	.0003	.0000	.0002	.0002
%RSD	91.47	59.86	30.05	23.91	167.9	104.9	109.8	48.19	63.92
#1 #2	0001 0003	0002 0001	0001 0001	0002 0001	.0004	.0001 .0005	.0000	0003 0006	0001 0004

Check? Chk Pass Chk High Limit

Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Units	ppm								
Avg	0001	0002	.0001	0002	0004	0005	.0003	0097	.0023
Stddev	.0002	.0003	.0006	.0002	.0002	.0004	.0006	.0024	.0028
%RSD	178.1	143.7	544.9	119.0	63.71	77.77	180.0	24.25	120.8
#1	0002	0004	.0005	.0000	0002	0002	.0008	0080	.0003
#2	.0000	.0000	0003	0004	0005	0007	0001	0114	.0043

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Check? High Limit Low Limit

Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Units	ppm								
Avg	.0005	0122	.1162	.3874	.0020	.0005	0019	.0029	0001
Stddev	.0019	.0120	.0137	.0000	.0002	.0003	.0003	.0009	.0004
%RSD	359.9	98.59	11.80	.0019	10.46	67.03	17.73	31.23	655.8
#1	0008	0037	.1259	.3874	.0019	.0007	0022	.0023	.0002
#2	.0018	0206	.1065	.3874	.0022	.0003	0017	.0036	0004

Check? Chk Pass Chk High Limit Low Limit

Raw Data MA23143 page 196 of 245

Raw Data MA23143 page 195 of 245

<u></u>

O

■ Zoom In ▶

▼ Zoom In **▶** Zoom Out

◀ Zoom In ▶ Zoom Out

	iiist QU	- IV	AZ3143)					
								Zoom In ▶ Zoom Out	
	ccutest1(v1	64) Ma	d: 9/20/2009 de: CONC	Corr. F	Type: actor: 1.0	000000			
User: adm Comment:	in Cus	tom ID1:	Cusic	m ID2:	Cusi	tom ID3:			
Elem Units	Sr4077 ppm	Ti3349 ppm	W_2079 ppm						
Avg	0001	.0002	0059						
Stddev %RSD	.0001 139.9	.0002 140.0	.0002 3.472						
#1	0002	.0003	0058						
#2	.0000	.0000	0060						
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Units	Cts/S 110570.	Cts/S 18861.	Cts/S 2304.1	Cts/S 5189.7					
Avg Stddev	110570.	29.	4.2	3.5					
%RSD	.11687	.15504	.18174	.06739					
#1	110660.	18841.	2301.1	5187.2					
#2	110480.	18882.	2307.0	5192.2					

User: adm Comment:		tom ID1:		Corr. F om ID2:		om ID3:			
Elem Avg Stddev %RSD	Ba4554 1.925 .003 .1669	Be3130 .0489 .0000 .0343	Cd2288 .0567 .0006 1.020	Co2286 .4968 .0001 .0114	Cr2677 .1937 .0014 .7029	.2327	Mn2576 1.001 .001 .1190	Ni2316 .5040 .0015 .3057	Ag32 .05 .00
#1 #2	1.923 1.928	.0489 .0490	.0563 .0571		.1947 .1928	.2332 .2322	1.000 1.002	.5029 .5051	.05
Elem Avg Stddev %RSD	V_2924 .4936 .0002 .0482	Zn2062 .4900 .0017 .3506	As1890 1.985 .000 .0200	TI1908 1.918 .011 .5710	Pb2203 .4923 .0024 .4847	Se1960 2.026 .006 .2850	Sb2068 .5095 .0026 .5104	Al3961 1.922 .003 .1446	Ca31 22
#1 #2	.4934 .4937	.4888 .4912	1.985 1.984	1.910 1.926	.4907 .4940	2.022 2.031	.5077 .5113	1.920 1.924	220 222
Elem Avg Stddev %RSD	Fe2599 16.32 .00 .0172	Mg2790 48.35 .18 .3808	K_7664 35.09 .04 .1134	59.59 .11	B_2089 .1120 .0010 .8793	0005 .0001	0008	Si2124 4.257 .011 .2465	Sn18 00 .00 27.
#1 #2	16.31 16.32	48.22 48.48	35.06 35.12	59.52 59.67	.1113 .1127	0004 0006	0009 0008	4.250 4.264	00 00
Elem Avg Stddev %RSD	Sr4077 .3481 .0007 .1921	Ti3349 .0011 .0001 6.492	W_2079 .0196 .0003 1.541						
#1 #2	.3476 .3486	.0010 .0011	.0198 .0194						
Int. Std. Avg Stddev %RSD	Y_3600 105140. 102. .09661	Y_3710 18515. 84. .45563	Y_2243 2129.7 .5 .02577	In2306 4652.4 .8 .01656					
#1 #2	105210. 105070.	18575. 18455.	2130.1 2129.3	4651.9 4653.0					

Raw Data MA23143 page 197 of 245

Raw Data MA23143 page 199 of 245

◀ Zoom In ▶ Zoom Out

Raw Data MA23143 page 198 of 245

	nme: MP496 ccutest1(v16 in Cusi		Acquired: de: CONC Cust		actor: 1.00	Type: Un 00000 om ID3:	k		
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	1.939	.0494	.0560	.4989	.1945	.2328	1.012	.5040	.0507
Stddev	.011	.0001	.0000	.0010	.0003	.0006	.000	.0008	.0004
%RSD	.5726	.1826	.0699	.1995	.1718	.2740	.0035	.1516	.8162
#1	1.931	.0493	.0560	.4982	.1947	.2324	1.012	.5035	.0504
#2	1.947	.0494	.0560	.4996	.1943	.2333	1.012	.5046	.0510
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.4917	.4917	1.987	1.918	.4937	2.019	.5100	1.943	224.3
Stddev	.0006	.0014	.002	.002	.0007	.002	.0009	.014	.5
%RSD	.1192	.2818	.0734	.0804	.1445	.0805	.1756	.6931	.2010
#1	.4913	.4907	1.988	1.917	.4942	2.018	.5106	1.934	224.0
#2	.4921	.4926	1.986	1.919	.4932	2.020	.5093	1.953	224.7
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	16.45	48.66	35.35	60.21	.1110	0006	0018	4.310	0021
Stddev	.11	.30	.20	.31	.0002	.0003	.0004	.003	.0000
%RSD	.6382	.6088	.5590	.5119	.1541	47.09	20.57	.0762	.0942
#1	16.38	48.45	35.21	60.00	.1109	0008	0016	4.312	0021
#2	16.52	48.87	35.49	60.43	.1111	0004	0021	4.307	0021
Elem Avg Stddev %RSD	Sr4077 .3511 .0019 .5374	Ti3349 .0014 .0003 21.80	W_2079 .0145 .0006 4.214						
#1 #2	.3497 .3524	.0012 .0016	.0149 .0141						
Int. Std. Avg Stddev %RSD	Y_3600 105160. 76. .07254	Y_3710 18481. 121. .65633	Y_2243 2134.6 1.4 .06554	In2306 4652.1 .5 .01029					
#1 #2	105220. 105110.	18567. 18396.	2135.6 2133.6	4652.4 4651.8					

Sample Nam Method: Acc User: admin Comment:	utest1(v16		Acquired: 9 de: CONC Custi		actor: 1.00	Type: Unk 00000 om ID3:			
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.0268	.0001	0007	.0051	.0013	.0004	.5466	.0053	0003
Stddev	.0003	.0000	.0001	.0001	.0000	.0000	.0031	.0003	.0004
%RSD	.9438	61.10	16.25	1.442	2.592	3.804	.5681	4.845	135.4
#1	.0270	.0001	0006	.0051	.0013	.0004	.5488	.0054	.0000
#2	.0266	.0000	0008	.0050	.0013	.0004	.5444	.0051	0006
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0000	.0137	0006	.0013	0005	.0001	.0005	.0147	200.8
Stddev	.000	.0003	.0008	.0002	.0002	.0005	.0001	.0011	.7
%RSD	2304.	2.291	127.5	12.90	38.96	796.8	15.87	7.429	.3286
#1	.0000	.0135	0001	.0012	0003	.0004	.0004	.0139	201.3
#2		.0139	0012	.0014	0006	0003	.0005	.0154	200.3
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	15.37	23.44	9.465	35.90	.1108	0005	0009	4.292	0024
Stddev	.12	.15	.120	.25	.0001	.0001	.0010	.002	.0000
%RSD	.7706	.6573	1.264	.6942	.0658	27.29	107.2	.0559	1.855
#1	15.46	23.55	9.549	36.08	.1108	0004	0002	4.294	0024
#2	15.29	23.33	9.380	35.73	.1107	0006	0016	4.290	0024
Elem Avg Stddev %RSD	Sr4077 .3501 .0027 .7831	Ti3349 .0008 .0001 14.51	W_2079 0037 .0003 7.324						
#1 #2	.3521 .3482	.0009	0039 0035						
Int. Std. Avg Stddev %RSD	Y_3600 105520. 370. .35062	Y_3710 18577. 153. .82605	Y_2243 2160.4 3.8 .17742	In2306 4761.8 5.1 .10720					
#1 #2	105260. 105780.	18469. 18686.	2163.1 2157.7	4765.4 4758.2					

Raw Data MA23143 page 200 of 245

.0000

.0001

1720.

.0000

Ca3179

.0363

.4676

0364

.0362

Sn1899 -.0001 .0000

28.32

- 0001

Comment: Elem

%RSD

#1 #2

#1

#2

Elem

Avg Stddev

%RSD

Flem

Avg Stddev %RSD

Int. Std.

%RSD

#2

#1

Elem

Avg Stddev

o

									◀ Zoom In Zoom Ou
									200111 0 0
Sample Nan	no: MD404	.77 CD2	Acquiros	: 9/20/2009	2.20.10	Type: L	lnk		
						٥.	IIK		
Method: Acc		,	de: CONC		actor: 5.00				
User: admin	Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avq	.0276	0009	0027	.0028	0011	.0014	.5674	.0028	.0005
Stddev	.0001	.0003	.0003	.0003	.0004	.0007	.0010	.0004	.0007
%RSD	.3236	35.48	9.475	10.57	32.17	47.26	.1711	12.74	148.2
#1	.0277	0012	0025	.0030	0009	.0019	.5681	.0031	.0000
#2	.0275	0007	0029	.0026	0014	.0009	.5667	.0026	.0009
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	0001	.0147	0007	.0008	.0031	.0038	0015	.0037	211.6
Stddev	.0014	.0003	.0020	.0012	.0018	.0033	.0050	.0274	.2
%RSD	1534.	2.099	298.5	156.8	58.23	85.87	338.8	745.7	.0734
#1	0011	.0150	0021	0001	.0018	.0061	.0021	.0230	211.7
#2	.0009	.0145	.0008	.0016	.0043	.0015	0050	0157	211.5
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089		Pd3404	Si2124	Sn1899
Avg	16.05	24.52	9.852	38.21	.1133	0030	0062	4.343	0053
Stddev	.01	.24	.068	.09	.0014	.0004	.0038	.002	.0004
%RSD	.0535	.9826	.6936	.2443	1.222	13.17	61.61	.0477	6.647
#1	16.06	24.69	9.804	38.14	.1123	0027	0090	4.344	0051
#2	16.04	24.35	9.900	38.28	.1143	0032	0035	4.341	0056
Elem	Sr4077	Ti3349							
Avg	.3590	0003	0639						
Stddev	.0010	.0007	.0042						
%RSD	.2682	282.9	6.600						
#1	.3583	.0003	0609						
#2	.3597	0008	0669						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	109750.	18938.	2274.1	5089.3					
Stddev	173.	20.	1.9	2.0					
%RSD	.15743	.10618	.08191	.03997					
#1	109630.	18952.	2275.5	5087.9					
#2	109870.	18924.	2272.8	5090.7					

Raw Data MA23143	page 202 of 245
------------------	-----------------

Raw Data MA23143 page 204 of 245

Sample Name: JA27293-5 Acquired: 9/20/2009 2:36:26 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Cd2288

.0000

.000

.0002 -.0002

As1890

-.0002 .0003

0004

.0000

K_7664

.0430 .0157

0540

.0319

-.0135 .0008

5.803

-.0130

-.0141

Y 2243

19305

2297.7

Co2286

-.0004

.0000

7.904

-.0004 -.0004

TI1908

-.0008

20.67

- 0010

-.0007

Na5895 .3167

.0082

3225

In2306

5190.5

.01525

5190.0

Custom ID3:

Cu3247

.0006

.0001

.0007

.0006

Se1960

.0007

224.9

0017

-.0004

Mo2020 -.0006

.0000

- 0006

Mn2576

.0002

.0000

.1402

.0002

.0002

Sb2068

-.0003

- 0008

.0001

Pd3404

-.0015 .0007

- 0009

Ni2316

.0001

284.8

.0002

-.0001

Al3961

-.0053 .0008

- 0059

-.0048

Si2124 .0200 .0008

0195

Cr2677

.0001

.0003

498.2

.0002

Pb2203

-.0010 .0001

10.24

- 0010

-.0009

B_2089 .0002 .0002

93.89

0003

.0001

Be3130

-.0002

.0000

18.30

-.0002 -.0003

Zn2062

.0026

0025

.0028

Mg2790 -.0177 .0148

- 0281

-.0072

-.0002 .0000

19.61

-.0002

-.0003

Y_3710

18979. 31.

.16400

19001.

Ti3349 W_2079

Ba4554

.0004

.0001

29.30

.0003

.0005

V_2924

-.0002

0000 1.725

- 0002

-.0002

Fe2599 .0089

.0016

0078

.0100

Sr4077

-.0001 .0000

8.764

-.0001

-.0002

Y 3600

110910. 283.

.25526

110710.

111110.

1(v164) Custom IE 554 Be3 059 -0 007 -0 0041 5. 064 -0 054 -0 012 00 012 00 018 1. 040 0. 042 0. 0599 Mg2 677 12 003 525 .3	Mod D1: 3130 0002 0000 5.454 0002 0002 2062 0219 0000 1099	Cd228800070000 3.74100070007 As18900005 .0002 41.37	Co2286 .0006 .0002 30.39 .0007 .0005 -0003 .0007 250.7 .0002 -0008 Na5895 31.73 .05 .1567	Cr2677 .0022 .0001 5.817 .0023 .0021 .0065 .0071 .0065 .0071 B_2089 .0670	Cu3247 .0251 .0000 .1366 .0252 .0251 Se1960 .0018 .0009 48.97 .0012 .0025 Mo2005 .0001	Mn2576 .0726 .0000 .0550 .0727 Sb2068 0004 .0005 130.2	3.804 .0017 .0018 Al3961 1.390 .002 .1625 1.389 1.392 Si2124 11.40	.0002 Ca3179 107.5 .2 .1439
1(v164) Custom IE 554 Be3 059 -0 007 -0 0041 5. 064 -0 054 -0 012 00 108 1. 040 0. 042 0. 0599 Mg2 677 12 003 525 3.	Mod D1: 3130 0002 00000 6.454 0002 00000 100000 1000000	Cd228800070007000700070007000200050002000500060006000100010001000100010001000100010001000100010001	Corr. For ID2: C02286 .0006 .0002 .30.39 .0007 .0005 .711908 .0003 .0007 .250.7 .0002 .0008 .0008 .31.73 .05 .31.567	Cr2677 .0022 .0001 5.817 .0023 .0021 .0065 .0071 .0065 .0071 B_2089 .0670	Cu3247 .0251 .0000 .1366 .0252 .0251 Se1960 .0018 .0009 48.97 .0012 .0025 Mo2020 .0005	Mn2576 .0726 .0000 .0550 .0727 Sb2068 .0004 .0005 130.2 .0000 -0008 Pd3404 .0017	.0018 .0001 3.804 .0017 .0018 Al3961 1.399 .002 .1625 1.389 1.392 Si2124 11.40	.0003 .0002 58.06 .0004 .0002 Ca3179 107.5 .2 .1439 107.6 107.4 Sn1899 0016
Custom IE 554 Be3 059 -0 0007 -0 007 -0 06461 5. 064 -0 054 -0 0054 -0 00108 .1 0040 .0 0042 .0 0042 .0 0042 .0 0042 .0 0042 .0	D1: 33130 00002 00000 6.454 00002 00002 2062 0219 0000 0219 0219 0219 0219 3869	Custo Cd22880007 .0000 3.74100070007 As18900005 .0002 41.370004 K_7664 2.369 .001 .0410	Co2286 .0006 .0002 .0007 .0005 TI1908 .0003 .0007 .250.7 .0002 .0008 Na5895 31.73 .05 .1567	Cr2677 .0022 .0001 5.817 .0023 .0021 Pb2203 .0068 .0004 6.591 .0065 .0071 B_2089 .0670 .0008	Cu3247 .0251 .0000 .1366 .0252 .0251 Se1960 .0018 .0009 48.97 .0012 .0025 Mo2005 .0001	.0726 .0000 .0550 .0726 .0727 Sb2068 .0004 .0005 130.2 .0000 .0008 Pd3404 .0017	.0018 .0001 3.804 .0017 .0018 Al3961 1.399 .002 .1625 1.389 1.392 Si2124 11.40	.0003 .0002 58.06 .0004 .0002 Ca3179 107.5 .2 .1439 107.6 107.4 Sn1899 0016
554 Be3 0590 007 0.0 461 5. 0640 0540 0022 0.0 108 .1 040 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	3130 0002 0000 0.454 0002 0002 2062 0219 0000 1099 0219 2790 2.65 .05 3869	Cd22880007 .0000 3.74100070007 As18900005 .0002 41.3700070004 K_7664 2.369 .001 .0410	Co2286 .0006 .0002 30.39 .0007 .0005 -0003 .0007 250.7 .0002 -0008 Na5895 31.73 .05 .1567	Cr2677 .0022 .0001 5.817 .0023 .0021 Pb2203 .0068 .0004 6.591 .0065 .0071 B_2089 .0670 .0008	Cu3247 .0251 .0000 .1366 .0252 .0251 Se1960 .0018 .0009 48.97 .0012 .0025 Mo2020 .0005	.0726 .0000 .0550 .0726 .0727 Sb2068 .0004 .0005 130.2 .0000 .0008 Pd3404 .0017	.0018 .0001 3.804 .0017 .0018 Al3961 1.399 .002 .1625 1.389 1.392 Si2124 11.40	.0003 .0002 58.06 .0004 .0002 Ca3179 107.5 .2 .1439 107.6 107.4 Sn1899 0016
059 -0.0 007 .0 461 5. 064 -0.0 054 -0.0 924 Zn2 041 .0 002 .0 1108 .1 0040 .0 042 .0 05599 Mg2 677 112 003 525 .3	0002 0000 5.454 0002 0002 2062 0219 0000 1099 0219 0219 02.65 .05 3869	0007 .0000 3.741 0007 0007 As1890 0005 .0002 41.37 0007 0004 K_7664 2.369 .001	.0006 .0002 30.39 .0007 .0005 T11908 .0003 .0007 250.7 .0002 .0008 Na5895 31.73 .05	.0022 .0001 5.817 .0023 .0021 Pb2203 .0068 .0004 6.591 .0065 .0071 B_2089 .0670	.0251 .0000 .1366 .0252 .0251 Se1960 .0018 .0009 48.97 .0012 .0025 Mo2020 .0005	.0726 .0000 .0550 .0726 .0727 Sb2068 .0004 .0005 130.2 .0000 .0008 Pd3404 .0017	.0018 .0001 3.804 .0017 .0018 Al3961 1.399 .002 .1625 1.389 1.392 Si2124 11.40	.0003 .0002 58.06 .0004 .0002 Ca3179 107.5 .2 .1439 107.6 107.4 Sn1899 0016
059 -0.0 007 .0 461 5. 064 -0.0 054 -0.0 924 Zn2 041 .0 002 .0 1108 .1 0040 .0 042 .0 05599 Mg2 677 112 003 525 .3	0002 0000 5.454 0002 0002 2062 0219 0000 1099 0219 0219 02.65 .05 3869	0007 .0000 3.741 0007 0007 As1890 0005 .0002 41.37 0007 0004 K_7664 2.369 .001	.0006 .0002 30.39 .0007 .0005 T11908 .0003 .0007 250.7 .0002 .0008 Na5895 31.73 .05	.0022 .0001 5.817 .0023 .0021 Pb2203 .0068 .0004 6.591 .0065 .0071 B_2089 .0670	.0251 .0000 .1366 .0252 .0251 Se1960 .0018 .0009 48.97 .0012 .0025 Mo2020 .0005	.0726 .0000 .0550 .0726 .0727 Sb2068 .0004 .0005 130.2 .0000 .0008 Pd3404 .0017	.0018 .0001 3.804 .0017 .0018 Al3961 1.399 .002 .1625 1.389 1.392 Si2124 11.40	.0003 .0002 58.06 .0004 .0002 Ca3179 107.5 .2 .1439 107.6 107.4 Sn1899 0016
007 .0 461 5. 0640 0540 0740 0840 0924 Zn2 041 0. 002 0. 108 .1 040 0. 042 0. 040 0. 0599 Mg2 677 003 525 .3	0000 5.454 0002 0002 2062 0219 0000 1099 0219 0219 02.65 .05 3869	.0000 3.741 0007 0007 As1890 0005 .0002 41.37 0007 0004 K_7664 2.369 .001	.0002 30.39 .0007 .0005 TI1908 .0003 .0007 250.7 .0002 .0008 Na5895 31.73 .05	.0001 5.817 .0023 .0021 Pb2203 .0068 .0004 6.591 .0065 .0071 B_2089 .0670 .0008	.0000 .1366 .0252 .0251 Se1960 0018 .0009 48.97 0012 0025 Mo2020 0005	.0000 .0550 .0726 .0727 Sb2068 0004 .0005 130.2 .0000 0008 Pd3404 0017 .0024	.0001 3.804 .0017 .0018 Al3961 1.390 .002 .1625 1.389 1.392 Si2124 11.40	.0002 58.06 .0004 .0002 Ca3179 107.5 .2 .1439 107.6 107.4 Sn1899 0016
461 5. 0640 0540 0740 0840 0924 Zn2 001 002 .0 002 .0 0042 .0 0042 .0 0042 .0 00599 Mg2 677 12 003 525 .3	5.454 0002 0002 2062 0219 0000 1099 0219 0219 0219 2790 2,65 .05 3869	3.741 0007 0007 As1890 0005 .0002 41.37 0007 0004 K_7664 2.369 .001	30.39 .0007 .0005 TI1908 0003 .0007 250.7 .0002 0008 Na5895 31.73 .05 .1567	5.817 .0023 .0021 Pb2203 .0068 .0004 6.591 .0065 .0071 B_2089 .0670 .0008	.1366 .0252 .0251 Se1960 0018 .0009 48.97 0012 0025 Mo2020 0005 .0001	.0550 .0726 .0727 Sb2068 0004 .0005 130.2 .0000 0008 Pd3404 0017 .0024	3.804 .0017 .0018 Al3961 1.390 .002 .1625 1.389 1.392 Si2124 11.40	58.06 .0004 .0002 Ca3179 107.5 .2 .1439 107.6 107.4 Sn1899 0016 .0001
0640 0540 924 Zn2 041 .0 0002 .0 108 .1 040 .0 042 .0 5599 Mg2 677 12 003 525 .3	0002 0002 2062 0219 0000 1099 0219 0219 2790 2.65 .05 3869	0007 0007 As1890 0005 .0002 41.37 0007 0004 K_7664 2.369 .001	.0007 .0005 TI1908 0003 .0007 250.7 .0002 0008 Na5895 31.73 .05 .1567	.0023 .0021 Pb2203 .0068 .0004 6.591 .0065 .0071 B_2089 .0670 .0008	.0252 .0251 Se1960 0018 .0009 48.97 0012 0025 Mo2020 0005 .0001	.0726 .0727 Sb2068 0004 .0005 130.2 .0000 0008 Pd3404 0017 .0024	.0017 .0018 Al3961 1.390 .002 .1625 1.389 1.392 Si2124 11.40 .00	.0004 .0002 Ca3179 107.5 .2 .1439 107.6 107.4 Sn1899 0016
.0540 .924 Zn2 .041 .0 .002 .0 .108 .1 .040 .0 .042 .0 .599 Mg2 .677 12 .03 .525 .3	2062 2062 0219 0000 1099 0219 0219 2790 2.65 .05 3869	0007 As1890 0005 .0002 41.37 0007 0004 K_7664 2.369 .001	.0005 TI1908 0003 .0007 250.7 .0002 0008 Na5895 31.73 .05 .1567	.0021 Pb2203 .0068 .0004 6.591 .0065 .0071 B_2089 .0670 .0008	.0251 Se1960 0018 .0009 48.97 0012 0025 Mo2020 0005 .0001	.0727 Sb2068 0004 .0005 130.2 .0000 0008 Pd3404 0017 .0024	.0018 Al3961 1.390 .002 .1625 1.389 1.392 Si2124 11.40 .00	.0002 Ca3179 107.5 .2 .1439 107.6 107.4 Sn1899 0016 .0001
924 Zn2 041 .0 002 .0 108 .1 040 .0 042 .0 599 Mg2 677 12 003 525 .3	2062 0219 0000 1099 0219 0219 2790 2.65 .05 3869	As1890 0005 .0002 41.37 0007 0004 K_7664 2.369 .001 .0410	Ti19080003 .0007 250.7 .00020008 Na5895 31.7305 .1567	Pb2203 .0068 .0004 6.591 .0065 .0071 B_2089 .0670 .0008	Se1960 0018 .0009 48.97 0012 0025 Mo2020 0005 .0001	Sb2068 0004 .0005 130.2 .0000 0008 Pd3404 0017 .0024	Al3961 1.390 .002 .1625 1.389 1.392 Si2124 11.40 .00	Ca3179 107.5 .2 .1439 107.6 107.4 Sn1899 0016 .0001
041 .0 002 .0 108 .1 040 .0 042 .0 599 Mg2 677 12 003 525 .3	0219 0000 1099 0219 0219 2790 2.65 .05 3869	0005 .0002 41.37 0007 0004 K_7664 2.369 .001 .0410	0003 .0007 250.7 .0002 0008 Na5895 31.73 .05 .1567	.0068 .0004 6.591 .0065 .0071 B_2089 .0670 .0008	0018 .0009 48.97 0012 0025 Mo2020 0005 .0001	0004 .0005 130.2 .0000 0008 Pd3404 0017 .0024	1.390 .002 .1625 1.389 1.392 Si2124 11.40 .00	107.5 .2 .1439 107.6 107.4 Sn1899 0016
002 .0 108 .1 040 .0 042 .0 599 Mg2 677 12 003 525 .3	0000 1099 0219 0219 2790 2.65 .05 3869	.0002 41.37 0007 0004 K_7664 2.369 .001 .0410	.0007 250.7 .0002 0008 Na5895 31.73 .05 .1567	.0004 6.591 .0065 .0071 B_2089 .0670 .0008	.0009 48.97 0012 0025 Mo2020 0005 .0001	.0005 130.2 .0000 0008 Pd3404 0017 .0024	.002 .1625 1.389 1.392 Si2124 11.40 .00	.2 .1439 107.6 107.4 Sn1899 0016 .0001
108 .1 040 .0 042 .0 599 Mg2 677 12 003 525 .3	1099 0219 0219 2790 2.65 .05 3869	41.37 0007 0004 K_7664 2.369 .001 .0410	250.7 .0002 0008 Na5895 31.73 .05 .1567	6.591 .0065 .0071 B_2089 .0670 .0008	48.97 0012 0025 Mo2020 0005 .0001	.0000 0008 Pd3404 0017 .0024	.1625 1.389 1.392 Si2124 11.40 .00	.1439 107.6 107.4 Sn1899 0016 .0001
040 .0 042 .0 599 Mg2 677 12 003 525 .3	0219 0219 2790 2.65 .05 3869	0007 0004 K_7664 2.369 .001 .0410	.0002 0008 Na5895 31.73 .05 .1567	.0065 .0071 B_2089 .0670 .0008	0012 0025 Mo2020 0005 .0001	.0000 0008 Pd3404 0017 .0024	1.389 1.392 Si2124 11.40 .00	107.6 107.4 Sn1899 0016 .0001
042 .0 599 Mg2 677 12 003 525 .3	0219 2790 2.65 .05 3869	0004 K_7664 2.369 .001 .0410	0008 Na5895 31.73 .05 .1567	.0071 B_2089 .0670 .0008	0025 Mo2020 0005 .0001	0008 Pd3404 0017 .0024	1.392 Si2124 11.40 .00	107.4 Sn1899 0016 .0001
599 Mg2 677 12 003 525 .3	2790 2.65 .05 3869	K_7664 2.369 .001 .0410	Na5895 31.73 .05 .1567	B_2089 .0670 .0008	Mo2020 0005 .0001	Pd3404 0017 .0024	Si2124 11.40 .00	Sn1899 0016 .0001
677 12 003 525 .3	2.65 .05 3869	2.369 .001 .0410	31.73 .05 .1567	.0670	0005 .0001	0017 .0024	11.40 .00	0016 .0001
003 525 .3	.05 3869	.001 .0410	.05 .1567	.0008	.0001	.0024	.00	.0001
525 .3	3869	.0410	.1567					
				1.158	19.83	120 2	0187	9.501
675 13	2.68	2 370				137.3	.0107	
			31.69	.0676	0006	0034	11.40	0015
679 12	2.61	2.368	31.76	.0665	0004	.0000	11.41	0017
077 Ti3	3349	W_2079						
	0487	0055						
	0004	.0002						
385 .8	8288	3.688						
145 .0	0490	0054						
134 .0	0484	0057						
600 Y_3	3710		In2306					
108.								
.24	4120	.07448	.04280					
		2203.8						
520. 187	3722.	2201.5	4891.2					
110	145 134 600 Y_ 40. 18 08. 000 .2	.0490 .0484	145 .04900054 134 .04840057 500 Y_3710 Y_2243 40. 18754. 2202.6 08. 45. 1.6 000 .24120 .07448 70. 18786. 2203.8	145	145	145 .04900054 134 .04840057 500 Y_3710 Y_2243 In2306 40. 18754. 2202.6 4892.7 08. 45. 1.6 2.1 1000 .24120 .07448 .04280 70. 18786. 2203.8 4894.1	145	145 .04900054 134 .04840057 500 Y_3710 Y_2243 ln2306 40. 18754. 2202.6 4892.7 08. 45. 1.6 2.1 1000 .24120 .07448 .04280 70. 18786. 2203.8 4894.1

Raw Data	MA2314	3 page	201 of 24	5						
									◀ Zoom	
									Zoom (Ju
Sample Nan	ne: JA272	93-11	Acquired: 9	/20/2009 2	:42:36	Type: Unk				
Method: Acc			de: CONC		actor: 1.00	00000				
User: admin	Cust	tom ID1:	Cust	om ID2:	Custo	om ID3:				
Comment:										
Elem Avg Stddev %RSD	Ba4554 .1995 .0024 1.228	Be3130 0003 .0000 11.47	Cd2288 0005 .0001 12.24	Co2286 .0004 .0002 43.56	Cr2677 .0019 .0001 3.301	Cu3247 .0210 .0004 1.981	Mn2576 .0711 .0007 1.025	Ni2316 .0017 .0003 16.77	Ag3280 .0000 .000 .6895	
#1 #2	.2012 .1978	0003 0002	0005 0006	.0006 .0003	.0019 .0020	.0207 .0213	.0706 .0716	.0015 .0020	.0000	
Elem Avg Stddev %RSD	V_2924 .0040 .0000 1.025	Zn2062 .0129 .0004 2.747	As1890 0005 .0011 201.9	TI1908 .0006 .0014 244.4	Pb2203 .0069 .0003 4.967	Se1960 .0002 .0003 163.4	Sb2068 .0005 .0001 12.89	Al3961 1.417 .016 1.150	Ca3179 105.1 1.1 1.075	
#1 #2	.0040 .0040	.0131 .0126	.0002 0013	0004 .0015	.0066 .0071	.0000 .0004	.0004 .0005	1.428 1.405	105.9 104.3	
Elem Avg Stddev %RSD	Fe2599 1.724 .017 .9999	Mg2790 12.32 .14 1.101	K_7664 2.341 .035 1.495	Na5895 30.95 .22 .7000	B_2089 .0652 .0002 .3487	Mo2020 0005 .0001 21.91	Pd3404 0019 .0008 43.01	Si2124 11.20 .03 .2856	Sn1899 0013 .0002 13.61	
#1 #2	1.736 1.712	12.42 12.23	2.365 2.316	31.11 30.80	.0651 .0654	0004 0006	0025 0013	11.23 11.18	0012 0015	
Elem Avg Stddev %RSD	Sr4077 .3058 .0027 .8923	Ti3349 .0497 .0006 1.119	W_2079 0079 .0004 5.625							
#1 #2	.3078 .3039	.0493 .0501	0082 0076							
Int. Std. Avg Stddev %RSD	Y_3600 107300. 852. .79361	Y_3710 18656. 109. .58579	Y_2243 2211.2 4.1 .18639	In2306 4918.1 14.5 .29529						
#1 #2	107900. 106700.	18579. 18733.	2208.3 2214.1	4907.8 4928.4						

Raw Data MA23143 page 203 of 245

									■ Zoom
									Zoom (
	me: JA2747		equired: 9/2			ype: Unk			
	ccutest1(v16	,	de: CONC		actor: 1.00				
User: admi	n Cust	tom ID1:	Custo	om ID2:	Custo	m ID3:			
Comment:									
Elem	Ba4554		Cd2288		Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.0838	0002	0004	.0004	.0413	.0488	.0596	.0034	.0001
Stddev	.0001	.0000	.0002	.0000	.0004	.0002	.0001	.0001	.0002
%RSD	.0698	7.417	49.76	2.982	.8484	.4861	.2158	3.458	174.2
#1	.0839	0003	0003	.0003	.0415	.0489	.0597	.0033	.0000
#2	.0838	0002	0006	.0004	.0410	.0486	.0595	.0035	.0003
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0055	.0936	.0006	0004	.0072	.0014	.0016	.9554	110.5
Stddev	.0000	.0001	.0002	.0004	.0002	.0018	.0009	.0080	.2
%RSD	.1238	.1002	40.39	91.01	3.388	128.6	57.79	.8401	.1892
#1	.0055	.0936	.0008	0001	.0074	.0001	.0022	.9497	110.4
#2	.0055	.0935	.0004	0006	.0070	.0027	.0009	.9611	110.7
Elem	Fe2599		K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	3.301	14.00	7.420	103.4	.1772	.0056	0043	4.853	0004
Stddev	.008	.03	.015	.1	.0006	.0002	.0013	.011	.0004
%RSD	.2556	.2448	.2047	.1134	.3300	3.059	30.13	.2282	107.6
#1	3.295	13.98	7.409	103.3	.1776	.0054	0034	4.861	0001
#2	3.307	14.02	7.431	103.4	.1768	.0057	0052	4.845	0007
Elem	Sr4077	Ti3349	W_2079						
Avg	.6387	.0541	0095						
Stddev	.0000	.0000	.0001						
%RSD	.0068	.0453	.5812						
#1	.6387	.0541	0094						
#2	.6388	.0541	0095						
Int. Std.	Y_3600		Y_2243	In2306					
Avg	106580.	18750.	2175.4	4783.3					
Stddev	217.	33.	.4	.4					
%RSD	.20355	.17389	.02060	.00920					
#1	106430.	18773.	2175.0	4783.6					
#1 #2	106730.	18727.	2175.7	4783.0					

Raw Data MA23143	page 205 of 245
------------------	-----------------

Raw Data MA23143 page 207 of 245

	a MAZJ14	o page	205 01 24	· ·					
									■ Zoom In Zoom Ou
									Zoom Ou
Sample Na	ame: JA274	77-3 A	cquired: 9/2	20/2009 3:0	07:06 1	ype: Unk			
Method: Ad	ccutest1(v16	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: admi	in Cust	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Comment:									
Comment.									
Elem	D-4554	D-0100	0.40000	0-000/	0-0/77	02047	M-057/	NUODIA	4-2200
Elem	Ba4554 .0275	Be3130 .0001	Cd2288 0006	.0036	Cr2677 .0155	.0024	Mn2576 .4175	Ni2316 .0039	Ag3280 .0002
Avg Stddev	.0001	.0000	.0002	.0002	.0002	.0024	.0010	.0001	.0002
%RSD	.4094	64.69	37.11	6.712	1.164	13.15	.2493	1.538	10.38
70K3D	.4074	04.07	37.11	0.712	1.104	13.13	.2473	1.550	10.30
#1	.0276	.0001	0008	.0038	.0154	.0026	.4168	.0039	.0002
#2	.0274	.0000	0004	.0034	.0157	.0022	.4183	.0040	.0002
			,						
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0001	.0202	0003	0014	0001	.0012	.0003	.0870	159.7
Stddev	.0000	.0004	.0005	.0000	.0005	.0015	.0005	.0036	2.7
%RSD	3.815	1.914	152.5	2.790	483.0	117.2	165.5	4.114	1.682
		0005							
#1	.0001	.0205	.0000	0014	0004	.0002	.0006	.0895	161.5
#2	.0001	.0200	0007	0014	.0002	.0023	.0000	.0845	157.8
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	14.36	18.51	8.794	40.02	.1179	0004	0016	4.429	0017
Stddev	.06	.11	.057	.24	.0013	.0001	.0006	.043	.0002
%RSD	.4183	.5675	.6528	.5942	1.126	19.38	37.37	.9737	13.48
#1	14.40	18.59	8.834	40.19	.1189	0005	0020	4.459	0015
#2	14.32	18.44	8.753	39.85	.1170	0004	0012	4.398	0018
Elem	Sr4077	Ti3349	W_2079						
Avg	.3446	.0021	0084						
Stddev	.0016	.0003	.0012						
%RSD	.4639	12.46	14.64						
#1	2450	0010	0075						
#1	.3458	.0019	0075 0093						
#2	.3433	.0023	0093						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	106190.	18631.	2176.8	4798.1					
Stddev	145.	145.	14.5	27.2					
%RSD	.13669	.77735	.66772	.56720					
· · · -									
#1	106290.	18529.	2166.6	4778.9					
#2	106080.	18734.	2187.1	4817.3					

	ame: JA274		cquired: 9/2 de: CONC		00:55 Tactor: 1.00	ype: Unk			
User: adm	in Cus	tom ID1:	Cust	om ID2:	Custo	m ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280
Avg	.1107	0003	0006	0001	.1763	.0029	.6634	.0005	0003
Stddev	.0012	.0001	.0001	.0003	.0017	.0000	.0052	.0002	.0003
%RSD	1.049	21.62	20.95	187.7	.9762	1.663	.7788	32.16	87.71
#1	.1115	0002	0007	0003	.1751	.0029	.6598	.0006	0001
#1	.1099	0002	0007	.0000	.1751	.0029	.6671	.0004	0001
π2	.1077	0003	0003	.0000	.1773	.0027	.0071	.0004	0003
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0021	.0018	.0011	0009	.0005	.0015	.0007	.1018	102.7
Stddev	.0001	.0003	.0002	.0007	.0007	.0001	.0001	.0068	.7
%RSD	3.346	17.17	16.17	70.38	137.5	5.882	18.04	6.697	.7026
#1	.0020	.0015	.0009	0014	.0000	.0014	.0006	.0970	103.2
#2	.0021	.0020	.0012	0005	.0010	.0016	.0008	.1066	102.1
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avq	2.761	9.569	32.38	260.5	.1181	.0028	0022	4.024	0016
Stddev	.013	.023	.24	5.2	.0023	.0020	.0002	.065	.0004
%RSD	.4658	.2426	.7548	2.001	1.921	5.562	17.18	1.606	23.08
70IC3D	.4030	.2420	.7340	2.001	1.721	3.302	17.10	1.000	23.00
#1	2.770	9.586	32.56	264.2	.1165	.0027	0025	3.978	0019
#2	2.752	9.553	32.21	256.8	.1197	.0029	0020	4.069	0014
Elem	Sr4077	Ti3349	W_2079						
Avq	1.342	.0017	0082						
Stddev	.011	.0002	.0000						
%RSD	.8391	12.16	.2363						
70IC3D	.0371	12.10	.2303						
#1	1.350	.0016	0082						
#2	1.334	.0019	0082						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	102200.	18865.	2151.2	4644.6					
Stddev	721.	126.	32.8	60.8					
%RSD	.70550	.66836	1.5250	1.3082					
				1.3002					
#1	102710.	18775.	2174.3	4687.6					
#2	101690.	18954.	2128.0	4601.7					

Raw Data MA23143 page 206 of 245

									◀ Zoon Zoom
									200m
		A	-1 0/00/00	00 0 10 00	т	00			
	ame: CCV			09 3:13:20	٥.				
	ccutest1(v1	. ,	de: CONC		Factor: 1.0				
User: adm	in Cus	tom ID1:	Cus	tom ID2:	Cust	om ID3:			
Comment:									
Flem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280
Units	ppm	ppm	ppm			ppm	ppm		
Avg	2.014	2.056	2.062	2.073		2.005	1.966	2.089	
Stddev	.000	.001	.002			.010	.007	.001	
%RSD	.0044	.0356	.1119			.5039			
#1	2.014	2.057	2.063			2.012			
#2	2.014	2.056	2.060	2.073	2.003	1.998	1.961	2.088	.2485
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Value									
Range									
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	2.102	2.032	2.050	2.021	2.065	2.057	2.034	40.58	40.40
Stddev	.009	.000	.001	.014		.001	.001	.13	
%RSD	.4296	.0126	.0439	.6735	.1349	.0352	.0378	.3308	.1286
#1	2.108	2.032	2.050	2.012	2.067	2.056	2.035	40.49	40.43
#2	2.095	2.032	2.049	2.031	2.063	2.058	2.034	40.68	40.36
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Value									
Range									
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Avg	40.80	39.93	41.12			2.073	2.015	4.906	
Stddev	.04	.12	.16			.004	.012	.004	
%RSD	.0885	.2957	.3837	.0786	.1183	.2180	.5840	.0906	.2295
#1	40.83	40.02	41.01			2.070			
#2	40.78	39.85	41.23	40.19	2.075	2.076	2.007	4.902	2.070
Check ? Value	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
value Range									
. 3-									

Raw Data MA23143 page 208 of 245

Custom ID1:

Ti3349

ppm 2.017

.005

.2457

2.020

2.013

Chk Pass Chk Pass Chk Pass

Y_3710

18511

Cts/S

83

.44669

18570

18453

Sample Name: CCV

User: admin

Comment:

Elem

Units

Avg Stddev

%RSD

Check ?

Value

Range

Int Std

Units

Avg Stddev

%RSD

#2

Method: Accutest1(v164)

Sr4077

ppm 2.081

.002

.0832

2.082

2.080

Y_3600 Cts/S

106510

445

.41764

106200

106830.

Acquired: 9/20/2009 3:13:20

W_2079

ppm 2.012

.008

.4152

2.006

2.018

Y_2243

2200.4

.01075

2200.6

2200.2

Cts/S

Mode: CONC Corr. Factor: 1.000000

In2306

4779.7

.14391

4784.6

4774.9

Cts/S

Custom ID2:

Type: QC

Custom ID3:

■ Zoom In ▶

<u></u>

O1

■ Zoom In ▶

Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 ppm .0003 ppm .0002 ppm .0002 ppm .0003 ppm .0012 ppm .0004 ppm -.0002 ppm .0002 .0002 .0001 .0002 .0001 .0002 .0000 .0001 .0001 20.28 99.74 107.5 22.10 17.49 1.638 22.46 31.85 .0003 .0001 .0003 .0014 -.0002 .0002 .0000 .0004 .0004 .0004 .0003 .0004 .0011 .0004 -.0003 .0001

Type: QC

Custom ID3:

Check? Chk Pass Chk P

Mode: CONC Corr. Factor: 1.000000

Custom ID2:

Flem V 2924 7n2062 As1890 TI1908 Ph2203 Se1960 Sh2068 AI3961 Ca3179 Units ppm 0006 ppm .0000 ppm .0001 ppm .0016 ppm .0002 .0006 ppm .0004 ppm .0041 ppm 0303 Avg Stddev .0001 .0001 .0003 .0002 .0012 191.8 .0002 .000 .0035 0000 %RSD 13.58 206.5 86.02 .0228 .0005 .0000 .0003 .0000 .0015 .0016 .0303 -.0001 .0018 .0303 #2 .0006 .0001 -.0003 .0002 .0002 .0066

Check? Chk Pass Chk P

Elem Fe2599 Mg2790 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn1899 K_7664 Units ppm .0089 ppm .0097 ppm 1206 ppm .2572 ppm .0010 ppm .0006 ppm .0047 Avg Stddev .0009 .0078 .0179 .0025 .0003 .0001 .0005 .0005 .0004 %RSD 10.22 80.55 14.87 .9619 30.15 17.38 115.3 11.55 64.77 .0152 .0083 .1079 .2554 .0008 .0007 -.0001 .0051 .0010 .0096 .0042 .1333 2589 .0012 .0006 -.0007 .0043 .0004

Check? Chk Pass Chk P

Raw Data MA23143 page 209 of 245

Sample Name: CCB Acquired: 9/20/2009 3:19:19 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3 Comment:

W_2079

Units ppm .0005 ppm .0003 ppm .0044 Avg Stddev .0000 .0002 .0015 %RSD 2.462 58.29 35.14 .0004 .0004 -.0033 #2 .0005 .0002 -.0055

Ti3349

Sr4077

Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit

Y_3600 Cts/S Y_3710 Cts/S Y_2243 Cts/S Int. Std. In2306 Cts/S Units Avg Stddev %RSD 109690 5082.6 18948 2248.3 1462. 1.3326 179 23.0 54.0 .94493 1.0626 108660 18821 2231 4 5044 4 110730. 19075 2265.2 5120.8 Raw Data MA23143 page 210 of 245

Sample Name: CCB Acquired: 9/20/2009 3:19:19

Custom ID1:

Method: Accutest1(v164)

Ba4554

ppm .0004

.0001

14.50

.0005

.0004

User: admin

Comment:

Elem

Units

Avg Stddev

%RSD

#2

Sample Name: JA27477-4 Acquired: 9/20/2009 3:25:32 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3: Comment:

Elem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 Avg Stddev .0265 .0001 -.0006 .0036 .0167 .0024 .3794 .0038 .0002 0001 nnnn .0002 .0001 0001 .0004 .0006 nnnn .0003 17.77 .4835 .1491 1.003 115.1 %RSD 22.21 26.66 .6812 1.668 .3798 .3790 .0264 .0001 .0005 .0036 .0166 .0027 .0038 .0000 -.0007 #2 .0266 .0002 .0035 .0021 .0004 .0168 .0038 Elem V_2924 Zn2062 As1890 TI1908 Pb2203 Se1960 Sb2068 Al3961 Ca3179 -.0008 Avg Stddev -.0001.0206 .0002.0006 .0002.0001 .0781 154.8 0001 0000 0020 0002 0007 0008 0008 0047 4907 -.0001 .0206 -.0012 .0007 -.0007 .0013 .0004 .0815 154.2 .0017 155.3 -.0002 .0206 .0003 -.0002 .0748 Mg2790 17.73 _7664 8.709 _2089 .1194 Si2124 4.430 Flem Fe2599 Na5895 Mo2020 Pd3404 Sn1899 13.60 40.61 Avg Stddev .01 .09 .001 .01 .0003 .0000 .0020 .000 .0002 %RSD .0387 .4819 .0068 .0225 2323 3.474 106.1 .0046 12.21 #1 13 59 17.67 8 709 40.61 1192 - 0001 - 0033 4 430 0015 13.60 17.79 40.62 -.0001 4.431 .0018 8.709 .0005 Flem Ti3349 Sr4077 W_2079 .3374 .0015 .0000 .0014 Stddev %RSD .1337 10.50 3257 .3377 .0014 .0010 #2 .3370 .0016 -.0009 Int. Std. Y 3600 Y 3710 Y 2243 In2306 4712.8 105560 18478

Raw Data MA23143 page 212 of 245

.17006

105440.

105690

.24025

18510.

18447

.03941

2128.4

2127.2

.11172

4709.1

%RSD

#2

Raw Data MA23143 page 211 of 245

.0004

.0002

.0006

.0003

Ca3179

104.2

◀ Zoom In ▶

Raw Data MA23143	page 214 of 245

Raw Data MA23143 page 216 of 245

									Zoom C
Sample Nar	me: JA274	77-8 A	cquired: 9/2	20/2009 3:5	i0:15 T	ype: Unk			
Method: Ac	cutest1(v1	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: admir Comment:	n Cus	tom ID1:	Custo	om ID2:	Custo	om ID3:			
Elem Avg Stddev %RSD	Ba4554 0003 .0002 55.50	Be3130 0003 .0000 14.96	Cd2288 0001 .0001 133.5	Co2286 0003 .0000 3.083	Cr2677 0001 .0002 192.7	Cu3247 .0002 .0001 92.68	Mn2576 0001 .0000 45.50	Ni2316 0008 .0000 3.074	Ag3280 .0001 .0002 326.5
#1	0002	0002	.0000	0003	.0000	.0003	0001		0001
#2	0004	0003	0001	0003	0002	.0001	0001		.0002
Elem Avg Stddev %RSD	V_2924 0004 .0001 33.35	Zn2062 .0015 .0000 1.113	As1890 0006 .0002 35.02	TI1908 0007 .0001 12.78	Pb2203 .0000 .000 993.0	Se1960 .0012 .0007 58.37	Sb2068 .0001 .0001 53.41	Al3961 0064 .0044 67.77	Ca3179 .0248 .0039 15.85
#1 #2	0005 0003	.0015 .0015	0005 0008	0006 0008	.0003 0004	.0007 .0016	.0001 .0002	0095 0033	.0276 .0220
Elem Avg Stddev %RSD	Fe2599 .0008 .0001 15.46	Mg2790 .0004 .0020 488.5	K_7664 .0466 .0043 9.280	Na5895 .2270 .0152 6.699	B_2089 .0000 .000 .363.4	Mo2020 0006 .0000 7.618	Pd3404 0025 .0004 16.24	Si2124 .0465 .0006 1.375	Sn1899 0003 .0001 28.65
#1 #2	.0007	.0018 0010	.0497 .0436	.2378 .2163	0001 .0000	0006 0006		.0461 .0470	0003 0002
Elem Avg Stddev %RSD	Sr4077 0002 .0000 14.70	Ti3349 0002 .0000 20.02	W_2079 0134 .0000 .0586						
#1 #2	0001 0002	0003 0002	0134 0134						
Int. Std. Avg Stddev %RSD	Y_3600 106630. 4997. 4.6862	Y_3710 19478. 1213. 6.2263	Y_2243 2246.3 13.2 .58938	In2306 5099.4 28.2 .55322					
#1	103090. 110160.	18620. 20336.	2255.7 2236.9	5119.4 5079.5					

Raw Da	ta MA2314	3 page	213 of 24	5					
									◀ Zoom I
									200m O
Sample N	lame: JA274	77-7 A	cquired: 9/2	20/2009 3:4	14:02 7	Type: Unk			
Method: A	Accutest1(v1	64) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: adn	nin Cust	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Comment	:								
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.1449	0002	0004	0001	.0426	.0030	.4404	.0002	.0005
Stddev	.0003	.0001	.0001	.0003	.0008	.0005	.0062	.0001	.0006
%RSD	.1812	26.76	29.57	437.3	1.969	16.66	1.413	58.33	112.0
#1	.1448	0002	0003	0003	.0420	.0027	.4360	.0002	.0009
#2	.1451	0002	0005	.0001	.0432	.0034	.4448	.0001	.0001
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0007	.0080	.0116	0002	.0009	.0010	0001	.0496	54.52
Stddev %RSD	.0000	.0000	.0006	.0007 415.5	.0006	.0004	.0007	.0067	.07
%K3D	2.782	.3007	4.776	413.3	72.37	41.53	630.4	13.53	.1207
#1	.0007	.0080	.0112	0007	.0013	.0007	0006	.0544	54.48
#2	.0007	.0080	.0120	.0003	.0004	.0013	.0004	.0449	54.57
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	6.388	12.89	15.69	172.5	.0817	.0010	0026	5.600	0008
Stddev %RSD	.015 .2375	.01	.06 .3552	.6 .3304	.0004 .5220	.0001 11.09	.0000 .1428	.005	.0004 55.23
701C3D	.2373	.0303	.5552	.5504	.5220	11.07	.1420	.0743	33.23
#1	6.378	12.90	15.65	172.1	.0820	.0011	0026	5.604	0005
#2	6.399	12.88	15.73	172.9	.0814	.0009	0026	5.596	0011
Elem	Sr4077		W_2079						
Avg	.2760	.0009	0078						
Stddev %RSD	.0003 .1097	.0001 12.96	.0004 5.669						
#1 #2	.2758 .2762	.0010	0075 0082						
#2	.2702	.0008	0082						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg Stddev	104130. 1164.	18718. 20.	2155.1 6.0	4731.1 2.7					
%RSD	1.1180	.10833	.27695	.05808					
#1 #2	104950. 103300.	18704. 18733.	2150.9 2159.3	4733.0 4729.1					
#2	103300.	10/33.	2109.3	4/29.1					

.5874 .5054 18.54 .7654 88.82 2126. 81.09 1128. 52.97 #1 - 0006 0004 0183 - 0004 - 0007 0001 - 0004 0130 104 6 -.0006 -.0016 .0006 103.7 .0005 .0181 .0005 .0003 .0059 #2 Mg2790 19.18 K_7664 34.70 Na5895 159.0 B_2089 .1377 Mo2020 -.0004 Si2124 10.94 Elem Fe2599 Pd3404 Sn1899 17.40 .0006 .0018 Avq Stddev .09 .12 2.6 .0002 .0001 .0019 .03 .0005 .5222 .6060 .4922 .1637 15.57 292.7 .2345 17 47 19 27 34.82 160.8 1378 - 0005 - 0020 10.96 - 0021 17.34 -.0004 -.0014 Flem Sr4077 Ti3349 W 2079 .0673 .0037 -.0026 .0003 Avg Stddev %RSD .3612 4.346 10.09 #1 .0038 .0675 -.0028 #2 .0672 .0035 -.0024 Int. Std. Y 3710 Y 3600 Y 2243 In2306 103490. 381. 18482. 117. 4623.8 36831 %RSD 63059 05719 07304 103220. 18400. #2 103760. 18565 2111.8 4626.2

Sample Name: JA27477-6 Acquired: 9/20/2009 3:37:50 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Cd2288

-.0002

.0003

132.2

-.0004 .0000

As1890

.0182

0001

Custom ID2:

Co2286

-.0004

.0001

24.77

.0005

-.0003

TI1908

-.0010

0009

Custom ID3:

Cu3247

.0021

.0002

9.073

.0023

.0020

Se1960

.0003

Mn2576

.3498

.0013

.3626

.3489

.0000

001

Ni2316

-.0001

.0002

141.2

.0000

-.0002

Al3961

.0095

0050

Cr2677

.0365

.0000

.0283

.0365

.0365

Pb2203

.0000

001

Custom ID1:

Be3130

-.0002

.0001

30.26

.0002

-.0003

Zn2062

.0005

Ba4554

.0251

.0001

.4915

.0252

.0250

V_2924

.0006

0000

User: admin

Comment:

Elem

Avg Stddev

%RSD

#1 #2

Elem

Avg Stddev

Raw Data MA23143 page 215 of 245

Ag3280 -.0001 .0004 498.1

-.0004 .0002

Ca3179

99.95 .00

.0023

99 95

99.95

Sn1899 -.0012 .0001

- 0013

o

									◀ Zoom
									Zoom (
Sample No	me: JA274	77 1E	Acquired: 0	/20/2009 3	-56-25	Type: Unk			
	cutest1(v1		de: CONC		.56.25 actor: 1.00				
User: admi		tom ID1:		om ID2:		om ID3:			
Comment:	ii ous	IOIII ID 1.	Ousi	om ibz.	Ousid	JII 103.			
Elem	Ba4554		Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Avg	.0435	0002	0006	0001	.0172	.0017	.0375	.0007	.0004
Stddev	.0001	.0001	.0002	.0001	.0000	.0004	.0000	.0001	.0002
%RSD	.3281	28.47	36.05	122.1	.2514	20.51	.0455	6.846	33.65
#1	.0436	0002	0007	.0000	.0173	.0020	.0375	.0007	.0003
#2	.0434	0002	0004	0002	.0172	.0015	.0375	.0008	.0006
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Avg	.0014	.0136	0008	0001	0011	.0008	.0005	.0110	113.7
Stďdev	.0002	.0002	.0003	.0001	.0003	.0001	.0001	.0068	.0
%RSD	11.89	1.450	32.31	140.4	27.74	13.66	12.87	62.19	.0341
#1	.0015	.0134	0006	.0000	0013	.0009	.0005	.0158	113.6
#2	.0012	.0137	0010	0001	0009	.0008	.0004	.0061	113.7
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Avg	.0168	13.14	7.822	112.9	.1867	.0064	0015	3.541	0010
Stďdev	.0001	.01	.001	.3	.0005	.0000	.0023	.026	.0001
%RSD	.3763	.1007	.0128	.2786	.2719	.2324	153.6	.7299	12.18
#1	.0168	13.15	7.821	112.7	.1864	.0064	.0001	3.523	0011
#2	.0169	13.13	7.822	113.1	.1871	.0065	0031	3.559	0010
Elem	Sr4077	Ti3349	W_2079						
Avq	.6859	.0008	0096						
Stddev	.0000	.0002	.0018						
%RSD	.0030	23.04	19.03						
#1	.6859	.0010	0109						
#2	.6860	.0007	0083						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avq	104570.	18517.	2129.1	4700.6					
Stddev	18.	45.	6.7	13.2					
%RSD	.01713	.24116	.31419	.28026					
#1	104560.	18549.	2133.8	4709.9					
#2	104580.	18485.	2124.4	4691.3					
FZ	104580.	18485.	2124.4	4691.3					

Raw Data MA23143	page 218 of 245
------------------	-----------------

Raw Data MA23143 page 220 of 245

Sample Name: JA27477-2F Acquired: 9/20/2009 4:02:33 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

-.0006

.0000

4.211

-.0006 -.0005

As1890

-.0007 .0000

- 0007

-.0008

K_7664 31.65 .03

.0905

31.63

-.0089 .0002

2.259

-.0088

-.0091

Y 2243

2139.0 38.5

1.8011

2166.3

Co2286

-.0003

.0001

-.0004

-.0002

TI1908

-.0013 .0003

- 0015

-.0013

Na5895

260.3 1.4

261.3

In2306

4631.8 85.1

1.8366

4691.9

Be3130 Cd2288

Custom ID3:

Cu3247

.0019

.0005

.0022

.0016

Se1960

.0026

84.94

0041

.0010

Mo2020 .0028 .0000

0028

.0028

Mn2576

.6065 .0001

.0214

.6064

.6066

.0005

162.4

- 0001

.0010

Pd3404

-.0030 .0012

- 0038

Ni2316

.0001

80.70

.0002

.0000

Al3961

.0236

0256

.0216

Si2124 3.712

.086

3 772

Cr2677

.0062

.0000

.4063

.0062 .0061

Pb2203

-.0004 .0003

87.05

- 0006

-.0001

B_2089 .1123 .0027

1142

.1104

-.0003

.0000

.5549

-.0003 -.0003

Zn2062

-.0008

- 0006

-.0010

Mg2790 9.189 .009

.0948

9 183

.0003

122.8

.0000

.0006

Y_3710

18432. 58.

31526

18473.

Ti3349 W_2079

Ba4554

.1048

.0002

.2204

.1047

.1050

V_2924 .0004 .0004

0007

.0001

Fe2599 .1184

.0016

1.312

1173

Sr4077

1.322

.0909

1.321 1.323

Y 3600

102690. 323.

.31458

102460.

102910.

Comment: Elem

%RSD

#1 #2

#1

#2

Elem

Avg Stddev

%RSD

Flem

Avg Stddev %RSD

Int. Std.

%RSD

#1

Elem

Avg Stddev

									◀ Zoom Zoom (
Sample Nan	ne: JA2747	77-5F	Acquired: 9	/20/2009 4	:14:58	Type: Unk				
Method: Acc	cutest1(v16	54) Mc	de: CONC	Corr. F	actor: 1.00	00000				
User: admin	Cust	om ID1:	Cust	om ID2:	Custo	m ID3:				
Comment:										
Elem Avg Stddev %RSD	Ba4554 .0194 .0000 .1330	Be3130 0003 .0000 8.325	Cd2288 0002 .0001 44.47	Co2286 .0000 .000 136.9	Cr2677 .1112 .0003 .2600	Cu3247 .0080 .0001 1.115	Mn2576 .0079 .0000 .4717	Ni2316 .0044 .0000 1.080	Ag3280 .0000 .000 322.4	
#1 #2	.0194 .0193	0003 0003		.0000 0001	.1110 .1114	.0081 .0080	.0079 .0079	.0045 .0044	0001 .0000	
Elem Avg Stddev %RSD	V_2924 .0158 .0003 2.106	Zn2062 .0127 .0001 .6162	.0002	TI1908 0011 .0009 81.94	Pb2203 .0064 .0006 9.667	Se1960 .0017 .0012 73.29	Sb2068 .0591 .0002 .4155	Al3961 1.595 .004 .2560	Ca3179 14.77 .01 .0341	
#1 #2	.0155 .0160	.0127 .0128		0005 0017	.0059 .0068	.0025 .0008	.0589 .0592	1.592 1.598	14.77 14.76	
Elem Avg Stddev %RSD	Fe2599 .6831 .0013 .1831	Mg2790 .7672 .0051 .6667	4.834	Na5895 85.79 .12 .1427	B_2089 .0306 .0003 1.009	Mo2020 .0012 .0000 3.358	Pd3404 0031 .0007 23.94	Si2124 1.937 .011 .5512	Sn1899 .0020 .0002 9.024	
#1 #2	.6822 .6840	.7708 .7636		85.88 85.71	.0308 .0304	.0012 .0013	0037 0026	1.944 1.929	.0021 .0018	
Elem Avg Stddev %RSD	Sr4077 .1734 .0002 .1205	Ti3349 .0355 .0001 .3295	W_2079 0116 .0004 3.552							
#1 #2	.1733 .1736	.0354 .0355								
Int. Std. Avg Stddev %RSD	Y_3600 107250. 69. .06442	Y_3710 18802. 8. .04476	2207.0 5.4	In2306 4917.1 3.0 .06118						
#1	107300.	18808. 18796.		4915.0 4919.2						

Raw Data MA23143 page 217 of 245

Raw Data MA23143 page 219 of 245

Raw Data	MA2314	3 page	217 of 24	5						
									◀ Zoom Zoom C	
									200111	,,,
Sample Nam			Acquired: 9			Type: Unk				
Method: Acc			de: CONC		actor: 1.00					
User: admin	Cust	tom ID1:	Cust	om ID2:	Custo	om ID3:				
Comment:										
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280	
Avg	.0262	.0000	0005	.0039	.0013	.0009	.4068	.0039	.0002	
Stddev	.0000	.0001	.0000	.0001	.0001	.0003	.0007	.0002	.0005	
%RSD	.1139	505.4	4.531	3.437	10.07	36.47	.1823	4.709	239.2	
#1	.0262	.0000	0005	.0040	.0012	.0011	.4073	.0038	0002	
#2	.0262	.0001	0006	.0038	.0014	.0007	.4063	.0041	.0006	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	0002	.0171	0019	0009	0003	0002	.0002	.0212	162.7	
Stddev	.0003	.0002	.0002	.0010	.0003	.0010	.0012	.0165	1.2	
%RSD	141.1	1.027	9.210	115.5	85.73	403.1	489.7	77.64	.7450	
#1	.0000	.0170	0020	0016	0001	.0005	0006	.0328	161.9	
#2	0004	.0173	0017	0002	0005	0009	.0011	.0096	163.6	
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Avg	12.36	18.70	8.767	39.97	.1171	0006	0014	4.320	0020	
Stddev	.05	.03	.011	.01	.0008	.0000	.0019	.001	.0009	
%RSD	.4120	.1812	.1237	.0333	.6597	2.150	134.7	.0107	47.08	
#1	12.39	18.68	8.759	39.96	.1166	0006	0001	4.320	0027	
#2	12.32	18.72	8.775	39.98	.1177	0006	0028	4.320	0013	
Elem	Sr4077	Ti3349	W_2079							
Avg	.3418	.0006	0087							
Stddev	.0007	.0003	.0007							
%RSD	.1974	51.56	8.315							
#1	.3413	.0009	0082							
#2	.3423	.0004	0092							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306						
Avg	105510.	18628.	2144.3	4750.9						
Stddev	30.	27.	6.8	3.3						
%RSD	.02836	.14682	.31703	.06990						
#1	105530.	18609.	2149.1	4753.2						
#2	105480.	18648.	2139.5	4748.5						

									▼ Zoom In I Zoom Out
Sample Na	me: JA274	77-6F	Acquired: 9	/20/2009 4	:21:04	Type: Unk			
Method: A	ccutest1(v1	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
User: admi	in Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247		Ni2316	Ag3280
Avg	.0176	0002	0005	0004	.0051	.0007	.3410	0003	.0001
Stddev	.0001	.0000	.0001	.0003	.0001	.0000	.0011	.0003	.0003
%RSD	.4532	12.85	21.07	78.05	1.697	7.382	.3251	82.80	175.4
#1	.0176	0002	0004	0007	.0051	.0007	.3418	0005	.0000
#2	.0175	0002	0006	0002	.0052	.0006	.3402	0001	.0003
Elem	V_2924		As1890	TI1908	Pb2203		Sb2068	Al3961	Ca3179
Avg	0003	0024	.0044	0010	0003	.0021	.0008	.0106	102.0
Stďdev	.0001	.0000	.0008	.0008	.0001	.0012	.0007	.0037	.2
%RSD	22.09	.8803	18.47	76.73	19.18	57.98	95.70	34.77	.1496
#1	0003	0024	.0050	0016	0003	.0012	.0002	.0132	102.1
#2	0004	0024	.0038	0005	0003	.0029	.0013	.0080	101.9
Elem	Fe2599		K_7664		B_2089		Pd3404	Si2124	Sn1899
Avg	2.366	18.83	34.30	155.6	.1347	0005	0015	10.13	0018
Stddev	.006	.03	.11	.9	.0007	.0001	.0011	.04	.0001
%RSD	.2688	.1578	.3110	.5664	.5037	22.92	75.26	.3517	5.729
#1	2.371	18.85	34.38	155.0	.1342		0007	10.10	0017
#2	2.362	18.81	34.23	156.2	.1351	0004	0023	10.15	0018
Elem	Sr4077		W_2079						
Avg	.0631	.0005	0074						
Stddev	.0001	.0000	.0003						
%RSD	.2193	6.659	4.567						
#1	.0630	.0005	0072						
#2	.0632	.0005	0077						
Int. Std.	Y_3600	Y_3710	Y_2243	In2306					
Avg	104430.	18526.	2121.0	4632.7					
Stddev	6.	105.	2.2	1.9					
%RSD	.00531	.56929	.10246	.04145					
#1	104430.	18452.	2122.5	4631.4					
#2	104440.	18601.	2119.4	4634.1					

Raw Data MA23143	page 221 of 245

◀ Zoom In ▶	
Zoom Out	

	e Name: CCV					
	d: Accutest1(v16	,				
User: a	admin Cust	om ID1:	Custo	m ID2:	Custom II	D3:
Comm	ent:					
Elem	Sr4077	Ti3349	W_2079			
Units	ppm	ppm	ppm			
Avg	2.085	1.997	2.011			
Stddev		.001	.002			
%RSD	.0327	.0639	.1086			
#1	2.085	1.996	2.010			
#2	2.084	1.997	2.013			
Check	? Chk Pass	Chk Pass	Chk Pass			
Value						
Range						
Int. Sto	d. Y 3600	Y 3710	Y 2243	In2306		
Units	1. 1_3000 Cts/S	Cts/S	Cts/S	Cts/S		
Avg	106730.	18605.	2199.1	4785.9		
Stddev		45.	5.1	18.8		
%RSD		.23919	.23272	.39213		
#1	106650.	18573.	2195.4	4772.6		
#2	106810.	18636.	2202.7	4799.2		

Raw Data MA23143 page 223 of 245

Sample N	ame: CCV	Acquire	d: 9/20/20	09 4:27:17	Type:	QC			
Method: A	ccutest1(v1	64) Mo	de: CONC	Corr.	Factor: 1.0	00000			
User: adm	nin Cus	tom ID1:	Cus	tom ID2:	Cust	om ID3:			
Comment	:								
Elem Units Avg Stddev %RSD	Ba4554 ppm 2.019 .001 .0260	Be3130 ppm 2.054 .003 .1390	ppm 2.066 .004	ppm 2.071 .004	ppm 2.027 .000	ppm 2.008 .006	ppm 1.966 .003	ppm 2.084 .004	ppm .2492 .0001
#1 #2	2.020 2.019	2.056 2.052							
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	V_2924 ppm 2.071 .004 .1821	Zn2062 ppm 2.033 .004 .2010	ppm 2.046 .004	ppm 2.033 .003	ppm 2.063 .002	ppm 2.053 .002	ppm 2.034 .004	ppm 40.29 .07	ppm 40.23 .11
#1 #2	2.068 2.073	2.036 2.030	2.049 2.043	2.035 2.031		2.054 2.051		40.24 40.34	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem Units Avg Stddev %RSD	Fe2599 ppm 40.71 .10 .2361	Mg2790 ppm 40.07 .23 .5823	ppm 40.68 .03	ppm 40.08 .05	ppm 2.070 .006	ppm 2.076 .000	ppm 2.025 .010	ppm 4.894 .018	ppm 2.064 .005
#1 #2	40.78 40.64	40.23 39.90	40.66 40.71	40.05 40.12		2.076 2.075			
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

									◀ Zooi
									Zoon
Sample Na	me: CCB	Acquire	d: 9/20/200	09 4:33:16	Type:	QC			
Method: Ar	cutest1(v1	64) Mo	de: CONC	Corr	Factor: 1.0	00000			
Jser: admi		stom ID1:		tom ID2:		om ID3:			
	II Cus	SIOIII ID 1.	Cus	IUIII IDZ.	Cusi	UIII ID3.			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Jnits	ppm		ppm	ppm		ppm		ppm	
Avg	.0000		.0001	0001	.0000	.0004		0003	
Stddev	.000		.0001	.0001	.000				
%RSD	262.2	83.14	88.48	77.74	952.4	2.530	7.797	55.77	533.6
#1	0001		.0000	0002					
#2	.0000	.0001	.0001	.0000	.0002	.0004	.0002	0004	0002
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit									
_ow Limit									
Elem	V_2924		As1890						
Jnits	ppm		ppm						
Avg	.0002		.0010	.0005		.0010		0017	
Stddev	.0002		.0002					.0084	
%RSD	99.08	604.0	24.15	151.2	469.7	133.4	266.9	491.4	38.14
#1	.0004		.0012						
[‡] 2	.0001	0002	.0008	.0000	0002	.0001	.0002	.0042	.0128
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit									
_ow Limit									
lem	Fe2599		K_7664					Si2124	
Jnits	ppm		ppm					ppm	
Avg	.0024		.1000					.0033	
Stddev %RSD	.0028		.0104					.0002	
%K3D	118.9	53.72	10.39	8.307	37.91	62.62	131.2	5.467	012.5
¥1	.0004		.0926	.1807		.0007		.0035	
#2	.0043	.0037	.1073	.2032	.0006	.0003	.0017	.0032	.0003
Check?	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
High Limit									
_ow Limit									

Raw Data MA23143 page 224 of 245

◀ Zoom In ▶

								▼ Zoom In ▶ Zoom Out
Sample N	ame: CCB	Acquiro	d: 9/20/200	0.4.22.14	Tung	e: QC		
	anie. CCB ccutest1(v16				, ,	.000000		
		,						
User: adm		tom ID1:	Custo	om ID2:	Cu	stom ID:	3:	
Comment	:							
Elem	Sr4077	Ti3349	W_2079					
Units	ppm	ppm	ppm					
Avg	.0000	.0001	0058					
Stddev	.0001	.0001	.0009					
%RSD	163.7	188.9	15.31					
#1	.0000	.0001	0051					
#2	.0001	.0000	0064					
Check ? High Limit Low Limit		Chk Pass	Chk Pass					
Int. Std.	Y_3600	Y_3710	Y_2243	In2306				
Units	Cts/S	Cts/S	Cts/S	Cts/S				
Avg	109910.	18743.	2268.7	5124.0				
Stddev	138.	3.	22.8	53.2				
%RSD	.12589	.01396	1.0071	1.0389				
#1	109810.	18745.	2284.8	5161.6				
#2	110010.	18741.	2252.5	5086.3				

Raw Data MA23143 page 227 of 245

◀ Zoom In ▶ Zoom Out Sample Name: JA27477-7F Acquired: 9/20/2009 4:45:44 Type: Unk Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 Custom ID1: Custom ID2: User: admin Custom ID3: Comment: Ba4554 .1164 .0025 2.187 Ag3280 .0001 .0004 402.4 Elem Be3130 Cd2288 Co2286 -.0004 Cr2677 Cu3247 Mn2576 Ni2316 Avg Stddev %RSD .0001 -.0003 -.0006 .0034 .0007 .3862 .0257 .0000 .0001 16.62 .0001 13.96 .0003 9.028 .0005 .0000 33.31 70.72 6.653 .1182 .1146 -.0003 -.0002 -.0004 -.0004 .0036 .0011 .4043 .3680 .0001 .0004 #1 #2 -.0005 -.0007 Elem V_2924 .0001 Zn2062 .0002 As1890 TI1908 Pb2203 -.0004 Se1960 Sb2068 Al3961 .0063 Ca3179 .0017 -.0017 .0003 .0003 50.72 Avg Stddev .0001 .0001 0004 .0006 0002 .0003 .0017 .0014 1.08 63.70 51.48 49.96 .0001 .0002 .0020 -.0021 -.0005 .0005 .0015 .0053 #1 #2 .0002 -.0002 Elem Avg Stddev K_7664 14.66 .31 Na5895 163.1 3.3 B_2089 .0756 .0006 Mo2020 .0010 .0002 Si2124 4.907 .034 Sn1899 -.0009 .0001 Fe2599 .0651 Mg2790 11.97 Pd3404 -.0020 .0003 .0000 .23 %RSD .5016 1.931 2.131 2.038 .7290 20.13 2.228 .6977 15.61 #1 0653 12 13 14 88 165.5 0752 0008 - 0020 4 883 - 0010 #2 .0648 11.80 14.44 160.8 .0011 -.0019 4.931 -.0008 Elem Sr4077 W_2079 -.0071 .0004 Ti3349 Avg Stddev .2554 .0002 %RSD 2.098 276.4 5.669 .2592 .0005 -.0068 #2 .2516 -.0001 -.0074 Int. Std. Y 3600 Y_3710 Y 2243 In2306 Avg Stddev %RSD 105410 5956 4748.7 15.0 5.6498 1.9942 .33548 .31657 101200. 18278. 2163.8 4759.3 #1 #2 109620. 18801 2153.6 4738.1

Method: Adm User: adm Comment:		54) Mo tom ID1:	de: CONC Cust	Corr. F om ID2:	actor: 1.00 Custo	00000 om ID3:			
Elem Avg Stddev %RSD	Ba4554 .2397 .0002 .0998	Be3130 0001 .0001 88.29	Cd2288 .0012 .0000 2.352	Co2286 .0026 .0000 1.567	Cr2677 .0112 .0000 .1103	Cu3247 .0740 .0009 1.207	Mn2576 1.088 .003 .2291	Ni2316 .0142 .0001 .9885	Ag3280 .0008 .0000 2.315
#1 #2	.2399 .2396	.0000 0002	.0012 .0012	.0026 .0026	.0112 .0112			.0141 .0143	.0008
Elem Avg Stddev %RSD	V_2924 .0104 .0003 3.159	Zn2062 .2087 .0004 .2062	.0008	TI1908 0018 .0001 7.595	Pb2203 .0323 .0001 .1914	Se1960 .0036 .0008 23.63		Al3961 4.824 .008 .1708	Ca3179 260.1 1.4 .5481
#1 #2	.0101 .0106	.2084 .2090	.0013 .0004	0019 0017	.0324 .0323		.0108 .0093	4.830 4.818	259.1 261.1
Elem Avg Stddev %RSD	Fe2599 4.446 .004 .0946	Mg2790 32.96 .14 .4105	K_7664 51.21 .06 .1243	168.8 .8	B_2089 .7272 .0008 .1118	Mo2020 .0104 .0003 2.649	0063 .0004	Si2124 8.157 .005 .0596	Sn1899 .0044 .0005 11.06
#1 #2	4.443 4.449	33.06 32.87	51.26 51.17	169.4 168.2	.7266 .7278	.0106 .0102	0060 0065	8.153 8.160	.0040 .0047
Elem Avg Stddev %RSD	Sr4077 .8473 .0010 .1182	Ti3349 .0889 .0006 .6420	W_2079 .0246 .0003 1.335						
#1 #2	.8466 .8480	.0885 .0893	.0248 .0243						
Int. Std. Avg Stddev %RSD	Y_3600 101730. 63. .06155	Y_3710 18060. 3. .01393	Y_2243 2045.8 4.0 .19390	In2306 4458.9 10.3 .23053					
#1 #2	101770. 101680.	18061. 18058.		4451.7 4466.2					

Raw Data MA23143 page 226 of 245

lem Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3288 (vg 2371 -0001 -0003 0030 -0016 0004 3.843 .0039 0001 (lddev .0006 .0000 .0000 .0001 .0002 .0000 .024 .0002 .0004 .008										Zoom C
Ser: admin Custom ID1: Custom ID2: Custom ID3: C	Sample Na	ame: JA277	18-1F	Acquired: 9	/20/2009 4	:51:57	Type: Unk			
Ba4554	Method: Ad	ccutest1(v1	54) Mo	de: CONC	Corr. F	actor: 1.00	00000			
lem	User: admi	in Cus	tom ID1:	Cust	om ID2:	Custo	om ID3:			
vig 237100010003	Comment:									
Iddeev .0006 .0000 .0000 .0001 .0002 .0000 .024 .0002 .0001 6RSD .2699 38.43 12.78 4.493 13.91 4.964 .6270 5.725 417.8 1 .2366 0001 0004 .0029 0015 .0005 3.826 .0037 .0040 .0004 1 .2366 0001 0003 .0031 0018 .0004 3.860 .0004 .0004 1 .0006 .0026 .0004 0007 0003 .007 0004 .0191 73.33 1 .0006 .0026 .0004 0003 .0007 0003 .0007 0004 .0191 73.32 1 .0004 .0028 .0005 0008 0001 .0003 .0021 .0330 1 .0004 .0028 .0005 0008 0001 .0003 003 .0213 73.31 1 .004 .0028 .005 0008 .0001 .0001 .0003 .0003 <td>Elem</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Ag3280</td>	Elem									Ag3280
1	Avg									.0001
1	Stddev									
2 .237500010003 .00310018 .0004 3.860 .0040 .0004	%RSD	.2699	38.43	12.78	4.493	13.91	4.964	.6270	5.725	417.8
llem V_2924 Zn2062 As1890 T11908 Pb2203 Se1960 Sb2068 Al3961 Ca3175 vg .0006 .0026 .0004 .0007 .0003 .0007 .0004 .0191 73.33 .0007 .0004 .0009 .0005 .0001 .0002 .0005 .0001 .0003 .0002 .005 .0001 .0003 .0003 .0213 .0330 .0001 .0001 .0004 .0016 .0004 .0	#1									0002
vg	#2	.2375	0001	0003	.0031	0018	.0004	3.860	.0040	.0004
Liddev .0004 .0003 .0002 .0005 .0001 .0005 .0001 .0032 .02 6RSD 54.28 11.73 58.91 14.36 93.43 72.75 33.50 16.51 .0332 1 .0004 .0028 .0005 0008 0001 .0003 0003 .0213 73.31 1em Fe2599 Mg2790 K_7664 Na5895 B_2089 Mo2020 Pd3404 Si2124 Sn1899 vg .0751 21.66 2.274 32.33 .0886 .0031 0017 4.839 0012 iddev .0244 .05 .007 .04 .0001 .0000 .0008 .012 .0006 sRSD 3.179 .2410 .3270 .1213 .1337 .3962 46.94 .2388 3.387 1 .0734 21.69 2.279 32.36 .0887 .0031 0011 4.847 0012 dlem Sr4077	Elem									Ca3179
1	Avg									
1	Stddev									.02
2	%RSD	54.28	11.73	58.91	14.36	93.43	72.75	33.50	16.51	.0330
lem y Fe2599 Mg2790 K 7664 Na5895 B 2089 Mo2020 Pd3404 Si2124 Sn1899 wg .0751 21.66 2.274 32.33 .0886 .00310017 4.8390012 lddev .0024 .05 .007 .04 .0001 .0000 .0008 .012 .0006 .8RSD 3.179 .2410 .3270 .1213 .1337 .3962 46.94 .238 3.387 .0886 .0310011 4.847 .0012 .0068 .00768 .21.62 .2.69 32.30 .0887 .00310011 4.847 .0012 .0068 .0076	#1	.0004	.0028	.0005	0008	0001	.0003	0003	.0213	73.31
vg 0.751	#2	.0009	.0024	.0002	0007	0004	.0011	0004	.0169	73.35
Iddeev .0024 .05 .007 .04 .0001 .0000 .0008 .012 .0006 6RSD 3.179 .2410 .3270 .1213 .1337 .3962 46.94 .2388 3.387 1 .0734 21.69 2.279 32.36 .0885 .0031 0011 4.847 0012 2 .0768 21.62 2.269 32.30 .0887 .0031 0022 4.830 0011 Ilem Sr4077 Ti3349 W_2079 .003 .0002 .0003 .0002 .0003 .0002 .0003 .0002 .0003 .0002 .0003 .0002 .0003 .0011	Elem						Mo2020	Pd3404		Sn1899
6RSD 3.179 .2410 .3270 .1213 .1337 .3962 46.94 .2388 3.387 1 .0734 21.69 2.279 32.36 .0885 .00310011 4.8470012 2 .0768 21.62 2.269 32.30 .0887 .00310022 4.8300011 Ilem Sr4077 Ti3349 W_2079 vg 1.656 .0004 .0009 tiddev .003 .0002 .0003 sRSD .1754 48.14 38.31 1 1.654 .0002 .0011 an. Std. Y_3600 Y_3710 Y_2243 ln2306 vg 106690. 18663. 2172.6 4865.3 tiddev 713. 16. 4. 2. tisRSD .66829 .08347 .01905 .00415 1 107190. 18652. 2172.4 4865.4 2 106180. 18674. 2172.9 4865.1	Avg						.0031	0017	4.839	0012
1	Stddev									.0000
2 .0768 21.62 2.269 32.30 .0887 .00310022 4.8300011 lem	%RSD	3.179	.2410	.3270	.1213	.1337	.3962	46.94	.2388	3.387
lem Sr4077 Ti3349 W_2079 vg 1.656 .0004 .0009 tiddev .003 .0002 .0003 siRSD .1754 48.14 38.31 1 1.654 .0005 .0007 2 1.658 .0002 .0011 at. Std. Y_3600 Y_3710 Y_2243 In2306 vg 106690 .18663 .2172.6 4865.3 tiddev .713 16 .4 .2 siRSD .66829 .08347 .01905 .00415 1 107190 .18652 .2172.4 4865.4 2 106180 .18674 .2172.9 4865.1	#1									0012
vg 1.656 .0004	#2	.0768	21.62	2.269	32.30	.0887	.0031	0022	4.830	0011
Iddev 0.03 0.002 0.003 6RSD 1.754 48.14 38.31 1 1.654 0.005 0.007 2 1.658 0.002 0.0011 at. Std. Y_3600 Y_3710 Y_2243 In2306 tvg 106690. 18663. 2172.6 4865.3 tddev 713. 16. 4 .2 6RSD 666829 08347 0.1905 0.00415 1 107190. 18652. 2172.4 4865.4 2 106180. 18674. 2172.9 4865.1	Elem	Sr4077	Ti3349	W_2079						
1 1.654 .0005 .0007 2 1.658 .0002 .0017 1.658 .0002 .0011 1.658 .0002 .0011 1.658 .0002 .0011 1.658 .0002 .0011 1.658 .0002 .0011 1.658 .0002 .0001 1.66829 .08347 .01905 .00415 1 107190. 18652. 2172.4 4865.4 2 106180. 18674. 2172.9 4865.1	Avg	1.656	.0004	.0009						
1	Stďdev	.003	.0002	.0003						
2 1.658 .0002 .0011 at. Std. Y_3600 Y_3710 Y_2243 In2306 vg 106690. 18663. 2172.6 4865.3 tddev 713. 16. 4 2 6RSD .66829 .08347 .01905 .00415 1 107190. 18652. 2172.4 4865.4 2 106180. 18674. 2172.9 4865.1	%RSD	.1754	48.14	38.31						
nt. Std. Y_3600 Y_3710 Y_2243 In2306 vg 106690. 18663. 2172.6 4865.3 tddev 713. 164 .2 sRSD .66829 08347 .01905 .00415 1 107190. 18652. 2172.4 4865.4 2 106180. 18674. 2172.9 4865.1	#1									
vg 106690. 18663. 2172.6 4865.3 tddev 713. 164 .2 sRSD .66829 .08347 .01905 .00415 1 107190. 18652. 2172.4 4865.4 2 106180. 18674. 2172.9 4865.1	#2	1.658	.0002	.0011						
Iddev 713. 164 .2 6RSD .66829 .08347 .01905 .00415 1 107190. 18652. 2172.4 4865.4 2 106180. 18674. 2172.9 4865.1	Int. Std.									
6RSD .66829 .08347 .01905 .00415 1	Avg			2172.6						
1 107190. 18652. 2172.4 4865.4 2 106180. 18674. 2172.9 4865.1	Stddev									
2 106180. 18674. 2172.9 4865.1	%RSD	.66829	.08347	.01905	.00415					
	#1									
Park Data MA22142 - page 229 of 245	#2	106180.	18674.	2172.9	4865.1					
Day Data MA23142 page 229 of 245										
Day Data MA23142 page 229 of 245										
Day Data MA23142 page 229 of 245										
Park Data MA23142 page 229 of 24E										
Paw Data MA23143 page 228 of 245										
NAW Data WAZJ14J Daye ZZO ULZ4J	Raw Dat	a MA23 <u>14</u>	3 page	228 of <u>2</u> 4	15					

Ag3280

.0496

.0002

.4498

.0494 .0497

Ca3179

178.6

.9891

177 3

179.8

Sn1899

.0017

.0004

23.55

-0014

1.8

Type: Unk

Cu3247

.2303

.0005

.2306

2307

.2299

Se1960

1.972

.1583

1.975

1.970

Mo2020 -.0005

.0002

30.69

- 0004

-.0007

Mn2576

.8500

.0043

.5075

.8531

.8470

Sb2068

4988

0021

.4119

5003

.4974

Pd3404

-.0020

.0014

66.71

- 0011

Ni2316

.4927

.0005

.1020

.4931

.4924

Al3961

1.982

.5592

1 974

1.990

Si2124

4.397

.023

.5169

4 413

4.381

Custom ID3:

Cr2677

.2041

.0001

.0536

2042

.2040

Pb2203

4840

0013

.2706

4849

.4830

B_2089

.0004

3471

1168

User: admin

Comment:

Elem

Avg Stddev

%RSD

#1 #2

#1

#2

Elem

Stddev

%RSD

Flem

Avg Stddev

%RSD

Int. Std.

%RSD

#2

#1

#2

Avq

Elem

Avg Stddev

o

Raw Data MA23143	page 230 of 245
------------------	-----------------

Raw Data MA23143 page 232 of 245

Sample Name: MP49677-S1 Acquired: 9/20/2009 5:04:27

Custom ID1:

Be3130

.0477

.0004

.8393

.0475

.0480

Zn2062

.4859

4874

.4844

Mg2790

41.95

.9292

41 67

Ti3349

.0021

3.417

.0021

.0022

Y 3710

18532. 139.

74968

18630.

18434.

Ba4554

1.891

.6193

1.883

1.900

V_2924

4865

0028

.5677

4885

.4846

Fe2599

15.06

.9851

14 95

Sr4077

.0023

.6929

.3309

.3342

Y 3600

104610. 496.

47395

104260.

104960.

.012

Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000

Cd2288

.0553

.0000

.0621

.0554

.0553

As1890

1.945

1 950

1.941

K_7664

33.86

.4005

33 77

W 2079

.0082 .0007

7.997

.0078

.0087

Y 2243

2116.5 5.5

25864

2120.4

.14

006

Custom ID2:

Co2286

.4873

.0020

.4132

.4887

.4858

TI1908

1.883

006

.3139

1 887

1.878

Na5895

63.83

63.53

In2306

4630.8

18760

4636.9

43

									◀ Zoom (
	ame: MP496			9/20/2009		Type: U	Ink		
	ccutest1(v1	,	de: CONC		actor: 5.00				
User: adm Comment:		tom ID1:	Custo	om ID2:	Custo	om ID3:			
Elem Avg Stddev %RSD	Ba4554 .0272 .0007 2.556	Be3130 0009 .0002 20.72	Cd2288 0025 .0007 28.67	Co2286 .0013 .0008 62.35	Cr2677 .0153 .0011 7.219	Cu3247 .0033 .0009 26.12	Mn2576 .4283 .0012 .2786	Ni2316 .0019 .0004 21.44	Ag3280 .0012 .0016 126.3
#1 #2	.0267 .0277	0008 0010	0030 0020	.0007 .0018	.0145 .0161	.0027 .0039	.4291 .4274	.0022 .0016	.0001 .0024
Elem Avg Stddev %RSD	V_2924 0010 .0000 3.908	Zn2062 .0213 .0005 2.230	As1890 .0065 .0018 27.79	TI1908 .0086 .0008 9.377	Pb2203 .0019 .0011 58.44	Se1960 0044 .0087 195.1	Sb2068 0011 .0006 50.92	Al3961 .1059 .0239 22.54	Ca3179 170.7 .5 .2721
#1 #2	0010 0010	.0216 .0210	.0052 .0078	.0092 .0081	.0011 .0027	0106 .0017	0015 0007	.1228 .0890	170.4 171.0
Elem Avg Stddev %RSD	Fe2599 15.12 .06 .4293	Mg2790 19.42 .34 1.766	K_7664 9.317 .023 .2432	Na5895 42.71 .02 .0536	B_2089 .1211 .0003 .2358	Mo2020 0029 .0004 14.87	Pd3404 0065 .0007 10.72	Si2124 4.790 .055 1.141	Sn1899 0085 .0024 28.46
#1 #2	15.08 15.17	19.18 19.66	9.301 9.334	42.69 42.72	.1213 .1209	0032 0026	0060 0070	4.829 4.751	0068 0102
Elem Avg Stddev %RSD	Sr4077 .3523 .0010 .2878	Ti3349 0002 .0015 801.0	W_2079 0732 .0061 8.384						
#1 #2	.3516 .3530	0013 .0009	0688 0775						
Int. Std. Avg Stddev %RSD	Y_3600 108710. 675. .62116	Y_3710 18916. 81. .42850	Y_2243 2226.0 18.3 .82398	In2306 5009.1 36.9 .73678					
#1 #2	108230. 109180.	18973. 18858.	2213.0 2238.9	4983.0 5035.2					

Daw Data MA22442 - mana 220 of 245

Mode: CO m ID1: C Se3130 Cd22 .0478 .05 .0000 .00 .0582 .44 .0477 .05 .0477 .05 .0478 .05 .0478 .05	288 Co2286 551 4890 002 0003 199 .0637 549 4892 552 4888 390 TI1908 494 1.866 004 .012	Cr2677 .2033 .0002 .1099 .2035 .2032	Cu3247 .2302 .0009 .4084 .2295 .2308 Se1960 1.971	Mn2576 .8554 .0007 .0841 .8549 .8559 Sb2068	Ni2316 .4936 .0007 .1475 .4931	Ag3280 .0491 .0005 .9336
Be3130 Cd22 .0478 .05 .0000 .00 .0582 .44 .0477 .05 .0478 .05 Zn2062 As18 .4859 1,9 .0001 .0 .0307 .20	288 Co2286 651 4890 1002 .0003 199 .0637 649 4892 552 4888 890 TI1908 890 TI1908 1.866 104 .012	Cr2677 .2033 .0002 .1099 .2035 .2032 Pb2203 .4850	Cu3247 .2302 .0009 .4084 .2295 .2308 Se1960 1.971	Mn2576 .8554 .0007 .0841 .8549 .8559 Sb2068	.4936 .0007 .1475 .4931 .4941	Ag3280 .0491 .0005 .9336
Be3130 Cd22 .0478 .05 .0000 .00 .0582 .44 .0477 .05 .0478 .05 Zn2062 As18 .4859 1,9 .0001 .0 .0307 .20	288 Co2286 651 4890 1002 .0003 199 .0637 649 4892 552 4888 890 TI1908 890 TI1908 1.866 104 .012	Cr2677 .2033 .0002 .1099 .2035 .2032 Pb2203 .4850	Cu3247 .2302 .0009 .4084 .2295 .2308 Se1960 1.971	Mn2576 .8554 .0007 .0841 .8549 .8559 Sb2068	.4936 .0007 .1475 .4931 .4941	.0491 .0005 .9336
Be3130 Cd22 .0478 .05 .0000 .00 .0582 .44 .0477 .05 .0478 .05 Zn2062 As18 .4859 1,9 .0001 .0 .0307 .20	288 Co2286 651 4890 1002 .0003 199 .0637 649 4892 552 4888 890 TI1908 890 TI1908 1.866 104 .012	Cr2677 .2033 .0002 .1099 .2035 .2032 Pb2203 .4850	Cu3247 .2302 .0009 .4084 .2295 .2308 Se1960 1.971	Mn2576 .8554 .0007 .0841 .8549 .8559 Sb2068	.4936 .0007 .1475 .4931 .4941	.0491 .0005 .9336
Be3130 Cd222 .0478 .05 .0000 .00 .0582 .44 .0477 .05 .0478 .05 .0478 .05 Zn2062 As18 .0489 1.9 .0001 .0 .0307 .20	288 Co2286 551 4890 002 0003 199 0.637 549 4892 552 4888 390 TI1908 444 1.866 004 .012	Cr2677 .2033 .0002 .1099 .2035 .2032 Pb2203 .4850	Cu3247 .2302 .0009 .4084 .2295 .2308 Se1960 1.971	.8554 .0007 .0841 .8549 .8559 Sb2068	.4936 .0007 .1475 .4931 .4941	.0491 .0005 .9336
.0478 .05 .0000 .00 .0582 .44 .0477 .05 .0478 .05 Zn2062 As18 .4859 1.9 .0001 .0	.4890 .002 .0003 .099 .0637 .649 .4892 .552 .4888 .890 TI1908 .444 1.866 .004 .012	.2033 .0002 .1099 .2035 .2032 Pb2203 .4850	.2302 .0009 .4084 .2295 .2308 Se1960 1.971	.8554 .0007 .0841 .8549 .8559 Sb2068	.4936 .0007 .1475 .4931 .4941	.0491 .0005 .9336
.0478 .05 .0000 .00 .0582 .44 .0477 .05 .0478 .05 Zn2062 As18 .4859 1.9 .0001 .0	.4890 .002 .0003 .099 .0637 .649 .4892 .552 .4888 .890 TI1908 .444 1.866 .004 .012	.2033 .0002 .1099 .2035 .2032 Pb2203 .4850	.2302 .0009 .4084 .2295 .2308 Se1960 1.971	.8554 .0007 .0841 .8549 .8559 Sb2068	.4936 .0007 .1475 .4931 .4941	.0491 .0005 .9336
.0478 .05 .0000 .00 .0582 .44 .0477 .05 .0478 .05 Zn2062 As18 .4859 1.9 .0001 .0	.4890 .002 .0003 .099 .0637 .649 .4892 .552 .4888 .890 TI1908 .444 1.866 .004 .012	.2033 .0002 .1099 .2035 .2032 Pb2203 .4850	.2302 .0009 .4084 .2295 .2308 Se1960 1.971	.8554 .0007 .0841 .8549 .8559 Sb2068	.4936 .0007 .1475 .4931 .4941	.0491 .0005 .9336
.0582 .44 .0477 .05 .0478 .05 Zn2062 As18 .4859 1.9 .0001 .0	.0637 .4892 .4888 .4888 .440 .441 .866 .004	.1099 .2035 .2032 Pb2203 .4850	.4084 .2295 .2308 Se1960 1.971	.0841 .8549 .8559 Sb2068	.1475 .4931 .4941	.9336
.0477 .05 .0478 .05 Zn2062 As18 .4859 1.9 .0001 .0 .0307 .20	549 .4892 552 .4888 890 TI1908 944 1.866 904 .012	.2035 .2032 Pb2203 .4850	.2295 .2308 Se1960 1.971	.8549 .8559 Sb2068	.4931 .4941	.0494
.0478 .05 Zn2062 As18 .4859 1.9 .0001 .0 .0307 .20	552 .4888 390 TI1908 344 1.866 304 .012	.2032 Pb2203 .4850	.2308 Se1960 1.971	.8559 Sb2068	.4941	
Zn2062 As18 .4859 1.9 .0001 .0 .0307 .20	390 TI1908 944 1.866 904 .012	Pb2203 .4850	Se1960 1.971	Sb2068		.0488
.4859 1.9 .0001 .0 .0307 .20	044 1.866 004 .012	.4850	1.971			
.0001 .0 .0307 .20	.012				Al3961	Ca3179
.0307 .20		.0002		.4984	1.982	180.5
)95 .6243		.002	.0006	.010	.0
.4858 1.9		.0357	.1043	.1239	.5201	.0047
		.4849	1.970	.4989	1.975	180.5
.4860 1.9	1.874	.4852	1.973	.4980	1.990	180.5
лg2790 K_76	664 Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
42.11 34.		.1163	0005	0029	4.443	0014
	.07 .04	.0001	.0001	.0019	.002	.0005
.1309 .20	.0600	.0970	15.23	66.26	.0338	34.90
	.95 64.14	.1164	0006	0042	4.442	0010
42.07 34.	.05 64.19	.1162	0005	0015	4.444	0017
Ti3349 W_20)79					
.0022 .00						
.0000 .00						
1.343 .18	339					
.0022 .00						
.0022 .00)96					
.15273 .076	.10288					
40140 0441						
18410. 2113	1.5 4619.0					
	Y_3710 Y_22 18430. 211. 28. .15273 .076	7_3710 Y_2243 In2306 18430. 2112.7 4622.4 28. 1.6 4.8 .15273 .07623 .10288 18410. 2113.8 4625.7	7_3710 Y_2243 In2306 18430. 2112.7 4622.4 28. 1.6 4.8 .15273 .07623 .10288 18410. 2113.8 4625.7	7_3710 Y_2243 In2306 18430. 2112.7 4622.4 28. 1.6 4.8 .15273 .07623 .10288 18410. 2113.8 4625.7	7_3710 Y_2243 In2306 18430. 2112.7 4622.4 28. 1.6 4.8 1.5273 .07623 .10288 18410. 2113.8 4625.7	7_3710 Y_2243 In2306 18430. 2112.7 4622.4 28. 1.6 4.8 15273 .07623 .10288 18410. 2113.8 4625.7

Raw Data MA23143 page 231 of 245

155 of 189 ACCUTEST. JA27477 Laboratories

◀ Zoom In ▶ Zoom Out

									Zoom C	
Cample N	ame: JA274	77 EDCON	E Ac~	uired: 9/20/	2000 5,22-	14 T	e: Unk			
						٠.	e: unk			
	ccutest1(v1	,	de: CONC		actor: 1.00					
User: adm		tom ID1:	Cust	om ID2:	Custo	m ID3:				
Comment										
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280	
Avg	0002	0003	0001	0005	.0003	.0001	0001	0002	.0002	
Stddev	.0001	.0000	.0002	.0000	.0000	.0003	.0000	.0001	.0001	
%RSD	27.03	8.596	388.8	4.487	11.52	226.5	2.134	43.96	45.16	
#1	0003	0002	.0001	0005	.0003	0001	0001	0003	.0001	
#2	0002	0003	0002	0005	.0002	.0003	0001	0001	.0003	
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179	
Avg	0003	.0025	0007	.0000	.0000	.0019	0004	.0049	.0145	
Stďdev	.0000	.0000	.0006	.001	.0002	.0005	.0003	.0027	.0005	
%RSD	8.552	1.151	85.24	6045.	543.3	27.74	78.82	54.87	3.125	
#1	0003	.0024	0011	0009	.0002	.0015	0006	.0030	.0142	
#2	0003	.0025	0003	.0008	0001	.0023	0002	.0068	.0148	
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899	
Avg	.0110	0060	.0329	.1532	0008	0006	0007	.0207	.0002	
Stddev	.0027	.0140	.0122	.0054	.0000	.0001	.0008	.0008	.0002	
%RSD	24.69	232.5	37.05	3.548	1.708	9.729	116.5	3.970	80.25	
#1	.0129	0160	.0243	.1570	0008	0006	0013	.0201	.0001	
#2	.0091	.0039	.0416	.1493	0008	0005	0001	.0212	.0003	
Elem	Sr4077	Ti3349	W_2079							
Avg	0003	0002	0162							
Stddev	.0000	.0000	.0005							
%RSD	7.757	19.20	3.052							
#1	0003	0002	0158							
#2	0003	0002	0165							
Int. Std.	Y_3600	Y_3710	Y_2243	In2306						
Avq	110110.	18853.	2265.9	5143.7						
Stddev	53.	4.	2.8	1.0						
%RSD	.04768	.02252	.12139	.01937						
#1	110080.	18850.	2264.0	5142.9						
#2	110150.	18856.	2267.9	5144.4						

Raw Data MA23143	page 233 of 245
	15

mnle Name: CCV	Acquired: 9/20/2009 5:28:57	Type: OC	

Sample Name: C	CV Acqi	uirea: 9/2	0/2009 5	:28:57	ype: QC
Method: Accutest	1(v164)	Mode: C	ONC	Corr. Facto	r: 1.000000
User: admin	Custom ID	1:	Custom	ID2:	Custom ID3:
Comment:					

Elem	Sr4077	Ti3349	W_2079
Units	ppm	ppm	ppm
Avg	2.098	2.010	2.024
Stddev	.000	.003	.006
%RSD	.0076	.1339	.2822
#1	2.098	2.011	2.020
#2	2 097	2 008	2 028

Check ? Value Range Chk Pass Chk Pass Chk Pass

Int. Std.	Y_3600	Y_3710	Y_2243	In2306
Units	Cts/S	Cts/S	Cts/S	Cts/S
Avg	106330.	18445.	2195.0	4770.8
Stddev	19.	11.	.1	9.4
%RSD	.01808	.05848	.00510	.19675
#1	106320.	18437.	2194.9	4777.5
#2	106350.	18452.	2195.1	4764.2

Raw Data MA23143 page 235 of 245

User: adm Comment:		stom ID1:	Cus	tom ID2:	Cust	om ID3:			
Elem Units Avg Stddev %RSD	Ba4554 ppm 2.033 .003 .1208	Be3130 ppm 2.069 .002 .0874	Cd2288 ppm 2.076 .000 .0078	Co2286 ppm 2.080 .001 .0533	ppm 2.035 .003	Cu3247 ppm 2.011 .005 .2629	ppm 1.981 .002	ppm 2.095 .001	ppi .249 .001
#1 #2	2.035 2.032	2.071 2.068	2.076 2.076	2.079 2.081	2.037 2.033	2.014 2.007	1.983 1.980	2.094 2.096	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pas
Elem Units Avg Stddev %RSD	V_2924 ppm 2.078 .001 .0596	Zn2062 ppm 2.043 .002 .0887	As1890 ppm 2.054 .001 .0428		ppm 2.076 .004	Se1960 ppm 2.060 .001 .0306		ppm 40.53 .07	40.6 .0
#1 #2	2.079 2.078	2.042 2.044	2.055 2.053	2.041 2.036	2.078 2.073	2.060 2.059	2.043 2.045	40.58 40.48	
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pas
Elem Units Avg Stddev %RSD	Fe2599 ppm 40.98 .02 .0526	Mg2790 ppm 40.37 .02 .0463	K_7664 ppm 40.89 .00 .0007		ppm 2.084 .002	ppm 2.082 .001	ppm 2.032 .004	ppm 4.954 .010	ppi 2.07 .00
#1 #2	40.99 40.96	40.39 40.36	40.89 40.89	40.61 40.53	2.085 2.082	2.082 2.083	2.034 2.029	4.961 4.947	

Raw Data	a MA2314	l3 page	234 of 24	15					
									◀ Zoo
Sample Na	me: CCB	Acquire	d: 9/20/200	9 5:34:56	Type:	QC			
Method: Ac	cutest1(v1	64) Mo	de: CONC	Corr.	Factor: 1.0	00000			
User: admi	n Cus	tom ID1:	Cust	om ID2:	Cust	om ID3:			
Comment:									
Elem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Ag3280
Units	ppm	ppm	ppm	ppm	ppm	ppm		ppm	
Avg	.0000	.0001	.0002	.0001	.0000	.0006		0001	.000
Stddev	.0003	.0000	.0001	.0002	.0001	.0004			
%RSD	866.5	34.70	59.79	156.2	608.2	61.32	20.35	30.55	5.00
#1	0002	.0001	.0004	.0003	.0001	.0009	.0002	0002	.000
#2	.0002	.0001	.0001	.0000	0001	.0003	.0002	0001	.000
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pas
Elem	V_2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca317
Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppi
Avg	.0001	.0001	.0012	.0010	.0006	.0006		.0032	
Stddev	.0003	.0001	.0002	.0005	.0002	.0011			
%RSD	242.6	134.0	12.90	51.53	28.58	192.0	544.7	220.2	4.38
#1	.0003	.0002	.0011	.0014	.0008	.0013	.0008	0018	.012
#2	0001	.0000	.0013	.0007	.0005	0002	0005	.0082	.013
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pas
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn189
Units	ppm		ppm	ppm		ppm			
Avg	.0052	.0127	.0785	.1412	.0006	.0007		.0037	
Stddev	.0001	.0007	.0095	.0004	.0001	.0003			
%RSD	1.575	5.751	12.05	.2524	23.22	47.29	426.6	27.77	30.1
#1	.0052	.0122	.0718	.1410	.0007	.0010	0004	.0044	.000
#2	.0053	.0132	.0852	.1415	.0005	.0005	.0002	.0029	.000
Check ? High Limit Low Limit	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pas

Raw Data MA23143 page 236 of 245

Ag3280

ppm .0011

.0001

10.40

.0010

.0011

Ca3179

ppm 380.1

3.8

377.4 382.7

Sn1899

.0000

1559

.0062

.0062

	nme: CCB				Type: QC actor: 1.000000
User: admi	n Cuct	om ID1:	Cuct	om ID2:	Custom ID3:
Comment:	II Cust	om ib i.	Cusii	JIII ID2.	Custom IDs.
Flem	Sr4077	Ti3349	W_2079		
Units	ppm	ppm	ppm		
Avq	.0001	.0000	0059		
Stddev	.0001	.000	.0002		
%RSD	106.0	154.0	3.588		
#1	.0000	0001	0058		
#2	.0002	.0000	0061		
Check ? High Limit Low Limit	Chk Pass (Chk Pass	Chk Pass		
Int. Std.	Y 3600	Y 3710	Y 2243	In2306	
Units	Cts/S	Cts/S	Cts/S	Cts/S	
Avq	110290.	18798.	2287.6	5164.4	
Stddev	420.	61.	9.6	21.1	
%RSD	.38060	.32392	.42142	40862	

2280.8

2294.4

5149.5

5179.3

18755

18841.

110590

109990.

Raw Data MA23143 page 237 of 245

Raw Data MA23143 page 239 of 245

Acquired: 9/20/2009 5:41:09 Sample Name: ICSA Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3 Comment: Sr4077 Ti3349 W_2079 Units ppm .0058 ppm 0025 ppm .0377 Avg Stddev .0000 .0001 .0018 %RSD .6207 5.496 4.794 .0024 .0390 .0058 #2 .0058 .0026 .0365 Check? Chk Pass Chk Pass Chk Pass High Limit Low Limit Y_3600 Cts/S Y_3710 Cts/S Y_2243 Cts/S Int. Std. In2306 Cts/S Units Avg Stddev %RSD 98225 17858 4114.0 1989.4 15.4 28.3 .40391 98144 17909 2000.3 4134 1 98306. 1978.5 4094.0 17807

◀ Zoom In ▶

■ Zoom In I Zoom Out

Sample Name: ICSA

User: admin

Comment: Elem

Units

Avg Stddev

%RSD

Check ?

Units

Avg Stddev

%RSD

Check?

Units

Avg Stddev

%RSD

Check ?

High Limit Low Limit

High Limit Low Limit Elem

#2

High Limit Low Limit Flem

#2

Method: Accutest1(v164)

Ba4554

ppm .0015

.0001

7.233

.0015

.0014

V 2924

ppm .0005

.0003

59.25

0003

.0007

Fe2599

ppm 194.6

.1367

194.4

194.8

Custom ID1:

Be3130

ppm .0000

.0000

139.8

.0000

.0000

7n2062

ppm .0068

.0005

-.0071

Mg2790

ppm 522.3

.0759

522.0

522.6

Acquired: 9/20/2009 5:41:09

Cd2288

ppm .0004

.0005

101.7

-.0001

-.0008

As1890

ppm .0004

.0001

.0005

-.0003

K_7664

ppm 2856

.0246

8.615

.2682

.3030

Mode: CONC Corr. Factor: 1.000000

Co2286

ppm .0018

.0000

3602

.0018

.0018

TI1908

ppm .0016

.0001 7.055

.0015

Na5895

ppm .3746

.0061

1.627

.3789

.3703

Custom ID2:

Type: QC

Cr2677

ppm .0006

.0000

7 417

.0006

0007

Chk Pass Chk

Ph2203

ppm .0015

.0000

.0015

Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass Chk Pass

B_2089

ppm .0027

.0010

36.22

-.0033

.0020

Chk Pass Chk

Custom ID3:

Cu3247

ppm .0003

.0001

18.30

.0003

.0004

Se1960

ppm .0012

.0037

299.1

.0039

-.0014

Mo2020

ppm .0035

.0005

14.41

-.0031

-.0039

Mn2576

ppm .0005

.0001

18.31

.0005

.0004

Sh2068

ppm .0009

.0011

.0017

Pd3404

.0011

35.26

.0024

0040

Ni2316

ppm .0004

.0003

74.03

.0002

.0007

AI3961

ppm 502.3

.1853

502.9

Si2124

ppm .0131

.0005

3.992

.0127

.0135

Raw Data MA23143 page 238 of 245 ■ Zoom In ▶ Sample Name: ICSAB Acquired: 9/20/2009 5:47:23 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 Custom ID3: User: admin Custom ID1: Custom ID2: Comment: Ba4554 Be3130 Cd2288 Co2286 Cr2677 Cu3247 Mn2576 Ni2316 Ag3280 ppm .5269 .0003 ppm .5126 .0007 ppm 1.102 .019 ppm 1.093 .003 Units ppm 5024 ppm 5010 ppm 5025 ppm 4903 ppm 9688 .0012 .0181 .0014 .0006 %RSD .0547 1327 1.691 1.750 2816 2404 .1237 1.865 .2355 5020 .5121 4962 1.095 .5267 .5271 #2 .5131 1.116 .5086 .5000 5017 .4907 .9816 1.092 Chk Pass Check? Value Range Flem V_2924 7n2062 As1890 TI1908 Ph2203 Se1960 Sh2068 Al3961 Ca3179 Units ppm .5257 ppm 1.041 ppm .9686 ppm 1.051 ppm 1.063 ppm 508.4 ppm .9574 ppm 9825 ppm 383.3 Avq .021 .0131 .017 0001 0183 .0151 .022 .1684 .1049 #1 5257 9444 1 027 9593 9719 1.039 1 047 509.0 383.0 .9703 .5258 .9778 .9932 1.062 383.6 1.056 1.078 507.8 Check? Chk Pass Value Range Fe2599 Mg2790 Na5895 B_2089 Mo2020 Pd3404 Si2124 Elem K_7664 Sn1899 Units ppm 203.1 ppm 524.2 ppm 1732 ppm 4151 ppm .0028 ppm 5030 ppm .5547 ppm .0007 ppm .0062 Avg Stddev .0134 .0012 .0012 .0096 .0010 .0008 .0006 %RSD 0094 0657 7.721 .3006 42.12 1 904 .1853 111.2 10.40 -.0019 .0013 #1 203.1 523.9 1638 .4142 .5554 -.0057 4962 203.1 524.4 1827 4160 -.0036 5097 5539 .0002 -.0066 Check ? Chk Pass Chk Pass None None None Chk Pass Chk Pass None None Value Range

Raw Data MA23143 page 240 of 245

157 of 189 ACCUTEST. JA27477 Laborat

◀ Zoom In ▶ Zoom Out

Sample Name: ICSAB	Zoom In ▶ Zoom Out
Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000 User: admin Custom ID1: Custom ID2: Custom ID3: Comment: Elem Sr4077 Ti3349 W_2079 Ulnits ppm ppm Avg .0057 .0030 F.6002 Stddev .0000 .0000 SRSD .6948 1.266 1.623 ** #1 .0057 .0030 .5933	200m Out
User: admin Comment: Custom ID1: Custom ID2: Custom ID3: Elem Sr4077 Ti3349 W_2079 Units ppm ppm ppm Avg .0057 .0030 F .6002 Stddev .0000 .0000 .0000 .0000 .0007 %RSD .6948 1.266 1.623 #1 .0057 .0030 .5933	
Comment: Elem Sr4077 Ti3349 W_2079 Units ppm ppm ppm Avg .0057 .0030 F .6002 Stddev .0000 .0000 .0097 %RSD .6948 1.266 1.623 #1 .0057 .0030 .5933	
Elem Sr4077 Ti3349 W_2079 Units ppm ppm ppm Avg .0057 .0030 F .6002 Stiddev .0000 .0000 .0097 %RSD .6948 1.266 1.623 #1 .0057 .0030 .5933	
Units ppm ppm ppm Avg .0057 .0030 F .6002 Stddev .0000 .0000 .0000 .0097 .8RSD .6948 1.266 1.623 #1 .0057 .0030 .5933	
#2 .0037 .0030 .0071	
Check? None None Chk Fail Value .5000 Range 20.00%	
Int. Std. Y_3600 Y_3710 Y_2243 In2306 Units Cts/S Cts/S Cts/S Cts/S Avg 97818 177771 1997.8 4133.5 Stddev 70 13 30.5 56.3 %RSD .07182 .07282 1.5250 1.3627	
#1 97868. 17780. 2019.3 4173.3 #2 97769. 17761. 1976.3 4093.7	

Raw Data MA23143 page 241 of 245

	•	4) Mo	de: CONC		actor: 1.000000
Elem Units Avg Stddev %RSD	Sr4077 ppm 2.095 .004 .1689	ppm 2.005 .002 .0968	ppm 2.021 .004 .1797		
#1 #2	2.093 2.098	2.003 2.006	2.019 2.024		
Check ? Value Range	Chk Pass (Chk Pass	Chk Pass		
Int. Std. Units Avg Stddev %RSD	Y_3600 Cts/S 106290. 28. .02679	Cts/S 18510. 32.	Cts/S 2193.0 5.5	Cts/S 4770.9 11.0	
#1 #2	106310. 106270.	18533. 18487.		4763.1 4778.7	

Bow Data MA22142	page 242 of 245

	Sample Name: CCV Acquired: 9/20/2009 5:53:34 Type: QC Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000										
User: adm Comment:	in Cus	stom ID1:		tom ID2:		om ID3:					
Elem Units Avg Stddev %RSD	Ba4554 ppm 2.030 .003 .1440	Be3130 ppm 2.058 .002 .1135	Cd2288 ppm 2.065 .006 .3053	Co2286 ppm 2.071 .006 .3017	2.035	Cu3247 ppm 2.005 .002 .1033	ppm 1.958 .000	ppm 2.085 .005	Ag3280 ppm .2493 .0000 .0144		
#1 #2	2.028 2.032	2.056 2.059	2.069 2.061	2.075 2.066	2.039 2.031	2.007 2.004	1.958 1.957	2.088 2.081	.2493 .2492		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	V_2924 ppm 2.085 .003 .1618	Zn2062 ppm 2.028 .003 .1664	As1890 ppm 2.043 .002 .0728	TI1908 ppm 2.018 .014 .6980	ppm 2.063 .004	Se1960 ppm 2.049 .002 .0759	ppm 2.032 .003	ppm 40.45	Ca3179 ppm 40.43 .02 .0511		
#1 #2	2.083 2.087	2.030 2.025	2.044 2.042	2.008 2.028	2.066 2.060	2.048 2.050	2.035 2.030	40.40 40.50	40.41 40.44		
Check ? Value Range	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass		
Elem Units Avg Stddev %RSD	Fe2599 ppm 40.89 .02 .0434	Mg2790 ppm 40.28 .06 .1449	K_7664 ppm 40.75 .01	Na5895 ppm 40.52 .07 .1648	ppm 2.071 .002	Mo2020 ppm 2.077 .001 .0366	ppm 2.022 .001	ppm 4.875 .009	Sn1899 ppm 2.061 .000 .0017		
#1 #2	40.90 40.87	40.24 40.32	40.74 40.75	40.47 40.57	2.073 2.070	2.077 2.076	2.022 2.021	4.881 4.869	2.061 2.061		

Check? Chk Pass Chk P

Raw Data MA23143 page 242 of 245

									◀ Zoom Zoom
									Zoom
Sample No	ame: CCB	Acquire	d: 9/20/200	0 5.50.33	Type:	റ്റ			
	ccutest1(v1		de: CONC		Factor: 1.0				
		. ,							
User: admi		tom ID1:	Cus	om ID2:	Cust	om ID3:			
Comment:									
Flem	Ba4554	Be3130	Cd2288	Co2286	Cr2677	Cu3247	Mn2576	Ni2316	Aq3280
Units	ppm	ppm	ppm	ppm		ppm	ppm		ppm
Avq	.0000	.0002	.0003	.0002	.0003	.0005	.0003	.0001	0002
Stddev	.000	.0001	.0004	.0001	.0004	.0000	.0001	.0001	.0001
%RSD	205.4	54.73	135.4	55.24	113.9	2.076	21.50	101.9	44.78
#1	0001	.0001	.0000	.0003	.0006	.0005	.0003	.0001	0002
#2	.0000	.0002	.0005	.0001	.0001	.0005	.0002	.0000	0001
Check ? High Limit Low Limit		Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	V 2924	Zn2062	As1890	TI1908	Pb2203	Se1960	Sb2068	Al3961	Ca3179
Units	ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm
Avg	.0002	.0004	.0010	.0014	0002	.0010	.0005	.0064	.0258
Stddev	.0003	.0001	.0002	.0006	.0002	.0010	.0004	.0113	.0124
%RSD	106.4	13.85	20.89	40.65	83.28	96.41	85.23	175.9	48.17
#1	.0001	.0004	.0009	.0010	0004	.0017	.0002	0016	.0170
#2	.0004	.0004	.0011	.0018	0001	.0003	.0007	.0144	.0346
Check ? High Limit Low Limit		Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass
Elem	Fe2599	Mg2790	K_7664	Na5895	B_2089	Mo2020	Pd3404	Si2124	Sn1899
Units	ppm	ppm	ppm	ppm		ppm	ppm		ppm
Avg	.0123	.0281	.0506	.1201		.0009	0016	.0054	.0003
Stddev	.0057	.0135	.0261	.0036		.0001	.0028	.0003	
%RSD	46.42	48.21	51.63	3.001	12.00	14.82	169.8	4.932	90.16
#1 #2	.0082 .0163	.0185 .0377	.0321 .0690	.1227 .1176		.0010 .0008	.0003 0036	.0056 .0052	
Check ? High Limit Low Limit		Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass	Chk Pass

Raw Data MA23143 page 244 of 245

Sample Name: CCB Acquired: 9/20/2009 5:59:33 Type: QC
Method: Accutest1(v164) Mode: CONC Corr. Factor: 1.000000
User: admin Custom ID1: Custom ID2: Custom ID3 Custom ID3: Comment: Elem Sr4077 Ti3349 W_2079 Units Avg Stddev %RSD ppm .0001 .0001 51.17 ppm .0002 .0003 ppm -.0024 .0008 122.6 32.13 .0001 .0005 -.0018 -.0029 #1 #2 Check ? High Limit Low Limit Chk Pass Chk Pass Chk Pass Int. Std. Units Avg Stddev %RSD Y_3600 Y_3710 Cts/S Cts/S 109820. 17979. 280. 75. .25521 .41880 In2306 Cts/S 5110.4 10.1 .19768 Y_2243 Cts/S 2280.1 7.9 .34589 110020. 109620. 18032. 17926. 2285.6 2274.5 5117.6 5103.3

Raw Data MA23143 page 245 of 245

Element, Wavelength and Order	Use?	# IECs	IEC	k1	k2	Calc-in-fit?
Ba 455.403 { 74}	\boxtimes	1	Mg	0.000007	0.000000	No
Be 313.042 {108}		10	V	0.001370	0.000000	No
			Мо	-0.000058	0.000000	No
			Ti	-0.001593	0.000000	No
			Mn	-0.000033	0.000000	No
			Ba	0.000015	0.000000	No
			Со	0.000010	0.000000	No
			Ni	0.000004	0.000000	No
			Ca	0.000000	0.000000	No
			Cu	0.000034	0.000000	No
C4 220 002 (440)	5 28	10	Zn	-0.000010	0.000000	No
Cd 228.802 {448}		12	As	0.017300	0.000000	No
			Ni	-0.000162	0.000000	No
			Fe V	-0.000018	0.000000	No
				0.000061	0.000000	No
			Ba Co	-0.000047 -0.010871	0.000000	No No
			Sr Ca	-0.000006 0.000000	0.000000	No No
			Mn	-0.00000	0.000000	No
			Cr	-0.000021	0.000000	No
			Si	-0.000076	0.000000	No
			Cu	0.000006	0.000000	No
Co 228.616 {448}	M	6	Fe	0.000003	0.000000	No
00 220.010 (440)		J	Cr	0.0000118	0.000000	No
			Mo	-0.002933	0.000000	No
			Ni	0.000256	0.000000	No
			Ti	0.002177	0.000000	No
			Ba	0.000130	0.000000	No
Cr 267.716 {126}	M	6	Mn	0.000452	0.000000	No
			V	-0.000022	0.000000	No
			Мо	0.000018	0.000000	No
			Fe	-0.000014	0.000000	No
			W	0.000690	0.000000	No
			Cd	-0.000261	0.000000	No
Cu 324.754 {104}2	\boxtimes	8	Cr	-0.000060	0.000000	No
			V	-0.000283	0.000000	No
			Mo	0.000594	0.000000	No
			Ti	-0.000162	0.000000	No
			Fe	-0.000112	0.000000	No
			Al	0.000003	0.000000	No
			Sn	0.000173	0.000000	No
			Zn	0.000066	0.000000	No
Mn 257.610 {131}	<u> </u>	None				
Ni 231.604 {446}		6	Fe 7	0.000001	0.000000	No
		<u> </u>	Zn	0.000079	0.000000	No
			Be	-0.000087	0.000000	No
			Co Ti	0.000431	0.000000	No
			TI	0.000409	0.000000	No
A ~ 220 0(0 (102)	<u> </u>		Mg	0.000002	0.000000	No
Ag 328.068 {103}	K)	5	Mn	0.000110	0.000000	No
ļ .			Mo Ti	0.000023	0.000000	No
ļ .			Ti Eo	-0.000200	0.000000	No
			Fe V	-0.000019	0.000000	No No
V 202 402 (11E)	™	4	v Ti	-0.001600	0.000000	No No
V 292.402 {115}		4	Mo	0.000630	0.000000	No
			Fe	-0.015500 0.000102	0.000000	No
			Sr	-0.000300	0.000000	No
Zn 206.200 {464}	M	10	Cr	-0.000300	0.000000	No
211 200.200 (404)	<u> </u>		Mo	0.000516	0.000000	No
			Fe	0.000010	0.000000	No
L						

Elemer Wavelengtl Order	h and	Use?	# IECs	IEC	k1	k2	Calc-in-fit?
				Al	-0.000003	0.000000	No
				Si	0.000165	0.000000	No
				Mn	-0.000100	0.000000	No
				Ba	0.000578	0.000000	No
				Na O-	0.000003	0.000000	No
			ļ	Ca Sr	0.000013 -0.000333	0.000000	No
As 189.042	[178]	□	18	Sr Al	0.0000333	0.000000	No No
A3 107.042	[470]		10	Fe	-0.000013	0.000000	No
				Ca	0.000008	0.000000	No
		••••••	1	Mn	-0.000062	0.000000	No
				Mo	0.003215	0.000000	No
				Cr	0.000634	0.000000	No
				V	-0.000043	0.000000	No
				Co	-0.000342	0.000000	No
				Ba	-0.000183	0.000000	No
				W Sn	0.001090	0.000000	No
			<u> </u>	Sn Cd	-0.000237 -0.000228	0.000000	No No
				TI	-0.000228	0.000000	No
	······································		<u> </u>	Be	0.000110	0.000000	No
		•••••		Mg	-0.000000	0.000000	No
				Si	0.000006	0.000000	No
				Zn	-0.000135	0.000000	No
				Sr	-0.000013	0.000000	No
TI 190.856 {	477}	X	19	Cr	0.000124	0.000000	No
				Mo	-0.001044	0.000000	No
				Al	0.000021	0.000000	No
				Fe V	-0.000090	0.000000	No
				v Mn	-0.013500 0.001245	0.000000	No No
				Si	-0.00023	0.000000	No
				Ca	-0.000008	0.000000	No
	·····			Ti	-0.001056	0.000000	No
				Na	0.000000	0.000000	No
				Mg	0.000003	0.000000	No
				Co	0.003950	0.000000	No
				Sr	0.000031	0.000000	No
				В	-0.000018	0.000000	No
				Ba	-0.000133	0.000000	No
				Zn Ac	0.000150	0.000000	No
				As W	0.000053 -0.008466	0.000000	No No
	······································			VV Ni	0.000174	0.000000	No
Pb 220.353	{453}	X	19	Al	-0.000106	0.000000	No
			•	Fe	0.000030	0.000000	No
	İ			Ca	-0.000001	0.000000	No
				Mn	0.000063	0.000000	No
				Zn	-0.000036	0.000000	No
			ļ	Mo	-0.002172	0.000000	No
	.			Ni	0.000086	0.000000	No
			ļ	Cu	0.000716	0.000000	No
	····		ļ	V Co	-0.000088 -0.000512	0.000000	No
				Ti	0.000037	0.000000	No No
			ļ	Si	-0.000037	0.000000	No
		••••••		Ba	-0.000030	0.000000	No
				Sb	0.000000	0.000000	No
	Ĺ			K	0.000004	0.000000	No
				Sr	-0.000090	0.000000	No
				W	0.000677	0.000000	No
	<u>.</u>		<u>.</u>	Mg	0.000002	0.000000	No

Element, Wavelength and Order	Use?	# IECs	IEC	k1	k2	Calc-in-fit?
			Cd	0.000119	0.000000	No
Se 196.090 {472}	X	16	Al	0.000005	0.000000	No
			Ca	0.000006	0.000000	No
			Mn	0.000340	0.000000	No
			Mo	0.000081	0.000000	No
			Fe	-0.000194	0.000000	No
			Co V	0.001212	0.000000	No
			Sr	-0.000083 -0.000125	0.000000	No No
			Cu	-0.00007	0.000000	No
			W	0.010503	0.000000	No
			Si	0.000012	0.000000	No
			TI	0.000204	0.000000	No
			Be	-0.000008	0.000000	No
			Zn	-0.000130	0.000000	No
			В	-0.000125	0.000000	No
			Pd	-0.009500	0.000000	No
Sb 206.833 {463}	X	11	Fe	0.000009	0.000000	No
			Al	0.000001	0.000000	No
			Ca	-0.000004	0.000000	No
			Ni	-0.001650	0.000000	No
			Cr	0.016270	0.000000	No
			V	-0.002238	0.000000	No
			Zn	0.000188	0.000000	No
			Mo T:	0.000204	0.000000	No
			Ti	0.000291	0.000000	No
			Sn W	-0.017994 -0.003725	0.000000	No No
Al 396.152 { 85}	X	3	Si	0.000976	0.000000	No
A1 3 70. 132 (03)	<u> </u>	3	Ca	0.000770	0.000000	No
			Мо	0.037865	0.000000	No
Ca 317.933 {106}	X	6	Fe	0.000223	0.000000	No
	V-M		Ti	-0.000446	0.000000	No
			W	0.010000	0.000000	No
			TI	0.014950	0.000000	No
			Ве	0.022728	0.000000	No
			Ba	-0.007342	0.000000	No
Fe 259.940 {130}	X	12	Со	0.000154	0.000000	No
			Si	0.000019	0.000000	No
			TI	-0.029601	0.000000	No
			Se	0.000000	0.000000	No
			Cr	0.000634	0.000000	No
			Mn	-0.003500	0.000000	No
			V Cu	0.001936	0.000000	No
			K Cu	0.000953 -0.001830	0.000000	No
		<u> </u>	Zn	0.003900	0.000000	No No
			Ti	0.003900	0.000000	No
			Ca	0.000109	0.000000	No
Mg 279.079 {121}	×	1	Mo	-0.002900	0.000000	No
K 766.490 { 44}	X	10	Fe	-0.000310	0.000000	No
	V.33		Al	0.000101	0.000000	No
			Ca	-0.000171	0.000000	No
			Mn	0.002922	0.000000	No
	•••••		Si	-0.003000	0.000000	No
			V	0.010000	0.000000	No
			Pd	-0.030000	0.000000	No
			Sn	-0.040000	0.000000	No
			Na	-0.004000	0.000000	No
	<u></u>		Ba	0.002255	0.000000	No
Na 589.592 { 57}	<u> </u>	1	K	-0.000560	0.000000	No
B 208.959 {462}		1	Мо	0.036236	0.000000	No

Element, Wavelength and Order	Use?	# IECs	IEC	k1	k2	Calc-in-fit?
Mo 202.030 {467}	X	None				
Pd 340.458 { 99}	X	5	Ti	0.000261	0.000000	No
		1	V	0.000757	0.000000	No
			Sn	-0.000006	0.000000	No
			Fe	-0.000040	0.000000	No
			Mo	-0.000428	0.000000	No
Si 212.412 {459}	X	11	Sr	0.000366	0.000000	No
			Ni	0.000106	0.000000	No
		1	Мо	0.030340	0.000000	No
			V	0.002240	0.000000	No
			Ti	0.009359	0.000000	No
			Al	-0.000027	0.000000	No
			Cd	0.001043	0.000000	No
			Ва	0.001873	0.000000	No
			Fe	-0.000066	0.000000	No
			Sn	0.021621	0.000000	No
			Zn	0.000385	0.000000	No
Sn 189.989 {478}	X	3	Ti	-0.002125	0.000000	No
			Mo	0.000071	0.000000	No
			Fe	0.000033	0.000000	No
Sr 407.771 { 83}	Ø	1	Fe	-0.000000	0.000000	No
Ti 334.904 {101}		2	Cr	0.000189	0.000000	No
			Mo	0.001417	0.000000	No
Y 360.073 { 94}*	X	None				
Y 371.030 { 91}*	X	None				
Y 224.306 {451}*	X	None				
In 230.606 {446}*	X	None				
W 207.911 {462}	×	7	Al	-0.000024	0.000000	No
			Si	-0.000400	0.000000	No
			Ca	-0.000013	0.000000	No
			Fe	-0.000040	0.000000	No
			As	-0.004000	0.000000	No
			Mg	-0.000040	0.000000	No
			Mn	-0.002300	0.000000	No

Aqueous Digestion Log MP Batch ID: MP49677

ICP DIGESTION METHOD: SW846 3010A

leating Method	(circle one)): Dig	gestion	Block /	Hot Plates

Method Blank ID:	MP49677 Prep Date:
Lab Control/Spike Blank ID:	Start Time: 10:00 Start Temp: 941:93 Thermometer ID #: 373
Lab Control Source:	
	End Time: 4:00 End Temp: 15-1-94
DUP 1 Sample ID:	Acceptable temperature Ranges:
DUP 2 Sample ID:	EPA 200.7 90 to 95 deg. C
MS 1 Sample ID: TA27477-3 (S ₂) SW846 3010A, 3020A, 3050B 90 to 95 deg. C
MS 2 Sample ID: JA 4747-3F(s, sy)

Note: Serial dilution shown for QC tracking only. Not a separate digestate. Spikes Used Initial Final **Acids Used** Added -Amount and Added -Volume Pres Sample Amount and Name | Y or N Comments Y/N Volume in ML Name Y or N Sample ID प्र 50 3.0 ml conc. HNO3 $MP 49677 - MB_{\perp}$ 50 5.0 ml 1:1 HCL MP49672-LC1 4 0.50 ml SP, 0.50 ml MIN1 MP 49677 -S. S2 0.50 ml SP, 0.50 ml MIN1 MP 49677 -S3.51 MP 4 46 77-SD JA27477-JAX2417-2 3 JA 27477 - 3 4 JA27477 - 4 5.MA<7477-5 プロインナー 6 8 277-27-8 9 JA 274 77-1F 1007427477-2F 11777-27-35 12277-27477 - UF 135922477-5F 14JA 274 77- 6F 153A27477-7F 16 JA27293-11 17 274 27-12 18) JA27718-1F JA27766-5 20 TA 27293-5 9/18/09

9 18 09 QC Reviewer:

Form AA-018A (3010A) Rev. Date: 01/12/09

Analyst:

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC

Login Number: JA27477

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chromium, Hexavalent Chromium, Hexavalent	GN30041 GN30041	0.010 0.010	0.0	mg/l mg/l	.15	0.15	100.0	90-110%

Associated Samples:

Batch GN30041: JA27477-1, JA27477-1F, JA27477-2, JA27477-2F, JA27477-3F, JA27477-3F, JA27477-4F, JA27477-5, JA27477-5F, JA27477-6F, JA27477-6F, JA27477-7F, JA27477-8

(*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JA27477

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Chromium, Hexavalent Chromium, Hexavalent	GN30041 GN30041	JA27477-3F JA27477-3	mg/l mg/l	0.0	0.0	0.0	0-20% 0-20%

Associated Samples:
Batch GN30041: JA27477-1, JA27477-1F, JA27477-2, JA27477-2F, JA27477-3, JA27477-3F, JA27477-4, JA27477-4F, JA27477-5, JA27477-5F, JA27477-6, JA27477-6F, JA27477-7, JA27477-7F, JA27477-8 (*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JA27477

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chromium, Hexavalent Chromium, Hexavalent	GN30041 GN30041	JA27477-3F JA27477-3	mg/l mg/l	0.0	.15 .15	0.0	0.0N(a) 0.0N(b)	85-115% 85-115%

Associated Samples:

Batch GN30041: JA27477-1, JA27477-1F, JA27477-2, JA27477-2F, JA27477-3F, JA27477-3F, JA27477-4F, JA27477-5F, JA27477-6F, JA27477-6F, JA27477-7F, JA27477-7F

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (a) Spike recovery indicates possible matrix interference. Good pH adjusted post spike recovery (96%)
- (b) Spike recovery indicates possible matrix interference. Good pH adjusted post spike recovery (88%)

General Chemistry

Raw Data

Units MDL RDL

0.99992

Bottle ID	Sample # Test Title: GN Batch: Analyst: Prep Date: Analysis Date: Instrument ID:	Sample Absorbance XCr gn30041 mw/ra 9/9/2009 9/9/2009	BKGRD Abs	Analyzed Times	Y Values Corr Sample Absorbance 1	X Values Conc(mg/l) Note: Use		(ml) Method:	Dilution SW846 719 oter, 1 for	Final Conc. 96A reg. List poir	
	***************************************		ı				_			Corr. Coef:	0.
	Cal. Blk.	0.000	NA	18:45	0.000	0.0000					
	STD1	0.010	NA	NA.	0.010	0.0100	1			Slope:	

CSL BIK. 0.000 MA 1845 0.000 0.0000 STD2 0.000 NA 184 0.000 0.0500 STD3 0.000 NA 184 0.000 0.0500 STD3 0.000 NA 184 0.000 0.0500 STD3 0.000 NA 184 0.000 0.0500 STD3 0.000 NA 184 0.000 0.0500 STD3 0.000 NA 184 0.000 0.0500 STD4 0.000 NA 1859 0.000 NA 0.000 STD7 0.000 NA 1859 0.000 NA 0.000 STD7 0.000 NA 0.000 0.000 0.000 0.0000 0.0000 NA							0.0000	I						
ST02												0.0504		
ST02		STD1	0.010	NA NA	NA	0.010					Slope:	0.9524		
STD4		STD2	0.050	NA	NA	0.050								
STDS		STD3	0.101	NA	NA	0.101	0.1000				Y intercept:	0.0039		
STD9		STD4	0.297	NA	NA	0.297	0.3000							
STD6 0.761 NA		STD5	0.486	NA	NA	0.486	0.5000							
ST07							0.8000	Final Vol.	Sam. Vol.					
CCY										Dilution	Final Conc.	Units	MDL	RDL
CCB 0.000 NA 0.027 0.000 0							0.5083				NA	mg/l	0.002	0.010
98/09/14-MB1									NA	NA	NA NA		0.002	0.010
### ### ### ### ### ### ### ### ### ##											-0.004		0.002	0.010
1	-												0.002	0.010
1														
1 JACYTYT-FF DDTS DDTS 22:05 DDT4 DDT96 SDD 5:00 1 DDT1 mmg DDC2 DDT97 D	-													_
1 JAZYAT7-5F	-		W											
1 JAZY177-5F 0.002 0.000 27:05 0.002 -0.000 50.0 1 -0.002 mgl 0.002 0.010 1 JAZY177-5F 0.001 0.000 27:05 0.000 -0.0011 -0.001 50.0 1 -0.002 mgl 0.002 0.010 1 JAZY177-5F 0.001 0.000 27:05 0.000 -0.0011 50.0 50.0 1 -0.002 mgl 0.002 0.010 1 JAZY177-5F 0.001 0.000 27:05 0.000 -0.0011 50.0 50.0 1 -0.002 mgl 0.002 0.010 1 JAZY177-5F 0.001 0.000 27:05 0.000 -0.0011 MA NA NA NA NA mgl 0.002 0.010 1 JAZY177-5F 0.000 0.000 27:10 0.000 -0.0011 MA NA NA NA mgl 0.002 0.010 1 JAZY177-5F 0.000 0.000 27:10 0.000 -0.0011 0.000 0.000 1 -0.001 mgl 0.002 0.010 1 JAZY177-5F 0.000 0.000 27:10 0.000 -0.0011 0.00 50.0 1 -0.001 mgl 0.002 0.010 1 JAZY177-5F 0.000 0.000 27:10 0.000 -0.0011 0.00 50.0 1 -0.004 mgl 0.002 0.010 1 JAZY177-5F 0.000 0.000 27:10 0.000 -0.0011 0.00 50.0 1 -0.004 mgl 0.002 0.010 1 JAZY177-5F 0.000 0.000 27:10 0.000 -0.0011 0.00 50.0 1 -0.004 mgl 0.002 0.010 1 JAZY177-5F 0.000 0.000 27:10 0.000 -0.0011 0.00 50.0 1 -0.004 mgl 0.002 0.010 1 JAZY177-5F 0.000 0.000 27:10 0.000 -0.0011 50.0 50.0 1 -0.004 mgl 0.002 0.010 1 JAZY177-5F 0.000 0.000 27:10 0.000 -0.0011 50.0 50.0 1 -0.004 mgl 0.002 0.010 1 JAZY17-5F 0.000 0.000 27:10 0.000 -0.0011 50.0 50.0 1 -0.004 mgl 0.002 0.010 1 JAZY17-5F 0.000 0.0001 50.0 1 -0.004 mgl 0.002 0.010 1 JAZY17-5F 0.000 0.0001 50.0 1 -0.004 mgl 0.002 0.010 1 JAZY17-5F 0.0001 0.0001 0.0001 50.0 1 -0.004 mgl 0.002 0.010 1 JAZY17-5F 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001	_			-										
1 AZ7477.4F														
1 AZF477-6F 0.030 0.030 21:05 0.000 -0.0041 50.0 50.0 1 -0.004 mgh 0.002 0.010 1 AZF477-6F 0.061 0.000 21:05 0.091 -0.0031 50.0 50.0 1 -0.003 mgh 0.002 0.010 CCV 0.485 NA 21:05 0.485 0.5051 NA NA NA NA mgh 0.002 0.010 1 AZF477-7F 0.000 0.000 0.000 21:10 0.000 -0.0041 50.0 50.0 5 -0.021 mgh 0.002 0.010 1 AZF477-7F 0.000 0.000 0.000 21:10 0.000 -0.0041 50.0 50.0 5 -0.021 mgh 0.010 0.050 1 AZF477-7F 0.000 0.000 0.000 21:10 0.000 -0.0041 50.0 50.0 5 -0.021 mgh 0.010 0.050 1 AZF477-7F 0.000 0.000 0.000 21:10 0.000 -0.0041 50.0 50.0 1 -0.004 mgh 0.002 0.010 1 AZF477-7F 0.000 0.000 21:10 0.000 -0.0041 50.0 50.0 1 -0.004 mgh 0.002 0.010 1 AZF477-7F 0.000 0.000 21:10 0.000 -0.0041 50.0 50.0 1 -0.004 mgh 0.002 0.010 1 AZF477-7F 0.000 0.000 -0.0041 50.0 50.0 1 -0.004 mgh 0.002 0.010 1 AZF477-7F 0.000 0.000 -0.0041 50.0 50.0 1 -0.004 mgh 0.002 0.010 1 AZF477-7F 0.000 0.000 -0.0041 50.0 50.0 1 -0.004 mgh 0.002 0.010 1 AZF477-7F 0.000 0.000 -0.0041 50.0 50.0 1 -0.004 mgh 0.002 0.010 2 AZF47-7F 0.000 0.000 -0.0041 50.0 50.0 1 -0.004 mgh 0.002 0.010 2 AZF47-7F 0.000														
1 AZ7477.4FF 0.001 0.000 21:05 0.001 0.0005 0.001 1 0.003 mg/l 0.002 0.010	-									 				_
CCV 0.485 NA 21:05 0.485 0.5951 NA NA NA NA NA mgl 0.002 0.010	-									1				_
CCB	1													_
1 JAC7477-FF 0.000 0.000 21:10 0.000 -0.0041 50.0 50.0 5 -0.021 mg/l 0.010 0.050 1 Z7477-JFPCNNF 0.000 0.000 21:10 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 1 Z7477-JFPCNNF 0.000 0.141 0.000 21:10 0.000 0.041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 1 Z7477-JFPCNNF 0.000 0.141 0.000 21:10 0.141 0.000 50.0 1 -0.004 mg/l 0.002 0.010 1 Z7477-JFPCNNF 0.000 0.141 0.000 0.010 0.010 0.010 1											+			
1 JA2/477-3FCONF 0.000 0.000 2:100 0.000 -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 27477-3FPHADICO 0.141 0.000 2:100 0.141 0.1438 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 27477-3FPHADICO 0.141 0.000 2:100 0.141 0.1438 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 CCV 0.485 NA 21:10 0.485 0.0561 NA NA NA NA NA Mg/l 0.002 0.010 1 CCB 0.000 NA 21:11 0.000 -0.0041 NA NA NA NA NA Mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 FALSE -0.0041 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 JAZ7477-4 0.006 0.006 2.1444 0.001 -0.0031 50.0 50.0 1 -0.0044 mg/l 0.002 0.010 1 JAZ7477-5 0.056 0.004 21:444 0.000 -0.0041 MA NA			4-4					 		†				
1 27477-SPPHADJCO 0.141 0.000 2.101 0.141 0.1439 50.0 50.0 1 0.144 mg/1 0.002 0.010 FALSE 0.0041 50.0 50.0 1 -0.004 mg/1 0.002 0.010 FALSE 0.0041 50.0 50.0 1 -0.004 mg/1 0.002 0.010 FALSE 0.0041 50.0 50.0 1 -0.004 mg/1 0.002 0.010 FALSE 0.0041 50.0 50.0 1 -0.004 mg/1 0.002 0.010 FALSE 0.0041 50.0 50.0 1 -0.004 mg/1 0.002 0.010 FALSE 0.0041 50.0 50.0 1 -0.004 mg/1 0.002 0.010 FALSE 0.0041 50.0 50.0 1 -0.004 mg/1 0.002 0.010 FALSE 0.0041 50.0 50.0 1 -0.004 mg/1 0.002 0.010 FALSE 0.0041 50.0 50.0 1 -0.004 mg/1 0.002 0.010 FALSE 0.0041 50.0 50.0 1 -0.004 mg/1 0.002 0.010 CCV 0.485 NA 21:10 0.485 0.5051 NA NA NA NA NA NA MA MA NA MA MA NA MA MA NA MA NA MA NA MA		 									<u> </u>			
FALSE											†			_
FALSE	1	27477-3FPHADJCO	0.141	0.000	21:10				t					-
FALSE							 							
FALSE										+				
FALSE								•						
FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010						FALSE	-0.0041	50.0		+	<u> </u>			
CCV 0.485 NA 21:10 0.485 0.5051 NA NA NA NA NA NA NA N							-0.0041	50.0	_					
CCV 0.485 NA 21:10 0.485 0.5051 NA NA NA NA NA NA mgf 0.002 0.010						FALSE	-0.0041	50.0	50.0	1		mg/l		
CCB 0.000 NA 21:11 0.000 -0.0041 NA NA NA NA mg/l 0.002 0.010						FALSE	-0.0041	50.0	50.0	+		mg/l		_
FALSE		CCV	0.485	NA	21:10	0.485	0.5051	NA	NA NA	NA	NA NA	mg/l		
FALSE		CCB	0.000	NA	21:11	0.000	-0.0041	NA NA	NA	NA NA	NA NA	mg/l		_
FALSE			•			FALSE	-0.0041	50.0	50.0	1	-0.004	mg/l	0.002	-
FALSE						FALSE	-0.0041	50.0	50.0	1	-0.004	mg/l	0.002	0.010
FALSE						FALSE	-0.0041	50.0	50.0	1	-0.004	mg/l		
FALSE						FALSE	-0.0041	50.0	50.0	1	-0.004	mg/l	0.002	_
FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 CCV 0.485 NA 21:30 0.485 0.5051 NA NA NA NA NA NA MA MA mg/l 0.002 0.010 CCB 0.000 NA 21:31 0.000 -0.0041 NA NA NA NA NA NA MA MA MA mg/l 0.002 0.010 1 JA27477-2 0.005 0.004 0.007 0.005 0.004 0.0017 0.0137 50.0 50.0 1 -0.003 mg/l 0.002 0.010 1 JA27477-3 0.006 0.004 0.007 0.005 0.004 0.001 0						FALSE	-0.0041	50.0	50.0	1	-0.004	mg/l	0.002	0.010
FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 CCV 0.485 NA 21:30 0.485 0.5051 NA NA NA NA NA MA MA MA MA MG/l 0.002 0.010 1 JA27477-1 0.021 0.004 0.017 0.0137 50.0 50.0 1 0.014 mg/l 0.002 0.010 1 JA27477-2 0.005 0.004 21:44 0.001 0.0031 50.0 50.0 1 0.003 mg/l 0.002 0.010 1 JA27477-4 0.007 0.005 21:44 0.001 0.0031 50.0 50.0 1 0.003 mg/l 0.002 0.010 1 JA27477-5 0.005 0.005 21:44 0.002 0.000 0.00				1		FALSE	-0.0041	50.0	50.0	1	-0.004	mg/l	0.002	0.010
FALSE						FALSE	-0.0041	50.0	50.0	1	-0.004	mg/l	0.002	0.010
FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010		···		1		FALSE	-0.0041	50.0	50.0	1	-0.004	mg/l	0.002	0.010
CCV 0.485 NA 21:30 0.485 0.5051 NA NA NA NA MA MB/I 0.002 0.0010 1 JA27477-1 0.005 0.006 0.005 21:44 0.0001 -0.0031 50.0 50.0 1 -0.002 mg/I </td <td></td> <td>1.0</td> <td></td> <td>ì</td> <td></td> <td>FALSE</td> <td>-0.0041</td> <td>50.0</td> <td>50.0</td> <td>1</td> <td>-0.004</td> <td>mg/l</td> <td>0.002</td> <td>0.010</td>		1.0		ì		FALSE	-0.0041	50.0	50.0	1	-0.004	mg/l	0.002	0.010
CCB 0.000 NA 21:31 0.000 -0.0041 NA NA NA NA mg/l 0.002 0.010 1 JA27477-1 0.021 0.004 0.017 0.0137 50.0 50.0 1 0.014 mg/l 0.002 0.010 1 JA27477-2 0.005 0.004 21:44 0.001 -0.0031 50.0 50.0 1 -0.003 mg/l 0.002 0.010 1 JA27477-3 0.006 0.005 21:44 0.001 -0.0031 50.0 50.0 1 -0.003 mg/l 0.002 0.010 1 JA27477-4 0.007 0.005 21:44 0.002 -0.020 50.0 1 -0.002 mg/l 0.002 0.010 1 JA27477-5 0.052 20:44 0.010 0.006 50.0 1 -0.004 mg/l 0.002 0.010 1 JA27477-8 0.015 0.005 21:44 0.010				I		FALSE	-0.0041	50.0	50.0	1	-0.004	mg/l	0.002	0.010
CCB 0.000 NA 21:31 0.000 -0.0041 NA NA NA NA mg/l 0.002 0.010 1 JA27477-1 0.021 0.004 0.017 0.0137 50.0 50.0 1 0.014 mg/l 0.002 0.010 1 JA27477-2 0.005 0.004 21:44 0.001 -0.0031 50.0 50.0 1 -0.003 mg/l 0.002 0.010 1 JA27477-3 0.006 0.005 21:44 0.001 -0.0031 50.0 50.0 1 -0.003 mg/l 0.002 0.010 1 JA27477-4 0.007 0.005 21:44 0.000 -0.041 50.0 50.0 1 -0.002 mg/l 0.002 0.010 1 JA27477-6 0.052 0.052 21:44 0.010 0.066 50.0 50.0 1 0.006 mg/l 0.002 0.010 1 JA27477-8 0.015		CCV	0.485	NA	21:30	0.485	0.5051	NA	NA	NA	NA	mg/l	0.002	_
1			0.000	NA	21:31	0.000	-0.0041	NA	NA	NA	NA NA	mg/l		
1 JA27477-3 0.006 0.005 21:44 0.001 -(-0031 50.0 50.0 1 -0.003 mg/l 0.002 0.010 1 JA27477-4 0.007 0.005 21:44 0.002 -(-0020 50.0 50.0 1 -0.002 mg/l 0.002 0.010 1 JA27477-5 0.052 0.052 21:44 0.000 -0.041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 1 JA27477-6 0.015 0.005 21:44 0.010 0.006 50.0 50.0 1 0.008 mg/l 0.002 0.010 1 JA27477-7 0.015 0.009 21:44 0.006 0.002 50.0 50.0 1 0.002 mg/l 0.002 0.010 1 JA27477-8 0.000 0.000 21:44 0.006 0.002 50.0 50.0 1 0.002 mg/l 0.002 0.010 1 JA27477-8 0.000 0.000 21:44 0.000 -(0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 1 gn30041-52 0.006 0.005 21:44 0.001 -0.0031 50.0 50.0 1 -0.004 mg/l 0.002 0.010 1 gn30041-D2 0.005 0.005 21:44 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 1 CCV 0.485 NA 21:44 0.485 0.5051 NA NA NA NA NA mg/l 0.002 0.010 1 JA27477-3CONF 0.002 0.000 22:05 0.002 -0.0020 50.0 50.0 1 0.132 mg/l 0.002 0.010 1 JA27477-3PHCONF 0.130 0.000 22:05 0.130 0.1324 50.0 50.0 1 0.132 mg/l 0.002 0.010	1	JA27477-1	0.021	0.004		0.017	0 0137	50.0	50.0	1	0.014	mg/l	0.002	0.010
1	1	JA27477-2	0.005	0.004	21:44	0.001	-0.0031	50.0	50.0	11	+	mg/l	_	
1 JA27477-4 0.007 0.005 21:44 0.002 -t_0020 50.0 50.0 1 -0.002 mg/l 0.002 0.010 1 JA27477-5 0.052 0.052 21:44 0.000 -0.041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 1 JA27477-6 0.015 0.005 21:44 0.010 0.0064 50.0 50.0 1 0.006 mg/l 0.002 0.010 1 JA27477-7 0.015 0.009 21:44 0.006 0.0022 50.0 50.0 1 0.002 mg/l 0.002 0.010 1 JA27477-8 0.000 0.000 21:44 0.000 -0.004 mg/l 0.002 0.010 11 gn30041-S2 0.006 0.005 21:44 0.001 -0.0031 50.0 1 -0.003 mg/l 0.002 0.010 1 gn30041-S2 0.006 0.005 21:44 <t< td=""><td>1</td><td></td><td></td><td>0.005</td><td>21:44</td><td>0.001</td><td>-(0031</td><td>50.0</td><td>50.0</td><td>1</td><td></td><td>mg/l</td><td></td><td>-</td></t<>	1			0.005	21:44	0.001	-(0031	50.0	50.0	1		mg/l		-
1 JA27477-5 0.052 0.052 21:44 0.000 -0.041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 1 JA27477-6 0.015 0.005 21:44 0.010 0.0064 50.0 50.0 1 0.006 mg/l 0.002 0.010 1 JA27477-7 0.015 0.009 21:44 0.006 0.0022 50.0 50.0 1 0.002 mg/l 0.002 0.010 1 JA27477-8 0.000 0.000 21:44 0.000 -0.041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 11 gn30041-S2 0.006 0.005 21:44 0.001 -0.0031 50.0 50.0 1 -0.003 mg/l 0.002 0.010 1 gn30041-D2 0.005 0.005 21:44 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 CCV<	1		0.007	0.005	21:44	0.002	-C 0020	50.0	50.0	1	-0.002	mg/l		-
1 JA27477-6 0.015 0.005 21:44 0.010 0;0064 50.0 50.0 1 0.006 mg/l 0.002 0.010 1 JA27477-7 0.015 0.009 21:44 0.006 0;0022 50.0 50.0 1 0.002 mg/l 0.002 0.010 1 JA27477-8 0.000 0.000 21:44 0.000 -C.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 11 gn30041-S2 0.006 0.005 21:44 0.001 -0.0031 50.0 50.0 1 -0.003 mg/l 0.002 0.010 1 gn30041-D2 0.005 0.005 21:44 0.000 -0.0041 50.0 50.0 1 -0.003 mg/l 0.002 0.010 CCV 0.485 NA 21:44 0.485 0.5051 NA NA NA NA Mg/l 0.002 0.010 CCB 0.000			0.052	0.052	21:44	0.000	-0 2041	50.0	50.0	1	-0.004	mg/l		+
1 JA27477-7 0.015 0.009 21:44 0.006 0.0022 50.0 50.0 1 0.002 mg/l 0.002 0.010 1 JA27477-8 0.000 0.000 21:44 0.000 -c.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 11 gn30041-S2 0.006 0.005 21:44 0.001 -0.0031 50.0 50.0 1 -0.003 mg/l 0.002 0.010 1 gn30041-D2 0.005 0.005 21:44 0.000 -0.0041 50.0 50.0 1 -0.003 mg/l 0.002 0.010 CCV 0.485 NA 21:44 0.485 0.5051 NA NA NA NA mg/l 0.002 0.010 CCB 0.000 NA 21:45 0.000 -0.0041 NA NA NA NA mg/l 0.002 0.010 1 JA27477-3CONF 0.002 <t< td=""><td></td><td></td><td>0.015</td><td>0.005</td><td>21:44</td><td>0.010</td><td>0 0064</td><td>50.0</td><td>50.0</td><td>1</td><td>0.006</td><td>mg/l</td><td></td><td></td></t<>			0.015	0.005	21:44	0.010	0 0064	50.0	50.0	1	0.006	mg/l		
1 JA27477-8 0.000 0.000 21:44 0.000 -c.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 11 gn30041-S2 0.006 0.005 21:44 0.001 -0.0031 50.0 50.0 1 -0.003 mg/l 0.002 0.010 1 gn30041-D2 0.005 0.005 21:44 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 CCV 0.485 NA 21:44 0.485 0.5051 NA NA NA NA mg/l 0.002 0.010 CCB 0.000 NA 21:45 0.000 -0.0041 NA NA NA NA mg/l 0.002 0.010 1 JA27477-3CONF 0.002 0.000 22:05 0.002 -0.0020 50.0 50.0 5 -0.010 mg/l 0.010 0.002 0.010 1 JA27477-3PHCONF	1	JA27477-7	0.015	0.009	21:44	0.006	0)022	50.0	50.0	1	0.002	mg/l		
11 gn30041-S2 0.006 0.005 21:44 0.001 -0.0031 50.0 50.0 1 -0.003 mg/l 0.002 0.010 1 gn30041-D2 0.005 0.005 21:44 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 CCV 0.485 NA 21:44 0.485 0.5051 NA NA NA NA mg/l 0.002 0.010 CCB 0.000 NA 21:45 0.000 -0.0041 NA NA NA NA mg/l 0.002 0.010 1 JA27477-3CONF 0.002 0.000 22:05 0.002 -0.0020 50.0 50.0 5 -0.010 mg/l 0.002 0.010 1 JA27477-3PHCONF 0.130 0.000 22:05 0.130 0.1324 50.0 50.0 1 0.132 mg/l 0.002 0.010 FALSE .0041 50.0	1	JA27477-8	0.000	0.000	21:44	0.000	-0.3041	50.0	50.0	1 1	-0.004	mg/l	0.002	
1 gn30041-D2 0.005 0.005 21:44 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010 CCV 0.485 NA 21:44 0.485 0.5051 NA NA NA NA NA MA NA MA MA NA MA NA MA NA MA NA MB/l 0.002 0.010 0.002 0.010 1 JA27477-3CONF 0.002 0.000 22:05 0.002 -0.0020 50.0 50.0 5 -0.010 mg/l 0.010 0.050 1 JA27477-3PHCONF 0.130 0.000 22:05 0.130 0.1324 50.0 50.0 1 0.132 mg/l 0.002 0.010 FALSE .0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010	11	gn30041-S2	0.006	0.005	21:44	0.001	-0.0031	50.0	50.0	1	-0.003	mg/l	0.002	-
CCV 0.485 NA 21:44 0.485 0.5051 NA NA NA NA MA NA MA NA MA NA MA NA MA NA NA NA NA NA NA MA NA			0.005	0.005	21:44	0.000	-0.0041	50.0	50.0	+	-0.004	mg/l		
1 JA27477-3CONF 0.002 0.000 22:05 0.002 -0.0020 50.0 50.0 5 -0.010 mg/l 0.010 0.050 1 JA27477-3PHCONF 0.130 0.000 22:05 0.130 1324 50.0 50.0 1 0.132 mg/l 0.002 0.010 FALSE 0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010				NA	21:44	0.485	0.5051	NA	NA	NA	NA	mg/l	-	+
1 JA27477-3CONF 0.002 0.000 22:05 0.002 -0.002 50.0 5 -0.010 mg/l 0.010 0.050 1 JA27477-3PHCONF 0.130 0.000 22:05 0.130 0.1324 50.0 50.0 1 0.132 mg/l 0.002 0.010 FALSE .0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010		ССВ	0.000	NA	21:45	0.000	-0.0041	NA	NΑ	NA	NA	mg/l	0.002	0.010
1 JA27477-3PHCONF 0.130 0.000 22:05 0.130 0.132 50.0 50.0 1 0.132 mg/l 0.002 0.010 FALSE 0.0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010	1	***************************************	0.002	0.000	22:05	0.002	-0.0020	50.0	50.0	5	-0.010	mg/l	0.010	0.050
FALSE .0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010	1		0.130	0.000	22:05	0.130	9.1324	50.0	50.0	1	0.132	mg/l	0.002	0.010
FALSE 0041 50.0 50.0 1 -0.004 mg/l 0.002 0.010						FALSE	.0041	50.0	50.0	1	-0.004	mg/l	0.002	0.010
	-					FALSE	.0041	50.0	50.0	1	-0.004	mg/l	0.002	0.010

FALSE -0.0041 500 500 1 -0.004 mg/l		
FALSE 0.00H1 930 550 1 1 0.00H mg/l FALSE 0.00H1 930 550 1 1 0.00H mg/l FALSE 0.00H1 930 550 51 1 0.00H mg/l FALSE 0.00H1 930 550 51 1 0.00H mg/l CCV 0.486 NA 2256 0.486 0.05R2 NA NA NA NA NA NA NA Mg/l grid00H482 0.160 0.000 0.000 0.000H 0.00H 0.00H 0.00H 0.00H 1.00H 0.00H 0.00H 0.00H 0.00H 0.00H 1.00H 0.00H 0.00H 0.00H 0.00H 1.00H 0.00H 0.00H 0.00H 1.00H 0.00H 0.00H 0.00H 0.00H 1.00H 0.00H 0	0.002	0.010
FALSE	0.002	0.010
FALSE Q.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.010
FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.010
CCV	0.002	0.010
CCV	0.002	0.010
CCB	0.002	0.010
grissport-salez	0.002	0.010
939041-82	-	
1 g-930041-S3 0.150 0.000 22:13 0.150 0.1534 5:0 6:0 1 0.153 mg/l 1 g-930041-D3 0.000 0.000 22:13 0.000 -0.0041 5:0 6:0 1 0.004 mg/l 1 JA27499-2F 0.000 0.000 22:13 0.000 -0.0041 5:0 6:0 1 0.004 mg/l 1 JA27499-2F 0.000 0.000 22:13 0.000 -0.0041 5:0 6:0 1 0.004 mg/l 1 JA27499-3F 0.000 0.000 22:13 0.000 -0.0041 5:0 6:0 1 0.004 mg/l 1 JA27499-3F 0.000 0.000 22:13 0.000 -0.0041 5:0 6:0 1 0.004 mg/l 1 JA27499-3F 0.000 0.000 22:13 0.000 -0.0041 5:0 6:0 1 0.004 mg/l 2 FALSE -0.0041 5:0 6:0 0 1 0.004 mg/l 3 FALSE -0.0041 5:0 6:0 0 1 0.004 mg/l 4 CCP 0.466 NA 22:13 0.466 0.5002 NA NA NA NA NA mg/l 5 CCB 0.000 NA 22:13 0.466 0.5002 NA NA NA NA NA mg/l 6 g-93004-54 0.005 0.001 0.001 22:23 0.000 -0.0041 NA NA NA NA NA mg/l 7 g-93004-54 0.005 0.001 22:23 0.000 -0.0041 NA NA NA NA NA NA NA N	0.002	0.010
1 9:09041-D3 0:000 0:000 22:13 0:000 0:0041 9:00 8:00 1 0:004 mg/h	0.002	0.010
1 JA27499-2F 0.000 0.000 2213 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.010
1 JA27499.5F 0.000 0.000 22:13 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.010
1 JA27490-3F 0.000 0.000 22.13 0.000 -0.0031 50.0 1 -0.004 mg/l	0.002	0.010
1 JA27499-F	0.002	0.010
FALSE -9.0041 50.0 50.0 1 -9.004 mgl	0.002	0.010
FALSE	0.002	0.010
CCV	0.002	0.010
CCB 0.000 NA 22:13 0.000 -0.0041 NA NA NA NA NA NA NA MA	0.002	0.010
CCB	0.002	0.010
1 gr30041-54 0.008	0.002	0.010
1 gr30041-D4 0.014 0.001 22:23 0.003 0.0095 5.00 1 0.010 mgl 1 JA27481-1 0.001 0.001 22:23 0.000 -0.0041 50.0 50.0 1 -0.004 mgl 1 JA27481-2 0.004 0.000 22:23 0.004 0.0001 50.0 50.0 1 0.000 mgl 1 JA27481-3 0.015 0.001 22:23 0.014 0.0106 50.0 50.0 1 0.000 mgl 1 JA27481-4 0.010 0.000 22:23 0.010 0.0064 50.0 50.0 1 0.001 mgl 1 JA27481-5 0.002 0.000 22:23 0.000 -0.0020 50.0 50.0 1 -0.002 mgl 1 JA27481-6 0.001 0.001 22:23 0.000 -0.0041 50.0 50.0 1 -0.004 mgl 1 JA27481-7 0.000 0.000 22:23 0.000 -0.0041 50.0 50.0 1 -0.004 mgl 1 JA27481-7 0.000 0.000 22:23 0.000 -0.0041 50.0 50.0 1 -0.004 mgl 2 CCV 0.485 NA 22:23 0.485 0.5051 NA NA NA NA mgl CCB 0.000 NA 22:24 0.000 -0.0041 NA NA NA NA NA mgl 1 gr30041-05 0.003 0.000 22:30 0.001 -0.0031 NA NA NA NA NA NA NA N	0.002	0.010
1 JA27481-1 0.001 0.001 22.23 0.000 -0.0041 50.0 50.0 1 -4.004 mg/l 1 JA27481-2 0.004 0.000 22.23 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-3 0.015 0.001 22.23 0.014 0.0006 50.0 50.0 1 0.011 mg/l 1 JA27481-4 0.010 0.000 22.23 0.010 0.0064 50.0 50.0 1 0.006 mg/l 1 JA27481-4 0.001 0.000 22.23 0.002 -0.0020 50.0 50.0 1 -0.002 mg/l 1 JA27481-6 0.001 0.001 22.23 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22.23 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 2 CCV 0.485 NA 22.23 0.485 0.5051 NA NA NA NA NA NA mg/l 1 gr/50041-55 0.001 0.000 22.30 0.003 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22.30 0.003 -0.0041 NA NA NA NA NA Mg/l 1 gr/50041-55 0.003 0.000 22.30 0.003 -0.0041 50.0 50.0 1 -0.003 mg/l 1 JA27481-7 0.000 0.000 22.30 0.003 -0.0041 50.0 50.0 1 -0.001 mg/l 1 JA27481-7 0.000 0.000 22.30 0.003 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22.30 0.003 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22.30 0.003 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22.30 0.003 -0.004 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22.30 0.003 -0.004 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22.30 0.003 -0.004 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22.30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22.30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22.30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22.30 0.000 -0.0041 50.0 50.0 1 -0.004	0.002	0.010
1 JA27481-2 0.004 0.000 22:23 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-3 0.015 0.001 22:23 0.014 0.0106 50.0 50.0 1 0.001 mg/l 1 JA27481-4 0.010 0.000 22:23 0.010 0.0004 50.0 50.0 1 0.006 mg/l 1 JA27481-5 0.002 0.000 22:23 0.002 -0.0020 50.0 50.0 1 -0.002 mg/l 1 JA27481-6 0.001 0.001 22:23 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22:23 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 2 CCV 0.485 NA 22:23 0.485 0.5051 NA NA NA NA NA mg/l 3 CCB 0.000 NA 22:24 0.000 -0.0041 NA NA NA NA mg/l 4 GRAPASI-1 0.000 0.000 22:30 0.0001 -0.0031 50.0 50.0 1 -0.004 mg/l 5 GRAPASI-1 0.000 0.000 22:30 0.0001 -0.0031 50.0 50.0 1 -0.004 mg/l 6 GRAPASI-1 0.000 0.000 22:30 0.0001 -0.0031 50.0 50.0 1 -0.003 mg/l 7 JA27481-1 0.000 0.000 22:30 0.0001 -0.0031 50.0 50.0 1 -0.003 mg/l 8 JA27481-1 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 9 JA27481-1 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-1 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-1 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-1 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-1 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-1 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-1 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-1 0.000 0.000 22:30 0.000 0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-1 0.000 0.000 22:30 0.000 0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27	0.002	0.010
1 JA27481-3 0.015 0.001 22:23 0.014 0.0106 50.0 50.0 1 0.011 mgl 1 JA27481-4 0.010 0.000 22:23 0.010 0.0064 50.0 50.0 1 0.006 mgl 1 JA27481-5 0.002 0.000 22:23 0.000 -0.0041 50.0 50.0 1 -0.006 mgl 1 JA27481-6 0.001 0.001 22:23 0.000 -0.0041 50.0 50.0 1 -0.004 mgl 1 JA27481-7 0.000 0.000 22:23 0.000 -0.0041 50.0 50.0 1 -0.004 mgl 2 CCV 0.485 NA 22:23 0.000 -0.0041 50.0 50.0 1 -0.004 mgl 1 gr30041-55 0.001 0.000 22:30 0.000 -0.0041 NA NA NA NA mgl 1 gr30041-55 0.001 0.000 22:30 0.000 -0.0041 NA NA NA NA mgl 1 JA27481-7 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.001 mgl 1 JA27481-8 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.001 mgl 1 JA27481-9 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.001 mgl 1 JA27481-9 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.001 mgl 1 JA27481-8 0.000 0.000 22:30 0.000 0.0041 50.0 50.0 1 -0.001 mgl 1 JA27481-8 0.000 0.000 22:30 0.000 0.0011 50.0 50.0 1 -0.001 mgl 1 JA27481-9 0.000 0.000 22:30 0.000 0.0011 50.0 50.0 1 -0.001 mgl 1 JA27481-8 0.000 0.000 22:30 0.000 0.0011 50.0 50.0 1 -0.001 mgl 1 JA27481-9 0.000 0.000 22:30 0.0004 0.0001 50.0 50.0 1 -0.001 mgl 1 JA27481-9 0.000 0.000 22:30 0.0004 0.0001 50.0 50.0 1 -0.004 mgl 1 JA27481-9 0.000 0.000 22:30 0.0004 0.0001 50.0 50.0 1 -0.004 mgl 1 JA27481-9 0.000 0.000 22:30 0.0004 0.0001 50.0 50.0 1 -0.004 mgl 1 JA27481-9 0.000 0.000 22:30 0.0004 0.0001 50.0 50.0 1 -0.004 mgl 1 JA27481-9 0.000 0.0000 22:30 0.0004 0.0001 50.0 50.0 1 -0.004 mgl 1 JA27481-9 0.000 0.	0.002	0.010
1 JA27481-4 0.010 0.000 22:23 0.010 0.0064 50.0 50.0 1 0.006 mg/l 1 JA27481-5 0.002 0.000 22:23 0.000 -0.0041 50.0 50.0 1 -0.002 mg/l 1 JA27481-7 0.000 0.000 22:23 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22:23 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 22:23 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-7 0.000 0.000 0.000 0.000 0.0001 0.0001 0.0001 0.0001 0.0001 1 CCV 0.485 NA 22:23 0.485 0.5051 NA NA NA NA NA MA MA MA	0.002	0.010
1 JA27481-5 0.002 0.000 22:23 0.002 0.0020 50.0 50.0 1 0.002 mg/l 1 JA27481-6 0.001 0.001 22:23 0.000 0.0041 50.0 50.0 1 0.004 mg/l 1 JA27481-7 0.000 0.000 22:30 0.000 0.0041 50.0 50.0 1 0.004 mg/l 1 JA27481-7 0.000 0.000 22:30 0.000 0.0041 50.0 50.0 1 0.004 mg/l 1 CCV 0.485 NA 22:23 0.485 0.5051 NA NA NA NA NA mg/l 1 GCB 0.000 NA 22:24 0.000 0.0041 NA NA NA NA mg/l 1 gr30041-05 0.001 0.000 22:30 0.001 0.0031 50.0 50.0 1 0.003 mg/l 1 JA27481-F 0.000 0.000 22:30 0.000 0.0041 50.0 50.0 1 0.004 mg/l 1 JA27481-F 0.000 0.000 22:30 0.000 0.0041 50.0 50.0 1 0.004 mg/l 1 JA27481-F 0.000 0.000 22:30 0.000 0.0041 50.0 50.0 1 0.004 mg/l 1 JA27481-F 0.000 0.000 22:30 0.000 0.0041 50.0 50.0 1 0.004 mg/l 1 JA27481-F 0.000 0.000 22:30 0.000 0.0041 50.0 50.0 1 0.004 mg/l 1 JA27481-F 0.000 0.000 22:30 0.003 0.0010 50.0 50.0 1 0.004 mg/l 1 JA27481-F 0.004 0.000 22:30 0.003 0.0010 50.0 50.0 1 0.000 mg/l 1 JA27481-F 0.004 0.000 22:30 0.004 0.0011 50.0 50.0 1 0.000 mg/l 1 JA27481-F 0.004 0.000 22:30 0.004 0.0011 50.0 50.0 1 0.000 mg/l 1 JA27481-F 0.000 0.000 0.2230 0.000 0.004 0.0011 50.0 50.0 1 0.000 mg/l 1 JA27481-F 0.000	0.002	0.010
1 JA27481-6 0.001 0.001 22.23 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.010
1 JA27481-7 0.000 0.000 22:23 0.000 -0.0041 50.0 50.0 1 -0.004 mg/h	0.002	0.010
CCV		
CCV	0.002	0.010
CCB	0.002	0.010
1 gr30041-S5 0.001 0.000 22:30 0.001 -0.0031 50.0 50.0 1 -0.003 mg/l 1 gr30041-D5 0.003 0.000 22:30 0.003 -0.0010 50.0 50.0 1 -0.001 mg/l 1 JA27481-F 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-F 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-F 0.003 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 -0.001 mg/l 1 JA27481-F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.007 mg/l 2 CCV 0.485 NA 22:28 0.485 0.5501 NA NA NA NA mg/l CCB 0.000 NA 22:28 0.485 0.5501 NA NA NA NA mg/l 1 JA27481-3PHCONF 0.008 0.000 22:30 0.008 0.0043 50.0 50.0 1 0.006 mg/l 1 JA27481-3PHCONF 0.010 0.000 22:30 0.008 0.0043 50.0 50.0 1 0.006 mg/l 1 JA27481-3PHCONF 0.010 0.000 22:30 0.0010 0.0064 50.0 50.0 1 0.004 mg/l 1 JA27481-3PHCONF 0.010 0.000 22:30 0.0010 0.0064 50.0 50.0 1 0.004 mg/l 1 JA27481-3PHCONF 0.010 0.000 22:30 0.0010 0.0064 50.0 50.0 1 0.004 mg/l 1 JA27481-3PHCONF 0.010 0.000 22:30 0.0010 0.0064 50.0 50.0 1 0.004 mg/l 1 JA27481-3PHCONF 0.010 0.000 22:30 0.0010 0.0064 50.0 50.0 1 0.004 mg/l 2 FALSE 0.00041 50.0 50.0 1 0.004 mg/l 1 JA27481-3PHCONF 0.010	0.002	0.010
1 gr30041-D5 0.003 0.000 22:30 0.003 -0.0010 50.0 50.0 1 -0.001 mg/l 1 JA27481-IF 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-3F 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-3F 0.003 0.000 22:30 0.003 -0.0010 50.0 50.0 1 -0.001 mg/l 1 JA27481-4F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-4F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-5F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-6F 0.000 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-5F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-5FCONF 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 5 0.000 mg/l 2 CCV 0.485 NA 22:28 0.485 0.5051 NA NA NA NA NA mg/l CCB 0.000 NA 22:28 0.000 0.0004 50.0 50.0 5 0.000 mg/l 1 JA27481-3FDCONF 0.008 0.000 22:30 0.008 0.0043 50.0 50.0 5 0.001 mg/l 1 JA27481-3FDCONF 0.008 0.000 22:30 0.008 0.0043 50.0 50.0 5 0.001 mg/l 1 JA27481-3CONF 0.008 0.000 22:30 0.008 0.0043 50.0 50.0 5 0.001 mg/l 1 JA27481-3FDCONF 0.000 0.000 22:30 0.001 0.0064 50.0 50.0 1 0.006 mg/l 1 JA27481-3CONF 0.008 0.000 22:30 0.001 0.0064 50.0 50.0 1 0.006 mg/l 1 JA27481-3CONF 0.000 0.000 22:30 0.001 0.0064 50.0 50.0 1 0.004 mg/l 1 JA27481-3CONF 0.000 0.000 22:30 0.001 0.0064 50.0 50.0 1 0.004 mg/l 1 JA27481-3CONF 0.000 0.000 0.0001 50.0 50.0 1 0.004 mg/l 1 JA27481-3CONF 0.000 0.000 0.0001 50.0 50.0 1 0.004 mg/l 2 FALSE 0.0001 50.0 50.0 1 0.004 mg/l 3 FALSE 0.0001 50.0 50.0 1 0.004	0.002	0.010
1 JA27481-3F 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-3F 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-3F 0.003 0.000 22:30 0.003 -0.0010 50.0 50.0 1 -0.001 mg/l 1 JA27481-3F 0.003 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 11 JA27481-3F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 11 JA27481-3F 0.000 0.000 0.22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-3F 0.000 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-3F-CONF 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 5 0.000 mg/l 1 JA27481-3F-CONF 0.004 0.000 22:30 0.001 0.0074 50.0 50.0 5 0.000 mg/l 2 CCV 0.485 NA 22:28 0.485 0.5051 NA NA NA NA NA mg/l 1 JA27481-3F-CONF 0.008 0.000 22:30 0.008 0.0041 NA NA NA NA NA mg/l 1 JA27481-3PHCONF 0.010 0.000 22:30 0.008 0.0043 50.0 50.0 5 0.021 mg/l 1 JA27481-3PHCONF 0.010 0.000 22:30 0.000 0.0064 50.0 50.0 1 0.0004 mg/l 1 JA27481-3PHCONF 0.010 0.000 22:30 0.0011 50.0 50.0 1 0.0004 mg/l 2 FALSE 0.0041 50.0 50.0 1 0.0004 mg/l 3 FALSE 0.0041 50.0 50.0 1 0.0004 mg/l 4 FALSE 0.0041 50.0 50.0 1 0.0004 mg/l 5 FALSE 0.0041 50.0 50.0 1 0.0004 mg/l 6 CCV 0.485 NA 22:30 0.485 0.5051 NA NA NA NA NA NA Mg/l 6 FALSE 0.0041 50.0 50.0 1 0.0004 mg/l 7 FALSE 0.0041 50.0 50.0 1 0.0004 mg/l 1 GCB 0.000 NA 22:30 0.485 0.5051 NA NA NA NA NA NA mg/l 1 GCB 0.000 NA 22:30 0.485 0.5051 NA NA NA NA NA mg/l 1 GCB 0.000 NA 22:30 0.485 0.5051 NA NA NA NA NA mg/l 1 GCB 0.000 NA 22:30 0.000 0	0.002	0.010
1 JA27481-3F 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-3F 0.003 0.000 22:30 0.003 -0.0010 50.0 50.0 1 -0.001 mg/l 1 JA27481-4F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-4F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-4F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-4F 0.004 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-3FPHCONF 0.004 0.000 22:30 0.001 0.0001 50.0 50.0 1 0.007 mg/l 1 JA27481-3FPHCONF 0.011 0.000 22:30 0.001 0.0001 50.0 50.0 1 0.007 mg/l 1 JA27481-3FPHCONF 0.011 0.000 22:30 0.001 0.0001 50.0 50.0 1 0.007 mg/l 1 JA27481-3FPHCONF 0.011 0.000 22:30 0.001 0.0001 NA NA NA NA NA NA NA mg/l CCB 0.000 NA 22:28 0.485 0.5051 NA NA NA NA NA NA mg/l NA NA NA NA NA NA NA N	0.002	0.010
1 JA27481-3F 0.003 0.000 22:30 0.003 -0.0010 50.0 50.0 1 -0.001 mg/l 1 JA27481-4F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-5F 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 0.000 mg/l 1 JA27481-6F 0.000 0.000 22:30 0.004 0.0001 50.0 50.0 1 -0.004 mg/l 1 JA27481-5FCNF 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 1 -0.004 mg/l 1 JA27481-3FPHCONF 0.001 0.000 22:30 0.001 0.0074 50.0 50.0 5 0.000 mg/l 1 JA27481-3FPHCONF 0.011 0.000 22:30 0.011 0.0074 50.0 50.0 1 0.0007 mg/l CCV 0.485 NA 22:28 0.485 0.5051 NA NA NA NA NA mg/l CCB 0.000 NA 22:28 0.000 -0.0041 NA NA NA NA NA mg/l 1 JA27481-3CONF 0.008 0.000 22:30 0.008 0.0043 50.0 50.0 5 0.021 mg/l 1 JA27481-3PHCONF 0.010 0.000 22:30 0.008 0.0043 50.0 50.0 5 0.021 mg/l 1 JA27481-3PHCONF 0.010 0.000 22:30 0.0010 0.0064 50.0 50.0 1 0.0006 mg/l 1 JA27481-3PHCONF 0.010 0.0004 50.0 50.0 1 0.0004 mg/l 2 FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 1 gn30041-D6 0.121 0.000 22:40 0.357 0.3707 50.0 50.0 25 9.288 mg/l 1 JA27503-1 0.117 0.000 22:40 0.117 0.1187 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.010
1	0.002	0.010
11	0.002	0.010
1 JA27481-6F 0.000 0.000 22:30 0.000 -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27481-3FCONF 0.004 0.000 22:30 0.004 0.0001 50.0 50.0 5 0.000 mg/l 1 JA27481-3FCONF 0.011 0.000 22:30 0.011 0.0074 50.0 50.0 1 0.007 mg/l 1 JA27481-3FHCONF 0.011 0.000 22:30 0.011 0.0074 50.0 50.0 1 0.007 mg/l 1 JA27481-3FHCONF 0.011 0.000 22:30 0.011 0.0074 50.0 50.0 1 0.007 mg/l 1 JA27481-3CONF 0.008 0.000 12:30 0.008 0.0041 NA NA NA NA NA NA MA	0.002	0.010
1 JA27481-3FCONF	0.002	0.010
1 JA27481-3PPICONF 0.011 0.000 22:30 0.011 0.0074 50.0 50.0 1 0.007 mg/l	0.002	0.010
1 JA27481-3FPHCONF	0.010	0.050
CCV 0.485 NA 22:28 0.485 0.5051 NA NA NA NA MA MA MA MA MA NA MA MA MA MA MA MA NA MA NA MA MA MA MA NA MA NA MA MA NA MA NA MA NA NA MA MA NA NA NA MA MA NA NA NA NA MA NA MB/I Implied	0.002	0.010
CCB	0.002	0.010
1 JA27481-3CONF 0.008 0.000 22:30 0.008 0.0043 50.0 50.0 5 0.021 mg/l 1 JA27481-3PHCONF 0.010 0.000 22:30 0.010 0.0064 50.0 50.0 1 0.006 mg/l I JA27481-3PHCONF 0.010 0.000 22:30 0.010 0.0064 50.0 50.0 1 0.004 mg/l I FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.010
1 JA27481-3PHCONF 0.010 0.000 22:30 0.010 0.0064 50.0 50.0 1 0.006 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 25 9.268 mg/l JA27503-1 2.455 OVR 22:40 0.121 0.1229 50.0 50.0 25 3.073 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.010	0.050
FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.030
FALSE	0.002	0.010
FALSE	0.002	0.010
FALSE	+	0.010
FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	+
FALSE	0.002	0.010
FALSE	0.002	0.010
FALSE	0.002	0.010
CCV 0.485 NA 22:30 0.485 0.5051 NA NA NA NA NA MA	0.002	0.010
CCB 0.000 NA 22:30 0.000 -0.0041 NA NA NA NA NA mg/l 1 gn30041-S6 0.357 0.000 22:40 0.357 0.3707 50.0 50.0 25 9.268 mg/l 1 gn30041-D6 0.121 0.000 22:40 0.121 0.1229 50.0 50.0 25 3.073 mg/l 1 JA27503-1 2.455 OVR 22:40 FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27503-1 0.117 0.000 22:40 0.117 0.1187 50.0 50.0 25 2.968 mg/l 1 JA27503-1 0.117 0.000 22:40 0.117 0.1187 50.0 50.0 25 2.968 mg/l 1 FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 1 FALSE -0.0041 50.0 50.0	0.002	0.010
1 gn30041-S6 0.357 0.000 22:40 0.357 0.3707 50.0 50.0 25 9.268 mg/l 1 gn30041-D6 0.121 0.000 22:40 0.121 0.1229 50.0 50.0 25 3.073 mg/l 1 JA27503-1 2.455 OVR 22:40 FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27503-1 0.117 0.000 22:40 0.117 0.1187 50.0 50.0 25 2.968 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.010
1 gn30041-D6 0.121 0.000 22:40 0.121 0.1229 50.0 50.0 25 3.073 mg/l 1 JA27503-1 2.455 OVR 22:40 FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27503-1 0.117 0.000 22:40 0.117 0.1187 50.0 50.0 25 2.968 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.010
1 JA27503-1 2.455 OVR 22:40 FALSE -0.0041 50.0 50.0 1 -0.004 mg/l 1 JA27503-1 0.117 0.000 22:40 0.117 0.1187 50.0 50.0 25 2.968 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.050	0.250
1 JA27503-1 0.117 0.000 22:40 0.117 0.1187 50.0 50.0 25 2.968 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.050	0.250
FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.010
FALSE -0.0041 50.0 50.0 1 -0.004 mg/l FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.050	0.250
FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.010
FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.010
	0.002	0.010
FALSE -0.0041 50.0 50.0 1 -0.004 mg/l	0.002	0.010
	0.002	0.010
	0.002	0.010
	0.002	0.010
	0.002	0.010

Comments:

11 9/14

GN 30041

Test: Hexavalent Chromium MDL = 0.002 mg/l GNBatch ID: $\frac{6 \times 3.06 \text{ Y}}{9}$ Product: XCr RDL = 0.010 mg/l Date: $\frac{9}{9}$
Method: SW846 7196A (NJDEP mod)
Digestion Batch QC Summary Units = mg/I
Method Blank ID: MOI Date: 9/9/09 Result: ADL RDL: 0.01 <rdl: th="" ycs<=""></rdl:>
Spike Blank ID: B1 Date: Result: O · IUS Spike: O · ISO %Rec.: 98.67/
Duplicate ID: DI Samp. Result: Looc Dup. Result: 49.00 2 %RPD: 0.01
MS ID: <u>\$1</u> Samp. Result: <u>40.002</u> MS Result: <u>40.002</u> Spike <u>9.150</u> %Rec: <u>0.07</u> .
Diluted Sample ID: 5A7 417-3F Samp. Result: 40.002 Dil. Result: 40.002 %RPD: 0.07.
pH adj. PS ID: Samp. Result: <u>८०.००२</u> MS Result: <u>0.144</u> Spike: <u>0.150</u> %Rec: <u>96.00</u> /.
Analysis Batch QC Summary Units = mg/l
CCV: 9/9/9 Result: 0.108 TV: 0.100 %Rec.: /02 / . CCV: Result: 0.101 TV: %Rec.: /01 / . CCV: Result: 0.101 TV: %Rec.: /01 / . CCV: Result: 0.101 TV: %Rec.: /01 / . CCV: Result: 0.101 TV: %Rec.: /01 / . CCV: Result: 0.101 TV: %Rec.: /01 / . CCV: Result: 0.106 TV: %Rec.: /01 / .
CCB: 9/9/99 Result: <0.0/0 RDL:
Reagent Reference Numbers: (FE ATTACHED)
Initial Calibration Source:
Continuing Calibration Source:
Analyst: M /RA Date: 9/9/09
Comments:

Form: GN-076 Rev Date: 6/7/07

_	$MDI = 0.002 \text{ mg/l} \qquad GNBatch ID: \qquad 60.300 \text{ Y} / $
Test: Hexavalent Chromium	MDL = 0.002 mg/l GNBatch ID: $9/9/30$ $9/9/30$
Product: XCr Method: SW846 7196A (NJDEP mod)	RDL = 0.010 High Date.
Digestion Batch QC Summary	Units = mg/l
Method Blank ID: Mይ \ Date:	Result: RDL: <rdl:< th=""></rdl:<>
	Result:Spike:%Rec.:
	<u>C 0.002.</u> Dup. Result: <u>C 0.002.</u> %RPD: <u>0.0 /</u> -
	MS Result: <u>Lo.002</u> Spike: <u>0.150</u> %Rec: <u>0.0 %</u>
	Result: <u>(0.002</u> Dil. Result: <u>(0.002</u> %RPD: <u>0.0</u> /-
	: <u>∠০.000</u> MS Result: <u>0.132</u> Spike: <u>0.150</u> %Rec: <u>88.∞</u> /
Analysis Batch QC Summary Units	s = mg/l
CCV: 9/9/09 Result: 5. VOC TV:	0.400 %Rec.: /0/ /·
CCV: Result: O. JOS TV:	" <u> </u>
CCV: Result: O. VOV TV:	
CCV: Result: 0. 707 TV:	
CCV: Result: O. VV TV:	· · · · · · · · · · · · · · · · · · ·
CCV: Result: TV:	: %Rec.:
	L. 0.0/0 <rdl th="" yfs<=""></rdl>
CCB: Result: (0.0/0 RDI	- 1 · Co A
CCB: Result: 0.0/2 RDI	
CCB: Result: Co.O /O RDI	
CCB: V Result: Co. P/ORD	· · · · · · · · · · · · · · · · · · ·
CCB: Result: RD	L: <rdl:< th=""></rdl:<>
Reagent Reference Numbers:	SEE ATTACHED
Initial Calibration Source:	
Continuing Calibration Source:	
. /	60
Analyst: \sqrt{RA} Date: $9/9$	<u> 137</u>
Comments:	

Test: Hexavalent Chro Product: XCr Method: SW846 7196A		RDL	= 0.002 mg/l = 0.010 mg/l		9/09 1
Digestion Batch QC S			s = mg/l		
Method Blank ID: <u>M6</u> Հ	D	ate: <u>9/9/69</u>	Result:	RDL: 0.01	RDL: <u>Yeo</u>
Spike Blank ID: <u>BL</u>					
Duplicate ID: <u>D3</u>					
MS ID: <u>≤3</u>	_ Samp. Res	sult: <u>/o-002</u> MS	Result: 0.153	Spike: <u>o ISO</u> %F	Rec: 102 0/
Diluted Sample ID:		_ Samp. Result:_	Dil. Re	esult:	%RPD:
pH adj. PS ID:	Sar	mp. Result:	M\$ Result:	Spike:	%Rec:
Analysis Batch QC Sum	mary	Units = mg/l	1. FDE 1	11.	
CCV :	Result:	TV:	%Rec.:		
ccv:	Result:	TV:	%Rec.:		
CCV :	Result:	TV:	%Rec.:		
CCV :	Result:	TV:	\%Rec.:		
CCV :	_ Result:	TV:			
ccv:	Result:	TV:	%Rec.:		
CCB:	Result:	RDL:	ARDL:		
CCB:		/	<rdl:< th=""><th></th><th></th></rdl:<>		
CCB:		_	<rdl:< th=""><th></th><th></th></rdl:<>		
ссв:	Result:	RDL:	<rdl:< th=""><th>_</th><th></th></rdl:<>	_	
CCB:			<rdl:< th=""><th></th><th></th></rdl:<>		
CCB:	Result:	RDL:	<rdl:< th=""><th>_</th><th></th></rdl:<>	_	
Reagent Reference N	umhers:				
Neagent Neiciciae N	umbers.	SEE	ATTACHE	D .	
			,		
					MAG
Initial Calibration Sou					
Continuing Calibration	n Source:				Man berger
Analyst: Nw R	A_ Date:_	9/9/09			
Comments: /					
4419.4-4***	····				

PAGE 3

Test: Hexavalent Chro Product: XCr Method: SW846 7196A		P mod)	MDL = 0.00 RDL = 0.01	/2 mg/l 0 mg/l	GNBatch I Date:	D: <u>CN 300 +1</u> 919109
Digestion Batch QC S			Units = mg/	1	.041	and the state of t
Method Blank ID: <u>MB2</u>		_ Date:9/9/	09 Result	t:	RDL:	<rdl:< th=""></rdl:<>
Spike Blank ID:						
Duplicate ID։ <u>Dև</u>						
MS ID: SU						
Diluted Sample ID: JA27		Samp R	esult: 0 · 0 l	Dil. Re	sult: 4 0.02	%RPD:5%.06%
pH adj. PS ID:	y	Samp. Result:	0.01) MS	Result: 💍	<u>мы 9/15</u> • <u>000</u> Spike	709 e:0.\\$0 %Rec:
Analysis Batch QC Sum	mary	Units	= mg/l			
CCV :	Result:	TV:_	%R	lec.:		
CCV:						
CCV:						
ccv:						
ccv:	_ Result:_	TV:_	%R	lec.:		
ccv :		TV:_	%F	lec.:	_	
ζ., α	Hach					
CCB: See a	Result:_					
CCB:	-		<f< th=""><th></th><th></th><th></th></f<>			
CCB:		RDL:				
CCB:						
CCB:						
CCB:	Result:_	RDL:	<f< th=""><th>RDL:</th><th>_</th><th></th></f<>	RDL:	_	
Reagent Reference N	umbers:					
			· 			
	*****	-				
Initial Calibration Sou	rco:		<u>.</u> ,	<u> </u>		 -
Continuing Calibration		Δ.				
Continuing Campiatio	ii Souici	· .				· · · · · · · · · · · · · · · · · · ·
Analyst: M / F4						

Test: Hexavalent Chron	mium		.002 mg/l		1D:GN30041
Product: XCr	(NUDED mod)		.010 mg/l	Date:	919/09
Method: SW846 7196A		Units = r	ng/l		
Digestion Batch QC Su	•		•		
Method Blank ID: MB7_					
Spike Blank ID: <u>B</u> 2	Date:	<u>/</u> Res	ult:	Spike:	%Rec.:
Duplicate ID: <u>D</u> 5	Samp. Resul	t: <u>८०∙००</u> ∼	Dup. Result:_	<u> </u>	%RPD: <u>o·o'/</u> -
MS ID: 55	Samp, Result: <u>ده،</u>	<u>ಾಂ೭</u> MS Re	sult: <u> </u>	Spike: <u>8-150</u>	∑ %Rec: <u>♂ 🎖 🗸</u>
Diluted Sample ID: 3A27	181-3F Samp.	Result: <u> </u>	<u>າວວາ</u> Dil. Res	sult: <u>८०००</u> -	<u>1</u> %RPD: <u>0∙0 Ž</u> ∙
pH adj. PS ID: y	Samp. Resu	t: <u> ८० · ୦</u> ၀ጊ	MS Result: 💁 🕜	Spik	e: <u>o·ISO</u> %Rec: <u>U·67 /</u>
Analysis Batch QC Summ	nary Unit	s = mg/l			
ccv:	Result: TV	·	%Rec.:	_	
ccv:					
ccv :	Result: TV	':	%Rec.:		
CCV :					
CCV :	Result: TV	/:	%Rec.:	_	
CCV:	Result:TV	<u>':</u>	%Rec.:	_	
CCB: See a	Hached				
CCB:	Result: RD	L:	<rdl:< th=""><th></th><th></th></rdl:<>		
CCB:					
CCB:					
CCB:					
CCB:					
CCB:	Result: RD	L:	<rdl:< th=""><th></th><th></th></rdl:<>		
Reagent Reference Nu	mbers:		· • • • · · ·		
		· 	- WANT		
Soo atached				*****	
Initial Calibration Sour		#*· !			
Continuing Calibration	······				
Continuing Campiation	- COUICO.	4.45			
Analyst: MW FA	Date: 9/9/09				

Comments:____

Test: Hexavalent Chromium	1
---------------------------	---

Product: XCr

MDL = 0.002 mg/lRDL = 0.010 mg/l

GNBatch ID: 62 300 4 1
Date: 919/09

Method: SW846 7196A (NJDEP mod)

Digestion Batch QC S	ummary	Units =	mg/l		
Method Blank ID: <u>мβ</u> ?	Date:_	9 9109 F	Result:	RDL:	<rdl:< td=""></rdl:<>
Spike Blank ID: 62	Date:_	 Re	esult:	Spike:	%Rec.:
Duplicate ID: D 6	Samp. F	Result: 2.968	Dup. Result:	3.073	%RPD: <u>3-ሬን</u> /
мs ID: <u>S6</u>					
Diluted Sample ID:	Sa	amp. Result:	Dil. Re	sult:	%RPD:
pH adj. PS ID:	Samp. F	Result:	MS Result:	Spike	e: %Rec:
Analysis Batch QC Sum	mary	Units = mg/l	a del adorre de la companya del companya de la companya del companya de la compan		,, t (d) ,
CCV :	Result:	TV:	%Rec.:		
CCV :					
CCV:					
CCV :	=			_	
CCV :	Result:	_ TV:	%Rec.:		
CCV :	_ Result:	TV:	%Rec.:	_	
CCB: See	attached Result:	RDL:	_ <rdl:< td=""><td>_</td><td></td></rdl:<>	_	
CCB:	Result:	RDL:	_ <rdl:< td=""><td>_</td><td></td></rdl:<>	_	
CCB:	Result:	RDL:	_ <rdl:< td=""><td>_</td><td></td></rdl:<>	_	
CCB:	Result:	RDL:	_ <rdl:< td=""><td>_</td><td></td></rdl:<>	_	
CCB:	Result:	_ RDL;	<rdl:< td=""><td>-</td><td></td></rdl:<>	-	
ССВ:	Result:	RDL:	_ <rdl:< td=""><td>-</td><td></td></rdl:<>	-	
Reagent Reference No	umbers:		····		
Soe attached					
Bac attorney					***
the state of the s					
Initial Calibration Sou	rce:				· · · · · ·
Continuing Calibratio				Harina an	
· · · · · · · · · · · · · · · · · · ·	•				
Analyst: MU/ RA	Date: <u>9 9 </u>	9			
Comments:					

Form: GN-076 Rev. Date: 6/7/07

Pg 6

Hexavalent Chromium pH Adjustment Log Method: SW846 7196A (NJDEP mod)

pH adj. start time:	2026	+2115	pH Adjust. Date: 9/9/09
pH adj. end time:	2035	2125	GN Batch ID: 30041

Sample ID	Initial Sample Volume (ml)	Final Volume (ml)	pH after H2SO4	bkg pH after H2SO4	Spike Info	Comments
CCV	45	50	2.09		SN ORRO	em ultra
ccv					, , , , , , , , , , , , , , , , , , ,	
ccv						
ccv						
CCB	us.	50	2.02			
ССВ						
ССВ						
ССВ						
MS JA27477-3F	45	50	2.03	2.19	W 027-5	opn absolutes
DUP JAZZUZZ -JF			2.15	2.19		
SB			2.09		12 0£7.5	opm Absolute
РВ			2.08	2.01		
1.5A27457-1F			2.16	2.13		
2. 2F			2.11	2.05		
3. 3F			2.19	2.19		
4. 4F			2.13	2.15		
5. SF			2.16	2.13		
6. 6F			2.06	2.16		
7. 7F			2.16	2.08		
8:7A27U17-3F			2.12	2.09		125
9.JA27477-3F PHAN	مل		2.01	2.19	inl of 7-5	ppm It Na OH 8.40
ו -ררערגאד. 10.	45	50	2.02	2.19		
11. 2			2.01	2.05		
12. 3			1.99	2.09		
13. 4			2.03	2.10		
14. 5			2-04	1.98		
15. b			1.92	1.96		
16.			2.10	1.97		
17. 8			2.14	1.99		
18. D2. JA 27477-3			2.14	2.10		
19.52 5A27477-3			2.13		IN 02 7	sppm abolute
20. ¬A2フレココー ろ			2.19	2.02		1.5
PSPH JAZZUZZZZ			2.14	2.10		IN NAOH IN OF 7-Spom Above
DIL						
DIL						

				<u></u>			
Analyst:	cun	/PA	Date:	9/9/09	QC Reviewer:	Date:	

Form: GN-077
Rev. Date:2/11/99

<u></u>

Hexavale	ent Chromium pH Adjustment Lo	9
Method:	SW846 7196A (NJDEP mod)	

pH adj. start time:	2130 219/09	pH Adjust. Date: 9/9/09
pH adj. end time:	2200	 GN Batch ID:64 30041

Sample D		1-90-1		,		,	
CCV CCV CCB CCB CCB CCB CCB CCB CCB STATIUSI-3 L95 2.00 L97 2.00 L97 2.00 L97 2.00 L98 2.00 L	Sample ID	Volume	Volume		after	Spike Info	Comments
CCV CCV CCB CCB CCB CCB CCB CCB CCB CCB	ccv	45	S O	1.99			
CCV CCB CCB CCB CCB CCB CCB CCB CCB MS JATURI- 3 U.S. SO 1.99 2.00 Ind of 7 Sppm Absolute 1.98 2.00 1.3A27481-1 2.00 2.2 2.1 1.3A27481-1 2.00 2.1 2.14 3.3 3.1.98 2.00 4.4 4.4 4.1.96 2.01 5.5 6.6 6 1.99 2.00 7.7 7 1.99 2.10 1.99 2.00 7.7 7 1.99 2.10 1.00 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	ccv						
CCB CCB CCB CCB CCB CCB CCB MS JANUSI-2 UP JANUSI-3 SO 1.99 2.00 1.98 2.00 1.98 2.00 1.98 2.00 1.98 2.00 1.98 2.00 1.98 2.00 1.98 2.00 1.98 2.00 1.98 2.00 1.98 2.00 1.98 2.00 1.99 2.00 1	ccv						
CCB CCB CCB CCB MS JA71481-3 US SO 1.99 2.00 Ind 97 7 Sppm Absolute DUP JA17481-3 SB(2) 1.3A27481-1 2.00 2.14 3.3 1.98 2.00 5.5 5.1.95 2.00 6.6 6.6 7.7 7 1.99 2.00 1.	ccv						
CCB CCB CCB MS JATJUSI-2 US SO 1.99 2.00 Iml of 7 Sppm Absolute DUP JATJUSI-3 SB(2) 1.3AZJUSI-1 2.00 2.14 3.3 1.98 2.00 4.4 4.4 1.96 2.01 5.5 5.5 1.99 2.00 6.6 6.6 1.99 2.00 7.7 7 1.99 2.14 1.99 2.14 1.99 2.00 7.7 1.99 2.14 1.99 2.14 1.99 2.14 1.99 2.14 1.99 2.02 1.99 2.03 1.	CCB	45	S0	2.07			
CCB MS JANJUSI-3 U.S. SO 1.99 2.00 Im of 75ppm Absolute DUP JANJUSI-3	ССВ						
MS 3A71481-3 DUP 3A71481-3 SB(2) 1. 3A27481-1 2. 00 2. 14 3. 3 1.98 2.00 4. 4 1.96 2.01 5. 5 1.98 2.00 6. 6 7. 7 1.99 2.10 1.39 2.00 1.99 2.00 1.99 2.00 1.99 2.00 1.99 2.00 1.99 2.10 1.99 2.10 1.99 2.10 1.99 2.10 1.99 2.11 1.99 2.11 1.99 2.11 1.99 2.12 1.99 2.03 1.99 2.14 1.90 2.14	ССВ						
DUP SATING - 3 SB(2) PB(2) 1. JA27 481 - 1 2. 00 2. 14 3. 3 1. 98 2. 00 4. 4 1. 98 2. 00 4. 4 1. 98 2. 00 7. 7 1. 99 2. 00 7. 7 1. 99 2. 00 7. 7 1. 99 2. 00 7. 7 1. 99 2. 10 4. SSTA 27 481 - 1 F 1. 99 2. 10 1. 99 2. 10 1. 99 2. 10 1. 99 2. 10 1. 99 2. 10 1. 99 2. 11 1. 3F 1. 90 2. 14 1. 97 2. 17 1. 90 2. 14 1. 97 2. 17 1. 90 2. 14 1. 97 2. 18 3. 3PH 2. 10 2. 10 2. 10 2. 11 3. 5PM 1. 90 1. 10 2. 10 2. 10 2. 10 2. 11 3. 5PM 1. 90 1. 10 2. 10 2. 10 2. 10 2. 11 3. 1. 5 PM 1. 5 PM 1. 5 PM 1. 10 2. 10 2. 11 1. 10 2. 11 1. 10 3. 10 3. 10 4. 11 4. 11 4. 12 4. 12 4. 13 4. 14	ССВ						
DUP SATING - 3 SB(2) PB(2) 1. JA27 481 - 1 2. 00 2. 14 3. 3 1. 98 2. 00 4. 4 1. 98 2. 00 4. 4 1. 98 2. 00 7. 7 1. 99 2. 00 7. 7 1. 99 2. 00 7. 7 1. 99 2. 00 7. 7 1. 99 2. 10 4. SSTA 27 481 - 1 F 1. 99 2. 10 1. 99 2. 10 1. 99 2. 10 1. 99 2. 10 1. 99 2. 10 1. 99 2. 11 1. 3F 1. 90 2. 14 1. 97 2. 17 1. 90 2. 14 1. 97 2. 17 1. 90 2. 14 1. 97 2. 18 3. 3PH 2. 10 2. 10 2. 10 2. 11 3. 5PM 1. 90 1. 10 2. 10 2. 10 2. 10 2. 11 3. 5PM 1. 90 1. 10 2. 10 2. 10 2. 10 2. 11 3. 1. 5 PM 1. 5 PM 1. 5 PM 1. 10 2. 10 2. 11 1. 10 2. 11 1. 10 3. 10 3. 10 4. 11 4. 11 4. 12 4. 12 4. 13 4. 14	MS JA27491- 3	4.5	50	1.99	2.00	In 05.7	Soon Absolide
SB(2) 1. JA27481-1 2. 2 3. 3 4. 4 1. 98 2.00 6. 6 1. 99 2. 00 7. 7 1. 99 2. 10 2. 10 2. 10 2. 10 2. 10 2. 10 2. 10 2. 10 2. 10 3. 36 1. 10 3. 10 3. 10 4. 10 4. 10 4. 10 4. 10 5. 10 6. 10 6. 10 6. 10 7		1			1	7	77
PB(2)	sB(Ղ)			•			
2. 2 2 7.14 5. Hered 3. 3 1.98 2.00 4. 4 1.96 2.01 5. 5 1.96 2.00 6. 6 1.99 2.00 7. 7 1.99 2.14 4. SJA27481-36 9. JA 27481-16 10. 2 F 1.99 2.02 11. 3 F 2.14 2.05 12. 4 F 1.90 2.14 14. 6 F 1.90 2.14 15. TA27491-36 16. JA27481-3691 17. JSJAA7481-3691 18. JA27481-3691 19. JA27481-3696 20. PS DIL							
2. 2 2 7.14 5. Hered 3. 3 1.98 2.00 4. 4 1.96 2.01 5. 5 1.96 2.00 6. 6 1.99 2.00 7. 7 1.99 2.14 4. SJA27481-36 9. JA 27481-16 10. 2 F 1.99 2.02 11. 3 F 2.14 2.05 12. 4 F 1.90 2.14 14. 6 F 1.90 2.14 15. TA27491-36 16. JA27481-3691 17. JSJAA7481-3691 18. JA27481-3691 19. JA27481-3696 20. PS DIL	1.3A27481-1			2.00			
3. 3 1.98 2.00 4. 4 1 1.96 2.01 5. 5 1.95 2.00 6. 6 1.99 2.14 6.553727481-36 9.727481-16 10. 26 11. 36 12. 46 12. 46 13. 56 14. 66 1.90 2.14 14. 66 1.90 2.14 15. 727491-36 16. 527491-36 17. 12. 12. 15. 16. 5. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16							E'lteren
4. 4 196 2-01 1 5. 5 1.95 2-00 6. 6 1.99 2-00 7. 7 1.99 2-14 9. JA 27481-36 1.99 2-00 1.1 of 7-5pp Absolute 9. JA 27481-16 1.99 2-02 1.19 10. 26 2-01 2-14 11. 36 2-00 1.1 of 7-5pp Absolute 12. 46 1.97 2-17 13. 56 1.90 2-14 14. 66 1.97 2-13 15. JA 27491-36 2-10 2-09 1.1 of 7-5pp Absolute, filtered 16. JA 27481-36pt 2-10 2-09 1.1 of 7-5pp Absolute, filtered 16. JA 27481-30pt 2-12 1.99 1.58 24 filtered 18. JA 27481-30pt 2-12 1.99 1.58 24 filtered 19. JA 27481-30pt 2-12 1.99 1.99 1.58 24 filtered 20.					2.00		
5. 5 1.95 2.00 6. 6 1.99 2.14 6. 5 1.99 2.14 6. 5 1.99 2.14 6. 5 1.99 2.00 7. 7 1.99 2.00 1.99 2.00 10. 2F 2.01 2.14 11. 3F 2.14 2.05 (Here) 12. 4F 1.90 2.14 13. 5F 1.90 2.14 14. 6F 1.97 2.13 15. 5F 2.10 2.09 Inl of 75 ppm Absolute. Filtered 16. 5A7481-3FPH 2.10 2.09 Inl of 75 ppm Absolute. Filtered 17.553A71481-3conf 2.14 2.08 18. 5A71481-3conf 2.14 2.09 18. 5A71481-3conf 2.14 2.09 19. 5A71481-3phone 2.17 1.95 1.5 8.24 Filtered 20. PS DIL							V
6. 6 1.99 2.00 7. 7 1.99 2.14 \$\$\frac{1}{5}\frac{1}{5}\frac{1}{2}\frac{1}{5}	5. .						
7. 7 1.99 2.14 \$.\$\frac{1}{5}\frac{1}{5}\frac{1}{2}\frac{1}{5							
SSJA27481-3F	7.						,
9. JA 27481-1 F 10. 2 F 11. 3 F 12. 4 F 12. 4 F 13. 5 F 14. 6 F 15. JA 27481-3 F 16. JA 27481-3 F 17. Jay 2.13 16. JA 27481-3 F 17. Jay 2.14 17. Jay 2.15 18. JA 27481-3 conf 18. JA 27481-3 conf 18. JA 27481-3 conf 19. Jay 2.08 11. 5 8.24 Filter 19. JA 27481-3 phrone 20. PS DIL	1.55)JA27481-3F					12 06 7.	Soom Absolute
10. 2 F							
11. 3F 12. 4F 13. 5F 1-90 2-14 14. 6F 1-97 2-13 15. 7A27491-3F 16. JA27481-36PH 17. SJBA27481-36PH 18. JA27481-36ONF 18. JA27481-36NF 19. JA27481-30NF 19. JA27481-30NF 10. JA27481-30NF 10. JA27481-30NF 11. JA27481-30NF 11. JA27481-30NF 12. 12. 1-95 Jay 7-5ppm Absolute 12. 12. 1-95 Jay 7-5ppm Absolute 15. JA27481-30NF 16. JA27481-30NF 17. Jay 7-5ppm Absolute 18. JA27481-30NF 19. JA27481-30NF 10. JA27481-30NF 10. JA27481-30NF 11. JA27481-30NF 11. JA27481-30NF 11. JA27481-30NF 12. Jay 7-5ppm Absolute 13. Jay 7-5ppm Absolute 14. Jay 7-5ppm Absolute 15. JA27481-30NF 16. JA27481-30NF 17. Jay 7-5ppm Absolute 18. JA27481-30NF 19. JA27481-30NF 19. JA27481-30NF 10. Jay 7-5ppm Absolute 19. JA27481-30NF 10. Jay 7-5ppm Absolute 10. JA27481-30NF 10. Jay 7-5ppm Absolute 10. Jay 7-5p	10. 2 F						
12. 4 F 13. 5 F 1-90 2.14 14. 6 F 1-97 2.13 15. 7A27491-3 F 16. 7A27491-3 F 17. 75/37A27481-3 F 18. JA27481-3 con F 19. 7A27481-3 phrone 6 2.14 2.08 1.5 8.24 Filter 19. 7A27481-3 phrone 6 2.17 1.95 1.97 7.5 ppm Absolute 6 20. PS DIL	11. 3F						Clerel
13. SF 14. OF 15. JA27491-3F 16. JA27481-3FPH 17. JS JSA27481-3CONF 18. JA27481-3CONF 19. JA27481-3PHrone 19. JA27481-3PHrone 19. JA27481-3PHrone 10. DIL							
14. 6F 1-97 2-13 15. 7A27491-3F 16. TA27481-3FPH 2-10 2-09 Int of 75 fpm Absolute, Filters 17. DSJ DA27481-3C 18. JA27481-3CONF 19. JA27481-3CONF 2-12 1-95 1-95 1-5 ppm Absolute 20. PS DIL							
15. TA27491-3F 16. JA27481-3FPH 2.10 2.09 Inly 5 ppm Absolute. Filtery 17. DSJJA27481-3C 18. JA27481-3CORF 2.13 1.99 1:5 8.24 Filtery 19. JA27481-3PHrone 2.17 1.95 Jay 7-Sppm Absolute DIL	14. 6F		· ·	1			
16. JAZIU81-3FPH 2:10 2:09 Inl of 7 5 fpm Absolute, filtered 17. JSJJAZIU81-3F 2:14 2:08 18. JAZIU81-3conf 2:13 1:99 1:5 8:24 Filtered 19. JAZIU81-3conf 2:12 1:95 J of 7-5 ppm Absolute 20. PS DIL	15. JA27491-3F						1: 5 W8.12 Filtered
12 DS JANTURI-3F 18. JANTURI-3CONF 19. JANTURI-3PHRONE 2.14 2.08 1.5 8.24 Filter 19. JANTURI-3PHRONE 2.17 1.95 Jay 7-5ppm Absolute DIL						Ind or -	
18. JA27481-3conf 2.13 1.99 1:58.24 Filter 19. JA27481-3pHrone 6 2.12 1.95 1 of 7-5ppm Absolute 1 20. PS DIL						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1
19. JA27481-3PHrone 6 2.12 1.95 Jay 7-Sppm Absolute 1 20. PS DIL	, v						1:5 8.24 Filter
20. PS		£				N 027.	
DIL							
	PS						
	DIL						
DIL	DIL						

Reagent Information:	Œ	EA	TACHED.		
Analyst: MW	12.A	Date:	9/9/09	_ QC Reviewer:	Date:

Form: GN-077 Rev. Date:2/11/99

Hexavalent Chromium pH Adjustment Log Method: SW846 7196A (NJDEP mod)

pH adj. start time:	7130			pH Adjust. Date: <u>919109</u>				
pH adj. end time:	919109 2200				GN Batch ID: 6-N30041			
			-					
	Initial							
1	Sample Volume	Final	nl-l offer	bkg pH				
Sample ID	(ml)	Volume (ml)	pH after H2SO4	after	Snike Info	Comments		
CCV				112004				
	45	S0	2.10		snice sp	pm ultra		
ccv								
CCV		<u> </u>						
CCB			0 11					
CCB	45	.50	2.14					
CCB								
CCB					 			
			. 6 .					
MS JADJUA9-1F	45	50	1-94	7.05	IN #2.	5.ppm Absolute		
DUP: JA 27499-18 SB(2)		1	208	1.94	<u> </u>	5pp Absolute		
PB (2)	 	 	2.10	1.93	1 y do 1.	spp Absolute		
			2.15	9.02		'		
1. JA27499-1F			1.94	2.05				
2. 2F	 		2.02	2.13				
3. 3F			2.05					
4. 4F	 \	<u> </u>	2.12	2.00				
5.					-			
6.					<u> </u>			
7.						3		
8.								
9,	<u> </u>				· · ·			
10.								
11.			· · · · · · · · · · · · · · · · · · ·					
12.					1			
13.	<u> </u>							
14.			1					
15.								
16.			<u> </u>					
17.					<u> </u>			
18. 19.			 					
20.								
20. PS								
			ļ					
DIL								
	<u> </u>		<u></u>					
Reagent Information:		see A	TTPLIFE	D.				
	· · · · · · · · · · · · · · · · · · ·							
Analyst: My	/RA	Date: 9	1909	QC Revie		Date:		

180 of 189

ACCUTEST.

JA27477 Laboratories

Rev. Date: 2/11/99

EACCUTEST

pH adj. start time; pH adj. end time:		<u> 2225</u>				ist. Date: <u>9 9 0 9</u> ch ID: <u>6 월 300 다 </u>
Sample ID	Initial Sample Volume (ml)	Final Volume (ml)	pH after H2SO4	bkg pH after H2SO4	Spike Info	Comments
ccv	us	SO	1-99			
ccv						
ccv						
ccv						
ССВ	45	50	2.02			
ССВ						
ССВ						
ССВ						
MS JA27503-1	45	50	2.01	1.92		1:25 HONOR 75pm
DUP JA 27 503-1		1	2.202	1.97		1:25
SB(2_)			2 199	09		
PB (2)						
4			2.4			

1:25 2-02 1.93 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. PS DIL DIL

Reagent Information:			SEE			
		,				
Analyst:_	WB	/P-A-	Date:_	9/9/09	QC Reviewer:	Date:

Form: GN-077 Rev. Date: 2/11/99

GN30041

Reagent Information Log - XCR - Water (7196a)

Reagent	XP	Reagent # or Manufacturer/Lot
Calibration Source: Hexavalent Chromium, 1000 mg/L Stock	1/26/12	ABSONTE GRADE WT# 052609
Calibration Checks: Hexavalent Chromium, 1000 mg/L Stock	7/31/21	MCTRA SCI LOT# JODOSO9
External Check	N/A	N/A
Spiking Solution Source	5/26/12	ABSOUTE GRADE GT # 052609
Diphenylcarbazide Solution		GNE9-72911-XCR
Sulfuric Acid, 10%		GNE9- 27876- XCR

All standards and stocks were made as described in the SOP for this method (circle one): (Y) or N If no (N), see attached page for standards prep.

Form: GN-087 1-23 Rev. Date: 2/16/99

Misc. Raw Data

Raw Data

P DIGESTION METH									
eating Method (circle	one):	Digestion	Block / Hot	Plates		1 1			
lethod Blank ID:			Prep Date: 910 09						
ab Control/Spike Blar	nk ID:		Start Time: Start Temp: Thermometer ID #:						
ab Control Source:						·			
			End Time: _		nd Tem];			
OUP 1 Sample ID:			Acceptable	temperature Rai	nges:				
OUP 2 Sample ID:		EPA 20			90 to 95 deg. C				
IS 1 Sample ID:			SW846	3010A, 3020A, 3	050B	90 to 95 deg. C	;		
IS 2 Sample ID:			<u></u>						
lote: Serial dilution s	hown for	QC trackii	ng only. No	t a separate dige	state.				
		Initial	Final	Acids Use	d	Spikes Use	ed		
Sample ID	Pres	Sample	Volume	Amount and	Added -		Added -		
	Y/N	Volume	in ML	Name	Y or N	Amount and Name	YorN	Comments	
4P - 18	<u>N</u>			3.0 ml conc. HNO3			7		
AP -LC				5.0 ml 1:1 HCL					
AP -S						0.50 ml SP, 0.50 ml MIN	V 1		
AP -S						0.50 ml SP, 0.50 ml Ml	11		
#P -SD			· .						
-500-				/m	1700	HAID. I		111 -21	
JA27444-1F					COL	1. 1 lians co	*	114064	
-26									
-3F						EXP :-	781	J. 1.45	
JA27416-9F									
JA27444-FB		-					-		
JA27416-FB				<u></u>		1 1 010	Tm	210	
3				111	CYS	194 MO:	+18	UN 412	
10						[-\ A ·	- 1	2010 12	
1		<u> </u>				CXI		100	
2								1	
4									
5		`							
6 7 8 9									
<u>/</u>									
0									
20									
.0	·							1	
								100	
								1 9/	
		Ī	1	1	1			1/2/0	

Aqueous Digestion Log MP Batch ID:	
CP DIGESTION METHOD: SW846 3010A	

reating Method (circle one): Dig	estion Block / Hot Plates		
Viethod Blank ID:		Prep Date: 9/(0/09	
_ab Control/Spike Blank ID:	Start Time:	Start Temp: Thermometer ID	#-
_ab Control Source:			7F
	End Time:	End Temp:	
DUD 4 Committee			
DUP 1 Sample ID:	Acceptable temper	ature Ranges:	
OUP 2 Sample ID:	EPA 200.7	90 to 95 deg, C	
VIS 1 Sample ID:	SW846 3010A	3020A, 3050B 90 to 95 deg. C	
MS 2 Sample ID:		or in an area.	

		Initial	Final	Acids Use	d	Spikes Used	i T	
	Pres	Sample	Volume	Amount and	Added -		Added -	1
ample ID	Y/N	Volume	in ML	Name	YorN	Amount and Name	Y or N	Comments
IP -MB	N			3.0 mi conc. HNO3				
IP -LC				5.0 ml 1:1 HCL				
IP -S_						0.50 ml SP, 0.50 ml MIN1		
IP -S						0.50 ml SP, 0.50 ml MIN1		
F -SD						, , , , , ,		
				m	1	LIA.n		111 - 21
JA 27481-1F				<u> </u>	 L01	1 - Linns Co		114064
-2F	_ /							
- 3F						EXP :-	81	TIRA
- 4F					 		1011	4 104
-56		-			—		-	
√ -QF				E 114		1 1		
JA 27477-IF				Tile	ty's	18+ MO:	+ F &	'DM' 413)
- 2#							10	717 (100
- 3F							1	
0 -4F					-	t the	1 04	112018 /5 3
1 -SF							-	10 10
2 -GF								
3 V -7F	V				·			
4 JA 27481 - FB		.,						
5JA 27477-FB					†		 	
3								
7					1			
3						BM 9/	7	
9							409	
0								
					<u> </u>			
		2					+	
							- 	
nalyst: Katan	Â.	0 6 91	. () 4	···			_l	1

ICP DIGESTION METH	OD. SVV	46 301UA									
Heating Method (circle Method Blank ID:	one):	Digestion	Block / Ho	Plates			١				
			,		Prep Da		09				
Lab Control/Spike Blas	nk ID:		Start Time	Start Time: Start Temp: Thermometer ID #:							
_ab Control Source:											
			End Time:	and Time: End Temp:							
		·									
DUP 1 Sample ID: DUP 2 Sample ID: MS 1 Sample ID:		Acceptable	temperature Rai	naes:							
		EPA 2		5	90 to 95 deg. C						
		SW84	6 <mark>3010A, 3020A,</mark> 3	050B	90 to 95 deg.	C	İ				
MS 2 Sample ID:						or to be acg.	O				
Note: Serial dilution s	hown for	QC tracking	ng only. No	t a separate dige	state.						
		Initial	Final	Acids Use		Spikes U	end .				
	Pres	Sample	Volume	Amount and	Added -	Spikes U:	Added -				
Sample ID	Y/N	Volume	in ML	Name	Y or N	Amount and Nan		Commont			
MP -M8	N			3.0 ml conc. HNO3		air ara real	IC I UIN	Comments			
MP -LC	Y			5.0 ml 1:1 HCL	 		+				
MP -S_						0.50 ml SP, 0.50 ml M	INIA				
MP -S						0.50 ml SP, 0.50 ml N					
-SD					 	0.00 111 01 , 0.00 111 10	1141				
				7			_				
1 736455-10				<u> </u>	 L01	1 - 11002 L	0 1 :- 	HILA?L			
2 -2C 3 -3C	_					3	- 1	117007			
						-VO 1	- 61.	7.0			
4 JA27416-9F					 	L 0 - 1"	1011	J. 1.4D			
5 JA27416-FB			1		 						
6 T36455-FB	V		 	F	 		-	ļ			
7				t till	>	10+ NO	· L CO	DAL 3131			
8				1110	7	101.00	· 1 0	VIV TILL			
9				 	 						
10			† · · · · ·	 	 		: Oh	1201A B			
11			T		 	<u> </u>	_	1011			
12					 			1			
13					 						
14					 						
15			 		 						
16					-						
17		 	 	 	-						
18			 		+	>					
18					+						
20			 	 	 		\				
			 		 		\rightarrow	RA			
			 		-	ļ		9/,			
						1					

Heating Method (circle	e onej:	Digestion	Block / Hot	Plates					
Method Blank ID:					Prep Da	ite: 9/14/09			
Lab Control/Spike Bla	ınk ID:		Start Time:	tart Time: Start Temp: Thermometer ID#:					
Lab Control Source:]			, , , , , , , , , , , , , , , , , , ,	iomete: i	<i>σ</i> π	
			End Time:	E	nd Tem	9):			
	•	÷ .] -			· · · · · · · · · · · · · · · · · · ·			
DUP 1 Sample ID:		Acceptable	temperature Rar	iges;					
DUP 2 Sample ID:		EPA 2		_	90 to 95 deg. C		;		
MS 1 Sample ID:		SW84	6 3010A, 3020A, 3	050B	90 to 95 deg. C				
MS 2 Sample ID:						,			
Note: Serial dilution s	shown for	QC tracki	ng only. No	t a separate dige	state.				
		Initial	Final	Acids Use		Spikes User	1		
D1 .m	Pres	Sample	Volume	Amount and	Added -		Added -		
Sample ID	Y/N	Volume	in ML	Name	Y or N	Amount and Name		Comments	
MP -NB	N			3.0 ml conc. HNO3			_		
				5.0 ml 1:1 HCL					
MP -S						0.50 ml SP, 0.50 ml MIN1			
MP -S						0.50 ml SP, 0.50 ml MIN			
-SD	 								
1 JA 27818-1F	-	 	<u> </u>			HAULA		111.021	
2 1 -48		-				1. 1 ling 2 ca	y • • •	114064	
3 JA 27824-4F						£ 0			
41 0 -55	 	 	-			CXP :-	1811	J. 1.454	
5JA27817-19			- 		 		<u> </u>		
6 ↓ -SF	 	 			-		<u> </u>		
7 JA 27740-21	†	-		 	+~t	10+ NO:	LFQ	DAL 312)	
B JA 27962-10F				1110	<u> </u>	fot	10	אוד עוע	
9 JA277 GZ - 2F		-	1				-		
10JA27818-FB	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			 			+- 04	117010 Ki	
11 JA 27824 - FB				<u> </u>				10 11	
12JA27817-FB					 		 	•	
13 JA 277 40-FB					 				
14 JA 27762-FB					+		-		
15							+	<u> </u>	
16							-	1	
17					+		+	 	

Form AA-018A (3010A) Rev. Date: 01/12/09 1/4/09 QC Reviewer:

18 19 20

MM MACCUTEST.

Filtration

Aqueous Digestion Lo	~~ MD D-	inh It.							
ICP DIGESTION METI	TOD: CM	ICH ILL:		_					
Heating Method (circle	OD: SW		. Pal1 / 11	 /					
Method Blank ID:	e one):	Digestion	Block / Hot						
Lab Control/Spike Bia	I- 150:		Ter i e	Prep Date: 9/14/09					
	ink iu:		Start Time:	S	tart Tem	p:Thern	nometer	ID#:	7
Lab Control Source:									1
			End Time:		nd Tem	9:			7
DUD 4 C L ID									
DUP 1 Sample ID:				temperature Rai	nges:				1
	DUP 2 Sample ID:		EPA 2			90 to 95 deg. C			
MS 1 Sample ID:			SW84	6 3010A, 3020A , 3	050B	90 to 95 deg. C			
MS 2 Sample ID:	,								
Note: Serial dilution:	shown fo	r QC tracki		t a separate dige	state.				I
	1	Initial	Final	Acids Use		Spikes Use	d		٦
5	Pres	Sample	Volume	Amount and	Added -		Added -		
Sample ID	Y/N	Volume	in ML	Name	YorN	Amount and Name		Comments	
MP -MB	N			3.0 ml conc. HNO3					7
MP -LC				5.0 ml 1:1 HCL					7
MP -S						0.50 ml SP, 0.50 ml MIN	1		-
MP -S						0.50 ml SP, 0.50 ml MIN			┪
MP -SD						, , , , , , , , , , , , , , , , , , , ,	7		\dashv
				700	1	Liam		111 - 01	-
1 JA 27477-3FD				- C-1-1/-	LOI	1. Most co	₩	11 140 64	\dashv
2 JA 2 7718-1F							 		\dashv
3JA 27825-IF						EYP -	 Q ,	T. T. R	al.
4 1 -4F					<u> </u>		1011	<u> </u>	30
5 -SF	1: 1:	-			† 				\dashv
6 - GF				C.11	 	3 4	-		٦.
7 -76				Tilt	CYS	16+ NO:	+ + X	SIF NO	791
8 -8F			-			Lot 1001	1.0	710 110	<u> </u>
9 V - 10F							01	1-4. D	
10 JA 277@2-13F	<u>I- I</u>					LXP :	~ 0 4	112010 K	il.
11JA 27818-GF					 			1	- 47
12 JA 27 477 - FB									\dashv
13 JA 247 18- FB					1				\dashv
14 JA 278 25 - FB			1				-	<u> </u>	-
15 JA 27 767 - FB					+		 		\dashv
16JA 27818-FB					+		 	 	
17					-		 		\dashv
18								-	\dashv
19					 	-	+		
20			-		 				\dashv
					1	BM 9/1	24/2 0		\dashv
					+	Mar //	4/09		\dashv
	+			_1			-1	1	- 1

9/14/09 QC Reviewer:

MACCUTEST.

Filtration

A —									
Aqueous Digestion L	og MP Bat	ch ID:							
ICP DIGESTION METH	10D: SW8	346 3010A							
Heating Method (circl Method Blank ID:	e one);	Digestion	Block / Hot	Plates	,				
	-1- (5)			Prep Date:					7
Lab Control/Spike Bia Lab Control Source:	ink iu:		Start Time:	Start Time: Start Temp: Thermometer ID #:					1
Lab Control Source:								i	1
		· · · · · · · · · · · · · · · · · · ·	End Time:		nd Tem	9;			┪.
DUDAG		· · · · · ·						•	
DUP 1 Sample ID:			temperature Rai	nges:				1	
DUP 2 Sample ID:		EPA 2			90 to 95 deg. C			i	
MS 1 Sample ID:			SW846	6 3010A, 3020A , 3	050B	90 to 95 deg. C			
MS 2 Sample ID:									
Note: Serial dilution:	snown for	QC tracki		t a separate dige	state.				-1
	,	Initial	Final	Acids Use		Spikes Use	d		7
(C	Pres	Sample	Volume	Amount and	Added -		Added -	1	1
Sample ID	Y/N	Volume	in ML	Name	Y or N	Amount and Name		Comments	1
MP -M8	Ŋ			3.0 ml conc. HNO3			1 3 1		-
MP -LC				5.0 ml 1:1 HCL			-		-
MP -S						0.50 ml SP, 0.50 ml MlN	1		-
MP -S						0.50 ml SP, 0.50 ml MIN			┥
-SD							'		-{
			1	700	1	Liam	1 .		4
1 JA 27762-11F				IV	LOI	1 - FTEVUR LO	-	114024	-
2 1 -175	_						 		┥。
3 JA 27739 - ZF						-YP -	 Q 	T.T.R.	aLa
4JA 27777-1F					<u> </u>		1011	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	4/
5 -4F		-			 		+		-
6 -sf				6.11	<u> </u>	1	-		┥
7 -64				Tilt	tys	10+ NO:	+ 	10A/ 712	191
8 -75							 1 U	714 114	- **
9 1 -81	_ V				1				-
10 JA 27762-FB					1	- txp:	4 0 4	112010 K	W
11 JA 27739 - FB								1	47
12 JA 27777-FB					T		-	1	\dashv
13							 		-
14		-			-		-		4
15					 		- 		-
16			1		1		+	·	\dashv
17									\dashv
18					+		9/.		-
19						PH	7/10	1101	\dashv
20								1	\dashv
								\leftarrow	
								 \	\dashv
		1					1	+	-

11/16/09

Technical Report for

Honeywell International Inc.

HLANJPR: SA-5 Site 117, Jersey City, NJ

PO#3480090010

Accutest Job Number: JA30201

Sampling Date: 10/12/09

Report to:

Mactec

vhlieu@mactec.com

ATTN: Vanthuy Lieu

Total number of pages in report: 247

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Marty Vitanza 732-329-0200

RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, PA,

1 of 247

ACCUTEST.

David N. Speis

VP Ops, Laboratory Director

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	5
Section 3: Sample Results	
3.1: JA30201-1: 117-MW-A014-101209	7
3.2: JA30201-1F: 117-MW-A014F-101209	9
3.3: JA30201-2: 117-MW-A89-101209	11
3.4: JA30201-2F: 117-MW-A89F-101209	13
3.5: JA30201-3: 117-MW-A05-101209	15
3.6: JA30201-3F: 117-MW-A05F-101209	
3.7: JA30201-4: 117-MW-A05DP-101209	
3.8: JA30201-4F: 117-MW-A05DPF-101209	21
3.9: JA30201-5: 117-MW-A85-101209	23
3,10: JA30201-5F: 117-MW-A85F-101209	
3.11: JA30201-6: 117-MW-A062-101209	27
3.12: JA30201-6F: 117-MW-A062F-101209	
3.13: JA30201-7: 117-MW-A99-101209	
3.14: JA30201-7F: 117-MW-A99F-101209	
3.15: JA30201-8: 117-MW-S4-101209	
3.16: JA30201-8F: 117-MW-S4F-101209	
3.17: JA30201-9: 117-MW-FB-101209	39
Section 4: Misc. Forms	41
4.1: Chain of Custody	42
4.2: Sample Tracking Chronicle	
4.3: Internal Chain of Custody	
Section 5: Metals Analysis - QC Data Summaries	
5.1: Inst QC MA23347: Cr	58
5.2: Prep QC MP50217: Cr	
5.3: IDL and Linear Range Summaries	
Section 6: Metals Analysis - Raw Data	
6.1: Raw Data MA23347	98
6.2: Prep Logs	
Section 7: General Chemistry - QC Data Summaries	
7.1: Method Blank and Spike Results Summary	174
1	175
1	176
e e	177
	181
	182
Section 9: Misc. Raw Data	
1 '	244
9.2. Sample Filtration, Metals: 10/19/09	246

JA30201 Laboratories

ယ

 ∞

Sample Summary

Job No:

JA30201

Honeywell International Inc.

HLANJPR: SA-5 Site 117, Jersey City, NJ Project No: PO#3480090010

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
JA30201-1	10/12/09	09:46 SD	10/12/09	AQ	Ground Water	117-MW-A014-101209
JA30201-1F	10/12/09	09:46 SD	10/12/09	AQ	Groundwater Filtered	117-MW-A014F-101209
JA30201-2	10/12/09	08:23 SD	10/12/09	AQ	Ground Water	117-MW-A89-101209
JA30201-2F	10/12/09	08:23 SD	10/12/09	AQ	Groundwater Filtered	117-MW-A89F-101209
JA30201-3	10/12/09	09:23 SD	10/12/09	AQ	Ground Water	117-MW-A05-101209
JA30201-3D	10/12/09	09:23 SD	10/12/09	AQ	Water Dup/MSD	117-MW-A05MD-101209
JA30201-3F	10/12/09	09:23 SD	10/12/09	AQ	Groundwater Filtered	117-MW-A05F-101209
JA30201-3FD	10/12/09	09:23 SD	10/12/09	AQ	Water Dup/MSD	117-MW-A05MDF-101209
JA30201-3FS	10/12/09	09:23 SD	10/12/09	AQ	Water Matrix Spike	117-MW-A05MSF-101209
JA30201-3S	10/12/09	09:23 SD	10/12/09	AQ	Water Matrix Spike	117-MW-A05MS-101209
JA30201-4	10/12/09	09:28 SD	10/12/09	AQ	Ground Water	117-MW-A05DP-101209
JA30201-4F	10/12/09	09:28 SD	10/12/09	AQ	Groundwater Filtered	117-MW-A05DPF-101209
JA30201-5	10/12/09	08:23 SD	10/12/09	AQ	Ground Water	117-MW-A85-101209

Sample Summary (continued)

Job No:

JA30201

Honeywell International Inc.

HLANJPR: SA-5 Site 117, Jersey City, NJ Project No: PO#3480090010

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
JA30201-5F	10/12/09	08:23 SD	10/12/09	AQ	Groundwater Filtered	117-MW-A85F-101209
JA30201-6	10/12/09	12:55 SD	10/12/09	AQ	Ground Water	117-MW-A062-101209
JA30201-6F	10/12/09	12:55 SD	10/12/09	AQ	Groundwater Filtered	117-MW-A062F-101209
JA30201-7	10/12/09	12:06 SD	10/12/09	AQ	Ground Water	117-MW-A99-101209
JA30201-7F	10/12/09	12:06 SD	10/12/09	AQ	Groundwater Filtered	117-MW-A99F-101209
JA30201-8	10/12/09	11:06 SD	10/12/09	AQ	Ground Water	117-MW-S4-101209
JA30201-8F	10/12/09	11:06 SD	10/12/09	AQ	Groundwater Filtered	117-MW-S4F-101209
JA30201-9	10/12/09	08:40 SD	10/12/09	AQ	Field Blank Water	117-MW-FB-101209

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Honeywell International Inc. Job No JA30201

Site: HLANJPR: SA-5 Site 117, Jersey City, NJ Report Date 11/2/2009 11:29:14 AM

On 10/12/2009, 16 Sample(s), 0 Trip Blank(s) and 1 Field Blank(s) were received at Accutest Laboratories at a temperature of 2.5 C. Samples were intact and properly preserved, unless noted below. An Accutest Job Number of JA30201 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals By Method SW846 6010B

Matrix AQ Batch ID: MP50217

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JA30201-3FMS, JA30201-3FMSD, JA30201-3MSD, JA30201-3SDL, JA30201-3FSDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Chromium are outside control limits for sample MP50217-SD2. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>

Wet Chemistry By Method SM20 5310B, 9060 M

Matrix AQ Batch ID: GP51160

- All samples were prepared within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JA30201-3DUP, JA30201-3MS were used as the QC samples for Total Organic Carbon.

Wet Chemistry By Method SW846 7196A

Matrix AQ Batch ID: GN31097

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JA30201-3DUP, JA30201-3FDUP, JA30201-3MS, JA30201-3FMS were used as the QC samples for Chromium, Hexavalent.
- GN31097-S4 for Chromium, Hexavalent: Spike recovery indicates possible matrix interference. Good pH adjusted post spike recovery (98 %). Good agreement between the sample and 1:5 dilution.
- GN31097-S3 for Chromium, Hexavalent: Spike recovery indicates possible matrix interference. Good pH adjusted post spike recovery (101%). Good agreement between the sample and 1:5 dilution.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Sample Results

Report of Analysis

Report of Analysis

Client Sample ID: 117-MW-A014-101209

Lab Sample ID:JA30201-1Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	37.6	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Client Sample ID: 117-MW-A014-101209

Lab Sample ID:JA30201-1Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

General Chemistry

1	10/12/09 21:43	SW846 7196A SM20 5310B, 9060 M
-	1	10/12/09 21:43 KA 1 10/18/09 02:16 SJG

Page 1 of 1

Report of Analysis

Client Sample ID: 117-MW-A014F-101209

Lab Sample ID:JA30201-1FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	34.3	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: 117-MW-A014F-101209

Lab Sample ID:JA30201-1FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Method
Chromium, Hexavalent	0.027	0.010	mg/l	1	10/12/09 21:55	RA	SW846 7196A

Report of Analysis

 Client Sample ID:
 117-MW-A89-101209

 Lab Sample ID:
 JA30201-2
 Date Sampled:
 10/12/09

 Matrix:
 AQ - Ground Water
 Date Received:
 10/12/09

 Percent Solids:
 n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	30.5	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Page 1 of 1

Client Sample ID: 117-MW-A89-101209

Lab Sample ID:JA30201-2Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	10/12/09 21:43	RA	SW846 7196A
Total Organic Carbon	9.2	1.0	mg/l	1	10/18/09 02:32	SJG	SM20 5310B, 9060 M

Client Sample ID: 117-MW-A89F-101209

Lab Sample ID:JA30201-2FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Client Sample ID: 117-MW-A89F-101209

Lab Sample ID:JA30201-2FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	10/12/09 21:55	KA RA	SW846 7196A

Report of Analysis

Client Sample ID: 117-MW-A05-101209

Lab Sample ID:JA30201-3Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	10/26/09	10/26/09 ND	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: 117-MW-A05-101209

Lab Sample ID:JA30201-3Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	10/12/09 21:43	RA	SW846 7196A
Total Organic Carbon	2.0	1.0	mg/l	1	10/18/09 02:01	SJG	SM20 5310B, 9060 M

Report of Analysis

Client Sample ID: 117-MW-A05F-101209

Lab Sample ID:JA30201-3FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: 117-MW-A05F-101209

Lab Sample ID:JA30201-3FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	10/12/09 21:55	RA	SW846 7196A

Page 1 of 1

Client Sample ID: 117-MW-A05DP-101209

Lab Sample ID:JA30201-4Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: 117-MW-A05DP-101209

Lab Sample ID:JA30201-4Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	10/12/09 21:43	RA	SW846 7196A
Total Organic Carbon	1.8	1.0	mg/l	1	10/18/09 02:47	SJG	SM20 5310B, 9060 M

Client Sample ID: 117-MW-A05DPF-101209

Lab Sample ID:JA30201-4FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: 117-MW-A05DPF-101209

Lab Sample ID:JA30201-4FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	10/12/09 21:55	RA	SW846 7196A

Report of Analysis

Client Sample ID: 117-MW-A85-101209

Lab Sample ID:JA30201-5Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	89.9	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: 117-MW-A85-101209

Lab Sample ID:JA30201-5Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	10/12/09 21:43		SW846 7196A
Total Organic Carbon	9.6	1.0	mg/l	1	10/18/09 03:02	SJG	SM20 5310B, 9060 M

Page 1 of 1

Client Sample ID: 117-MW-A85F-101209

Lab Sample ID:JA30201-5FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Page 1 of 1

Client Sample ID: 117-MW-A85F-101209

Lab Sample ID:JA30201-5FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	10/12/09 21:55	RA	SW846 7196A

Page 1 of 1

Client Sample ID: 117-MW-A062-101209

Lab Sample ID:JA30201-6Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	1570	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Page 1 of 1

Client Sample ID: 117-MW-A062-101209

Lab Sample ID:JA30201-6Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	10/12/09 21:43		SW846 7196A
Total Organic Carbon	13.6	1.0	mg/l	1	10/18/09 03:19	SJG	SM20 5310B, 9060 M

Report of Analysis

Client Sample ID: 117-MW-A062F-101209

Lab Sample ID:JA30201-6FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	55.1	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Page 1 of 1

Client Sample ID: 117-MW-A062F-101209

Lab Sample ID: JA30201-6F **Date Sampled:** 10/12/09 Matrix: AQ - Groundwater Filtered **Date Received:** 10/12/09 Percent Solids: n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	10/12/09	RA	SW846 7196A

Page 1 of 1

Client Sample ID: 117-MW-A99-101209

Lab Sample ID:JA30201-7Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	10.9	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Page 1 of 1

Client Sample ID: 117-MW-A99-101209

Lab Sample ID:JA30201-7Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	10/12/09	RA	SW846 7196A
Total Organic Carbon	6.8	1.0	mg/l	1	10/18/09 04:07	SJG	SM20 5310B, 9060 M

Page 1 of 1

Client Sample ID: 117-MW-A99F-101209

Lab Sample ID:JA30201-7FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Page 1 of 1

Client Sample ID: 117-MW-A99F-101209

Lab Sample ID:JA30201-7FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	10/12/09	RA	SW846 7196A

Page 1 of 1

Client Sample ID: 117-MW-S4-101209

Lab Sample ID:JA30201-8Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	334000	100	ug/l	10	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

Report of Analysis

Client Sample ID: 117-MW-S4-101209

Lab Sample ID:JA30201-8Date Sampled:10/12/09Matrix:AQ - Ground WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	328	5.0	mg/l	500	10/12/09	RA	SW846 7196A
Total Organic Carbon	6.1	1.0	mg/l	1	10/18/09 04:22	SJG	SM20 5310B, 9060 M

Page 1 of 1

Client Sample ID: 117-MW-S4F-101209

Lab Sample ID:JA30201-8FDate Sampled:10/12/09Matrix:AQ - Groundwater FilteredDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	353000	100	ug/l	10	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA23347(2) Prep QC Batch: MP50217

Client Sample ID: 117-MW-S4F-101209

Lab Sample ID: JA30201-8F **Date Sampled:** 10/12/09 Matrix: AQ - Groundwater Filtered **Date Received:** 10/12/09 Percent Solids: n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium Hexavalent	325	5.0	mø/l	500	10/12/09	RΔ	SW846 71964

Page 1 of 1

Page 1 of 1

Client Sample ID: 117-MW-FB-101209

Lab Sample ID:JA30201-9Date Sampled:10/12/09Matrix:AQ - Field Blank WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 10	10	ug/l	1	10/26/09	10/27/09 ND	SW846 6010B ¹	SW846 3010A ²

(1) Instrument QC Batch: MA23347(2) Prep QC Batch: MP50217

Page 1 of 1

Client Sample ID: 117-MW-FB-101209

Lab Sample ID:JA30201-9Date Sampled:10/12/09Matrix:AQ - Field Blank WaterDate Received:10/12/09Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.010	0.010	mg/l	1	10/12/09 21:55		SW846 7196A
Total Organic Carbon	< 1.0	1.0	mg/l	1	10/18/09 04:39		SM20 5310B, 9060 M

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

What is in the Text File?	_
Mouse over here.	_
itten and	

Lab Use Only

Lab ID

_	-	

lnv	oice To:			neywelt PM 101 ristown, NJ 07962	Next Day -						Grab/Composite Field Filtered Sa	dCHRO	d Total C	6 Hexav	.7 Total	ganic Ca							Written and maintained
		Sample	e Identifica	atien	Sample Date	Sample Time	Sample Type		Sample Purpose		Grab/C Field Fi	Dissolve	Dissolve	EPA 7196	EPA 200	Total Organic							by AESI (Ver 3_7)
	Location ID	Start Depth (ft)	End Depth (ft)	Field Sample ID	Ì						Units	ng/L	ng/L	ne/L	ng/L	ng/L							Lab Sample Numbers
L	117-MW-A014	-1		117-MW-A014-101209	10/12/2009	946	GW	Water	REG	3	grab			x	x	x					7		WCI, MEIT,
2	117-MW-A014	-15		117-MW-A014F-101209	10/12/2009	946	GW	Water	REG	2	grab	x	х								(ME7
3	117-MW-A89	-2		117-MW-A89-101209	10/12/2009	823	GW	Water	REG	3	grab			x	x	x							
4	117-MW-A89	-1F		117-MW-A89F-101209	10/12/2009	823	GW	Water	REG	2	grab N	x	x	Τ									
5	117-MW-A05	- 3		117-MW-A05-101209	10/12/2009	123	GW	Water	REG	3	grab N			x	х	х			Π				
6	117-MW-A05	-3F		117-MW-A05F-101209	10/12/2009	923	GW	Water	REG	2	grab	x	x	Γ				T					
7	117-MW-A05	-4		117-MW-A05DP-101209	10/12/2009	428	GW	Water	FD	3	grab			X	х	х							
8	117-MW-A05	-45		117-MW-A05DPF-101209	10/12/2009	928	GW	Water	FD	2	grab	x	х										
9	117-MW-A05	-3		117-MW-A05MS-101209	10/12/2009	923	GW	Water	MS	3	grab			x	х	х							
اه	117-MW-A05	- 3F		117-MW-A05MSF-101209	10/12/2009	923	GW	Water	MS	2	grab	x	x										
11	117-MW-A05	-3		117-MW-A05MD-101209	10/12/2009	923	GW	Water	MSD	3	grab	1		x	x	x							
12	117-MW-A05	-3F		117-MW-A05MDF-101209	10/12/2009	923	GW	Water	MSD	2	grab	x	х										
Lab	to filter dissolved	l chromium	ı/cbromiur	n VI				08	ALL S	AMP	LES	REG	CEIV	ED	-		•			•	 		
Reli	inquished by			Company	MAC	TEC	Received b	у					Co	ompany	/		Co	dition		1	Custoc	ly Sea	is Intact

3480090010

Chain Of Custody / Analysis Request

Site Name: HUDSONCO

0 0

hromium 200.7

JUM VI (7196A)

SA-5, Site 117, Jersey City, NJ

JA30201

Honeywell

Agshust (MACTEC)

Privileged & Confidential

Rush Charges Authorized for 2 weeks -

15/12/04 1420

Date/Time

EDD To:

Sampler:

Analysis Tun

Standard -

PO#

ZA

ACCUTEST

resh Ponds Corporate Village, Building B

2235 Route 130, Dayton, New Jersey 08810 732-329-0200 Phone, 732-329-3499 Fax

Andrew Shust - MACTEC Engineering and Consulting, Inc 200 American Metro Blvd., Suite 113

Client Contact: (name, co., address)

Hamilton, NJ 08619

agshust@mactec.com Hardcopy Report To: See above

Preservatives: 0 = None; [1 = HCL]; [2 = HNO3]; [3 = H2SO4]; [4 = NaOH]; [5 = Zn. Acetate]; [6 = MeOH]; [7 = NaHSO4]; 8 = Other (specify): 2.5,2.30

Date/Time

Cooler Temp.

JA30201: Chain of Custody Page 1 of 2

Custody Seals Intact

90	FB
9W	F

CCUTES esh Ponds Cor 35 Route 130,	orate Daytor	, New Jers	y 08810		San		теум		Ch	ain O			y / An:			quest		JA	. <u>3</u> .	<u>)</u> 2	20	1	COC#; Lab Use O	
2-329-0200 PI	ione, 7	32-329-349	9 Fax		Privileged é	k Confident		Y	<u> </u>		Site	Name:	HUDS	ONCO									Lab Prej i	ACTD
					EDD To:		Agshust (N	IACTEC)		Loca	tion of			, Site i	17, Jerse	y City, N	j						
ent Contact:				d Consulting Inc	Sampler: P O #	Senna/Dal	у		240	0090010		_	servative		T 3	т т		_	т-			T T	PAGE 2 of Job No.	2
0 American				d Consulting, Inc	P U # Analysis Turn:	I Times			348	0090010		_0	+	0	2	\vdash		+-	┼	┼	┼		- 300,140.	
milton, NJ			ane 115		Standard	around Tible:			Y			(V9)		-				1	1				20000-00	de auto autoro. 3
shust@mact					Rush Charges A	Authorized for			•			VI (7196A)	200.7	Ì				1	1				2007 2	
					2 weeks -									å	Engl	Carbon 415.1			1					
rdcopy Repo	rt Te:	See above			l							Sample	Chromium	lent (Ę	200 4			1					s in the Text
of the Ton		Marke V			1 week -								1 5	Hexavalent Chromium	Total Chromium			1						use over her
oice To:				neywell PM 101 istown, NJ 07962	Next Day -							B 3	I CHR(S Hex	7 Tot								Written az maintaine	
						6	6	C	S		1ů	Field Filtered Dissolved CHI	lved.	EPA 7196	EPA 200.7	Total Organic		1	1				by AESI	
		Sample	Identifica	ation	Sample Date	Sample Time	Sample Type	Sample Matrix	Sample Purpose	# of Cont.	Ē	Sisso	Dissol	- A	3PA	Otal							(Ver 3_7	
		Start	End		£		-,,			100			╅	+=	<u> </u>	 	\dashv	\top	+-	 	†		1720138	
		Depth	Depth		- 美.				1		I			, <u>1</u>	ng/L	ng/L		1						بنسر
Location I	<u> </u>	(ft)	(ft)	Field Sample ID			2000 X 4			E7.000	Units		3 3	<u> </u>	3	当	_	+	┿	₩	┿	-	Lab Sample	e Numbers 😥
117-MW	A85	-5		117-MW-A85-101209	10/12/2009	823	GW	Water	REG	3	5.0	N		x	x	x				L				
117-MW	A85	-5F		117-MW-A85F-101209	10/12/2009	823	GW	Water	REG	2	0.0	N X	x											
117-MW-	A062	-6		117-MW-A062-101209	10/12/2009	1255	GW	Water	REG	3	grab	N		x	x	X								
117-MW-	A062	-6F		117-MW-A062F-101209	10/12/2009	เร55	GW	Water	REG	2	grab	N X	х											
117-MW-	A099	-7		117-MW-A99-101209	10/12/2009	1206	GW	Water	REG	3	500	N		x	x	х								
117-MW-	A099	-7F		117-MW-A99F-101209	10/12/2009	1206	GW	Water	REG	2	50	N X	x											
117-MW	-S4	-8		117-MW-S4-101209	10/12/2009	1106	GW	Water	REG	3	50	N		x	x	X		1						
117-MW	-S4	-8F		117-MW-S4F-101209	10/12/2009	1106	GW	Water	REG	2	8	N X	x	ļ	<u> </u>			<u> </u>	<u> </u>		<u> </u>			
117-Q	Ľ _	-9		117-MW-FB-101209	10/12/2009	840	GW	Water	FB	3	grab	N	ļ	x	х	х		<u> </u>		ļ	<u> </u>	 		
											Ш	4						_			<u> </u>			
ļ					ļ	ļ					Ш	_		<u> </u>	1_			_	ļ		<u> </u>			
								İ														1 1		
to filter dis	solved	chromiun	/chromiu	n VI																				
inquished by				Company	MAC	TEC	Dani ad h										IC.	dition				Custoda	Cools Intoot	
L .				Date/Time			Received by	n			_	1 1/2	te/Time	ompany				ler Ten	ın.	\vdash		Custody :	Seals Intact	
inquished by				Company	10/12/34	1 100	Received by	y			10	11276		ompany				dition	•	╁╌		Custody :	Seals Intact	1
				Date/Time	-		1				H	Da	te/Time		T		Сос	ler Ten	ıp.	t				
				 HNO3 ; 3 = H2SO4 ; 4 = Na							٠				Ь					╁				

JA30201: Chain of Custody Page 2 of 2

Internal Sample Tracking Chronicle

Honeywell International Inc.

JA30201 Job No:

HLANJPR: SA-5 Site 117, Jersey City, NJ Project No: PO#3480090010

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JA30201-1 117-MW-A	Collected: 12-OCT-09 (014-101209	09:46 By: SD	Receiv	red: 12-OCT-	-09 By:	
JA30201-1	SW846 7196A SM20 5310B, 9060 M SW846 6010B	12-OCT-09 21:43 18-OCT-09 02:16 27-OCT-09 00:36	SJG	17-OCT-09 26-OCT-09		XCR TOC CR
JA30201-2 117-MW-A	Collected: 12-OCT-09 (89-101209	08:23 By: SD	Receiv	red: 12-OCT-	-09 By:	
JA30201-2	SW846 7196A SM20 5310B, 9060 M SW846 6010B	12-OCT-09 21:43 18-OCT-09 02:32 27-OCT-09 00:42	SJG	17-OCT-09 26-OCT-09		XCR TOC CR
JA30201-3 117-MW-A	Collected: 12-OCT-09 (05-101209	09:23 By: SD	Receiv	red: 12-OCT-	-09 By:	
JA30201-3	SW846 7196A SM20 5310B, 9060 M SW846 6010B	12-OCT-09 21:43 18-OCT-09 02:01 26-OCT-09 23:21	SJG	17-OCT-09 26-OCT-09		XCR TOC CR
	Collected: 12-OCT-09 (05DP-101209	09:28 By: SD	Receiv	red: 12-OCT-	-09 By:	
JA30201-4	SW846 7196A SM20 5310B, 9060 M SW846 6010B	12-OCT-09 21:43 18-OCT-09 02:47 27-OCT-09 00:48	SJG	17-OCT-09 26-OCT-09		XCR TOC CR
JA30201-5 117-MW-A	Collected: 12-OCT-09 (85-101209	08:23 By: SD	Receiv	red: 12-OCT-	-09 By:	
JA30201-5	SW846 7196A SM20 5310B, 9060 M SW846 6010B	12-OCT-09 21:43 18-OCT-09 03:02 27-OCT-09 00:54	SJG	17-OCT-09 26-OCT-09		XCR TOC CR
JA30201-6 117-MW-A	Collected: 12-OCT-09 062-101209	12:55 By: SD	Receiv	red: 12-OCT-	-09 By:	
	SW846 7196A SM20 5310B, 9060 M	12-OCT-09 21:43 18-OCT-09 03:19	RA SJG	17-OCT-09	SJG	XCR TOC

Page 1 of 3

JA30201

Job No:

Internal Sample Tracking Chronicle

Honeywell International Inc.

HLANJPR: SA-5 Site 117, Jersey City, NJ Project No: PO#3480090010

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JA30201-6	SW846 6010B	27-OCT-09 01:00	ND	26-OCT-09	RP	CR
JA30201-7 117-MW-A	Collected: 12-OCT-09 99-101209	12:06 By: SD	Receiv	ved: 12-OCT-	-09 By	:
JA30201-7	SW846 7196A SM20 5310B, 9060 M SW846 6010B	12-OCT-09 18-OCT-09 04:07 27-OCT-09 01:06		17-OCT-09 26-OCT-09		XCR TOC CR
JA30201-8 117-MW-S	Collected: 12-OCT-09 4-101209	11:06 By: SD	Receiv	ved: 12-OCT-	-09 By	:
JA30201-8	SW846 7196A SM20 5310B, 9060 M SW846 6010B	12-OCT-09 18-OCT-09 04:22 27-OCT-09 02:27		17-OCT-09 26-OCT-09		XCR TOC CR
JA30201-9 117-MW-FI	Collected: 12-OCT-09 B-101209	08:40 By: SD	Receiv	ved: 12-OCT-	-09 By	:
JA30201-9	SW846 7196A SM20 5310B, 9060 M SW846 6010B	12-OCT-09 21:55 18-OCT-09 04:39 27-OCT-09 01:25	SJG	17-OCT-09 26-OCT-09		XCR TOC CR
	F Collected: 12-OCT-09 014F-101209	09:46 By: SD	Receiv	ved: 12-OCT-	-09 By	
	FSW846 7196A FSW846 6010B	12-OCT-09 21:55 27-OCT-09 01:31		26-OCT-09	RP	XCR CR
	F Collected: 12-OCT-09 89F-101209	08:23 By: SD	Receiv	ved: 12-OCT	-09 By	:
	F SW846 7196A F SW846 6010B	12-OCT-09 21:55 27-OCT-09 01:37		26-OCT-09	RP	XCR CR
	F Collected: 12-OCT-09 05F-101209	09:23 By: SD	Receiv	ed: 12-OCT	-09 By	:
	FSW846 7196A FSW846 6010B	12-OCT-09 21:55 27-OCT-09 00:24		26-OCT-09	RP	XCR CR

Job No:

JA30201

Internal Sample Tracking Chronicle

Honeywell International Inc.

HLANJPR: SA-5 Site 117, Jersey City, NJ Project No: PO#3480090010

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
	F Collected: 12-OCT-09 05DPF-101209	09:28 By: SD	Receiv	ved: 12-OCT-	-09 By	:
	F SW846 7196A F SW846 6010B	12-OCT-09 21:55 27-OCT-09 01:44		26-OCT-09	RP	XCR CR
	F Collected: 12-OCT-09 85F-101209	08:23 By: SD	Receiv	ved: 12-OCT	-09 By	:
	F SW846 7196A F SW846 6010B	12-OCT-09 21:55 27-OCT-09 01:50		26-OCT-09	RP	XCR CR
	F Collected: 12-OCT-09 062F-101209	12:55 By: SD	Receiv	ved: 12-OCT	-09 By	:
	F SW846 7196A F SW846 6010B	12-OCT-09 27-OCT-09 01:56	RA ND	26-OCT-09	RP	XCR CR
	F Collected: 12-OCT-09 99F-101209	12:06 By: SD	Receiv	ved: 12-OCT	-09 By	;
	F SW846 7196A F SW846 6010B	12-OCT-09 27-OCT-09 02:02	RA ND	26-OCT-09	RP	XCR CR
JA30201-8I 117-MW-S4	F Collected: 12-OCT-09 4F-101209	11:06 By: SD	Receiv	ved: 12-OCT	-09 By	:
	F SW846 7196A F SW846 6010B	12-OCT-09 27-OCT-09 02:33	RA ND	26-OCT-09	RP	XCR CR

Job Number: JA30201

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason	
JA30201-1.1	Secured Storage	Adam Scott	10/22/09 08:39	Retrieve from Storage	
JA30201-1.1	Adam Scott	Darshananben Patel		Custody Transfer	
JA30201-1.1	Darshananben Patel	Secured Storage		Return to Storage	
JA30201-1.1	Secured Storage	Todd Shoemaker		Retrieve from Storage	
JA30201-1.1	Todd Shoemaker	Jieyu Wang		Custody Transfer	
JA30201-1.1	Jieyu Wang	Rinku Patel		Custody Transfer	
JA30201-1.1	Rinku Patel	Secured Storage		Return to Storage	
JA30201-1.1.1	Rinku Patel	Metals Digestion	10/26/09 12:46	Digestate from JA30201-1.1	
JA30201-1.1.1	Metals Digestion	Rinku Patel		Digestate from JA30201-1.1	
JA30201-1.1.1	Rinku Patel	Metals Digestate Storage		Return to Storage	
JA30201-1.1.1	Metals Digestate Storage	Nancy Duan		Retrieve from Storage	
JA30201-1.1.1	Nancy Duan	Metals Digestate Storage		Return to Storage	
JA30201-1.3	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage	
JA30201-1.3	Ricky Agapay	Secured Storage		Return to Storage	
JA30201-1.5	Secured Storage	John Thomas	10/17/09 11:26	Retrieve from Storage	
JA30201-1.5	John Thomas	Sejal Patel		Custody Transfer	
JA30201-1.5	Sejal Patel			Return to Storage	
JA30201-1F.2	Secured Storage	Adam Scott	10/13/09 08:38	Retrieve from Storage	
JA30201-1F.2	Adam Scott	Rinku Patel		Custody Transfer	
JA30201-1F.2	Rinku Patel	Beatrice Marcelino		Custody Transfer	
JA30201-1F.2	Beatrice Marcelino	Secured Storage		Return to Storage	
JA30201-1F.2	Secured Storage	Adam Scott		Retrieve from Storage	
JA30201-1F.2	Adam Scott	Darshananben Patel		Custody Transfer	
JA30201-1F.2	Darshananben Patel	Secured Storage		Return to Storage	
JA30201-1F.2	Secured Storage	Todd Shoemaker		Retrieve from Storage	
JA30201-1F.2	Todd Shoemaker	Jieyu Wang		Custody Transfer	
JA30201-1F.2	Jieyu Wang	Rinku Patel		Custody Transfer	
JA30201-1F.2	Rinku Patel	Secured Storage		Return to Storage	
JA30201-1F.2.1	Rinku Patel	Metals Digestion	10/26/09 12:46	Digestate from JA30201-1F.	
JA30201-1F.2.1	Metals Digestion	Rinku Patel		Digestate from JA30201-1F.	
JA30201-1F.2.1	Rinku Patel	Metals Digestate Storage		Return to Storage	
JA30201-1F.2.1	Metals Digestate Storage	Nancy Duan		Retrieve from Storage	
JA30201-1F.2.1	Nancy Duan	Metals Digestate Storage		Return to Storage	
JA30201-1F.4	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage	
JA30201-1F.4	Ricky Agapay	Secured Storage		Return to Storage	
JA30201-2.1	Secured Storage	Adam Scott	10/22/09 08:39	Retrieve from Storage	
	Adam Scott	Darshananben Patel			
JA30201-2.1 JA30201-2.1	Secured Storage Adam Scott			Retrieve from Stora Custody Transfer	

Accutest Internal Chain of Custody Job Number: JA30201

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA30201-2.1	Darshananben Patel	Secured Storage	10/22/09 16:05	Return to Storage
JA30201-2.1	Secured Storage	Todd Shoemaker		Retrieve from Storage
JA30201-2.1	Todd Shoemaker	Jieyu Wang		Custody Transfer
JA30201-2.1 JA30201-2.1	Jieyu Wang	Rinku Patel		Custody Transfer Custody Transfer
JA30201-2.1 JA30201-2.1	Rinku Patel	Secured Storage		Return to Storage
JA30201-2.1.1	Rinku Patel	Metals Digestion		Digestate from JA30201-2.1
JA30201-2.1.1	Metals Digestion	Rinku Patel		Digestate from JA30201-2.1
JA30201-2.1.1	Rinku Patel	Metals Digestate Storage	10/26/09 12:47	Return to Storage
JA30201-2.1.1	Metals Digestate Storage	Nancy Duan	10/26/09 17:16	Retrieve from Storage
JA30201-2.1.1	Nancy Duan	Metals Digestate Storage	10/26/09 17:17	Return to Storage
JA30201-2.3	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-2.3	Ricky Agapay	Secured Storage		Return to Storage
37130201-2.3	Ricky Agapay	becarea biorage	10/12/07 22.10	Return to Storage
JA30201-2.5	Secured Storage	John Thomas	10/17/09 09:51	Retrieve from Storage
JA30201-2.5	John Thomas	Shirley Grzybowski	10/17/09 09:55	Custody Transfer
JA30201-2.5	Shirley Grzybowski	Secured Storage	10/19/09 07:04	Return to Storage
JA30201-2F.2	Secured Storage	Adam Scott	10/13/09 08:38	Retrieve from Storage
JA30201-2F.2	Adam Scott	Rinku Patel		Custody Transfer
JA30201-2F.2	Rinku Patel	Beatrice Marcelino		Custody Transfer Custody Transfer
JA30201-2F.2	Beatrice Marcelino	Secured Storage		Return to Storage
JA30201-2F.2	Secured Storage	Adam Scott		Retrieve from Storage
JA30201-2F.2	Adam Scott	Darshananben Patel		Custody Transfer
JA30201-2F.2 JA30201-2F.2	Darshananben Patel	Secured Storage		Return to Storage
JA30201-2F.2 JA30201-2F.2	Secured Storage	Todd Shoemaker		Retrieve from Storage
	Todd Shoemaker			
JA30201-2F.2		Jieyu Wang Rinku Patel		Custody Transfer
JA30201-2F.2 JA30201-2F.2	Jieyu Wang Rinku Patel			Custody Transfer
JA30201-2F.2	Kiliku Patei	Secured Storage	10/20/09 10.20	Return to Storage
JA30201-2F.2.1	Rinku Patel	Metals Digestion		Digestate from JA30201-2F.2
JA30201-2F.2.1	Metals Digestion	Rinku Patel		Digestate from JA30201-2F.2
JA30201-2F.2.1	Rinku Patel	Metals Digestate Storage	10/26/09 12:47	Return to Storage
JA30201-2F.2.1	Metals Digestate Storage	Nancy Duan	10/26/09 17:16	Retrieve from Storage
JA30201-2F.2.1	Nancy Duan	Metals Digestate Storage	10/26/09 17:17	Return to Storage
JA30201-2F.4	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-2F.4	Ricky Agapay	Secured Storage		Return to Storage
1420201 2 1	Sagurad Storage	Todd Shoemaker	10/26/00 00:11	Patriava from Stance
JA30201-3.1	Secured Storage			Retrieve from Storage
JA30201-3.1	Todd Shoemaker	Jieyu Wang		Custody Transfer
JA30201-3.1	Jieyu Wang	Rinku Patel		Custody Transfer
JA30201-3.1	Rinku Patel	Secured Storage	10/26/09 16:20	Return to Storage

Job Number: JA30201

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA30201-3.1.1	Rinku Patel	Matala Digastion	10/26/00 12:46	Digastata from IA 20201 2 1
JA30201-3.1.1 JA30201-3.1.1	Metals Digestion	Metals Digestion Rinku Patel		Digestate from JA30201-3.1 Digestate from JA30201-3.1
JA30201-3.1.1 JA30201-3.1.1	Rinku Patel	Metals Digestate Storage		Return to Storage
JA30201-3.1.1 JA30201-3.1.1	Metals Digestate Storage	Nancy Duan		Retrieve from Storage
JA30201-3.1.1	Nancy Duan	Metals Digestate Storage		Return to Storage
JA30201-3.2	Secured Storage	Adam Scott	10/22/09 08:39	Retrieve from Storage
JA30201-3.2	Adam Scott	Darshananben Patel		Custody Transfer
JA30201-3.2	Darshananben Patel	Secured Storage		Return to Storage
JA30201-3.7	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-3.7	Ricky Agapay	Secured Storage		Return to Storage
JA30201-3.8	Secured Storage	Ricky Agapay	10/12/09 20:44	Retrieve from Storage
JA30201-3.8	Ricky Agapay	Secured Storage	10/12/09 22:16	Return to Storage
JA30201-3.9	Secured Storage	Ricky Agapay		Retrieve from Storage
JA30201-3.9	Ricky Agapay	Secured Storage	10/12/09 22:16	Return to Storage
JA30201-3.13	Secured Storage	John Thomas		Retrieve from Storage
JA30201-3.13	John Thomas	Shirley Grzybowski		Custody Transfer
JA30201-3.13	Shirley Grzybowski	Secured Storage	10/19/09 07:04	Return to Storage
JA30201-3.14	Secured Storage	John Thomas		Retrieve from Storage
JA30201-3.14	John Thomas	Shirley Grzybowski		Custody Transfer
JA30201-3.14	Shirley Grzybowski	Secured Storage	10/19/09 07:04	Return to Storage
JA30201-3.15	Secured Storage	John Thomas		Retrieve from Storage
JA30201-3.15	John Thomas	Shirley Grzybowski		Custody Transfer
JA30201-3.15	Shirley Grzybowski	Secured Storage	10/19/09 07:04	Return to Storage
JA30201-3F.4	Secured Storage	Adam Scott		Retrieve from Storage
JA30201-3F.4	Adam Scott	Rinku Patel		Custody Transfer
JA30201-3F.4	Rinku Patel	Beatrice Marcelino		Custody Transfer
JA30201-3F.4	Beatrice Marcelino	Secured Storage		Return to Storage
JA30201-3F.4	Secured Storage	Adam Scott	10/22/09 08:39	Retrieve from Storage
JA30201-3F.4	Adam Scott	Darshananben Patel		Custody Transfer
JA30201-3F.4	Darshananben Patel	Secured Storage	10/22/09 16:05	Return to Storage
JA30201-3F.5	Secured Storage	Adam Scott		Retrieve from Storage
JA30201-3F.5	Adam Scott	Rinku Patel		Custody Transfer
JA30201-3F.5	Rinku Patel	Beatrice Marcelino		Custody Transfer
JA30201-3F.5	Beatrice Marcelino	Secured Storage	10/13/09 18:39	Return to Storage

Job Number: JA30201

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA30201-3F.5	Secured Storage	Adam Scott	10/22/09 08:39	Retrieve from Storage
JA30201-3F.5	Adam Scott	Darshananben Patel	10/22/09 08:40	Custody Transfer
JA30201-3F.5	Darshananben Patel	Secured Storage	10/22/09 16:05	Return to Storage
JA30201-3F.5	Secured Storage	Todd Shoemaker	10/26/09 08:11	Retrieve from Storage
JA30201-3F.5	Todd Shoemaker	Jieyu Wang	10/26/09 08:13	Custody Transfer
JA30201-3F.5	Jieyu Wang	Rinku Patel	10/26/09 08:23	Custody Transfer
JA30201-3F.5	Rinku Patel	Secured Storage	10/26/09 16:20	Return to Storage
JA30201-3F.5.1	Rinku Patel	Metals Digestion	10/26/09 12:46	Digestate from JA30201-3F.5
JA30201-3F.5.1	Metals Digestion	Rinku Patel		Digestate from JA30201-3F.5
JA30201-3F.5.1	Rinku Patel	Metals Digestate Storage		Return to Storage
JA30201-3F.5.1	Metals Digestate Storage	Nancy Duan		Retrieve from Storage
JA30201-3F.5.1	Nancy Duan	Metals Digestate Storage		Return to Storage
JA30201-3F.6	Secured Storage	Adam Scott	10/13/09 08:38	Retrieve from Storage
JA30201-3F.6	Adam Scott	Rinku Patel	10/13/09 08:39	Custody Transfer
JA30201-3F.6	Rinku Patel	Beatrice Marcelino	10/13/09 17:01	Custody Transfer
JA30201-3F.6	Beatrice Marcelino	Secured Storage	10/13/09 18:39	Return to Storage
JA30201-3F.10	Secured Storage	Ricky Agapay	10/12/09 20:44	Retrieve from Storage
JA30201-3F.10	Ricky Agapay	Secured Storage		Return to Storage
JA30201-3F.11	Secured Storage	Ricky Agapay	10/12/09 20:44	Retrieve from Storage
JA30201-3F.11	Ricky Agapay	Secured Storage	10/12/09 22:16	Return to Storage
JA30201-3F.12	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-3F.12	Ricky Agapay	Secured Storage	10/12/09 22:16	Return to Storage
JA30201-4.1	Secured Storage	Adam Scott	10/22/09 08:39	Retrieve from Storage
JA30201-4.1	Adam Scott	Darshananben Patel	10/22/09 08:40	Custody Transfer
JA30201-4.1	Darshananben Patel	Secured Storage	10/22/09 16:05	Return to Storage
JA30201-4.1	Secured Storage	Todd Shoemaker	10/26/09 08:11	Retrieve from Storage
JA30201-4.1	Todd Shoemaker	Jieyu Wang	10/26/09 08:13	Custody Transfer
JA30201-4.1	Jieyu Wang	Rinku Patel	10/26/09 08:23	Custody Transfer
JA30201-4.1	Rinku Patel	Secured Storage	10/26/09 16:20	Return to Storage
JA30201-4.1.1	Rinku Patel	Metals Digestion	10/26/09 12:46	Digestate from JA30201-4.1
JA30201-4.1.1	Metals Digestion	Rinku Patel	10/26/09 12:47	Digestate from JA30201-4.1
JA30201-4.1.1	Rinku Patel	Metals Digestate Storage		Return to Storage
JA30201-4.1.1	Metals Digestate Storage	Nancy Duan		Retrieve from Storage
JA30201-4.1.1	Nancy Duan	Metals Digestate Storage		Return to Storage
JA30201-4.3	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-4.3	Ricky Agapay	Secured Storage	10/12/09 22:16	Return to Storage

Job Number: JA30201

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Number	FROM	Transfer TO	Date/Time	Reason
<u>L</u>				
JA30201-4.5	Secured Storage	John Thomas	10/17/09 09:51	Retrieve from Storage
JA30201-4.5	John Thomas	Shirley Grzybowski	10/17/09 09:55	Custody Transfer
JA30201-4.5	Shirley Grzybowski	Secured Storage		Return to Storage
JA30201-4F.2	Secured Storage	Adam Scott	10/13/09 08:38	Retrieve from Storage
JA30201-4F.2	Adam Scott	Rinku Patel	10/13/09 08:39	Custody Transfer
JA30201-4F.2	Rinku Patel	Beatrice Marcelino	10/13/09 17:01	Custody Transfer
JA30201-4F.2	Beatrice Marcelino	Secured Storage	10/13/09 18:39	Return to Storage
JA30201-4F.2	Secured Storage	Adam Scott	10/22/09 08:39	Retrieve from Storage
JA30201-4F.2	Adam Scott	Darshananben Patel	10/22/09 08:40	Custody Transfer
JA30201-4F.2	Darshananben Patel	Secured Storage		Return to Storage
JA30201-4F.2	Secured Storage	Todd Shoemaker		Retrieve from Storage
JA30201-4F.2	Todd Shoemaker	Jieyu Wang		Custody Transfer
JA30201-4F.2	Jieyu Wang	Rinku Patel		Custody Transfer
JA30201-4F.2	Rinku Patel	Secured Storage		Return to Storage
JA30201-4F.2.1	Rinku Patel	Metals Digestion	10/26/09 12:46	Digestate from JA30201-4F
JA30201-4F.2.1	Metals Digestion	Rinku Patel		Digestate from JA30201-4F
JA30201-4F.2.1	Rinku Patel	Metals Digestate Storage		Return to Storage
JA30201-4F.2.1	Metals Digestate Storage	Nancy Duan		Retrieve from Storage
JA30201-4F.2.1	Nancy Duan	Metals Digestate Storage		Return to Storage
JA30201-4F.4	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-4F.4	Ricky Agapay	Secured Storage		Return to Storage
JA30201-5.1	Secured Storage	Adam Scott	10/22/09 08:39	Retrieve from Storage
JA30201-5.1	Adam Scott	Darshananben Patel		Custody Transfer
JA30201-5.1	Darshananben Patel	Secured Storage		Return to Storage
JA30201-5.1	Secured Storage	Todd Shoemaker		Retrieve from Storage
JA30201-5.1	Todd Shoemaker	Jieyu Wang		Custody Transfer
JA30201-5.1	Jieyu Wang	Rinku Patel		Custody Transfer
JA30201-5.1	Rinku Patel	Secured Storage		Return to Storage
JA30201-5.1.1	Rinku Patel	Metals Digestion	10/26/09 12:46	Digestate from JA30201-5.1
JA30201-5.1.1	Metals Digestion	Rinku Patel		Digestate from JA30201-5.1
JA30201-5.1.1	Rinku Patel	Metals Digestate Storage		Return to Storage
JA30201-5.1.1	Metals Digestate Storage	Nancy Duan		Retrieve from Storage
JA30201-5.1.1 JA30201-5.1.1	Nancy Duan	Metals Digestate Storage		Return to Storage
JA30201-5.3	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-5.3	Ricky Agapay	Secured Storage		Return to Storage
		-		-
JA30201-5.5	Secured Storage	John Thomas	10/17/09 09:51	Retrieve from Storage

Accutest Internal Chain of Custody Job Number: JA30201

HWINJM Honeywell International Inc. Account: **Project:** HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA30201-5.5	John Thomas	Shirley Grzybowski	10/17/09 09:55	Custody Transfer
JA30201-5.5	Shirley Grzybowski	Secured Storage	10/19/09 07:04	Return to Storage
JA30201-5F.2	Secured Storage	Adam Scott	10/13/09 08:38	Retrieve from Storage
JA30201-5F.2	Adam Scott	Rinku Patel	10/13/09 08:39	Custody Transfer
JA30201-5F.2	Rinku Patel	Beatrice Marcelino		Custody Transfer
JA30201-5F.2	Beatrice Marcelino	Secured Storage		Return to Storage
JA30201-5F.2	Secured Storage	Adam Scott		Retrieve from Storage
JA30201-5F.2	Adam Scott	Darshananben Patel		Custody Transfer
JA30201-5F.2	Darshananben Patel	Secured Storage	10/22/09 16:05	Return to Storage
JA30201-5F.2	Secured Storage	Todd Shoemaker	10/26/09 08:11	Retrieve from Storage
JA30201-5F.2	Todd Shoemaker	Jieyu Wang	10/26/09 08:13	Custody Transfer
JA30201-5F.2	Jieyu Wang	Rinku Patel	10/26/09 08:23	Custody Transfer
JA30201-5F.2	Rinku Patel	Secured Storage	10/26/09 16:20	Return to Storage
JA30201-5F.2.1	Rinku Patel	Metals Digestion	10/26/09 12:46	Digestate from JA30201-5F.2
JA30201-5F.2.1	Metals Digestion	Rinku Patel		Digestate from JA30201-5F.2
JA30201-5F.2.1	Rinku Patel	Metals Digestate Storage		Return to Storage
JA30201-5F.2.1	Metals Digestate Storage	Nancy Duan		Retrieve from Storage
JA30201-5F.2.1	Nancy Duan	Metals Digestate Storage		Return to Storage
JA30201-5F.4	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-5F.4	Ricky Agapay	Secured Storage	10/12/09 22:16	Return to Storage
JA30201-6.1	Secured Storage	Adam Scott	10/22/09 08:39	Retrieve from Storage
JA30201-6.1	Adam Scott	Darshananben Patel		Custody Transfer
JA30201-6.1	Darshananben Patel	Secured Storage		Return to Storage
JA30201-6.1	Secured Storage	Todd Shoemaker		Retrieve from Storage
JA30201-6.1	Todd Shoemaker	Jieyu Wang		Custody Transfer
JA30201-6.1	Jieyu Wang	Rinku Patel		Custody Transfer
JA30201-6.1	Rinku Patel	Secured Storage	10/26/09 16:20	Return to Storage
JA30201-6.1.1	Rinku Patel	Metals Digestion	10/26/09 12:46	Digestate from JA30201-6.1
JA30201-6.1.1	Metals Digestion	Rinku Patel		Digestate from JA30201-6.1
JA30201-6.1.1	Rinku Patel	Metals Digestate Storage		Return to Storage
JA30201-6.1.1	Metals Digestate Storage	Nancy Duan		Retrieve from Storage
JA30201-6.1.1	Nancy Duan	Metals Digestate Storage		Return to Storage
JA30201-6.3	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-6.3	Ricky Agapay	Secured Storage		Return to Storage
JA30201-6.5	Secured Storage	John Thomas	10/17/09 09:51	Retrieve from Storage
JA30201-6.5	John Thomas	Shirley Grzybowski		Custody Transfer
JA30201-6.5	Shirley Grzybowski	Secured Storage		Return to Storage
	2	22222 2001450	20, 27, 07 07.01	

Accutest Internal Chain of Custody Page 7 of 10

Job Number: JA30201

HWINJM Honeywell International Inc. Account: **Project:** HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample. Bottle	Transfer	Transfer		
Number	FROM	ТО	Date/Time	Reason
JA30201-6F.2	Secured Storage	Adam Scott		Retrieve from Storage
JA30201-6F.2	Adam Scott	Rinku Patel	10/13/09 08:39	Custody Transfer
JA30201-6F.2	Rinku Patel	Beatrice Marcelino	10/13/09 17:01	Custody Transfer
JA30201-6F.2	Beatrice Marcelino	Secured Storage	10/13/09 18:39	Return to Storage
JA30201-6F.2	Secured Storage	Adam Scott	10/22/09 08:39	Retrieve from Storage
JA30201-6F.2	Adam Scott	Darshananben Patel	10/22/09 08:40	Custody Transfer
JA30201-6F.2	Darshananben Patel	Secured Storage	10/22/09 16:05	Return to Storage
JA30201-6F.2	Secured Storage	Todd Shoemaker	10/26/09 08:11	Retrieve from Storage
JA30201-6F.2	Todd Shoemaker	Jieyu Wang	10/26/09 08:13	Custody Transfer
JA30201-6F.2	Jieyu Wang	Rinku Patel	10/26/09 08:23	Custody Transfer
JA30201-6F.2	Rinku Patel	Secured Storage		Return to Storage
JA30201-6F.2.1	Rinku Patel	Metals Digestion	10/26/09 12:46	Digestate from JA30201-6F.
JA30201-6F.2.1	Metals Digestion	Rinku Patel		Digestate from JA30201-6F.
JA30201-6F.2.1	Rinku Patel	Metals Digestate Storage		Return to Storage
JA30201-6F.2.1	Metals Digestate Storage	Nancy Duan		Retrieve from Storage
JA30201-6F.2.1				
JA30201-6F.2.1	Nancy Duan	Metals Digestate Storage	10/26/09 17:17	Return to Storage
JA30201-6F.4	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-6F.4	Ricky Agapay	Secured Storage	10/12/09 22:16	Return to Storage
JA30201-7.1	Secured Storage	Adam Scott	10/22/09 08:39	Retrieve from Storage
JA30201-7.1	Adam Scott	Darshananben Patel		Custody Transfer
JA30201-7.1	Darshananben Patel	Secured Storage		Return to Storage
JA30201-7.1	Secured Storage	Todd Shoemaker		Retrieve from Storage
JA30201-7.1	Todd Shoemaker	Jieyu Wang		Custody Transfer
JA30201-7.1	Jieyu Wang	Rinku Patel		Custody Transfer Custody Transfer
JA30201-7.1	Rinku Patel	Secured Storage		Return to Storage
JA30201-7.1	Kiliku I atei	Secured Storage	10/20/07 10.20	Return to Storage
JA30201-7.1.1	Rinku Patel	Metals Digestion		Digestate from JA30201-7.1
JA30201-7.1.1	Metals Digestion	Rinku Patel		Digestate from JA30201-7.1
JA30201-7.1.1	Rinku Patel	Metals Digestate Storage		Return to Storage
JA30201-7.1.1	Metals Digestate Storage	Nancy Duan	10/26/09 17:16	Retrieve from Storage
JA30201-7.1.1	Nancy Duan	Metals Digestate Storage	10/26/09 17:17	Return to Storage
JA30201-7.3	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-7.3 JA30201-7.3	Ricky Agapay	Secured Storage		Return to Storage
JA30201-7.3	піску лідараў	scenied storage	10/12/09 22.10	Return to biorage
JA30201-7.5	Secured Storage	John Thomas		Retrieve from Storage
JA30201-7.5	John Thomas	Shirley Grzybowski	10/17/09 09:55	Custody Transfer
JA30201-7.5	Shirley Grzybowski	Secured Storage	10/19/09 07:04	Return to Storage
JA30201-7F.2	Secured Storage	Adam Scott	10/12/00 09:29	Retrieve from Storage

Job Number: JA30201

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA30201-7F.2	Adam Scott	Rinku Patel	10/13/09 08:39	Custody Transfer
JA30201-7F.2	Rinku Patel	Beatrice Marcelino		Custody Transfer
JA30201-7F.2	Beatrice Marcelino	Secured Storage		Return to Storage
JA30201-7F.2	Secured Storage	Todd Shoemaker		Retrieve from Storage
JA30201-7F.2	Todd Shoemaker	Darshananben Patel		Custody Transfer
JA30201-7F.2	Darshananben Patel	Beatrice Marcelino		Custody Transfer
JA30201-7F.2	Beatrice Marcelino	Secured Storage		Return to Storage
JA30201-7F.2	Secured Storage	Adam Scott		Retrieve from Storage
JA30201-7F.2	Adam Scott	Darshananben Patel	10/22/09 08:40	Custody Transfer
JA30201-7F.2	Darshananben Patel	Secured Storage	10/22/09 16:05	Return to Storage
JA30201-7F.2	Secured Storage	Todd Shoemaker	10/26/09 08:11	Retrieve from Storage
JA30201-7F.2	Todd Shoemaker	Jieyu Wang	10/26/09 08:13	Custody Transfer
JA30201-7F.2	Jieyu Wang	Rinku Patel	10/26/09 08:23	Custody Transfer
JA30201-7F.2	Rinku Patel	Secured Storage	10/26/09 16:20	Return to Storage
JA30201-7F.2.1	Rinku Patel	Metals Digestion	10/26/09 12:46	Digestate from JA30201-7F.2
JA30201-7F.2.1	Metals Digestion	Rinku Patel		Digestate from JA30201-7F.2
JA30201-7F.2.1	Rinku Patel	Metals Digestate Storage		Return to Storage
JA30201-7F.2.1	Metals Digestate Storage	Nancy Duan	10/26/09 17:16	Retrieve from Storage
JA30201-7F.2.1	Nancy Duan	Metals Digestate Storage	10/26/09 17:17	Return to Storage
JA30201-7F.4	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-7F.4	Ricky Agapay	Secured Storage	10/12/09 22:16	Return to Storage
JA30201-8.1	Secured Storage	Todd Shoemaker	10/19/09 09:37	Retrieve from Storage
JA30201-8.1	Todd Shoemaker	Darshananben Patel	10/19/09 09:39	Custody Transfer
JA30201-8.1	Darshananben Patel	Secured Storage	10/19/09 15:40	Return to Storage
JA30201-8.1	Secured Storage	Todd Shoemaker	10/21/09 08:47	Retrieve from Storage
JA30201-8.1	Todd Shoemaker	Beatrice Marcelino	10/21/09 08:49	Custody Transfer
JA30201-8.1	Beatrice Marcelino	Secured Storage	10/21/09 16:48	Return to Storage
JA30201-8.1	Secured Storage	Adam Scott	10/22/09 08:39	Retrieve from Storage
JA30201-8.1	Adam Scott	Darshananben Patel	10/22/09 08:40	Custody Transfer
JA30201-8.1	Darshananben Patel	Secured Storage	10/22/09 16:05	Return to Storage
JA30201-8.1	Secured Storage	Todd Shoemaker	10/26/09 08:11	Retrieve from Storage
JA30201-8.1	Todd Shoemaker	Jieyu Wang	10/26/09 08:13	Custody Transfer
JA30201-8.1	Jieyu Wang	Rinku Patel	10/26/09 08:23	Custody Transfer
JA30201-8.1	Rinku Patel	Secured Storage	10/26/09 16:20	Return to Storage
JA30201-8.1.1	Rinku Patel	Metals Digestion	10/26/09 12:46	Digestate from JA30201-8.1
JA30201-8.1.1	Metals Digestion	Rinku Patel		Digestate from JA30201-8.1
JA30201-8.1.1	Rinku Patel	Metals Digestate Storage		Return to Storage
JA30201-8.1.1	Metals Digestate Storage	Nancy Duan		Retrieve from Storage
JA30201-8.1.1	Nancy Duan	Metals Digestate Storage		Return to Storage

Job Number: JA30201

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA30201-8.3	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-8.3 Ricky Agapay		Secured Storage		Return to Storage
JA30201-8.5	Secured Storage	John Thomas	10/17/09 09:51	Retrieve from Storage
JA30201-8.5	John Thomas	Shirley Grzybowski		Custody Transfer
JA30201-8.5	Shirley Grzybowski	Secured Storage	10/19/09 07:04	Return to Storage
JA30201-8F.2	Secured Storage	Adam Scott	10/13/09 08:38	Retrieve from Storage
JA30201-8F.2	Adam Scott	Rinku Patel		Custody Transfer
JA30201-8F.2	Rinku Patel	Beatrice Marcelino		Custody Transfer
JA30201-8F.2	Beatrice Marcelino	Secured Storage		Return to Storage
JA30201-8F.2	Secured Storage	Todd Shoemaker		Retrieve from Storage
JA30201-8F.2	Todd Shoemaker	Darshananben Patel		Custody Transfer
JA30201-8F.2	Darshananben Patel	Secured Storage		Return to Storage
JA30201-8F.2	Secured Storage	Todd Shoemaker		Retrieve from Storage
JA30201-8F.2	Todd Shoemaker	Darshananben Patel		Custody Transfer
JA30201-8F.2	Darshananben Patel	Beatrice Marcelino		Custody Transfer
JA30201-8F.2	Beatrice Marcelino	Secured Storage		Return to Storage
JA30201-8F.2	Secured Storage	Adam Scott		Retrieve from Storage
JA30201-8F.2	Adam Scott	Darshananben Patel		Custody Transfer
JA30201-8F.2	Darshananben Patel	Secured Storage		Return to Storage
JA30201-8F.2	Secured Storage	Dave Hunkele		Retrieve from Storage
JA30201-8F.2	Dave Hunkele	Rinku Patel		Custody Transfer
JA30201-8F.2	Rinku Patel	Secured Storage		Return to Storage
JA30201-8F.2	Secured Storage	John Thomas		Retrieve from Storage
JA30201-8F.2	John Thomas	Rinku Patel		Custody Transfer
JA30201-8F.2	Rinku Patel	Secured Storage		Return to Storage
JA30201-8F.2.1	Rinku Patel	Metals Digestion	10/26/09 12:46	Digestate from JA30201-8F.
JA30201-8F.2.1	Metals Digestion	Rinku Patel		Digestate from JA30201-8F.
JA30201-8F.2.1	Rinku Patel	Metals Digestate Storage		Return to Storage
JA30201-8F.2.1	Metals Digestate Storage	Nancy Duan		Retrieve from Storage
JA30201-8F.2.1	Nancy Duan	Metals Digestate Storage		Return to Storage
JA30201-8F.4	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-8F.4	Ricky Agapay	Secured Storage		Return to Storage
JA30201-8F.4	Secured Storage	Todd Shoemaker		Retrieve from Storage
JA30201-8F.4	Todd Shoemaker	Beatrice Marcelino		Custody Transfer
JA30201-8F.4 JA30201-8F.4	Beatrice Marcelino	Secured Storage		Return to Storage
JA30201-9.1	Secured Storage	Adam Scott	10/22/09 08:39	Retrieve from Storage
JA30201-9.1	Adam Scott	Darshananben Patel		Custody Transfer
JA30201-9.1	Darshananben Patel	Secured Storage		Return to Storage
· · · -	Secured Storage	Todd Shoemaker	10/26/09 08:11	

Page 10 of 10

Job Number: JA30201

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Accutest Internal Chain of Custody

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA30201-9.1	Todd Shoemaker	Jieyu Wang	10/26/09 08:13	Custody Transfer
JA30201-9.1	Jieyu Wang	Rinku Patel	10/26/09 08:23	Custody Transfer
JA30201-9.1	Rinku Patel	Secured Storage	10/26/09 16:20	Return to Storage
JA30201-9.1.1	Rinku Patel	Metals Digestion	10/26/09 12:46	Digestate from JA30201-9.1
JA30201-9.1.1	Metals Digestion	Rinku Patel	10/26/09 12:47	Digestate from JA30201-9.1
JA30201-9.1.1	Rinku Patel	Metals Digestate Storage	10/26/09 12:47	Return to Storage
JA30201-9.1.1	Metals Digestate Storage	Nancy Duan	10/26/09 17:16	Retrieve from Storage
JA30201-9.1.1	Nancy Duan	Metals Digestate Storage	10/26/09 17:17	Return to Storage
JA30201-9.2	Secured Storage	Ricky Agapay	10/12/09 21:54	Retrieve from Storage
JA30201-9.2	Ricky Agapay	Secured Storage	10/12/09 22:16	Return to Storage
JA30201-9.3 JA30201-9.3 JA30201-9.3	Secured Storage John Thomas Shirley Grzybowski	John Thomas Shirley Grzybowski Secured Storage	10/17/09 09:55	Retrieve from Storage Custody Transfer Return to Storage

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Instrument Runlogs
- Initial and Continuing Calibration Blanks
- Initial and Continuing Calibration Checks
- · High and Low Check Standards
- Interfering Element Check Standards
- Method Blank Summaries
- · Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries
- IDL and Linear Range Summaries

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT

Analyst: ND

Date Analyzed: 10/26/09 Run ID: MA23347

Methods: EPA 200.7, SW846 6010B

	meters: Cr		Kuii 1D. 19823347
Time	Sample Description	Dilution PS Factor Rec	Comments
14:28	MA23347-STD1	1	STDA
14:34	MA23347-STD2	1	STDB
14:40	MA23347-STD3	1	STDC
14:47	MA23347-STD4	1	STDD
14:53	MA23347-STD5	1	STDE
14:59	MA23347-STD6	1	STDF
15:05	MA23347-STD7	1	STDG
15:12	MA23347-STD8	1	STDH
15:18	MA23347-STD9	1	STDI
15:35	MA23347-HSTD1	1	
15:41	MA23347-CRIB1	1	
15:47	MA23347-CRID1	1	
15:54	MA23347-ICV1	1	
16:00	MA23347-ICB1	1	
16:07	MA23347-ICCV1	1	
16:14	MA23347-CCB1	1	
16:22	MA23347-ICSA1	1	
16:28	MA23347-ICSAB1	1	
16:34	MA23347-CCV1	1	
16:40	MA23347-CCB2	1	
16:48	MP50203-MB1	1	
16:54	MP50221-MB1	1	
17:00	MP50221-LC1	1	
17:06	MP50221-S1	1	
17:12	MP50221-S2	1	
17:18	JA31255-2	1	(sample used for QC only; not part of login JA30201)
	MP50221-SD1		
17:30	ZZZZZZ	1	
17:36	MA23347-CCV2	1	
	MA23347-CCB3		
	ZZZZZZ		
	ZZZZZZ		
18:01	MP50203-B1	1	

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT Analyst: ND Date Analyzed: 10/26/09 Run ID: MA23347 Methods: EPA 200.7, SW846 6010B

Parameters: Cr

Time	Sample Description	Dilution PS Factor Recov	Comments
18:07	MP50203-S1	1	
18:14	MP50203-S2	1	
18:20	JA30199-1	1	(sample used for QC only; not part of login JA30201)
18:26	MP50203-SD1	5	
18:32	ZZZZZZ	1	
18:38	ZZZZZZ	1	
18:44	ZZZZZZ	1	
18:50	MA23347-CCV3	1	
18:57	MA23347-CCB4	1	
19:03	ZZZZZZ	1	
19:09	ZZZZZZ	1	
19:15	ZZZZZZ	1	
19:21	ZZZZZZ	1	
19:27	ZZZZZZ	1	
19:33	ZZZZZZ	1	
19:40	ZZZZZZ	1	
19:46	ZZZZZZ	1	
19:52	ZZZZZZ	1	
19:58	ZZZZZZ	1	
20:04	MA23347-CCV4	1	
20:10	MA23347-CCB5	1	
20:17	MP50224-MB1	1	
20:23	MP50224-B1	1	
20:29	MP50224-S1	1	
20:35	MP50224-S2	1	
20:41	JA30252-1	1	(sample used for QC only; not part of login JA30201)
	MP50224-SD1		
20:53	ZZZZZZ	1	
	ZZZZZZ		
	ZZZZZZ		
21:12	ZZZZZZ	1	
21:18	MA23347-CCV5	1	
21:24	MA23347-CCB6	1	

JA30201 Laborat

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT Analyst: ND Date Analyzed: 10/26/09 Run ID: MA23347 Methods: EPA 200.7, SW846 6010B

Parameters: Cr

21:31	Time	Sample Description	Dilution PS Factor Recov Comments
21:43	21:31	ZZZZZZ	1
21:49	21:37	ZZZZZZ	1
21:55 ZZZZZZ 1 22:07 ZZZZZZ 1 22:13 ZZZZZZ 1 22:20 ZZZZZZ 1 22:22 ZZZZZ 1 22:22 ZZZZZ 1 22:23 MA23347-CCV6 1 22:33 MA23347-CCV7 1 22:44 ZZZZZZ 1 22:55 ZZZZZZ 1 23:57 MP50217-MB1 1 23:08 MP50217-51 1 23:09 MP50217-51 1 23:10 MP50217-51 5 23:21 JA30201-3 1 23:23 MP50217-52 1 23:23 MP50217-52 1 23:23 MP50217-53 1 23:24 MP50217-54 1 23:25 MP50217-55 1 23:27 MP50217-55 1 23:28 MP50217-52 1 23:29 MP50217-53 1 23:20 MP50217-53 1 23:21 MP50217-53 1 23:21 MP50217-53 1 23:22 MP50217-53 1 23:23 MP50217-53 1 23:24 MP50217-54 1 23:25 MA23347-CCV7 1 23:25 MA23347-CCV8 1 00:15 MA23347-CCV8 1 00:17 MA23347-CCV9 1 00:18 MA23347-CCV9 1 00:19 MA23347-CCV9 1 00:10 MA23347-CCV9 1 00:10 MA23347-CCV9 1 00:11 MA23347-CCV9 1 00:12 MA23347-CCV9 1 00:13 MA201-3F 1	21:43	ZZZZZZ	1
22:01 ZZZZZZZ 1 22:13 ZZZZZZZ 1 22:24 ZZZZZZZ 1 22:25 ZZZZZZZ 1 22:32 MA23347-CCV6 1 22:38 MA23347-CCV7 1 22:44 ZZZZZZ 1 23:37 MP50217-MB1 1 23:38 MP50217-S1 1 23:31 MP50217-S2 1 23:31 JA30201-3 1 23:40 MP50217-S3 1 23:40 MP50217-S3 1 23:41 MA23347-CCV7 1 23:52 MA23347-CCB8 1 23:54 MA23347-CCB8 1 00:05 MA23347-CCB9 1 00:17 MA23347-CCB9 1 00:18 J330201-3F 1 00:03 J330201-1 5 00:04 J330201-2 1	21:49	ZZZZZZ	1
22:01 ZZZZZZZ 1 22:12 ZZZZZZZ 1 22:12 ZZZZZZZ 1 22:12 ZZZZZZZ 1 22:13 MA23347-CCV6 1 22:14 ZZZZZZ 1 22:15 ZZZZZZ 1 23:10 MP50217-MB1 1 23:17 MP50217-S1 1 23:18 MP50217-S2 1 23:27 MP50217-S3 1 23:33 MP50217-S3 1 23:40 MP50217-S3 1 23:46 MA23347-CCV3 1 23:52 MA23347-CCB8 1 00:05 MA23347-CCB8 1 00:17 MA23347-CCV8 1 00:18 MA23347-CCV8 1 00:17 MA23347-CCV8 1 00:18 MA23347-CCV8 1 00:19 MA23347-CCV8 5 00:10 MA23347-CCV8 1 00:10 MP50217-SD2 5 <	21:55	ZZZZZZ	1
22:13 ZZZZZZ 1 22:26 ZZZZZZZ 1 22:32 MA23347-CCV6 1 22:38 MA23347-CCP7 1 22:44 ZZZZZZ 1 22:51 ZZZZZZ 1 23:03 MP50217-MB1 1 33:03 MP50217-LC1 1 33:15 MP50217-S2 1 33:21 JA30201-3 1 23:23 MP50217-S2 1 23:33 MP50217-S3 1 23:40 MP50217-S4 1 23:40 MP50217-S4 1 23:55 MA23347-CCV7 1 23:56 MA23347-CCV8 1 00:01 MA23347-CCV8 1 00:11 MA23347-CCV8 1 00:12 MA23347-CCV8 1 00:14 JA30201-3F 1 00:24 JA30201-3F 1 00:36 JA30201-3F 1 00:37 MP50217-SD2 5 </td <td>22:01</td> <td>ZZZZZZ</td> <td>1</td>	22:01	ZZZZZZ	1
22:20 ZZZZZZ 1 22:31 MA23347-CCV6 1 22:38 MA23347-CCP7 1 22:44 ZZZZZZ 1 22:51 ZZZZZZ 1 23:09 MP50217-MB1 1 23:15 MP50217-S2 1 23:21 JA30201-3 1 23:22 MP50217-S2 1 23:23 MP50217-S2 1 23:24 MP50217-S2 1 23:25 MP50217-S2 1 23:26 MP50217-S2 1 23:27 MP50217-S2 1 23:40 MP50217-S2 1 23:52 MA23347-CCV7 1 23:52 MA23347-CCV8 1 00:05 MA23347-CCV8 1 00:11 MA23347-CCV8 1 00:02 JA30201-3F 1 00:03 MP50217-SP2 5 00:04 JA30201-1 1 00:05 JA30201-2 1 <td>22:07</td> <td>ZZZZZZ</td> <td>1</td>	22:07	ZZZZZZ	1
22:26 ZZZZZZ 1 22:38 MA23347-CCW6 1 22:44 ZZZZZZ 1 22:51 ZZZZZZ 1 22:57 MP50217-MB1 1 23:03 MP50217-LC1 1 23:15 MP50217-S1 1 23:21 JA30201-3 1 23:27 MP50217-SD1 5 23:33 MP50217-S3 1 23:40 MP50217-S4 1 23:52 MA23347-CCW7 1 23:52 MA23347-CCW8 1 00:05 MA23347-TCSAE2 1 00:17 MA23347-CCW8 1 00:17 MA23347-CCW8 1 00:17 MA23347-CCW8 1 00:17 MA23347-CCW8 1 00:18 JA30201-3F 1 00:30 MP50217-SD2 5 00:31 JA30201-1 1 00:42 JA30201-2 1	22:13	ZZZZZZ	1
22:32 MA23347-CCV6 1 22:38 MA23347-CCB7 1 22:44 ZZZZZZ 1 22:51 ZZZZZZ 1 22:57 MP50217-MB1 1 23:03 MP50217-LC1 1 23:15 MP50217-S2 1 23:21 JA30201-3 1 23:33 MP50217-SD1 5 23:33 MP50217-S3 1 23:40 MP50217-S4 1 23:52 MA23347-CCV7 1 23:52 MA23347-CCB8 1 23:58 MA23347-CCB8 1 00:05 MA23347-CCB9 1 00:11 MA23347-CCB9 1 00:12 JA30201-3F 1 00:30 MP50217-SD2 5 00:31 JA30201-3F 1 00:32 JA30201-3F 1 00:34 JA30201-3 1	22:20	ZZZZZZ	1
22:38 MA23347-CCB7 1 22:44 ZZZZZZ 1 22:51 ZZZZZZ 1 22:57 MP50217-MB1 1 23:03 MP50217-S1 1 23:15 MP50217-S2 1 23:21 JA30201-3 1 23:33 MP50217-S3 1 23:40 MP50217-S4 1 23:46 MA23347-CCV7 1 23:58 MA23347-CCB8 1 00:05 MA23347-ICSA2 1 00:11 MA23347-CCV8 1 00:17 MA23347-CCB9 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:31 JA30201-1 1 00:32 JA30201-2 1	22:26	ZZZZZZ	1
22:44 ZZZZZZ 1 22:57 ZZZZZZ 1 23:03 MP50217-MB1 1 23:09 MP50217-S1 1 23:15 MP50217-S2 1 23:21 JA30201-3 1 23:33 MP50217-S3 1 23:40 MP50217-S4 1 23:46 MA23347-CCV7 1 23:52 MA23347-CCB8 1 23:58 MA23347-ICSAB2 1 00:05 MA23347-CCB8 1 00:11 MA23347-CCB9 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:31 JA30201-1 1 00:32 JA30201-2 1	22:32	MA23347-CCV6	1
22:51 ZZZZZZ 1 22:57 MP50217-MB1 1 23:03 MP50217-LC1 1 23:09 MP50217-S1 1 23:15 MP50217-S2 1 23:21 JA30201-3 1 23:33 MP50217-SD1 5 23:40 MP50217-S4 1 23:52 MA23347-CCV7 1 23:58 MA23347-ICSA2 1 00:05 MA23347-ICSA2 1 00:11 MA23347-CCV8 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:30 JA30201-1 1 00:32 JA30201-2 1	22:38	MA23347-CCB7	1
22:57 MP50217-MB1 1 23:03 MP50217-LC1 1 23:09 MP50217-S1 1 23:15 MP50217-S2 1 23:21 JA30201-3 1 23:33 MP50217-S1 5 23:40 MP50217-S4 1 23:46 MA23347-CCV7 1 23:52 MA23347-CCB8 1 00:05 MA23347-CCB8 1 00:11 MA23347-CCB9 1 00:12 JA30201-3F 1 00:30 MP50217-SD2 5 00:30 JA30201-1 1 00:32 JA30201-2 1	22:44	ZZZZZZ	1
23:03 MP50217-LC1 1 23:09 MP50217-S1 1 23:15 MP50217-S2 1 23:21 JA30201-3 1 23:27 MP50217-SD1 5 23:40 MP50217-S4 1 23:46 MA23347-CCV7 1 23:52 MA23347-CCB8 1 20:01 MA23347-ICSAB2 1 00:11 MA23347-CCV8 1 00:12 MA23347-CCB9 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:31 JA30201-1 1 00:32 JA30201-2 1	22:51	ZZZZZZ	1
23:09 MP50217-S1 1 23:15 MP50217-S2 1 23:21 JA30201-3 1 23:27 MP50217-SD1 5 23:33 MP50217-S3 1 23:40 MP50217-S4 1 23:45 MA23347-CCV7 1 23:52 MA23347-ICSA2 1 00:05 MA23347-ICSAB2 1 00:11 MA23347-CCV8 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:36 JA30201-1 1 00:42 JA30201-2 1	22:57	MP50217-MB1	1
23:15 MP50217-S2 1 23:21 JA30201-3 1 23:27 MP50217-SD1 5 23:33 MP50217-S3 1 23:40 MP50217-S4 1 23:45 MA23347-CCV7 1 23:52 MA23347-ICSA2 1 00:05 MA23347-ICSA2 1 00:11 MA23347-CCV8 1 00:17 MA23347-CCB9 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:31 JA30201-1 1 00:42 JA30201-2 1	23:03	MP50217-LC1	1
23:21 JA30201-3 1 23:27 MP50217-SD1 5 23:33 MP50217-S3 1 23:40 MP50217-S4 1 23:46 MA23347-CCV7 1 23:52 MA23347-ICSA2 1 00:05 MA23347-ICSAB2 1 00:11 MA23347-CCV8 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:36 JA30201-1 1 00:42 JA30201-2 1	23:09	MP50217-S1	1
23:27 MP50217-SD1 5 23:33 MP50217-S3 1 23:40 MP50217-S4 1 23:52 MA23347-CCB8 1 23:58 MA23347-ICSA2 1 00:05 MA23347-CCV8 1 00:11 MA23347-CCV8 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:36 JA30201-1 1 00:42 JA30201-2 1	23:15	MP50217-S2	1
23:33 MP50217-S3 1 23:40 MP50217-S4 1 23:46 MA23347-CCV7 1 23:52 MA23347-ICSAB 1 00:05 MA23347-ICSAB2 1 00:11 MA23347-CCV8 1 00:17 MA23347-CCB9 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:42 JA30201-1 1 00:42 JA30201-2 1	23:21	JA30201-3	1
23:40 MP50217-S4 1 23:46 MA23347-CCV7 1 23:52 MA23347-CCB8 1 00:05 MA23347-ICSAB2 1 00:11 MA23347-CCV8 1 00:17 MA23347-CCB9 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:42 JA30201-2 1	23:27	MP50217-SD1	5
23:46 MA23347-CCV7 1 23:52 MA23347-CCB8 1 23:58 MA23347-ICSA2 1 00:05 MA23347-ICSAB2 1 00:11 MA23347-CCV8 1 00:24 JA30201-3F 1 00:36 JA30201-1 1 00:42 JA30201-2 1	23:33	MP50217-S3	1
23:52 MA23347-CCB8 1 23:58 MA23347-ICSA2 1 00:05 MA23347-CCV8 1 00:11 MA23347-CCV8 1 00:17 MA23347-CCB9 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:42 JA30201-1 1 00:42 JA30201-2 1	23:40	MP50217-S4	1
23:58 MA23347-ICSA2 1 00:05 MA23347-ICSAB2 1 00:11 MA23347-CCV8 1 00:17 MA23347-CCB9 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:42 JA30201-1 1 00:42 JA30201-2 1	23:46	MA23347-CCV7	1
00:05 MA23347-ICSAB2 1 00:11 MA23347-CCV8 1 00:17 MA23347-CCB9 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:36 JA30201-1 1 00:42 JA30201-2 1	23:52	MA23347-CCB8	1
00:11 MA23347-CCV8 1 00:17 MA23347-CCB9 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:36 JA30201-1 1 00:42 JA30201-2 1	23:58	MA23347-ICSA2	1
00:17 MA23347-CCB9 1 00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:36 JA30201-1 1 00:42 JA30201-2 1	00:05	MA23347-ICSAB2	1
00:24 JA30201-3F 1 00:30 MP50217-SD2 5 00:36 JA30201-1 1 00:42 JA30201-2 1	00:11	MA23347-CCV8	1
00:30 MP50217-SD2 5 00:36 JA30201-1 1 00:42 JA30201-2 1			
00:36 JA30201-1 1 00:42 JA30201-2 1			
00:42 JA30201-2 1			
	00:36	JA30201-1	1
00:48 JA30201-4 1	00:42	JA30201-2	1
	00:48	JA30201-4	1

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Run ID: MA23347

File ID: IT102609M1.DAT Analyst: ND Date Analyzed: 10/26/09 Methods: EPA 200.7, SW846 6010B

Parameters: Cr

Time	Sample Description	Dilution Factor	PS Recov	Comments
00:54	JA30201-5	1		
01:00	JA30201-6	1		
01:06	JA30201-7	1		
01:13	MA23347-CCV9	1		
01:19	MA23347-CCB10	1		
01:25	JA30201-9	1		
01:31	JA30201-1F	1		
01:37	JA30201-2F	1		
01:44	JA30201-4F	1		
01:50	JA30201-5F	1		
01:56	JA30201-6F	1		
02:02	JA30201-7F	1		
02:08	ZZZZZZ	1		
02:14	MA23347-CCV10	1		
02:21	MA23347-CCB11	1		
02:27	JA30201-8	10		
Last r	JA30201-8F eportable sample, MA23347-CCV11	10 /prep for 1	job JA302	201
02:45	MA23347-CCB12	1		
02:52	MA23347-ICSA3	1		
02:58	MA23347-ICSAB3	1		
03:04	MA23347-CCV12	1		
Last r	MA23347-CCB13 eportable CCB for to raw data for o			and standards.

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT Analyst: ND Parameters: Cr Date Analyzed: 10/26/09 Run ID: MA23347 Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Istd#1
	MA23347-STD1	
14:34	MA23347-STD2	57832
14:40	MA23347-STD3	61446
14:47	MA23347-STD4	60227
14:53	MA23347-STD5	60197
14:59	MA23347-STD6	59495
15:05	MA23347-STD7	59974
15:12	MA23347-STD8	57628
15:18	MA23347-STD9	56574
15:35	MA23347-HSTD1	56076
15:41	MA23347-CRIB1	60631
15:47	MA23347-CRID1	59598
15:54	MA23347-ICV1	59162
16:00	MA23347-ICB1	60446
16:07	MA23347-ICCV1	58499
16:14	MA23347-CCB1	60509
16:22	MA23347-ICSA1	50459
16:28	MA23347-ICSAB1	50547
16:34	MA23347-CCV1	56764
16:40	MA23347-CCB2	60243
16:48	MP50203-MB1	59932
16:54	MP50221-MB1	59366
17:00	MP50221-LC1	55539
17:06	MP50221-S1	46451
17:12	MP50221-S2	45217
17:18	JA31255-2	46588
17:24	MP50221-SD1	56592
17:30	ZZZZZZ	45978
17:36	MA23347-CCV2	57836
17:43	MA23347-CCB3	59025
17:49	ZZZZZZ	44386
17:55	ZZZZZZ	46516
18:01	MP50203-B1	55602

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT Analyst: ND Parameters: Cr Date Analyzed: 10/26/09 Run ID: MA23347 Methods: EPA 200.7, SW846 6010B

Time	Sample Description	Istd#1
18:07	MP50203-S1	58124
18:14	MP50203-S2	59650
18:20	JA30199-1	60781
18:26	MP50203-SD1	58675
18:32	ZZZZZZ	61622
18:38	ZZZZZZ	61459
18:44	ZZZZZZ	59790
18:50	MA23347-CCV3	58650
18:57	MA23347-CCB4	58885
19:03	ZZZZZZ	61815
19:09	ZZZZZZ	61370
19:15	ZZZZZZ	60478
19:21	ZZZZZZ	57963
19:27	ZZZZZZ	60243
19:33	ZZZZZZ	57719
19:40	ZZZZZZ	61457
19:46	ZZZZZZ	60690
19:52	ZZZZZZ	60038
19:58	ZZZZZZ	59524
20:04	MA23347-CCV4	58296
20:10	MA23347-CCB5	60400
20:17	MP50224-MB1	61491
20:23	MP50224-B1	57104
20:29	MP50224-S1	62814
20:35	MP50224-S2	67632
20:41	JA30252-1	64159
20:47	MP50224-SD1	60681
20:53	ZZZZZZ	64251
21:00	ZZZZZZ	64450
21:06	ZZZZZZ	68131
21:12	ZZZZZZ	64441
21:18	MA23347-CCV5	57949
	MA23347-CCB6	
•	-	

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT Analyst: ND Parameters: Cr Date Analyzed: 10/26/09 Run ID: MA23347 Methods: EPA 200.7, SW846 6010B

	Sample Description	Istd#1
21:31	ZZZZZZ	64039
21:37	ZZZZZZ	63893
21:43	ZZZZZZ	61879
21:49	ZZZZZZ	64505
21:55	ZZZZZZ	62214
22:01	ZZZZZZ	62463
22:07	ZZZZZZ	62695
22:13	ZZZZZZ	64947
22:20	ZZZZZZ	60246
22:26	ZZZZZZ	65547
22:32	MA23347-CCV6	57701
22:38	MA23347-CCB7	56375
22:44	ZZZZZZ	66032
22:51	ZZZZZZ	64019
22:57	MP50217-MB1	59131
23:03	MP50217-LC1	58817
23:09	MP50217-S1	55974
23:15	MP50217-S2	58641
23:21	JA30201-3	59436
23:27	MP50217-SD1	60352
23:33	MP50217-S3	56274
23:40	MP50217-S4	57791
23:46	MA23347-CCV7	59105
23:52	MA23347-CCB8	58901
23:58	MA23347-ICSA2	51866
00:05	MA23347-ICSAB2	52502
00:11	MA23347-CCV8	57210
00:17	MA23347-CCB9	57138
00:24	JA30201-3F	57748
00:30	MP50217-SD2	58312
00:36	JA30201-1	55975
00:42	JA30201-2	55850
00:48	JA30201-4	57089

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT Analyst: ND Date Analyzed: 10/26/09 Methods: EPA 200.7, SW846 6010B Run ID: MA23347

Parameters: Cr

	G1-	
Time	Sample Description	Istd#1
00:54	JA30201-5	55669
01:00	JA30201-6	54463
01:06	JA30201-7	52417
01:13	MA23347-CCV9	57671
01:19	MA23347-CCB10	57746
01:25	JA30201-9	58189
01:31	JA30201-1F	56883
01:37	JA30201-2F	55951
01:44	JA30201-4F	58588
01:50	JA30201-5F	56199
01:56	JA30201-6F	58709
02:02	JA30201-7F	55709
02:08	ZZZZZZ	60969
02:14	MA23347-CCV10	56087
02:21	MA23347-CCB11	58293
02:27	JA30201-8	58433
02:33	JA30201-8F	58698
02:39	MA23347-CCV11	55383
02:45	MA23347-CCB12	59841
02:52	MA23347-ICSA3	52131
02:58	MA23347-ICSAB3	51145
03:04	MA23347-CCV12	57686
03:11	MA23347-CCB13	59005
R = Re	ference for IST	D limits. ! = Outside limits.
LEGEND	:	
	<u>Parameter</u> Yttrium	<u>Limits</u> 60-125 %
15 CU#1	ICCIIU	00 123 0

65 of 247 **ACCUTEST.** JA30201 Laboratories

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA30201

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Time: Sample ID:			16:00 ICB1		16:14 CCB1		16:40 CCB2		17:43 CCB3	
Metal	RL	IDL	raw	final	raw	final	raw	final	raw	final
Aluminum	200	25	anr							
Antimony	6.0	3.1								
Arsenic	8.0	2.4	anr							
Barium	200	1.4	anr							
Beryllium	1.0	.09	anr							
Cadmium	3.0	. 4	anr							
Calcium	5000	27								
Chromium	10	1.3	0.38	<10	0.66	<10	-0.20	<10	-0.16	<10
Cobalt	50	.8								
Copper	10	1.1								
Iron	100	19	anr							
Lead	3.0	2.7								
Magnesium	5000	31								
Manganese	15	.3								
Molybdenum	20	1.1								
Nickel	10	1.5								
Palladium	50	4.6								
Potassium	10000	24								
Selenium	10	5.4								
Silicon	200	11								
Silver	10	1.2								
Sodium	10000	200								
Thallium	10	3.9								
Tin	10	3.6								
Vanadium	50	1.4								
Zinc	20	1.2	anr							

BLANK RESULTS SUMMARY

Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

20 21100 10.) / ±		
Time: Sample ID: Metal		IDL	18:57 CCB4 raw	final	20:10 CCB5 raw	final	21:24 CCB6 raw	final	22:38 CCB7 raw	final
Aluminum	200	25	anr	11101	14"	11101	14"		14"	11101
Antimony	6.0	3.1	ani							
Arsenic	8.0	2.4	anr							
Barium	200	1.4	anr							
Beryllium	1.0	.09	anr							
Cadmium	3.0	. 4	anr							
Calcium	5000	27								
Chromium	10	1.3	-0.039	<10	0.40	<10	-0.30	<10	0.14	<10
Cobalt	50	.8								
Copper	10	1.1								
Iron	100	19	anr							
Lead	3.0	2.7								
Magnesium	5000	31								
Manganese	15	.3								
Molybdenum	20	1.1								
Nickel	10	1.5								
Palladium	50	4.6								
Potassium	10000	24								
Selenium	10	5.4								
Silicon	200	11								
Silver	10	1.2								
Sodium	10000	200								
Thallium	10	3.9								
Tin	10	3.6								
Vanadium	50	1.4								
Zinc	20	1.2	anr							

BLANK RESULTS SUMMARY

Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

20 11100 10.	0410 - 141			11011			onico as	, ±		
Time: Sample ID: Metal		IDL	23:52 CCB8 raw	final	00:17 CCB9 raw	final	01:19 CCB10 raw	final	02:21 CCB11 raw	final
Aluminum	200	25	anr							
Antimony	6.0	3.1								
Arsenic	8.0	2.4	anr							
Barium	200	1.4	anr							
Beryllium	1.0	.09	anr							
Cadmium	3.0	. 4	anr							
Calcium	5000	27								
Chromium	10	1.3	0.28	<10	1.3	<10	1.6	<10	-2.3	<10
Cobalt	50	.8								
Copper	10	1.1								
Iron	100	19	anr							
Lead	3.0	2.7								
Magnesium	5000	31								
Manganese	15	.3								
Molybdenum	20	1.1								
Nickel	10	1.5								
Palladium	50	4.6								
Potassium	10000	24								
Selenium	10	5.4								
Silicon	200	11								
Silver	10	1.2								
Sodium	10000	200								
Thallium	10	3.9								
Tin	10	3.6								
Vanadium	50	1.4								
Zinc	20	1.2	anr							

BLANK RESULTS SUMMARY

Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA30201

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT Date Analyzed: 10/26/09 Methods: EPA 200.7, SW846 6010B QC Limits: result < RL Run ID: MA23347 Units: ug/1

Time: 02:45 03:11
Sample ID: CCB12 CCB13

Time: Sample ID:			02:45 CCB12		03:11 CCB13	
Metal	RL	IDL	raw	final	raw	final
Aluminum	200	25	anr			
Antimony	6.0	3.1				
Arsenic	8.0	2.4	anr			
Barium	200	1.4	anr			
Beryllium	1.0	.09	anr			
Cadmium	3.0	. 4	anr			
Calcium	5000	27				
Chromium	10	1.3	3.6	<10	2.8	<10
Cobalt	50	.8				
Copper	10	1.1				
Iron	100	19	anr			
Lead	3.0	2.7				
Magnesium	5000	31				
Manganese	15	.3				
Molybdenum	20	1.1				
Nickel	10	1.5				
Palladium	50	4.6				
Potassium	10000	24				
Selenium	10	5.4				
Silicon	200	11				
Silver	10	1.2				
Sodium	10000	200				
Thallium	10	3.9				
Tin	10	3.6				
Vanadium	50	1.4				
Zinc	20	1.2	anr			

CALIBRATION CHECK STANDARDS SUMMARY Initial Continuing Calibration Check

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT Date Analyzed: 10/26/09 Methods: EPA 200.7, SW846 6010B Units: ug/l Run ID: MA23347

QC Limits: 95 to 105 % Recovery

Time: 16:07 Sample ID: ICCV ICCV1

Metal	True	Results	% Rec
Aluminum	anr		
Antimony			
Arsenic	anr		
Barium	anr		
Beryllium	anr		
Cadmium	anr		
Calcium			
Chromium	2000	2000	100.0
Cobalt			
Copper			
Iron	anr		
Lead			
Magnesium			
Manganese			
Molybdenum			
Nickel			
Palladium			
Potassium			
Selenium			
Silicon			
Silver			
Sodium			
Thallium			
Tin			
Vanadium			
Zinc	anr		

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Run ID: MA23347

File ID: IT102609M1.DAT Date Analyzed: 10/26/09 Methods: EPA 200.7, SW846 6010B Units: ug/l

QC Limits: 95 to 105 % Recovery

Time: Sample ID: Metal	ICV True	15:54 ICV1 Results	% Rec	CCV True	16:34 CCV1 Results	% Rec	CCV True	17:36 CCV2 Results	% Rec	
Aluminum	anr									
Antimony										
Arsenic	anr									
Barium	anr									
Beryllium	anr									
Cadmium	anr									
Calcium										
Chromium	1000	973	97.3	2000	1980	99.0	2000	2000	100.0	
Cobalt										
Copper										
Iron	anr									
Lead										
Magnesium										
Manganese										
Molybdenum										
Nickel										
Palladium										
Potassium										
Selenium										
Silicon										
Silver										
Sodium										
Thallium										
Tin										
Vanadium										
Zinc	anr									

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 10/26/09 Methods: EPA 200.7, SW846 6010B File ID: IT102609M1.DAT

QC Limits: 95 to 105 % Recovery			Run ID: MA23347				Units: ug/l			
Time: Sample ID: Metal	CCV True	18:50 CCV3 Results	% Rec	CCV True	20:04 CCV4 Results	% Rec	CCV True	21:18 CCV5 Results	% Rec	
Aluminum	anr									
Antimony										
Arsenic	anr									
Barium	anr									
Beryllium	anr									
Cadmium	anr									
Calcium										
Chromium	2000	2010	100.5	2000	2020	101.0	2000	2030	101.5	
Cobalt										
Copper										
Iron	anr									
Lead										
Magnesium										
Manganese										
Molybdenum										
Nickel										
Palladium										
Potassium										
Selenium										
Silicon										
Silver										
Sodium										
Thallium										
Tin										
Vanadium										
Zinc	anr									

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT Date Analyzed: 10/26/09 Methods: EPA 200.7, SW846 6010B

QC Limits: 95 to 105 % Recovery Run ID: MA23347 Units: ug/l

20 21100 75	00 100 0			11011 1			onico as	17 ±		
Time: Sample ID: Metal	CCV True	22:32 CCV6 Results	% Rec	CCV True	23:46 CCV7 Results	% Rec	CCV True	00:11 CCV8 Results	% Rec	
Aluminum	anr									
Antimony										
Arsenic	anr									
Barium	anr									
Beryllium	anr									
Cadmium	anr									
Calcium										
Chromium	2000	2050	102.5	2000	2030	101.5	2000	2040	102.0	
Cobalt										
Copper										
Iron	anr									
Lead										
Magnesium										
Manganese										
Molybdenum										
Nickel										
Palladium										
Potassium										
Selenium										
Silicon										
Silver										
Sodium										
Thallium										
Tin										
Vanadium										
Zinc	anr									

(*) Outside of QC limits (anr) Analyte not requested

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT Date Analyzed: 10/26/09 Methods: EPA 200.7, SW846 6010B

QC Limits: 95	to 105 %	Recovery		Run 1	D: MA2334	7	Units: ug	1/1		
Time: Sample ID: Metal	CCV True	01:13 CCV9 Results	% Rec	CCV True	02:14 CCV10 Results	% Rec	CCV True	02:39 CCV11 Results	% Rec	
Aluminum	anr									
Antimony										
Arsenic	anr									
Barium	anr									
Beryllium	anr									
Cadmium	anr									
Calcium										
Chromium	2000	2080	104.0	2000	2070	103.5	2000	2070	103.5	
Cobalt										
Copper										
Iron	anr									
Lead										
Magnesium										
Manganese										
Molybdenum										
Nickel										
Palladium										
Potassium										
Selenium										
Silicon										
Silver										
Sodium										
Thallium										
Tin										
Vanadium										

(*) Outside of QC limits (anr) Analyte not requested

anr

Zinc

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT Date Analyzed: 10/26/09 Methods: EPA 200.7, SW846 6010B Run ID: MA23347 Units: ug/l

QC Limits: 95 to 105 % Recovery

Time: 03:04 Sample ID: CCV CCV12 Results % Rec Metal True Aluminum anr Antimony

Arsenic anr Barium anr ${\tt Beryllium}$ anr Cadmium anr Calcium Chromium 2000 2090 104.5 Cobalt Copper Iron anr Lead Magnesium Manganese Molybdenum Nickel Palladium Potassium Selenium Silicon Silver Sodium Thallium Tin

(*) Outside of QC limits (anr) Analyte not requested

anr

Vanadium Zinc

75 of 247

HIGH STANDARD CHECK SUMMARY

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 10/26/09 File ID: IT102609M1.DAT Methods: EPA 200.7, SW846 6010B Units: ug/l Run ID: MA23347

QC Limits: 95 to 105 % Recovery

Time: 15:35 Sample ID: HSTD HSTD1

Metal	True	Results	% Rec
Aluminum	anr		
Antimony			
Arsenic	anr		
Barium	anr		
Beryllium	anr		
Cadmium	anr		
Calcium			
Chromium	4000	3890	97.3
Cobalt			
Copper			
Iron	anr		
Lead			
Magnesium			
Manganese			
Molybdenum			
Nickel			
Palladium			
Potassium			
Selenium			
Silicon			
Silver			
Sodium			
Thallium			
Tin			
Vanadium			
Zinc	anr		

(*) Outside of QC limits (anr) Analyte not requested

LOW CALIBRATION CHECK STANDARDS SUMMARY

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 10/26/09 File ID: IT102609M1.DAT Methods: EPA 200.7, SW846 6010B

QC Limits: 50 to 150 % Recovery

Run ID: MA23347

Units: ug/l

Time: Sample ID: Metal		CRIA True	CRID True	15:47 CRID1 Results	% Rec
Aluminum			100	anr	
Antimony	120		3.0		
Arsenic	20	3.0	3.0		
Barium	400		4.0	anr	
Beryllium	10	1.0	1.0	anr	
Cadmium	10		1.0	anr	
Calcium			1000		
Chromium	20		2.0	2.3	115.0
Cobalt	100		3.0		
Copper	50		2.0		
Iron					
Lead	6.0		2.5		
Magnesium			100		
Manganese	30		3.0		
Molybdenum	40				
Nickel	80		4.0		
Palladium	100				
Potassium			2000		
Selenium	10		5.0		
Silicon					
Silver	20		1.0		
Sodium			1000		
Thallium	20	2.0	2.0		
Tin					
Vanadium	100		2.0		
Zinc	40		10	anr	

(*) Outside of QC limits (anr) Analyte not requested

LOW CALIBRATION CHECK STANDARDS SUMMARY

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT Date Analyzed: 10/26/09 Methods: EPA 200.7, SW846 6010B Run ID: MA23347 Units: ug/l

QC Limits: 50 to 150 % Recovery

QO LIMITOD DO		ncoover,		11011 12 1111233	01120	.D . u.g,
Time: Sample ID: Metal	CRIB True	15:41 CRIB1 Results	% Rec			
Aluminum	200					
Antimony	6.0					
Arsenic	8.0					
Barium	200					
Beryllium	5.0					
Cadmium	3.0					
Calcium	5000					
Chromium	10	10.8	108.0			
Cobalt	50					
Copper	10					
Iron	100					
Lead	3.0					
Magnesium	5000					
Manganese	15					
Molybdenum	20					
Nickel	10					
Palladium	50					
Potassium	10000					
Selenium	10					
Silicon	200					
Silver	10					
Sodium	10000					
Thallium	10					
Tin	10					
Vanadium	50					
Zinc	20					

^(*) Outside of QC limits (anr) Analyte not requested

INTERFERING ELEMENT CHECK STANDARDS SUMMARY Part 1 - ICSA and ICSAB Standards

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: IT102609M1.DAT Date Analyzed: 10/26/09 Methods: EPA 200.7, SW846 6010B Units: ug/l

QC Limits: 80 to 120 % Recovery Run ID: MA23347

QC LIMIOD OO	00 120 0	110001017		11011 1	2 11112331	•	011100 43	., =		
Time: Sample ID: Metal	ICSA True	ICSAB True	16:22 ICSA1 Results	% Rec	16:28 ICSAB1 Results		23:58 ICSA2 Results	% Rec	00:05 ICSAB2 Results	% Rec
Aluminum	500000	500000	490000	98.0	491000	98.2	483000	96.6	486000	97.2
Antimony		1000	2.9		1130	113.0	-38*		1140	114.0
Arsenic		1000	-1.2		1030	103.0	3.9		1060	106.0
Barium		500	4.8		493	98.6	4.3		479	95.8
Beryllium		500	0.22		498	99.6	0.035		520	104.0
Cadmium		1000	3.8		984	98.4	3.4		1060	106.0
Calcium	400000	400000	374000	93.5	375000	93.8	390000	97.5	397000	99.3
Chromium		500	3.8		475	95.0	3.3		495	99.0
Cobalt		500	-1.2		475	95.0	-2.4		497	99.4
Copper		500	0.30		503	100.6	-0.75		485	97.0
Iron	200000	200000	194000	97.0	192000	96.0	200000	100.0	200000	100.0
Lead		1000	2.9		1020	102.0	-20*		1060	106.0
Magnesium	500000	500000	523000	104.6	520000	104.0	544000	108.8	549000	109.8
Manganese		500	3.2		475	95.0	3.2		487	97.4
Molybdenum		500	5.0		482	96.4	-3.8		494	98.8
Nickel		1000	9.2		932	93.2	9.2		988	98.8
Palladium		500	-0.33		516	103.2	-4.1		507	101.4
Potassium			-130		-110		-64		-23	
Selenium		1000	1.8		1070	107.0	-7.4		1090	109.0
Silicon			-46		-34		-57		-36	
Silver		1000	2.7		1030	103.0	1.6		1030	103.0
Sodium			-130		-190		-300		-340	
Thallium		1000	12.9		995	99.5	-17		1020	102.0
Tin			-5.3		-4.2		-23*		-6.4	
Vanadium		500	5.5		505	101.0	-1.9		516	103.2
Zinc		1000	-1.0		923	92.3	-1.5		1020	102.0

(*) Outside of QC limits (anr) Analyte not requested

INTERFERING ELEMENT CHECK STANDARDS SUMMARY Part 1 - ICSA and ICSAB Standards

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 10/26/09 Methods: EPA 200.7, SW846 6010B
Run TD: Ma23247 File ID: IT102609M1.DAT

File ID: IT1 QC Limits: 80				e Analyze Run I	d: 10/26/ D: MA2334		thods: EPA 20 Units: ug/l	0.7, SW846	601
Time: Sample ID: Metal		ICSAB True	02:52 ICSA3 Results	% Rec	02:58 ICSAB3 Results	% Rec			
Aluminum	500000	500000	487000	97.4	493000	98.6			
Antimony		1000	0.99		1140	114.0			
Arsenic		1000	0.98		1050	105.0			
Barium		500	4.2		487	97.4			
Beryllium		500	0.086		520	104.0			
Cadmium		1000	4.0		1060	106.0			
Calcium	400000	400000	404000	101.0	397000	99.3			
Chromium		500	7.1		495	99.0			
Cobalt		500	-0.71		495	99.0			
Copper		500	0.17		491	98.2			
ron	200000	200000	205000	102.5	199000	99.5			
lead		1000	2.2		1070	107.0			
Magnesium	500000	500000	560000	112.0	546000	109.2			
Manganese		500	3.3		489	97.8			
Molybdenum		500	7.3		495	99.0			
Nickel		1000	10.8		987	98.7			
alladium		500	0.049		506	101.2			
otassium			-33		-42				
elenium		1000	12.2		1100	110.0			
ilicon			-48		-53				
ilver		1000	3.0		1030	103.0			
Sodium			-120		-740				
hallium		1000	3.3		1010	101.0			
l'in			-1.2		-3.7				
/anadium		500	9.3		514	102.8			
Zinc		1000	0.032		999	99.9			

(*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: JA30201

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Matrix Type: AQUEOUS Methods: SW846 6010B Units: ug/l

Prep Date:

10/26/09

Prep Date.					10/26/09
Metal	RL	IDL	MDL	MB raw	final
Aluminum	200	5.2	16		
Antimony	6.0	1.6	2.9		
Arsenic	3.0	1.3	2.4		
Barium	200	.3	.7		
Beryllium	1.0	.09	.1		
Boron	100	1.7	3.5		
Cadmium	3.0	. 2	. 4		
Calcium	5000	27	22		
Chromium	10	.5	.9	0.33	<10
Cobalt	50	.3	1.6		
Copper	10	.9	1.6		
Iron	100	19	12		
Lead	3.0	1.2	1.7		
Magnesium	5000	29	13		
Manganese	15	.3	. 4		
Molybdenum	20	. 2	1		
Nickel	10	.2	.6		
Palladium	50	3	3.2		
Potassium	10000	24	43		
Selenium	10	2.1	3.7		
Silicon	200	9.6	38		
Silver	10	.5	1		
Sodium	10000	200	19		
Strontium	10	.3	.5		
Thallium	2.0	1.3	1.5		
Tin	10	.3	2.1		
Titanium	10	.6	.6		
Tungsten	50	4.2	6.8		
Vanadium	50	.3	.9		
Zinc	20	.7	2.9		

Associated samples MP50217: JA30201-1, JA30201-2, JA30201-3, JA30201-4, JA30201-5, JA30201-6, JA30201-7, JA30201-8, JA30201-9, JA30201-1F, JA30201-2F, JA30201-3F, JA30201-4F, JA30201-5F, JA30201-6F, JA30201-7F, JA30201-8F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

5.2.1

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: JA30201

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

Metal

(anr) Analyte not requested

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 10/26/09

Metal	JA30201 Origina		Spikelot MPIRW1	% Rec	QC Limits
Aluminum					
Antimony					
Arsenic					
Barium					
Beryllium					
Boron					
Cadmium					
Calcium					
Chromium	7.3	199	200	95.9	75-125
Cobalt					
Copper					
Iron					
Lead	anr				
Magnesium					
Manganese					
Molybdenum					
Nickel					
Palladium					
Potassium					
Selenium					
Silicon					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Tungsten					
Vanadium					
Zinc					

Associated samples MP50217: JA30201-1, JA30201-2, JA30201-3, JA30201-4, JA30201-5, JA30201-6, JA30201-7, JA30201-8, JA30201-9, JA30201-1F, JA30201-2F, JA30201-3F, JA30201-4F, JA30201-5F, JA30201-6F, JA30201-7F, JA30201-8F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(-) outside of ge finites

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Methods: SW846 6010B Matrix Type: AQUEOUS

Units: ug/l

Prep Date:

Metal

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

10/26/09

Metal	JA3020 Origin		Spikel MPIRW1	ot % Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic						
Barium						
Beryllium						
Boron						
Cadmium						
Calcium						
Chromium	7.3	208	200	100.4	4.4	20
Cobalt						
Copper						
Iron						
Lead	anr					
Magnesium						
Manganese						
Molybdenum						
Nickel						
Palladium						
Potassium						
Selenium						
Silicon						
Silver						
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Tungsten						
Vanadium						
Zinc						

Associated samples MP50217: JA30201-1, JA30201-2, JA30201-3, JA30201-4, JA30201-5, JA30201-6, JA30201-7, JA30201-8, JA30201-9, JA30201-1F, JA30201-2F, JA30201-3F, JA30201-4F, JA30201-5F, JA30201-6F, JA30201-7F, JA30201-8F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(-) outside of ge finites

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Methods: SW846 6010B Units: ug/l

Matrix Type: AQUEOUS

Prep Date:

Metal

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 10/26/09

Metal	JA30201 Origina		Spikelot MPIRW1	% Rec	QC Limits
Aluminum					
Antimony					
Arsenic					
Barium					
Beryllium					
Boron					
Cadmium					
Calcium					
Chromium	1.7	203	200	100.7	75-125
Cobalt					
Copper					
Iron					
Lead	anr				
Magnesium					
Manganese					
Molybdenum					
Nickel					
Palladium					
Potassium					
Selenium					
Silicon					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Tungsten					
Vanadium					
Zinc					

Associated samples MP50217: JA30201-1, JA30201-2, JA30201-3, JA30201-4, JA30201-5, JA30201-6, JA30201-7, JA30201-8, JA30201-9, JA30201-1F, JA30201-2F, JA30201-3F, JA30201-4F, JA30201-5F, JA30201-6F, JA30201-7F, JA30201-8F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(-) outside of ge finites

5.2.2

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

Metal

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested $\,$

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

10/26/09

Metal	JA30201 Origina		Spikelo MPIRW1	t % Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic						
Barium						
Beryllium						
Boron						
Cadmium						
Calcium						
Chromium	1.7	199	200	98.7	2.0	20
Cobalt						
Copper						
Iron						
Lead	anr					
Magnesium						
Manganese						
Molybdenum						
Nickel						
Palladium						
Potassium						
Selenium						
Silicon						
Silver						
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Tungsten						
Vanadium						
Zinc						

Associated samples MP50217: JA30201-1, JA30201-2, JA30201-3, JA30201-4, JA30201-5, JA30201-6, JA30201-7, JA30201-8, JA30201-9, JA30201-1F, JA30201-2F, JA30201-3F, JA30201-4F, JA30201-5F, JA30201-6F, JA30201-7F, JA30201-8F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(-) outside of ge finites

5.2.2

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Methods: SW846 6010B

Matrix Type: AQUEOUS Units: ug/l

Prep Date:

Metal

(N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested $\,$

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 10/26/09

Metal	LCS Result	Spikelot MPLCW3	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium	487	500	97.4	80-120
Cobalt				
Copper				
Iron				
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel				
Palladium				
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Tungsten				
Vanadium				
Zinc				

Associated samples MP50217: JA30201-1, JA30201-2, JA30201-3, JA30201-4, JA30201-5, JA30201-6, JA30201-7, JA30201-8, JA30201-9, JA30201-1F, JA30201-2F, JA30201-3F, JA30201-4F, JA30201-5F, JA30201-6F, JA30201-7F, JA30201-8F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(") Outside of QC finits

5.2.3

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

Metal

(anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date: 10/26/09 10/26/09

Metal	JA30201- Original	3 SDL 1:5	%DIF	QC Limits	JA30201- Original	3F SDL 1:5	%DIF	QC Limits
Aluminum								
Antimony								
Arsenic								
Barium								
Beryllium								
Boron								
Cadmium								
Calcium								
Chromium	7.33	7.34	0.3	0-10	1.72	0.00	100.0(a)	0-10
Cobalt								
Copper								
Iron								
Lead	anr							
Magnesium								
Manganese								
Molybdenum								
Nickel								
Palladium								
Potassium								
Selenium								
Silicon								
Silver								
Sodium								
Strontium								
Thallium								
Tin								
Titanium								
Tungsten								
Vanadium								
Zinc								

Associated samples MP50217: JA30201-1, JA30201-2, JA30201-3, JA30201-4, JA30201-5, JA30201-6, JA30201-7, JA30201-8, JA30201-9, JA30201-1F, JA30201-2F, JA30201-3F, JA30201-4F, JA30201-5F, JA30201-6F, JA30201-7F, JA30201-8F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(-) outside of ge finites

5.2.4

SERIAL DILUTION RESULTS SUMMARY

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP50217 Methods: SW846 6010B Matrix Type: AQUEOUS Units: ug/l

Prep Date:

Metal

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

5.3

Instrument Detection Limits

Job Number: JA30201

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Instrument ID: TJATRACE3 Effective Date: 06/15/09

Analyta	IDL ng/l
Analyte	ug/l
Aluminum	25.1
Antimony	3.1
Arsenic	2.4
Barium	1.4
Beryllium	.09
Cadmium	.4
Calcium	27.2
Chromium	1.3
Cobalt	.8
Copper	1.1
Iron	18.5
Lead	2.7
Magnesium	30.9
Manganese	.3
Molybdenum	1.1
Nickel	1.5
Palladium	4.6
Potassium	24.1
Selenium	5.4
Silicon	10.9
Silver	1.2
Sodium	204.4
Thallium	3.9
Tin	3.6
Vanadium	1.4
Zinc	1.2

The above applies to the following instrument runs: $MA23347\,$

5.3

Instrument Linear Ranges

Job Number: JA30201

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Instrument ID: TJATRACE3 **Effective Date:** 06/15/09

Analyte	Linear Range ug/l
Aluminum	1000000
Antimony	50000
Arsenic	50000
Barium	25000
Beryllium	25000
Cadmium	25000
Calcium	400000
Chromium	50000
Cobalt	50000
Copper	50000
Iron	500000
Lead	50000
Magnesium	1000000
Manganese	25000
Molybdenum	50000
Nickel	50000
Palladium	50000
Potassium	200000
Selenium	50000
Silicon	50000
Silver	2000
Sodium	200000
Γhallium	50000
Γin	50000
Vanadium	50000
Zinc	25000

The above applies to the following instrument runs: MA23347

3 F . 1				1	•
N/Lotol	C	Λ 1	20	Iτ	010
Metal		-	14	ıν	217
1,10,000			1100	-,	

Raw Data

Be3130

Reading 8.229 8.238 8.541 8.336 2.126

Cd2265

0.006 0.006 0.009 0.007 20.215

1960/1

Reading 4.089 4.022 4.076 4.062 0.868

∢ Zoom In ▶

Printed : 10/27/2009 8:12:39 AM [STD]

V 2924

Sb2068

Reading 1.525 1.523 1.543 1.530 0.717

1960/2

Reading 2.782 2.781 2.678 2.747 2.181

Z	OI	D1	n	In	~
'n	0	m	1 (211	t

							Zo
Method Sample To	: EPA3 dl : STDA		File : it102 SampleId2		Printed :	10/27/2009 [STD]	8:12:39 A
Analysi		: 10/26/200 00000 to 1.	9 2:28:07 PM			(012)	
	K 7664	Zn2062	Co2286	Cr2677	Mq2790	V 2924	Be313
			COLLOG	C12077	1192770	,	Desir
IS ratio	oed intensit Reading	ies Reading	Reading	Reading	Reading	Reading	Readin
#1	0.061	-0.001	0.000	0.001	0.000	0.000	0.00
#2	0.060	-0.001	0.000	0.001	0.000	0.000	0.00
#3	0.060	-0.001	0.000	0.001	0.000	0.000	0.00
Mean	0.060	-0.001	0.000	0.001	0.000	0.000	0.00
%RSD	1.107	7.325	18.731	5.832	16.410	28.921	0.85
*KSD	1.107	7.323	10.731	3.032	10.410	20.521	0.05
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.003	0.018	-0.001	-0.003	-0.021	0.012	0.00
#2	0.003	0.018	-0.001	-0.002	-0.022	0.011	0.00
#3	0.003	0.017	-0.001	-0.005	-0.021	0.011	0.00
Mean	0.003	0.018	-0.001	-0.003	-0.021	0.011	0.00
%RSD	2.994	1.799	5.947	45.434	2.486	4.474	31.58
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	-0.002	0.000	-0.012	0.001	0.009	0.040	0.00
#2	-0.002	0.000	-0.013	0.001	0.009	0.039	0.00
#3	-0.002	0.000	-0.013	0.001	0.009	0.039	0.00
Mean	-0.002	0.000	-0.013	0.001	0.009	0.040	0.00
%RSD	5.466	3.844	2.538	2.605	0.832	0.713	55.26
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.000	0.004	-0.009	0.000	0.000	0.030	-0.08
#2	0.000	0.003	-0.008	0.000	0.000	0.025	-0.09
#3	0.000	0.003	-0.009	0.000	0.000	0.032	-0.09
Mean	0.000	0.003	-0.009	0.000	0.000	0.029	-0.09
%RSD	7.667	16.645	4.848	0.550	0.550	12.858	4.17
	2203/2	2203/1	INT STD				
IS ratio	oed intensit	ies					
	Reading	Reading	Reading				
#1	0.013	0.145	60243.000				
#2	0.011	0.127	60892.000				
#3	0.023	0.136	60694.000				
Mean	0.016	0.136	60609.667				
	38.310	6.400	0.549				

Raw Data MA23347 page 2 of 235

Method: EPA3 File: it102609ml SampleId1: STDB SampleId2: Analysis commenced: 10/26/2009 2:34:26 PM Dilution ratio: 1.00000 to 1.00000

Na3302

Reading 5.644 5.629 5.518 5.597 1.223

2203/1

Reading 9.056 8.948 9.325 9.109 2.132

Co2286

Reading 0.846 0.847 0.881 0.858 2.365

Pd3404

Reading 0.900 0.899 0.895 0.898 0.262

Ag3280

Reading -0.013 -0.012 -0.004 -0.010 51.684

Sn1899

Reading 1.846 1.853 1.935 1.878 2.653

INT STD

Cr2677

Reading 2.721 2.725 2.807 2.751 1.755

As1890

Reading 2.826 2.839 2.906 2.857 1.513

Ca3179

Pb2203

Reading 0.000 0.000 0.000 0.000 9.099

Mg2790

Reading 0.000 0.000 0.002 0.002 336.121

T11908

Reading 2.727 2.746 2.813 2.762 1.629

Reading 0.011 0.011 0.012 0.012 4.769

Se1960

Reading 0.000 0.000 0.000 0.000 3.034

K 7664 Zn2062

IS ratioed intensities

Reading Reading #1 0.056 1.847 #2 0.057 1.858 #3 0.060 1.996 Mean 0.058 1.990 \$RSD 3.562 4.378

Cu3247

Ni2316

Reading 1.780 1.789 1.868 1.812 2.660

Mn29...
IS ratioed intensities
Reading Reading
#1 4.457
#2 2.367 4.468
#3 2.421 4.592
Mean 2.384 4.506
1.354 1.658

2203/2

IS ratioed intensities

Reading F
#1 1.846
#2 1.843
#3 1.800
Mean 1.830
%RSD 1.397

IS ratioed intensities

#1 #2 #3

Mean %RSD

■ Zoom In ▶
Zoom Out

Zoom In ▶

							200111	Out
Analysis	11 : STDC	: 10/26/200	File : it102 SampleId2 9 2:40:43 PM 00000		Printed :	10/27/2009 [STD]	8:12:39 AM	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130	
TS ratio	ed intensit	ioo						
10 14010	Reading	Reading	Reading	Reading	Reading	Reading	Reading	
#1	0.060	-0.001	-0.001	0.001	0.000	0.000	0.002	
#2	0.061	0.000	0.000	0.001	0.000	0.000	0.002	
#3	0.061	0.000	0.000	0.001	0.000	0.000	0.002	
Mean	0.060	0.000	0.000	0.001	0.000	0.000	0.002	
%RSD	0.625	104.539	57.078	40.367	58.732	58.037	1.819	
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265	
TS ratio	ed intensit	ies						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	
#1	0.003	0.017	-0.002	-0.005	-0.021	1.429	0.000	
#2	0.004	0.020	-0.001	-0.001	-0.018	1.434	0.003	
#3	0.003	0.019	-0.001	-0.004	-0.019	1.437	0.002	
Mean	0.003	0.019	-0.001	-0.003	-0.019	1.434	0.002	
%RSD	8.051	9.725	51.977	50.150	7.313	0.286	84.795	
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2714	
TS ratio	ed intensit	ies						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	
#1	-0.001	0.001	0.542	0.001	0.009	2.108	0.000	
#2	-0.001	0.001	0.542	0.001	0.009	2.113	0.001	
#3	-0.001	0.001	0.543	0.001	0.009	2.109	0.001	
Mean	-0.001	0.001	0.542	0.001	0.009	2.110	0.001	
%RSD	36.512	9.058	0.095	6.620	2.748	0.122	45.545	
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/1	
IS ratio	ed intensit	ies						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	
#1	0.000	0.007	-0.009	0.000	0.000	0.034	-0.099	
#2	0.001	0.007	-0.007	0.000	0.000	0.037	-0.086	
#3	0.001	0.006	-0.009	0.000	0.000	0.038	-0.092	
Mean	0.001	0.007	-0.008	0.000	0.000	0.036	-0.092	
%RSD	12.701	10.730	14.730	5.790	0.206	5.489	7.114	
	2203/2	2203/1	INT STD					
IS ratio	ed intensit	ies						
	Reading	Reading	Reading					
#1	0.031	0.119	61311.000					
#2	0.031	0.141	61562.000					
#3	0.036		61465.000					
Mean	0.033	0.132						
%RSD	9.228	8.579	0.206					

	11 : STDD		File : it102 SampleId2 9 2:47:01 PM		Printed :	10/27/2009 [STD]	8:12:39 1
		000000 to 1.					
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be31:
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.059	0.000	0.000	0.001	0.000	0.794	0.0
#2	0.060	0.000	0.000	0.002	0.001	0.802	0.0
#3	0.060	0.000	0.000	0.002	0.001	0.798	0.0
Mean	0.060	0.000	0.000	0.001	0.001	0.798	0.0
%RSD	0.861	1545.004	1868.514	36.706	37.425	0.554	1.2
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd22
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.003	0.016	-0.001	-0.007	-0.039	0.002	0.0
#2	0.004	0.020	0.000	0.000	-0.032	0.007	0.0
#3	0.003	0.018	0.000	-0.003	-0.035	0.004	0.0
Mean	0.004	0.018	0.000	-0.003	-0.035	0.004	0.0
%RSD	5.886	9.916	155.390	96.992	10.300	62.020	41.7
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe27
IS ratio	ed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	-0.001	0.001	-0.014	0.001	0.010	0.032	0.0
#2	0.000	0.001	-0.011	0.002	0.010	0.034	0.0
#3	0.000	0.001	-0.013	0.002	0.010	0.034	0.0
Mean	-0.001	0.001	-0.013	0.002	0.010	0.034	0.0
%RSD	79.534	17.750	8.878	8.607	1.976	2.895	11.6
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960
IS ratio	ed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.001	-0.003	-0.016	0.000	0.000	0.043	-0.1
#2	0.001	0.001	-0.012	0.000	0.000	0.029	-0.1
#3	0.001	-0.001	-0.013	0.000	0.000	0.029	-0.1
Mean	0.001	-0.001	-0.014	0.000	0.000	0.034	-0.1
%RSD	13.250	322.333	12.805	5.587	0.415	23.220	5.8
	2203/2	2203/1	INT STD				
IS ratio	ed intensit						
	Reading	Reading	Reading				
#1	0.050	0.064	59949.000				
#2	0.022	0.039	60301.000				
#3	0.023	0.065	60432.000				
Mean	0.032	0.056	60227.333				
%RSD	51.864	26.572	0.415				

Raw Data MA23347 page 4 of 235

Raw Data MA23347 page 3 of 235

Raw Data MA23347 page 1 of 235

6.1 တ IS ratioed intensities

Reading Reading #1 0.313 0.004
#2 0.321 0.002
#3 0.322 0.002
Mean 0.319 0.003
%RSD 1.560 62.177

Cu3247

0.004

Ni2316

Reading 0.002 -0.002 -0.001 0.000 691.991

Mn2576

2203/2

0.039 -0.014 -0.018 0.002 1271.066

IS ratioed intensities

IS ratioed intensities

IS ratioed intensities
Reading
#1 0.001
#2 0.000
#3 0.000
Mean 0.001
%RSD 61.932

IS ratioed intensities Reading

#1 #2 #3 Mean %RSD

#1 #2 #3

Mean %RSD

Mean %RSD

Method : EPA3 File : it102609ml SampleId1 : STDE SampleId2 : Analysis commenced : 10/26/2009 2:53:18 PM Dilution ratio : 1.00000 to 1.00000

Na3302

Reading 0.056 0.045 0.046 0.049 12.294

Ba4934

Mo2020

Reading 0.003 -0.003 -0.004 -0.001 284.189

2203/1

Reading 0.087 0.014 0.017 0.039 105.015

Co2286

Reading 0.002 0.000 0.000 0.000 372.136

Pd3404

Reading 0.005 -0.001 -0.001 0.001 371.641

Ag3280

Reading -0.002 -0.013 -0.013 -0.009 63.305

Sn1899

Reading -0.009 -0.017 -0.017 -0.014 33.912

Reading 63087.000 58806.000 58697.000 60196.667 4.159

Cr2677

As1890

Reading 0.006 -0.003 -0.004 -0.001 862.082

Pb2203

Reading 0.000 0.000 0.000 0.000 12.915

Mg2790

Reading 0.178 0.168 0.168 0.171 3.233

T11908

Reading -0.020 -0.036 -0.035

-0.030 29.283

Se1960

Reading 0.000 0.000 0.000 0.000 4.062

K 7664 Zn2062

◀ Zoom In ▶

6.1

တ

Analysis	1 : STDF	: 10/26/200	File : it102 SampleId2 9 2:59:35 PM 00000		Printed	[STD]	8:12:4
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be
IS ratio	ed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	1.157	0.000	0.000	0.001	0.698	-0.001	0
#2	1.160	-0.001	0.000	0.001	0.692	-0.001	0
#3	1.160	0.000	0.000	0.001	0.696	-0.001	0
Mean	1.159	0.000	0.000	0.001	0.695	-0.001	0
%RSD	0.119	59.173	58.565	21.020	0.387	13.055	2
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd
IS ratio	ed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.004	0.136	0.000	0.000	-0.016	0.010	0
#2	0.003	0.134	-0.001	-0.001	-0.015	0.008	0
#3	0.003	0.135	-0.001	-0.002	-0.014	0.010	0
Mean	0.003	0.135	-0.001	-0.001	-0.015	0.009	0
%RSD	3.814	0.707	45.074	88.956	6.212	12.815	14
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe
IS ratio	ed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	-0.001	0.001	-0.012	1.460	0.744	0.031	0
#2	-0.001	0.001	-0.013	1.444	0.744	0.030	0
#3	-0.001	0.001	-0.012	1.452	0.745	0.031	0
Mean	-0.001	0.001	-0.012	1.452	0.744	0.031	0
%RSD	19.316	10.508	4.217	0.544	0.074	1.368	0
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS ratio	ed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.000	0.004	-0.008	0.000	0.000	0.026	-0
#2	0.000	0.003	-0.009	0.000	0.000	0.021	-0
#3	0.000	0.003	-0.008	0.000	0.000	0.029	-0
Mean	0.000	0.003	-0.009	0.000	0.000	0.025	-0
%RSD	6.958	17.501	7.199	0.097	0.097	15.284	3
	2203/2	2203/1	INT STD				
IS ratio	ed intensit						
	Reading	Reading					
#1	0.021	0.142					
#2	0.006		59429.000				
#3	0.025	0.161	59521.000				
Mean	0.017	0.148	59495.333				
%RSD	59.083	7.507	0.097				

◀ Zoom In ▶

Be3130

Reading 0.003 0.002 0.002 0.002 16.427

Cd2265

Reading 0.009 0.003 0.003 0.005 74.013

Fe2714

Reading 0.092 0.086 0.086 0.088 3.707

1960/1

Reading -0.104 -0.142 -0.143 -0.130 16.818

⋖ Zoom In ▶

Printed : 10/27/2009 8:12:39 AM [STD]

V 2924

Sb2068

Reading 0.009 -0.001 -0.001 0.002 262.277

1960/2

Reading 0.036 0.019 0.017 0.024 43.416

Raw Data MA23347 page 5 of 235

Raw Data MA23347 page 7 of 235

	PD 12		m:1			10/05/0000	0.10.40.34
Method :	EPA3		File : it1026 SampleId2		Printed :	10/27/2009 [STD]	8:12:40 AM
		: 10/26/2009				[210]	
		00000 to 1.0					
DIIGCION	. 14010 . 1.	00000 00 1.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS ratio	ed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	2.285	0.002	0.000	0.002	1.424	-0.002	0.002
#2	2.294	0.002	0.000	0.001	1.418	-0.002	0.002
#3	2.298	0.002	-0.001	0.001	1.412	-0.002	0.002
Mean	2.292	0.002	0.000	0.001	1.418	-0.002	0.002
%RSD	0.287	17.017	72.633	29.660	0.413	7.264	3.005
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS ratio	ed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.004	0.264	0.000	-0.001	-0.006	0.012	0.008
#2	0.004	0.261	-0.001	-0.005	-0.008	0.009	0.008
#3	0.003	0.261	-0.001	-0.004	-0.009	0.008	0.006
Mean	0.004	0.262	-0.001	-0.003	-0.007	0.010	0.008
%RSD	5.729	0.532	49.960	59.836	22.593	17.056	16.537
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2714
IS ratio	ed_intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.000	0.001	-0.011	2.952	1.486	0.031	0.722
#2	-0.001	0.001	-0.013	2.929	1.490	0.030	0.717
#3	-0.001	0.001	-0.013	2.918	1.491	0.030	0.715
Mean	-0.001	0.001	-0.012	2.933	1.489	0.031	0.718
%RSD	60.717	12.804	7.493	0.590	0.168	2.631	0.498
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/1
	PHIZJIO	PIO2020	3111099	FDZZUJ	361300	1900/2	1900/1
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.000	0.004	-0.007	0.000	0.000	0.019	-0.103
#2	0.000	0.003	-0.008	0.000	0.000	0.016	-0.112
#3	0.000	0.002	-0.010	0.000	0.000	0.023	-0.097
Mean	0.000	0.003	-0.008	0.000	0.000	0.019	-0.104
%RSD	14.216	32.020	17.025	0.230	0.230	20.792	7.323
	2203/2	2203/1	INT STD				
	2203/2	2203/1	INT STD				
IS ratio	ed intensit	ies					
	Reading	Reading	Reading				
#1	0.014	0.165	60092.000				
#2	0.005	0.137	60007.000				
#3	0.022	0.171	59822.000				
Mean	0.014	0.158	59973.667				
%RSD	61.648	11.469	0.230				

Raw Data MA23347 page 6 of 235

	dl : STDH		File : it102 SampleId2		Printed :	10/27/2009 [STD]	8:12:40 AM
			9 3:12:09 PM				
Dilution	n ratio : 1.	00000 to 1.	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	3.563	0.000	0.000	0.002	2.119	-0.003	0.002
#2	3.587	0.000	0.000	0.001	2.102	-0.004	0.002
#3	3.579	0.000	0.000	0.001	2.107	-0.004	0.002
Mean	3.576	0.000	0.000	0.001	2.109	-0.003	0.002
%RSD	0.339	1049.686	52.329	40.615	0.430	5.852	4.159
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS ratio	oed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.004	0.408	0.000	0.001	0.001	0.013	0.010
#2	0.003	0.408	-0.001	-0.003	-0.007	0.009	0.008
#3	0.004	0.406	-0.001	-0.001	-0.004	0.010	0.008
Mean	0.004	0.407	-0.001	-0.001	-0.003	0.011	0.009
%RSD	7.300	0.256	61.090	204.870	130.598	18.395	14.198
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe2714
IS ratio	oed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	-0.001	0.001	-0.011	4.328	2.274	0.032	1.066
#2	-0.002	0.001	-0.013	4.272	2.281	0.030	1.054
#3	-0.002	0.001	-0.012	4.283	2.277	0.031	1.057
Mean	-0.001	0.001	-0.012	4.294	2.277	0.031	1.059
%RSD	35.071	7.823	7.357	0.691	0.152	3.075	0.578
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/1
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.001	0.001	-0.011	0.000	0.000	0.016	-0.116
#2	0.000	-0.001	-0.013	0.000	0.000	0.016	-0.121
#3	0.000	0.000	-0.012	0.000	0.000	0.013	-0.132
Mean	0.000	0.000	-0.012	0.000	0.000	0.015	-0.123
%RSD	15.654	3227.826	9.359	6.823	7.503	14.744	6.578
	2203/2	2203/1	INT STD				
IS ratio	oed intensit						
	Reading	Reading	Reading				
#1	0.010	0.182	57695.000				
#2	0.007	0.175	57608.000				
#3	-0.007	0.148	57580.000				
Mean	0.003	0.168	57627.667				
%RSD	254.148	10.463	0.104				

Raw Data MA23347 page 8 of 235

99 of 247 ACCUTEST. JA30201 Laboratories

Method : SampleId	11 : STDI		File : it102 SampleId2 9 3:18:26 PM		Printed :	10/27/2009 [STD]	8:12:40 AM
Dilution	ratio : 1.	00000 to 1.	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
			COLLOG	CIZO	1192770	V 2221	203230
IS ratio	ed intensit	ies Reading	Reading	Reading	Reading	Reading	Reading
#1	4.872	0.001	-0.001	0.002	2.857	-0.004	0.002
#2	4.844	0.001	-0.001	0.003	2.876	-0.004	0.002
#3	4.870	0.001	-0.001	0.003	2.876	-0.004	0.002
Mean	4.862	0.001	-0.001	0.003	2.870	-0.004	0.002
%RSD	0.325	31.047	26.112	12.100	0.370	2.109	1.814
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.003	0.559	-0.002	-0.008	0.005	0.010	0.008
#2 #3	0.004	0.562	-0.001 -0.002	-0.006 -0.005	0.007	0.012	0.010
#3 Mean	0.004	0.563	-0.002	-0.005	0.005	0.012	0.009
%RSD	5.072	0.364	27.107	25.721	23.191	11.131	12.16
	Ni2316	Ba4934	Aq3280	Ca3179	A13082	Si2881	Fe2714
	ed intensit		3				
is ratio		les Reading	Reading	Reading	Reading	Reading	Reading
#1	-0.001	0.001	-0.015	5.647	2.998	0.032	1.39
#2	0.000	0.001	-0.013	5.709	2.990	0.033	1.404
#3	-0.001	0.001	-0.014	5.693	3.003	0.033	1.402
Mean	-0.001	0.001	-0.014	5.683	2.997	0.033	1.399
%RSD	60.034	10.915	5.265	0.567	0.224	1.484	0.491
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS ratio	ed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.001	0.002	-0.010	0.000	0.000	0.009	-0.106
#2 #3	0.001	0.004	-0.008 -0.009	0.000	0.000	0.010	-0.096
#3 Mean	0.001	0.003	-0.009	0.000	0.000	0.015	-0.093
%RSD	13.685	45.864	12.983	0.198	0.198	29.381	7.070
	2203/2	2203/1	INT STD				
IS ratio	ed intensit	ies					
	Reading	Reading	Reading				
#1	0.002	0.214	56469.000				
#2 #3	0.005	0.238	56692.000				
#3 Mean	0.018	0.238					
Mean %RSD	104.172	5.972	0.198				
		3.372	2.170				

Raw Data MA23347 page 9 of 235

Raw Data MA23347 page 11 of 235

							■ Zoom In
							Zoom Ou
Printed: 10	0/27/2009 8:3	12:40 AM	User: Accutes	st			
#1	3.83192	3.91900	4.04062	4.03707	4.11855	4.15340	4.04884
#2	3.79816	3.88869	4.00821	4.04260	4.13367	4.19109	4.01884
#3	3.79224	3.88177	3.97427	4.05482	4.13294	4.18121	4.03638
Mean	3.80744	3.89649	4.00770	4.04483	4.12839	4.17524	4.03469
%RSD	0.56222	0.50821	0.82786	0.22449	0.20652	0.46799	0.37363
	2203/2	2203/1	INT STD				
IS ratio	ed intensit	ies					
	Reading	Reading	Reading				
#1	6.366	9.076	56071.000				
#2	6.408	8.994	56182.000				
#3	6.407	9.078	55976.000				
Mean	6.394	9.050	56076.333				
%RSD	0.371	0.530	0.184				
Final co	ncentrations						
	ppm	ppm	intensity				
#1	4.08493	3.94136	-5643.97				
#2	4.11138	3.90503	-5598.69				
#3	4.11107	3.94232	-5551.29				
Mean	4.10246	3.92957	-5597.98				
%RSD	0.37004	0.54102	0.83				

SampleI Analysi		: 10/26/2009 00000 to 1.0	SampleId2 3:35:00 PM	8609ml 2 :	Printed	: 10/27/2009 [FLEXQC]	8:12:40
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	4.818	1.935	0.833 0.826	2.646 2.624	2.912 2.889	0.820	8.3
#2 #3	4.802 4.831	1.909	0.826	2.624	2.889	0.814	8
#3 Mean	4.831	1.892	0.830	2.615	2.876	0.809	8
%RSD	0.310	1.132	0.395	0.598	0.623	0.674	0.0
Final c	oncentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	1
#1	80.75915	3.88894	3.89112	3.91993	83.04993	4.14228	3.99
#2	80.48644	3.83606	3.86049	3.88710	82.40138	4.11140	3.95
#3 Mean	80.98144 80.74234	3.80260 3.84253	3.87496 3.87553	3.87492 3.89398	82.03411 82.49514	4.08693 4.11354	3.944
%RSD	0.30706	1.13289	0.39537	0.59781	0.62350	0.67429	0.65
*NOD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2
IS rati	oed_intensit						
	Reading 1.730	Reading 0.558	Reading 0.872	Reading 2.862	Reading 2.739	Reading 1.513	Read:
#1 #2	1.730	0.558	0.872	2.862	2.739	1.513	15.0
#3	1.725	0.556	0.871	2.832	2.715	1.505	14.
Mean	1.725	0.556	0.870	2.845	2.719	1.504	15.0
%RSD	0.248	0.233	0.321		0.641	0.612	0.
Final c	oncentration	18					
	ppm	ppm	ppm	ppm	ppm	ppm	1
#1	3.96579	83.50484	3.89221	4.03489	3.96713	4.16236	3.99
#2 #3	3.94630 3.95406	83.10972 83.33973	3.86857 3.88717	4.00450 3.99331	3.93280 3.91860	4.11156 4.13951	3.97
Mean	3.95538	83.31809	3.88265	4.01090	3.93951	4.13781	3.95
%RSD	0.24805	0.23818	0.32060	0.53634	0.63339	0.61478	0.53
	Ni 2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2
	oed intensit		5				
is rati	oed intensit. Reading	Reading	Reading	Reading	Reading	Reading	Read:
#1	1.769	5.146	0.556	5.802	2.996	2.303	1.4
#2	1.757	5.131	0.554	5.753	2.983	2.287	1.4
#3	1.756	5.161	0.555	5.734	2.995	2.291	1.4
Mean	1.761	5.146	0.555	5.763	2.992	2.294	1.4
%RSD	0.420	0.296	0.264	0.612	0.240	0.369	0.
Final c	oncentration						
	ppm	ppm	ppm	ppm	ppm	ppm	70.00
#1 #2	3.91591 3.88947	3.83040 3.81905	0.51441 0.51177	80.23121 79.55454	80.54043 80.18713	10.87377 10.79590	79.98
#2	3.88605	3.81905	0.511//	79.55454	80.18713	10.79590	78.78
Mean	3.89715	3.83039	0.51303	79.68929	80.41003	10.82830	79.34
%RSD	0.41931	0.29598	0.25794	0.61323	0.24122	0.37444	0.76
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960
TS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	2.284	4.409	1.895	0.000	0.000	2.807	4.
	2.264	4.375	1.880	0.000	0.000	2.833	4.0
#2	2.261	4.367	1.864	0.000	0.000	2.826	4.1
#3				0.000	0.000	2.822	4.0
#3 Mean	2.270	4.384	1.880				
#3	2.270 0.562	4.384 0.508	0.833	14.597	0.184	0.479	0.3
#3 Mean %RSD		0.508					

Raw Data MA23347 page 10 of 235

							◀ Zo
Method	d : EPA3 eIdl : CRIB		File : it102	609ml	Printed	: 10/27/2009 [FLEXOC]	8:12:40 AM
	sis commenced : ion ratio : 1.0						
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rat	tioed intensiti	les					
	Reading 0.578 0.581 0.583 0.581 0.465	Reading	Reading	Reading	Reading	Reading	Reading
#1 #2	0.578	0.011	0.011	0.009	0.177	0.011	0.01
#3	0.583	0.009	0.010	0.007	0.174	0.010	0.01
#3 Mean %RSD	0.581	0.010	0.011	0.008	0.176	0.011	0.01
Final	concentrations	3					
	ppm	ppm	ppm	ppm	ppm	ppm	ppr
#1	9.69/98	0.02302	0.05479	0.01250	4 00200	0.05490	0.00554
#3	9.78414	0.01994	0.03107	0.01030	4.94802	0.05238	0.0052
Mean	9.74783	0.02151	0.05195	0.01083	4.99674	0.05264	0.00540
%RSD	concentrations ppm 9.69798 9.76139 9.78414 9.74783 0.45807	7.16322	5.39444	13.78545	1.01583	4.23934	2.8194
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rat	tioed intensiti	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.008	0.078	0.011	0.008	-0.015	0.015	0.01
#2	0.007	0.074	0.010	0.006	-0.022	0.011	0.01
#3	0.007	0.072	0.009	0.000	-0.026	0.008	0.01
#2 #3 Mean %RSD	Reading 0.008 0.007 0.007 0.007 0.008 5.312	4.192	12.384	84.790	25.919	31.396	17.82
Final							
	ppm	ppm	ppm	ppm	ppm	ppm	ppi
#1	0.01100	10.42029	0.05392	0.01320	0.00845	0.01129	0.0044
#2	0.00977	9.85773	0.04792	0.00996	-0.00040	0.00057	0.0036
#3 Moan	0.00919	0.49020	0.04311	0.00256	0.00719	0.00054	0.0030
%RSD	concentrations	4.68247	11.20424	63.48301	2744.06011	896.68952	19.1595
			Ag3280				
IS rat	tioed intensiti	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.005	0.249	0.001	0.374	0.017	0.076	0.00
#2	0.004	0.250	-0.001	0.369	0.017	0.074	0.00
#3 Moon	0.003	0.251	-0.003	0.365	0.016	0.073	0.00
%RSD	19.724	0.547	Reading 0.001 -0.001 -0.003 -0.001 288.088	1.163	2.047	2.477	23.88
Final	Reading 0.005 0.004 0.003 0.004 19.724						
	ppm	ppm	ppm	ppm	ppm	ppm	ppr
#1	0.01436	0.18498	0.01251	5.17005	0.18565	0.17648	0.1524
#2	0.01219	0.18625	0.01082	5.10485	0.1//54	0.16609	0.1241
#3 Mean	0.01108	0.18608	0.00906	5.10866	0.10723	0.15705	0.0698
%RSD	0.01436 0.01219 0.01255 13.30991	0.54820	15.96216	1.16596	5.22293	5.24677	25.6479
	Mn2576	Mo2020					
IS rat	tioed intensiti	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.010	0.032	-0.003	0.000	0.000	0.045	-0.092
#2	0.009	0.028	-0.006	0.000	0.000	0.042	-0.098
Mean	0.010	0.028	-0.009	0.000	0.000	0.042	-0.10
%RSD		13.502	48.672	27.994	7.608	8.104	7.542
	concentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	ppi

Raw Data MA23347 page 12 of 235

◀ Zoom In ▶

							₹ 200m i	n 🟴
							Zoom O	ut
Printed:	10/27/2009 8:	12:40 AM	User: Accut	est				
#1	0.01595	0.02557	0.01270	0.00373	0.01533	0.02393	-0.00187	
#2	0.01552	0.02162	0.00600	0.00078	0.01009	0.01907	-0.00786	
#3	0.01529	0.01885	0.00056	-0.00735	0.00387	0.01392	-0.01621	
Mean	0.01559	0.02201	0.00642	-0.00095	0.00977	0.01897	-0.00865	
%RSD	2.15989	15.34644	94.75367	606.41658	58.72649	26.39543	83.28982	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit	ies						
	Reading	Reading	Reading					
#1	0.029	0.124	60678.000					
#2	0.027	0.109	60855.000					
#3	0.014	0.091						
Mean	0.023	0.108	60630.667					
%RSD	33.691	15.336	0.415					
Final	concentration	ıs						
	ppm	ppm	intensity					
#1	0.00905	-0.00693	-17.74					
#2	0.00779	-0.01324	-8.38					
#3	-0.00024	-0.02157	-0.78					
Mean	0.00554	-0.01391	-8.97					
%RSD	91.03939	52.79145	94.75					

Raw Data MA23347 page 13 of 235

Raw Data MA23347 page 15 of 235

Zoom Out 10/27/2009 8:12:41 AM User: Accutest	0.00585 0.008	est				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.00585 0.008	est				
0.00321 0.00140 -0.00088 0.00030 0.00592 0.00792 0.00192 0.00338 0.00204 -0.00121 0.00374 0.00627 0.01165 -0.00447 0.00328 0.00175 -0.00091 0.00175 0.00601 0.00928 -0.00051	0.00585 0.008		User: Accut	:12:41 AM	10/27/2009 8	Printed:
0.00338		0.00122	-0.00065	0.00183	0.00327	#1
0.00328 0.00175 -0.00091 0.00175 0.00601 0.00928 -0.00051						#2
						#3
						Mean
2.57073 18.52718 31.29988 101.44648 3.79254 22.22200 680.31646	3.79254 22.222	101.44648	31.29988	18.52718	2.57073	%RSD
2203/2 2203/1 INT STD			INT STD	2203/1	2203/2	
ioed intensities				ties	tioed intensi	IS rat
Reading Reading Reading			Reading	Reading	Reading	
0.017 0.142 59613.000						#1
0.015 0.139 59564.000						#2
0.026 0.133 59617.000						#3
0.019 0.138 59598.000						Mean
29.156 3.373 0.050			0.050	3.373	29.156	%RSD
concentrations				ns	concentratio	Final
ppm ppm intensity						
0.00048 0.00272 0.90						#1
-0.00025 0.00139 1.22						#2
0.00628 -0.00136 1.70						#3
0.00217 0.00092 1.27						Mean
164.80685 227.21532 31.30			31.30	227.21532	164.80685	%RSD

Method SampleId	: EPA3 dl : CRID		File : it10 SampleId	2609ml 2 :	Printed	: 10/27/2009 [FLEXOC]	8:12:4
	s commenced n ratio : 1.						
				Cr2677	Mg2790	V 2924	Re
TO					_		
is ratio	Reading	les Reading	Reading	Reading	Reading	Reading	Rea
#1	0.164	0.005	0.000	0.002	0.004	0.001	(
#2	0.165	0.004	0.000	0.002	0.004	0.001	(
#3	0.165	0.005	0.000	0.002	0.004	0.001	(
Mean %RSD	0.165	0.005 3.871	69.782	10.002	Reading 0.004 0.004 0.004 0.004 4.633	12.644	
m:1 -		_					
rinai c	nom	maa	nom	mmm	mmm	nnm	
#1	2.81480	0.01072	0.00224	0.00220	0.09780	0.00226	0.0
#2	2.82314	0.01032	0.00209	0.00198	0.09788	0.00226	0.0
#3	2.82040	0.01102	0.00326	0.00265	0.10688	0.00303	0.0
Mean	2.81945	0.01069	0.00253	0.00228	0.10085	0.00252	0.0
%RSD	0.15064	3.28060	25.17823	14.93490	ppm 0.09780 0.09788 0.10688 0.10085 5.17577	17.47834	1.5
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Co
IS ratio	oed_intensit	ies					
41	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.004	0.024	-0.001	0.000	-0.020	0.011	
#2	0.004	0.024	-0.001	-0.002	-0.022	0.010	
#3 Moon	0.004	0.026	-0.001	0.001	-0.010	0.012	
%RSD	4.191	3.628	31.802	269.677	Reading -0.020 -0.022 -0.016 -0.019 15.290	9.324	
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.00210	2.45900	0.00063	0.00166	0.00162	-0.00133	0.0
#2	0.00238	2.46171	0.00025	-0.00036	-0.00062	-0.00246	0.0
#3 Maan	0.00291	2.69254	0.00234	0.00291	0.00750	0.00291	0.0
%RSD	16.70961	5.28264	104.14716	117.63726	ppm 0.00162 -0.00062 0.00750 0.00283 148.07981	969.29742	7.
					A13082		
TS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading 0.013 0.013 0.013 0.013 0.377	Reading	Rea
#1	0.001	0.006	-0.012	0.072	0.013	0.031	(
#2	0.001	0.005	-0.012	0.072	0.013	0.031	(
#3	0.001	0.006	-0.011	0.073	0.013	0.032	(
Mean	0.001	0.005	-0.012	0.073	0.013	0.031	
*RSD	21.119	1.331	3.522	0.625	0.377	1.736	81
Final c	oncentration	s		n	ppm 0.09219 0.09020 0.09261 0.09167 1.40630		
#1	0 00650	U UU39U	n nnnas	n gania	0 09219	=0 04204	0.0
#2	0.00577	0.00390	0.00057	0.98846	0.09219	-0.04204	-0.1
#3	0.00673	0.00395	0.00130	1.00011	0.09261	-0.03847	0.0
Mean	0.00633	0.00390	0.00093	0.99292	0.09167	-0.04135	0.0
%RSD	7.94750	1.39381	39.59795	0.63297	1.40630	6.29853	217.
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS ratio	oed_intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.002	0.006	-0.009	0.000	0.000	0.035	-0
#2	0.002	0.005	-0.009	0.000	0.000	0.034	-0
#3 Moon	0.002	0.006	-0.009	0.000	0.000	0.037	-1
%RSD	2.281	6.744	1.446	35.629	Reading 0.000 0.000 0.000 0.000 15.771	3.939	
					ppm		
	ourcement arrange	0					

Raw Data MA23347	page 14 of 235

Method SampleI	: EPA3 dl : ICV		File : it102 SampleId2	609ml :	Printed :	10/27/2009 [FLEXQC]	B:12:41 A
Analysi:	s commenced : n ratio : 1.0	10/26/2009	3:54:U/ PM				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be31
IS ratio	oed intensiti	es					
#1	Reading	Reading	Reading 0.207 0.199 0.199 0.202 2.272	Reading	Reading	Reading	Readin
#2	0.580	0.491	0.207	0.668	0.173	0.199	2.0
	0.595	0.465	0.199	0.653	0.164	0.195	2.0
Mean %RSD	0.590	0.473	0.202	0.657	0.167	0.196	2.0
%RSD	1.481	3.299	2.272	1.370	3.187	1.369	1.08
Final c	oncentrations						
#1	o osese	n 99729	n 96797	n 00041	4 9447E	n agair	n agai
#2	10.08011	0.93110	0.93118	0.96460	4.67950	0.97439	0.966
#3	10.07437	0.93508	0.93070	0.96606	4.68287	0.97738	0.964
Mean	oncentrations ppm 9.82636 10.08011 10.07437 9.99361 1.44971	0.95115	0.94329	0.97302	4.76904	0.98364	0.971
%RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd22
IS ratio	oed_intensiti	es	D 11	D	D 11	D 11	
#1	Reading 0.420 0.430 0.429 0.429 1.324	Keading	Reading	Reading	Reading	Reading	Readin 3.8
#2	0.420	0.070	0.232	0.664	0.622	0.355	3.6
#3	0.429	0.062	0.230	0.663	0.605	0.358	3.6
Mean	0.426	0.064	0.231	0.670	0.610	0.360 1.275	3.7
%RSD	1.324	7.598	0.491	1.750	1.656	1.275	2.1
Final c	oncentrations	nnm	nnm	nnm	nnm	nnm.	-
#1	0.95698 0.97968 0.97928 0.97198 1.33682	9.59374	1.03944	0.96627	0.93157	0.98042	1.010
#2	0.97968	8.27833	1.03209	0.93819	0.90528	0.95683	0.975
#3	0.97928	8.41003	1.02969	0.93719	0.90748	0.96036	0.973
Mean %RSD	0.97198	8.76070	1.03374	0.94722	0.91477	0.96587	0.986
arsu							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe27
IS ratio	oed intensiti	es	n . 11	D 11	n . 11	n 11	D 11
#1	Reading 0.448 0.430 0.431 0.436 2.311	reading	keading 0.534	Keading	Reading	keading	Keadii 0 0
#2	0.430	1.302	0.524	0.355	0.197	0.236	0.0
#3	0.431	1.302	0.526	0.356	0.198	0.236	0.0
#3 Mean %RSD	0.436	1.295	0.528	0.360	0.197	0.238	0.0
*RSD							
Final c	oncentrations ppm	maa	ppm 0.49357 0.48401 0.48587 0.48782 1.03836	mara	mag	maa	n
#1	0.99405	0.95296	0.49357	5.01848	5.00044	0.97228	5.083
#2	0.95443	0.96949	0.48401	4.84508	5.03077	0.93453	4.795
#3 Mean	0.95655	0.96964	0.48587	4.86260	5.03407	0.93514	4.797
Mean %RSD	2.30168	0.96403	1.03836	1.94461	0.36916	2.28211	3.383
			Sn1899			1960/2	
IS ratio	oed intensiti	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.576 0.568	1.059	0.449	0.000	0.000	0.711	0.9
#2 #3	0.568	1.034	0.429	0.000	0.000	0.742	0.8
Mean	0.570	1.043	0.436	0.000	0.000	0.707	0.8
%RSD	0.826	1.379	Reading 0.449 0.429 0.431 0.436 2.568	9.183	3.338	Reading 0.711 0.742 0.666 0.707 5.369	4.8
Final c	oncentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	P

Raw Data MA23347 page 16 of 235

◀ Zoom In ▶

							¬ ∠oom i	י ח
							Zoom O	ut
Printed:	10/27/2009 8:	12:41 AM	User: Accutes	вt				
#1	0.96534	0.93913	0.97276	1.04387	0.99403	1.01226	0.95755	
#2	0.95151	0.91635	0.92988	1.04123	1.00236	1.05675	0.89358	
#3	0.95180	0.91767	0.93360	0.93604	0.92541	0.94571	0.88480	
Mean		0.92438		1.00705	0.97393	1.00491		
%RSD	0.82655	1.38366	2.51301	6.10745	4.33601	5.56112	4.35435	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit							
	Reading	Reading	Reading					
#1	1.674	2.381	61487.000					
#2	1.744	2.159						
#3	1.507	2.136						
Mean	1.642	2.225	59162.333					
%RSD	7.443	6.080	3.403					
Final	concentration	В						
	ppm	ppm	intensity					
#1	1.06226	1.00709	-1358.76					
#2	1.10776	0.90816	-1298.86					
#3	0.95521	0.89771						
Mean		0.93766	-1320.56					
%RSD	7.51789	6.43746	2.51					

Raw Data MA23347 page 17 of 235

Raw Data MA23347 page 19 of 235

◀ Zoom In							
Zoom Out							
				User: Accut		10/27/2009 8	
	0.00785	0.00173	-0.00073	0.00252	0.00237	0.00040	#1
	0.01594	0.01188 -0.00239	0.00750 -0.00426	-0.00001 -0.00047	0.00093	0.00027	#2 #3
	0.00100	0.00239	0.00084	0.00047	0.00022	0.00030	#3 Mean
	90.47471	196.35127	720.42414	236.24055	93.57301	21.77298	%RSD
1/1 140.70700	90.4/4/1	190.35127	/20.42414	230.24055	93.5/301	21.//290	arsu
				INT STD	2203/1	2203/2	
					ties	ioed intensi	IS rat
				Reading	Reading	Reading	
				60696.000	0.109	0.023	#1
				60440.000	0.138	0.033	#2
				60202.000	0.112	0.014	#3
				60446.000	0.120	0.023	Mean
				0.409	13.290	39.564	%RSD
						concentratio	Final
				intensity -3.51	-0.01186	0.00484	#1
				0.01	0.00104	0.00484	#1
				0.65	-0.01051	-0.00113	#3
				-0.95	-0.01031	0.00481	Mean
				236.24	99.73638	123.20692	%RSD
				250.21			4100

Method Sample	: EPA3 Idl : ICB is commenced	: 10/26/2009	File : it10: SampleId: 4:00:38 pm	2609ml 2 :	Printed	: 10/27/2009 [FLEXQC]	8:12:4
Diluti	on ratio : 1.	00000 to 1.0	0000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be:
IS rat	ioed intensit Reading 0.064 0.064 0.064 0.064 0.329	ies Peading	Peading	Peading	Peading	Peading	Pes
#1	0.064	-0.001	0.000	0.001	0.001	0.000	0
#2	0.064	-0.001	0.000	0.001	0.001	0.000	ō
#3	0.064	-0.001	0.000	0.001	0.001	0.000	0
Mean	0.064	-0.001	0.000	0.001	0.001	0.000	0
			120.497	45.920	26.048	37.703	2
Final	concentration ppm 1.15222 1.14556 1.14639 1.14806 0.31583	ns nom	maa	maa	man	DDM	
#1	1.15222	0.00046	0.00178	0.00112	0.01502	0.00106	0.0
#2	1.14556	-0.00031	0.00100	0.00000	0.00570	0.00015	0.0
#3	1.14639	-0.00049	0.00061	0.00001	0.00576	0.00015	0.0
Mean	1.14806	-0.00012	0.00113	0.00038	0.00883	0.00045	0.0
*RSD							
						Sb2068	
IS rat	ioed intensit Reading 0.004 0.004 0.004 0.004 2.952	ies Peadira	Peadira	Peading	Reading	Peading	Pos
#1	0.004	0.018	0.000	0.000	-0.019	0.010	0
#2	0.004	0.017	-0.001	0.000	-0.020	0.010	ō
#3	0.004	0.017	-0.001	0.000	-0.024	0.009	0
Mean	0.004	0.018	0.000	0.000	-0.021	0.010	0
%RSD	2.952	4.846	87.060	1416.641	12.169	8.028	51
Final	concentration	is nom	nnm	DDM	nnm	nnm	
#1	0.00121	0.80279	0.00458	0.00250	0.00332	-0.00249	0.0
#2	0.00079	0.55953	0.00156	0.00199	0.00133	-0.00343	0.0
#3	0.00079	0.59026	0.00118	0.00136	-0.00375	-0.00657	0.0
%RSD	oncentration ppm 0.00121 0.00079 0.00079 0.00093 26.18516	20.35281	76.34883	29.36126	1207.95395	-0.00416 51.33345	109.2
	Ni2316	Ba4934	Ag3280	Ca3179			
IS rat	ioed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	-0.001	0.001	-0.011	0.001	0.009	0.032	0
#2	-0.001	0.001	-0.011	0.001	0.009	0.032	0
#3 Moon	-0.001	0.000	-0.012	0.001	0.009	0.032	0
%RSD	ioed intensit Reading -0.001 -0.001 -0.001 -0.001 29.172	9.545	4.413	5.133	0.674	0.966	34
Final	concentration	18					
41	ppm	ppm	ppm	ppm	mqq o	ppm	0.0
#1	0.00209	0.00025	0.00164	0.00368	-0.00980	-0.03408	0.0
#4	0.00157	0.00019	0.00106	0.00220	-0.01237	-0.03673	0.0
Mean	0.00144	0.00021	0.00115	0.00264	-0.01165	-0.03578	0.0
%RSD	concentration ppm 0.00209 0.00157 0.00065 0.00144 50.94034	18.38054	39.15713	34.25096	13.87179	4.11542	45.8
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS rat	ioed_intensit	ies					_
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.000	0.006	-0.008	0.000	0.000	0.034	-0
#4	0.000	0.005	-0.009	0.000	0.000	0.040	-U -N
Mean	0.000	0.005	-0.009	0.000	0.000	0.035	-0
%RSD	Reading 0.000 0.000 0.000 0.000 9.468	25.868	8.857	0.409	0.409	14.634	8
Final	concentration	18				ppm	
		nnm			maa	maa	

Raw Data MA23347	page 18 of 235

	Luz · ILLV	: 10/26/2009	SampleId2		Printed :	[FLEXQC]	0.12.41
	ls commencea	00000 to 1.0	4:0/:21 PM				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be31
IS rati	loed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	2.295	0.981	0.426	1.338	1.433	0.407	4.2
#2	2.306	0.992	0.429	1.347	1.443	0.410	4.2
#3	2.285	1.011	0.433	1.359	1.453	0.412	4
Mean	2.203	1.023	0.430	1 353	1.401	0.414	4.3
%RSD	0.431	Reading 0.981 0.992 1.011 1.023 1.002 1.876	1.002	0.992	0.848	0.810	1.4
#1	20 E1000	ppm	ppm 1 00010	ppm 1 002E1	40 06100	2 OF 2 CF	2 01
#1	38 69823	1.97275	2 00264	1 995251	40.00109	2.05265	2.01
#3	38.35730	2.03329	2.02182	2.01367	41.42347	2.07974	2.062
#4	38.35251	2.05664	2.03562	2.02764	41.67375	2.09190	2.082
Mean	38.48153	2.01419	2.01257	2.00477	41.27686	2.07292	2.048
%RSD	0.42536	ppm 1.97275 1.99408 2.03329 2.05664 2.01419 1.87701	1.00061	0.99273	0.84820	0.81119	1.458
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd22
IS rati	ioed intensit	ies	D	D4:-	ndi-	n41.	D 11
4.7	keading	keading	Reading	keading	Reading	keading	Readi
#1	0.041	0.262	0.424	1.400	1.342	0.775	7 8
#3	0.843	0.264	0.427	1.429	1.357	0.781	7.0
#4	0.845	0.266	0.429	1.437	1.366	0.786	8.0
Mean	0.843	0.264	0.426	1.422	1.354	0.778	7.1
%RSD	0.194	Reading 0.262 0.262 0.264 0.266 0.264 0.760	0.467	0.952	0.754	0.886	1.:
Final c	concentration	.s					
#1	ppm	ppm	ppm	ppm	ppm	ppm	0 0F
#1	1.92407	20 06060	1.092/2	1.90397	1.90007	2.10200	2.05
#3	1.92977	40.19572	1.90631	2.01662	1.98092	2.13370	2.09
#4	1.93337	40.51189	1.91428	2.02742	1.99445	2.14634	2.11
#2 #3 #4 Mean %RSD	1.93002	40.10126	1.90447	2.00691	1.97653	2.12487	2.079
%RSD	0.19407	39.83694 39.86050 40.19572 40.51189 40.10126 0.79560	0.46725	0.95163	0.74199	0.89785	1.347
	Ni2316						
IS rati	ioed intensit	Reading 2.578 2.589 2.571 2.570 2.577 0.349	D	D4:	Dandin.	n	D
#1	0.906	2.578	0.263	2.934	1.452	1.147	neau.
#2	0.910	2.589	0.265	2.952	1.461	1.154	0.7
#3	0.920	2.571	0.266	2.993	1.455	1.158	0.7
#4	0.927	2.570	0.268	3.013	1.457	1.164	0.
Mean	0.916	2.577	0.265	2.973	1.456	1.156	0.7
%RSD	1.053	0.349	0.645	1.231	0.254	0.623	0.9
Final o	concentration	1.91922 1.92730 1.91343 1.91292 1.91822 0.34908	nnm	DDm	ppm	Drum	,
#1	2.00671	1.91922	0.24948	40.56106	38.90838	5.31972	40.04
#2	2.01555	1.92730	0.25099	40.81126	39.14445	5.35499	40.34
#3	2.03884	1.91343	0.25151	41.38397	38.97403	5.37302	40.70
#4	2.05331	1.91292	0.25324	41.66312	39.02746	5.40215	40.94
Mean	2.02860	1.91822	0.25130	41.10485	39.01358	5.36247	40.509
%RSD	1.05154	0.34908	0.61647	1.23370	0.25612	0.64322	0.96
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960
IS rati	loed intensit	ies		D 11	D	D 11	D 1
#1	Reading	Reading	Reading	Reading	Reading	Reading	Read:
#1 #2	1.157	Reading 2.195 2.221	0.934	0.000	0.000	1.410	2.0

Raw Data MA23347 page 20 of 235

◀ Zoom In ▶

/27/2009 8:1 1.172 1.179 1.168 0.815 ncentrations ppm 1.94059 1.95296 1.96594	2.235 2.235 2.220 0.799	User: Accute: 0.954 0.961 0.948 1.265	0.000 0.000 0.000 10.632	0.000 0.000 0.000 6.567	1.452 1.411 1.428 1.455	Zoom Oi 2.019 2.035 2.014 0.870	ut
1.172 1.179 1.168 0.815 ncentrations ppm 1.94059 1.95296 1.96594	2.230 2.235 2.220 0.799 3	0.954 0.961 0.948 1.265	0.000 0.000 0.000 10.632	0.000	1.411	2.035 2.014	
1.179 1.168 0.815 ncentrations ppm 1.94059 1.95296	2.235 2.220 0.799 ppm 1.94968	0.961 0.948 1.265	0.000 0.000 10.632	0.000	1.411	2.035 2.014	
1.179 1.168 0.815 ncentrations ppm 1.94059 1.95296	2.235 2.220 0.799 ppm 1.94968	0.961 0.948 1.265	0.000 0.000 10.632	0.000	1.411	2.035 2.014	
1.168 0.815 ncentrations ppm 1.94059 1.95296 1.96594	2.220 0.799 ppm 1.94968	0.948 1.265	0.000 10.632	0.000	1.428	2.014	
0.815 ncentrations ppm 1.94059 1.95296 1.96594	0.799 ppm 1.94968	1.265	10.632				
ppm 1.94059 1.95296 1.96594	ppm 1.94968	ppm					
1.94059 1.95296 1.96594	1.94968	ppm					
1.95296			ppm	ppm	ppm	mqq	
1.96594		2.00054	2.07823	2.05299	2.06504	2.02889	
		2.02011	2.09288	2.07530	2.10581	2.01428	
	1.98034	2.04408	2.12585	2.09800	2.12752	2.03895	
1.97750	1.98537	2.05794	2.09455	2.06269	2.06677	2.05452	
1.95925	1.97192	2.03067	2.09788	2.07224	2.09128	2.03416	
0.81536	0.79998	1.25316	0.95519	0.93850	1.46449	0.83261	
2203/2	2203/1	INT STD					
ed intensiti	ies						
Reading	Reading	Reading					
		58389.000					
3.320		58246.000					
3.382	4.779	58596.000					
		58765.000					
3.318	4.774	58499.000					
1.411	0.618	0.390					
ncentrations	3						
		intensity					
2.12476	2.02913	-2821.71					
2.11125	2.06114	-2874.55					
2.12358	2.04647						
1.41411	0.64391	1.25					
	2203/2 ed intensiti Reading 3.272 3.320 3.382 3.299 3.318 1.411 ncentrations ppm 2.09387 2.12476 2.16444 2.11125 2.12358	2203/2 2203/1 ed intensities Reading Reading 3.272 4.775 3.320 4.735 3.382 4.779 3.318 4.774 1.411 0.618 encentrations ppm 2.09387 2.04694 2.12476 2.02913 2.12476 2.02913 2.12476 2.02913 2.12476 2.02913	2203/2 2203/1 INT STD ad intensities Reading Reading Reading 3.272 4.775 58389.000 3.320 4.775 58246.000 3.382 4.779 58765.000 3.318 4.774 58765.000 3.318 4.774 58795.000 3.318 4.774 58795.000 3.299 pm pm pm 2.09387 2.04694 -2794.37 2.12476 2.02913 -2821.37 2.11175 2.02614 -2874.55 2.12358 2.04647 -2374.55 2.12358 2.04647 -2384.45	2203/2 2203/1 INT STD ad intensities Reading	2203/2 2203/1 INT STD ad intensities Reading	2203/2 2203/1 INT STD ed intensities Reading	2203/2 2203/1 INT STD ed intensities Reading Reading Reading 3.320 4.775 58246.000 3.382 4.779 58246.000 3.318 4.774 58499.000 1.411 0.618 0.399 Comparison of the compari

Raw Data MA23347 page 21 of 235

Raw Data MA23347 page 23 of 235

Raw Data I	VIA23347	page 21 of a	235				
							◀ Zoom In ▶
							Zoom Out
#3 #4 Mean %RSD	10.404 concentrati	0.002 0.004 0.003 23.173	User: Accute -0.011 -0.009 -0.011 11.423	0.000 0.000 0.000 0.133	0.000 0.000 0.000 0.133	0.030 0.033 0.033 10.634	-0.113 -0.099 -0.108 5.680
#1 #2 #3 #4 Mean %RSD		0.00031 -0.00030 -0.00109 0.00034 -0.00019 360.11816	-0.00553 -0.00407 -0.00498 0.00012 -0.00362 70.86034	0.00107 -0.00485 -0.00963 -0.00422 -0.00441 99.37596	0.00156 -0.00423 -0.00631 0.00062 -0.00209 181.30724	0.01292 0.00255 0.00151 0.00545 0.00560 91.90172	ppm -0.02115 -0.01777 -0.02194 -0.00904 -0.01747 33.81069
#1 #2 #3 #4 Mean %RSD		Reading 0.091 0.090 0.079 0.110 0.092 14.182	Reading 60467.000 60623.000 60441.000 60504.000 60508.750 0.133 intensity 7.73 5.69				
#2 #3 #4 Mean %RSD	-0.00176 -0.00065 0.00305	-0.02536 -0.01135 -0.01932 30.16246	6.96 6.96 -0.17 5.05 70.86				

Method : SampleId	EPA3	: 10/26/2009	File : it102 SampleId2	2609ml 2 :	Printed	10/27/2009 [FLEXQC]	8:12:4
Dilution	ratio : 1	.00000 to 1.0	0000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Ве
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.066	-0.001	0.000	0.001	0.000	0.000	0
#2	0.066	-0.001	0.000	0.001	0.001	0.000	0
#3	0.066	-0.001	0.000	0.001	0.001	0.000	U
Mean	0.007	=0.000	0.000	0.002	0.001	0.000	ň
%RSD	0.693	32.183	314.956	Reading 0.001 0.001 0.001 0.002 0.001 28.099	28.298	138.517	2
4.7	ppm	ppm	mqq o	ppm	n oosso	ppm	0.0
#1	1 17246	0.00026	0.00100	0.00010	0.00239	-0.00209	0.0
#2	1 17258	0.00010	0.00140	0.00073	0.00733	-0.00131	0.0
#4	1.18907	0.00082	0.00246	0.00125	0.01464	-0.00043	0.0
Mean	1.17756	0.00020	0.00135	0.00066	0.00732	-0.00145	0.0
%RSD	0.65789	230.13815	63.24337	ppm 0.00010 0.00073 0.00057 0.00125 0.00066 71.67446	73.78975	49.73942	18.1
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.004	0.017	-0.001	-0.002	-0.028	0.008	0
#2	0.004	0.017	0.000	-0.001	-0.028	0.009	0
#3	0.004	0.017	-0.001	-0.001	-0.028	0.009	0
## Moon	0.004	0.019	0.000	-0.001	-0.026	0.011	0
%RSD	3.599	6.442	124.168	Reading -0.002 -0.001 -0.001 0.001 -0.001 245.122	4.407	13.878	29
Final co	ncentration	ıs		-0.00095 0.00084 0.00074 0.00398 0.00115 178.67209			
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.00098	0.53426	0.00134	-0.00095	-0.00990	-0.00940	0.0
#2	0.00130	0.50199	0.00255	0.00004	-0.01001	-0.00724	0.0
#4	0.00173	0.89112	0.00598	0.00398	-0.00664	-0.00132	0.0
Mean	0.00136	0.63483	0.00285	0.00115	-0.00923	-0.00607	0.0
%RSD	22.99243	27.58227	75.27617	178.67209	18.86927	56.31600	46.5
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe
IS ratio	ed intensit	ies				D 11	
#1	-0 001	Reading	_0 012	Reading	Reading	keading	kea n
#2	-0.001	0.001	-0.012	0.001	0.009	0.032	0
#3	-0.001	0.000	-0.012	0.001	0.009	0.032	ő
#4	0.000	0.001	-0.011	0.001	0.009	0.033	ō
Mean	-0.001	0.001	-0.012	0.001	0.009	0.032	ō
			6.344	Reading 0.001 0.001 0.001 0.001 0.001 3.763	1.143	2.042	28
Final co	oncentration	1S	DDm	ppm 0.00427 0.00466 0.00313 0.00465 0.00418 17.29368	DDm	ppm	
#1	0.00212	0.00024	0.00023	0.00427	-0.01515	-0.03572	0.0
#2	0.00155	0.00027	0.00053	0.00466	-0.01531	-0.03495	0.0
#3	0.00197	0.00018	0.00082	0.00313	-0.01324	-0.03614	0.0
#4	0.00333	0.00029	0.00177	0.00465	-0.00948	-0.02938	0.0
Mean	0.00224	0.00024	0.00084	0.00418	-0.01330	-0.03405	0.0
*RSD	34.05561	20.13107 Mo2020	79.60372	17.29368	20.38281	9.25583	
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS ratio	ed intensit	ies Reading	Reading	Reading 0.000 0.000	Reading	Reading	Res
			uuziig	accusting.	0.000	0.020	1,66
#1	0.000	0.004	-0.031				

Raw Data MA23347	page 22 of 235
Raw Dala WAZSS41	page 22 of 255

K 7664 Z12062 C2286 Cr2677 Mg2790 V 2924 Be3131	Method Sample	i : EPA3 eIdl : ICSA		File : it10: SampleId:	2609ml 2 :	Printed	: 10/27/2009 [FLEXQC]	8:12:41 AM
Reading Read								
Reading		K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
Final concentrations	IS rat	ioed intensit	ies					
Final concentrations		Reading	Reading	Reading	Reading	Reading	Reading	Reading
Final concentrations	#1	0.068	0.000	-0.001	0.004	18.3//	-0.012	0.00:
Final concentrations	#2	0.068	=0.000	-0.001	0.004	18 314	-0.012	0.003
Final concentrations	Mean	0.068	0.000	-0.001	0.004	18.348	-0.012	0.003
## 1 - 0.12597 - 0.00064 - 0.0093	%RSD	0.369	77.666	13.461	8.541	0.172	1.239	2.280
Cu3247 Na3302 Pd3404 As1890 T11908 Sb2068 Cd226: Exatioed intensities Reading Readin	Final	concentration	ıs					
Cu3247 Na3302 Pd3404 As1890 T11908 Sb2068 Cd226: Exatioed intensities Reading Readin	44.7	ppm	ppm n nnns4	ppm	ppm	ppm ppm	ppm	ppn
Cu3247 Na3302 Pd3404 As1890 T11908 Sb2068 Cd226: Exatioed intensities Reading Readin	#1	-0.12597	-0.00064	=0.00093	0.00414	523.91000	0.00622	0.00024
Cu3247 Na3302 Pd3404 As1890 T11908 Sb2068 Cd226: Exatioed intensities Reading Readin	#3	-0.13104	-0.00168	-0.00169	0.00321	522.13256	0.00452	0.00024
Cu3247 Na3302 Pd3404 As1890 T11908 Sb2068 Cd226: Exatioed intensities Reading Readin	Mean	-0.13069	-0.00100	-0.00118	0.00382	523.09512	0.00546	0.00022
Reading	%RSD	3.48340	58.77101	36.78576	13.85660	0.17227	15.85502	12.83125
Reading		Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
Final concentrations ### 0.0005	IS rat	ioed_intensit	ies					
Final concentrations ### 0.0005		Reading	Reading	Reading	Reading	Reading	Reading	Reading
Final concentrations ### 0.0005		0.005	0.019	0.000	-0.006	0.056	0.015	0.036
Final concentrations ### 0.0005		0.005	0.018	-0.001	-0.005	0.050	0.012	0.03
Final concentrations ### 0.0005		0.005	0.018	-0.001	-0.005	0.058	0.013	0.036
### 1	%RSD	2.003	2.320	44.403	12.113	2.950	12.792	2.019
Ni 2316	Final	concentration	ıs					
Ni 2316	#1	0 00050	_n n5382	n nn123	_n nn222	0 01040	n nnesn	n nnaer
Ni 2316		0.00032	-0.15375	-0.00027	-0.00079	0.01537	0.00057	0.00404
Ni 2316	#3	0.00008	-0.18112	-0.00196	-0.00073	0.01284	-0.00012	0.00381
Ni 2316		0.00030	-0.12956	-0.00033	-0.00125	0.01287	0.00292	0.00384
Reading Read	%RSD							
Reading		Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2714
Final concentrations ppm p	IS rat	ioed intensit	ies	n	D 11	D	D 11	D
Final concentrations ppm p	#1	Reading	Reading	Reading	keading	Reading	Reading	Reading
Final concentrations ppm p	#2	0.000	0.018	-0.011	27.019	18.108	0.036	3.465
Final concentrations ppm p	#3	-0.001	0.018	-0.011	26.850	18.119	0.035	3.454
Final concentrations ppm p	Mean	0.000	0.018	-0.011	26.956	18.106	0.036	3.462
Ma.2576 Mo.2020 Sn1899 Pb2203 Sel960 1960/2 1960/2 S ratioed intensities Reading Reading Readi	%RSD	50.703	0.476	3.882	0.342	0.085	1.492	0.227
Ma.2576 Mo.2020 Sn1899 Pb2203 Sel960 1960/2 1960/2 S ratioed intensities Reading Reading Readi	Final	concentration	iS ppm	ppm	ppm	ppm	ppm	nna
Ma.2576 Mo.2020 Sn1899 Pb2203 Sel960 1960/2 1960/2 S ratioed intensities Reading Reading Readi		0.00963	0.00484	0.00306	374.76850	489.08609	-0.04364	194.44609
Ma.2576 Mo.2020 Sn1899 Pb2203 Sel960 1960/2 1960/2 S ratioed intensities Reading Reading Readi		0.00902	0.00473	0.00265	375.04467	489.61937	-0.04656	194.2165
Ma.2576 Mo.2020 Sn1899 Pb2203 Sel960 1960/2 1960/2 S ratioed intensities Reading Reading Readi		0.00882	0.00486	0.00228	372.70066	489.91123	-0.04863	193.5888
Ma.2576 Mo.2020 Sn1899 Pb2203 Sel960 1960/2 1960/2 S ratioed intensities Reading Reading Readi		0.00916 4.62409	0.00481 1.40691	0.00266 14.60620	374.17128 0.34237	489.53890 0.08547	-0.04628 5.41781	194.0838 0.2286
IS ratioed intensities Reading								
Reading Reading <t< td=""><td>IS rat</td><td>ioed intensit</td><td>ies</td><td></td><td></td><td></td><td></td><td></td></t<>	IS rat	ioed intensit	ies					
Final concentrations		Reading	Reading	Reading	Reading	Reading	Reading	Reading
Final concentrations		0.000	0.003	-0.008	0.000	0.000	-0.029	-0.127
Final concentrations	#2	0.000	0.001	-0.008	0.000	0.000	-0.035	
Final concentrations		0.000	0.000	-0.010	0.000	0.000	-0.032	
Final concentrations		17.684	123.065	14.673	6.122	0.129	9.513	
ppm ppm ppm ppm ppm ppm	Final		ıs					
		ppm	ppm	ppm	ppm	ppm	ppm	ppr

Raw Data MA23347 page 24 of 235

							4 Z00III	.11
							Zoom C)ut
	10/27/2009 8		User: Accute					
#1	0.00325	0.00651	-0.00310	0.00549	0.00396	0.01166	-0.01143	
#2	0.00319	0.00470	-0.00451	0.00155	0.00027	0.00253	-0.00425	
#3	0.00308	0.00387	-0.00831	0.00171	0.00102	0.00702	-0.01098	
Mean		0.00503	-0.00531	0.00291	0.00175	0.00707	-0.00889	
%RSD	2.75046	26.84173	50.76349	76.47857	111.26495	64.50120	45.22852	
	2203/2	2203/1	INT STD					
IS ra	tioed intensi	ties						
	Reading	Reading	Reading					
#1	-0.114	0.606	50498.000					
#2	-0.126	0.612	50496.000					
#3	-0.115	0.584	50384.000					
Mean	-0.118	0.601	50459.333					
%RSD	5.346	2.463	0.129					
Final	concentratio	ns						
	ppm	ppm	intensity					
#1	0.04061	-0.06475	4.33					
#2	0.03321	-0.06178	6.30					
#3	0.03957	-0.07400	11.61					
Mean	0.03780	-0.06685	7.41					
%RSD	10.59190	9.53192	50.76					

Raw Data MA23347 page 25 of 235

Raw Data MA23347 page 27 of 235

							■ Zoom Ir
							Zoom O
	0/27/2009 8:		User: Accutes				
#1	0.47483	0.48198	-0.00804	1.01890	1.07068	1.09420	1.02365
#2	0.47088	0.47878	-0.00325	1.01718	1.07137	1.08915	1.03582
#3	0.47818	0.48568		1.02032	1.07775	1.10215	1.02894
Mean	0.47463	0.48215	-0.00415	1.01880	1.07327	1.09517	1.02947
%RSD	0.77060	0.71559	85.00254	0.15434	0.36291	0.59847	0.59278
	2203/2	2203/1	INT STD				
IS rati	oed intensit	ies					
	Reading	Reading	Reading				
#1	1.501	2.766	50143.000				
#2	1.495	2.772	51004.000				
#3	1.502	2.773	50493.000				
Mean	1.499	2.770	50546.667				
%RSD	0.269	0.143	0.857				
Final c	oncentration:	В					
	ppm	ppm	intensity				
#1	1.07485	0.90699	11.24				
#2	1.06927	0.91302	4.55				
#3	1.07561	0.90975	1.62				
Mean	1.07324	0.90992	5.80				
%RSD	0.32295	0.33159	85.00				

	dl : ICSAB	: 10/26/2009	SampleId	2609ml 2 :	Printed	10/27/2009 [FLEXQC]	8:12:4
Dilutio	n ratio : 1	.00000 to 1.0	10000 10000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be
IS rati	oed intensi						
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.068	0.455	0.101	0.322	18.264	0.088	
#2	0.068	0.457	0.101	0.320	18.100	0.087	
#3	0.069	0.465	0.102	0.325	18.364	0.089	
Mean %RSD	0.068	0.459 1.177	0.101 0.827	0.322	18.243 0.731	0.088 0.745	
Final c	oncentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	-0.11229	0.91491	0.47303	0.47419	520.71234	0.50472	0.4
#2	-0.10062	0.91833	0.47167	0.47198	516.02310	0.50175	0.4
#3	-0.10367	0.93521	0.47902	0.47973	523.55272	0.50924	0.
Mean	-0.10553	0.92282	0.47457	0.47530	520.09605	0.50524	0.4
%RSD	5.73727	1.17788	0.82369	0.83995	0.73111	0.74689	0.
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Co
IS rati	oed_intensi						
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.225	0.015	0.115	0.726	0.734	0.419	
#2	0.222	0.017	0.115	0.725	0.731	0.419	
#3 Mean	0.225	0.017 0.017	0.116 0.115	0.737 0.729	0.745 0.737	0.425 0.421	
%RSD	0.755	7.736	0.609	0.729	0.986	0.798	i
Final c	oncentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.50566	-0.42284	0.51546	1.02477	0.99167	1.12424	0.
#2	0.49900	-0.07621	0.51382	1.02348	0.98736	1.12362	0.
#3 Mean	0.50570	-0.06224	0.51986	1.04046	1.00597	1.13994	0.
%RSD	0.50345 0.76634	-0.18710 109.18248	0.51638 0.60447	1.02957 0.91820	0.99500 0.97947	1.12927 0.81911	0.
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe
TS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Re
#1	0.418	0.680	1.131	26.939	18.296	0.037	
#2	0.415	0.667	1.115	26.867	17.997	0.037	
#3	0.421	0.675	1.131	27.223	18.217	0.039	
Mean	0.418	0.674	1.126	27.010	18.170	0.038	
%RSD	0.757	0.959	0.813	0.697	0.853	2.503	
Final c	oncentration ppm		ppm	ppm	ppm	ppm	
#1	0.93161	0.49756	1.03268	373.89180	494.69056	-0.03766	191.
#2	0.92571	0.48811	1.01818	372.88707	486.60408	-0.03413	190.
#3	0.93969	0.49379	1.03226	377.83373	492.55561	-0.02884	193.
Mean	0.93234	0.49315	1.02771	374.87087	491.28342	-0.03354	192.
%RSD	0.75301	0.96462	0.80339	0.69747	0.85300	13.24686	0.
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	15
IS rati	oed intensi						
		Reading	Reading	Reading	Reading	Reading	Rea
#1	0.281	0.537	-0.011	0.000	0.000	0.705	
#2	0.279	0.534	-0.009	0.000	0.000	0.702	9
#3 Mean	0.283	0.541	-0.008	0.000	0.000	0.710 0.706	
Mean %RSD	0.281	0.537 0.711	-0.009 18.669	0.000 14.661	0.000 6.890	0.706	
			10.009	14.061	0.030	0.555	
Final c	oncentration ppm	ns ppm	ppm	ppm	ppm	ppm	
	ppm	ppm	ppm	ppm	ppm	ppm	

Raw Data MA23347	page 26 of 235
Raw Data MA23341	page 20 of 235

							■ Z
			File : it102 SampleId2 9 4:34:36 PM	1609ml ! :	Printed	: 10/27/2009 [FLEXQC]	8:12:42 A
Dilutio	n ratio : 1.	00000 to 1.	00000				
			Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	oed intensit	ies	Ponding	Ponding	Ponding	Ponding	Pondir
#1	2.333	0.959	0.420	1.329	1.413	0.405	4.17
#2	2.327	0.972	0.422	1.336	1.420	0.408	4.21
#3	2.334	0.974	0.423	1.338	1.421	0.408	4.23
Mean %RSD	2.331 0.159	0.968	Reading 0.420 0.422 0.423 0.422 0.333	0.366	0.331	0.407	0.65
rinai c	oncentration	IS DOM	maa	mara	maa	nnm	pr
#1	39.16011	1.92870	1.96264	1.96798	40.28253	2.04601	2.0004
#2	39.05691	1.95500	1.97356	1.97961	40.48671	2.05734	2.0179
#3	39.16638	1.95774	1.97442	1.98126	40.53445	2.06126	2.0265
%RSD	0.15711	0.82355	ppm 1.96264 1.97356 1.97442 1.97021 0.33329	0.36634	0.33093	0.38554	0.6596
	Cu3247						
IS rati	oed intensit	ies Pondir-	Reading 0.427 0.428 0.429 0.428 0.312	Pondin-	Pondir-	Pondir-	Pond:-
#1	0.851	0.266	0.427	1.391	1.324	0.760	7 64
#2	0.852	0.267	0.428	1.407	1.338	0.764	7.74
#3	0.853	0.268	0.429	1.412	1.347	0.767	7.74
Mean	0.852	0.267	0.428	1.403	1.336	0.764	7.71
			0.312	0.771	0.850	0.464	0.72
Final c	oncentration	IS DOM	ppm 1.90609 1.91228 1.91798	nnm	p.p.m	T.T.M.	
#1	1.94688	40.45019	1.90609	1.96273	1.93382	2.07622	2.0184
#2	1.94921	40.50324	1.91228	1.98447	1.95368	2.08499	2.0439
#2	1.95241	40.74233	1.91798	1.99199	1.96624	2.09585	2.0439
Mean %RSD	1.94950	40.56525 0.38365	1.91212 0.31103	1.97973	1.95125	2.08569 0.47149	2.0354
UICO2							
	Ni2316		Ag3280	Ca3179	A13082	Si2881	Fe2/1
IS rati	oed intensit	ies	B 11	D	n 11	D	D 11
#1	Reading	Reading	Reading 0.265 0.265	keading	Reading	keading	Readin
#2	0.901	2.592	0.265	2.907	1.458	1.150	0.70
#3	0.904	2.592 2.600 2.598	0.265 0.265	2.907 2.915 2.904	1.461	1.154	0.71
Mean %RSD	0.899 0.782	2.598 0.214	0.265	2.904 0.465	1.460 0.123	1.150	0.70
arsu	0.762	0.214	0.200	0.405	0.123	0.322	0.37
Final c	oncentration	IS Drm	ppm	DDm	ppm	DDm	nr
#1	1.97282	1.93713	0.25050	39.93956	39.11403	5.31583	39.6539
# 4	1.99686	1.92924	0.25125	40.19062	39.05060	5.33393	39.8713
#3 Mean	2.00183	1.93540	0.25139	40.30498	39.14477	5.35135	39.9388
%RSD	0.77933	0.21419	ppm 0.25050 0.25125 0.25139 0.25105 0.19127	0.46562	0.12281	0.33297	0.3738
	Mn2576		Sn1899				
TS rati	oed intensit						
	Reading	m . 11	Reading	Reading	Reading	Reading	Readir
#1	1.150	2.180	0.925	Reading 0.000	0.000	1 412	1.99
#1 #2 #3	1.156	2.193				Reading 1.412 1.407	1.99
#3 Mean	1.157	2.193 2.200 2.191	0.933	0.000	0.000	1.412	1.97
Mean %RSD	0.330	0.450	0.478	0.000 0.000 21.190	0.000 0.000 0.431	1.407 1.412 1.410 0.212	0.45
Final c	oncentration	ıs					
	ppm		ppm	ppm	ppm	ppm	PE

Raw Data MA23347 page 28 of 235

							▼ Zoom II Zoom O
	.0/27/2009 8:		User: Accute:				
#1 #2	1.92841	1.93663	1.98104	2.06440 2.05561	2.04967	2.06741 2.06003	2.01420 2.01174
#2	1.93835	1.94/3/	1.99534	2.05561	2.04394	2.06003	1.99809
#3 Mean	1.93570	1.94601	1.99175	2.05762	2.04454	2.06507	2.00801
%RSD	0.33021	0.45100	0.47390	0.29313	0.15408	0.21121	0.43210
******	0.55022	0.15100	0.17550	0.23323	0.13100	0.2222	0.15210
	2203/2	2203/1	INT STD				
IS rati	oed intensit						
	Reading	Reading	Reading				
#1	3.268	4.692	56486.000				
#2	3.257	4.666	56943.000				
#3	3.266	4.620	56864.000				
Mean	3.264	4.659	56764.333				
%RSD	0.188	0.778	0.430				
Final c	oncentration	s					
	ppm	ppm	intensity				
#1	2.09167	2.00985	-2767.14				
#2	2.08427	1.99829	-2787.10				
#3	2.09031	1.97794	-2792.03				
Mean	2.08875	1.99536	-2782.09 0.47				
%RSD	0.18869	0.80967	0.47				

Raw Data MA23347 page 29 of 235

Raw Data MA23347 page 31 of 235

							∢ Zoom	In I
							Zoom C	Out
Print	ed: 10/27/2009	8:12:42 AM	User: Accut	est				
	#1 0.00002	-0.00025	-0.00477	0.00272	0.00389	0.01221	-0.01276	
		0.00057	-0.00188	0.00016	0.00103	0.00892	-0.01475	
		-0.00048		0.00542	0.00627	0.00996	-0.00111	
	ean 0.00012		-0.00428	0.00276	0.00373			
8:	RSD 75.78615	1033.36100	51.38591	95.19939	70.37081	16.26841	77.22758	
	2203/2	2203/1	INT STD					
IS	ratioed intens	sities						
	Reading	Reading	Reading					
	#1 0.028		60713.000					
	#2 0.023		60300.000					
	#3 0.022							
	ean 0.024							
8:	RSD 17.075	14.609	0.832					
Fi	nal concentrati	ons						
	ppr		intensity					
	#1 0.00809		6.67					
	#2 0.00310		2.62					
	#3 0.00424		8.66					
	ean 0.00515		5.98					
8:	RSD 50.81054	425.89373	51.39					

							- 4
							2
Method	: EPA3 Idl : CCB		File : itl0 SampleId	2609ml	Printed	: 10/27/2009 [FLEXOC]	8:12:42
	is commenced					[LPEVOC]	
Diluti	on ratio : 1.	00000 to 1	00000				
DIIGCI							
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be31
IS rat:	ioed_intensit	ies					
#1	keading	Reading	Reading	keading	Reading	keading	Keadi
#2	0.064	-0.002	-0.001	0.000	0.001	0.000	0.0
	0.065	-0.001	0.000	0.001	0.001	0.000	0.0
#3	0.066	-0.001	-0.001	0.000	0.001	0.000	0.0
Mean	0.065	-0.001	-0.001	0.001	0.001	0.000	0.0
%RSD	1.298	25.595	31.684	69.575	21.956	Reading 0.000 0.000 0.000 0.000 194.947	3.0
Final o	concentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	I
#1	1.14390	-0.00143	-0.00153	-0.00066	0.00795	-0.00127	0.000
#2	1.16498	-0.00055	-0.00001	0.00045	0.01897	0.00015	0.000
#3	1.17067	-0.00027	-0.00119	-0.00038	0.01306	-0.00060	0.000
Mean	1.15985	-0.00075	-0.00091	-0.00020	0.01333	-0.00057	0.000
%RSD	1.21598	80.78933	88.08199	291.87750	41.36820	ppm -0.00127 0.00015 -0.00060 -0.00057 124.06340	26.752
	Cu3247						
			PG3404	AS1890	1.11308	SD2U68	Cd22
IS rat:	ioed intensit	ies	Pondi	Pondi	Pondi	Reading 0.005 0.008 0.006 0.006 18.573	Po-31
#1	vearring.	n niz	-u uus	-0 002	-0 036	n nor	read:
	0.003	0.017	-0.002	-0.007	-0.026	0.005	0.0
#2	0.003	0.019	-0.001	-0.004	-0.022	0.008	0.0
#3	0.003	0.018	-0.002	-0.005	-0.025	0.006	0.0
Mean %RSD	0.003	0.018	-0.002	-0.005	-0.024	0.006	0.0
∜RSD	5.196	4.340	21.890	30.989	8.655	18.573	30.2
Final o	concentration	ıs					
	-0.00027	ppm	ppm	ppm	ppm	ppm -0.01560	0.00
#1	-0.00027	0.59236	-0.00488	-0.00751	-0.00673	-0.01560	-0.000
#2	0.00039	0.83341	-0.00147	-0.00300	-0.00110	-0.00929	0.000
#3	0.00043	0.69171	-0.00325	-0.00535	-0.00576	-0.01406	0.000
Mean	0.00019	0.70583	-0.00320	-0.00529	-0.00453	-0.01299	0.000
%RSD	210.30879	17.16367	53.24466	42.69948	66.49261	ppm -0.01560 -0.00929 -0.01406 -0.01299 25.33029	166.003
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe27
IS rat:	ioed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	-0.002	0.000	-0.014	0.002	0.009	0.030	0.0
#2	-0.001	0.000	-0.013	0.002	0.009	0.031	0.0
#3	-0.002	0.000	-0.014	0.003	0.009	0.030	0.0
Mean	-0.002	0.000	-0.014	0.002	0.009	0.030	0.0
%RSD	-0.002 -0.001 -0.002 -0.002 18.898	24.063	4.214	10.580	2.081	Reading 0.030 0.031 0.030 0.030 1.515	43.8
Final o	concentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	I
#1	-0.00042	0.00000	-0.00139	0.01524	-0.00807	-0.04608	0.000
#2	0.00087	0.00013	-0.00053	0.01884	0.00121	-0.04170	0.019
#3	-0.00042	0.00009	-0.00149	0.02247	0.00053	-0.04412	0.009
Mean	0.00001	0.00008	-0.00114	0.01885	-0.00211	-0.04397	0.008
%RSD	6836.20308	84.78314	46.38222	19.18375	245.18263	ppm -0.04608 -0.04170 -0.04412 -0.04397 4.99606	85.149
						1960/2	
IS rat	ioed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.000	0.003	-0.011	0.000	0.000	0.037	-0.1
#2	0.000	0.004	-0.010	0.000	0.000	0.035	-0.1
#3	0.000	0.003	-0.012	0.000	0.000	0.036	-0.0
Mean	0.000	0.003	-0.011	0.000	0.000	0.036	-0.1
%RSD	0.000 16.209	18.269	9.526	0.833	0.833	Reading 0.037 0.035 0.036 0.036 3.180	7.6
-ercon							
	concentration	IS.					
	concentration ppm	us morom	mara	mara	man	ppm	p

Raw Data MA23347 page 30 of 235

io : 1.0000 7664 ntensities ading 1 0.063 0.063 0.063 0.710 0.trations ppm 12482 12569 12559 66488 23	Zn2062 Reading 0.000 to 1.1 0.000 0.001 0.001 0.0000 0.001 0.0001 0.0000 0.00182 0.00283 0.00269 0.00244 (2.39413 Na3302	Co2286 Reading 0.000 0.000 0.000 0.000 34.114 ppm 0.00006 0.00084 0.00053 0.00048 81.63924	Cr2677 Reading 0.001 0.001 0.001 0.001 18.651 ppm 0.00021 0.00024 0.00036 0.00043 62.90314	Mg2790 Reading 0.001 0.002 0.002 0.002 31.293 Dpm 0.02386 0.05652 0.04997 0.04345 39.76836	V 2924 Reading 0.000 0.000 0.000 0.000 21.705 -0.00001 0.00050 0.00024 106.26073	Be3130 Reading 0.002 0.003 0.002 0.002 16.427 ppm 0.00010 0.00043 0.00037 0.00030 59.15275
io : 1.0000 7664 ntensities ading 1 0.063 0.063 0.063 0.710 0.trations ppm 12482 12569 12559 66488 23	Zn2062 Reading 0.000 to 1.1 0.001 0.001 0.001 0.000 0.001 0.000 0.00182 0.00283 0.00269 0.00244 2.39413 Na3302	Co2286 Reading 0.000 0.000 0.000 0.000 34.114 ppm 0.00006 0.00084 0.00053 0.00048 81.63924 pd3404	Cr2677 Reading 0.001 0.001 0.001 0.001 18.651 ppm 0.00021 0.00024 0.00036 0.00043 62.90314	Mg2790 Reading 0.001 0.002 0.002 0.002 31.293 Dpm 0.02386 0.05652 0.04997 0.04345 39.76836	V 2924 Reading 0.000 0.000 0.000 0.000 21.705 -0.00001 0.00050 0.00024 106.26073	Be3130 Reading 0.002 0.003 0.002 0.002 16.427 ppm 0.00010 0.00043 0.00037 0.00030 59.15275
ntensities rading 1 0.063 0.064 0.063 0.063 0.710 atrations ppm 12482 13824 12569 12958 66488 2:	Reading 0.000 0.001 0.001 0.001 0.000 66.136 ppm 0.00182 0.00283 0.00269 0.00244 22.39413 Na3302	Reading 0.000 0.000 0.000 0.000 34.114 ppm 0.00006 0.00084 0.00053 0.00048 81.63924 Pd3404	Reading 0.001 0.001 0.001 0.001 18.651 ppm 0.00021 0.00074 0.00036 0.00043 62.90314	Reading 0.001 0.002 0.002 0.002 31.293 ppm 0.02386 0.05652 0.04997 0.04345 39.76836	Reading 0.000 0.000 0.000 0.000 0.000 21.705 Ppm -0.00001 0.00024 0.00024 106.26073	Reading 0.002 0.003 0.002 0.002 16.427 ppm 0.0010 0.00043 0.00037 0.00037 0.00030 59.15275
ading 1 0.064 0.063 0.063 0.710 ctrations ppm 12482 13824 12559 12958 66488 2:	Reading 0.000 0.001 0.001 0.000 66.136 0.00182 0.00283 0.00269 0.00244 22.39413 Na3302	ppm 0.00006 0.00084 0.00053 0.00048 81.63924 Pd3404	ppm 0.00021 0.00074 0.00036 0.00043 62.90314 As1890	ppm 0.02386 0.05652 0.04997 0.04345 39.76836 T11908	ppm -0.00001 0.00050 0.00024 0.00024 106.26073 Sb2068	0.00010 0.00043 0.00037 0.00030 59.15275
trations ppm 12482 (13824 (12958 (66488 2:	ppm 0.00182 0.00283 0.00269 0.00244 22.39413 Na3302	ppm 0.00006 0.00084 0.00053 0.00048 81.63924 Pd3404	ppm 0.00021 0.00074 0.00036 0.00043 62.90314 As1890	ppm 0.02386 0.05652 0.04997 0.04345 39.76836 T11908	ppm -0.00001 0.00050 0.00024 0.00024 106.26073 Sb2068	0.00010 0.00043 0.00037 0.00030 59.15275
trations ppm 12482 (13824 (12958 (66488 2:	ppm 0.00182 0.00283 0.00269 0.00244 22.39413 Na3302	ppm 0.00006 0.00084 0.00053 0.00048 81.63924 Pd3404	ppm 0.00021 0.00074 0.00036 0.00043 62.90314 As1890	ppm 0.02386 0.05652 0.04997 0.04345 39.76836 T11908	ppm -0.00001 0.00050 0.00024 0.00024 106.26073 Sb2068	0.00010 0.00043 0.00037 0.00030 59.15275
trations ppm 12482 (13824 (12958 (66488 2:	ppm 0.00182 0.00283 0.00269 0.00244 22.39413 Na3302	ppm 0.00006 0.00084 0.00053 0.00048 81.63924 Pd3404	ppm 0.00021 0.00074 0.00036 0.00043 62.90314 As1890	ppm 0.02386 0.05652 0.04997 0.04345 39.76836 T11908	ppm -0.00001 0.00050 0.00024 0.00024 106.26073 Sb2068	0.00010 0.00043 0.00037 0.00030 59.15275
trations ppm 12482 (13824 (12958 (66488 2:	ppm 0.00182 0.00283 0.00269 0.00244 22.39413 Na3302	ppm 0.00006 0.00084 0.00053 0.00048 81.63924 Pd3404	ppm 0.00021 0.00074 0.00036 0.00043 62.90314 As1890	ppm 0.02386 0.05652 0.04997 0.04345 39.76836 T11908	ppm -0.00001 0.00050 0.00024 0.00024 106.26073 Sb2068	0.00010 0.00043 0.00037 0.00030 59.15275
trations ppm 12482 (13824 (12958 (66488 2:	ppm 0.00182 0.00283 0.00269 0.00244 22.39413 Na3302	ppm 0.00006 0.00084 0.00053 0.00048 81.63924 Pd3404	ppm 0.00021 0.00074 0.00036 0.00043 62.90314 As1890	ppm 0.02386 0.05652 0.04997 0.04345 39.76836 T11908	ppm -0.00001 0.00050 0.00024 0.00024 106.26073 Sb2068	0.00010 0.00043 0.00037 0.00030 59.15275
ppm 12482 (13824 (12569 (12958 (66488 2)	ppm 0.00182 0.00283 0.00269 0.00244 22.39413 Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
u3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
u3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
u3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
u3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
u3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
ntensities ading 1 0.004 0.004 0.004	Reading 0.017 0.018 0.017 0.017	Reading -0.001 -0.001 -0.001 -0.001 17.401	Reading -0.004 -0.003 -0.003 -0.003 13.164	Reading -0.023 -0.019 -0.022 -0.021	Reading 0.009 0.011 0.010 0.010	Reading 0.002 0.005 0.003
0.004 0.004 0.004	0.017 0.018 0.017 0.017	Reading -0.001 -0.001 -0.001 -0.001 17.401	Reading -0.004 -0.003 -0.003 -0.003 13.164	Reading -0.023 -0.019 -0.022 -0.021	Reading 0.009 0.011 0.010 0.010	Reading 0.002 0.005 0.003
0.004 0.004	0.017 0.018 0.017 0.017	-0.001 -0.001 -0.001 -0.001 17.401	-0.004 -0.003 -0.003 -0.003 13.164	-0.023 -0.019 -0.022 -0.021	0.009 0.011 0.010 0.010	0.002 0.005 0.003
0.004	0.017	-0.001 -0.001 17.401	-0.003 -0.003 13.164	-0.022 -0.021	0.010	0.003
0 004	0.017	-0.001 17.401	-0.003 13.164	-0.021	0.010	
0.001		17.401	13.164			0.003
3.578	3.123			8.508	6.934	44.136
trations	nnm	nn.	nnm	nn.	nnm.	0.00016 0.00091
00096	0.56383	0.00058	-0.00328	-0.00219	-0.00476	0.00016
00151	0.73212	0.00167	-0.00206	0.00284	-0.00129	0.00091
00100	0.62568	0.00058	-0.00258	-0.00065	-0.00434	0.00063
00116	0.64054	ppm 0.00058 0.00167 0.00058 0.00094 67.20836	-0.00264	0.00000	-0.00346	0.00057
		Ag3280	Ca3179	A13082	Si2881	Fe2714
ntensities	Ponding	Ponding	Ponding	Ponding	Roading	Ponding
0.001	0.001	-0.013	0.004	0.010	0.031	0.000
0.001	0.001	-0.012	0.005	0.011	0.032	0.001
0.001	0.001	-0.012	0.005	0.011	0.031	0.001
5.902	7.832	Reading -0.013 -0.012 -0.012 -0.012 2.579	17.390	6.106	0.031 0.687	42.395
ppm	ppm	0.00008 0.00062 0.00020 0.00030 95.54709	ppm	ppm	ppm	ppm
00104	0.00078	0.00008	0.03908	0.01677	-0.04041	0.00758
00159	0.00090	0.00062	0.05071	0.04991	-0.03042	0.03213
00150	0.00081	0.00030	0.05268	0.03667	-0.03957	0.02231
87373	9.66257	95.54709	22.47301	47.84036	2.61254	58.23561
In2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/1
	Reading	Reading	Reading	Reading	Reading	Reading
	0.004	-0.008	0.000	0.000	0.028	-0.081
		-0.007	0.000	0.000	0.030	-0.084
	0.005	-0.007	0.000	0.000	0.029	-0.087
	0.005 0.005 0.005	3.605	6.807	0.311	3.501	8.543
	0.005 0.005 0.005 14.613					
ntensities adding 1 0.000 0.001 0.001 0.000 7.518					ppm	ppm
			tensities ding Reading .000 0.004 -0.008 .001 0.005 -0.007 .001 0.005 -0.007 .518 14.613 3.605	tensities Reading Read	tensities ding Reading	tensities ding Reading

Raw Data MA23347 page 32 of 235

							■ Zoom	in 🕨
							Zoom C)ut
Printed:	10/27/2009 8	8:12:42 AM	User: Accut	est				
#1	0.00025	0.00038	0.00251	-0.00233	0.00206	-0.00118	0.00855	
#2	0.00053	0.00156	0.00356	-0.00468	-0.00248	-0.00114	-0.00515	
#3	0.00044	0.00095	0.00340	0.00014	0.00268	0.00142	0.00521	
Mean		0.00096	0.00316	-0.00229	0.00076	-0.00030	0.00287	
%RSD	35.75813	61.21763	17.87895	105.32727	373.06627	492.32439	248.72875	
	2203/2	2203/1	INT STD					
IS ra	tioed intensi							
	Reading	Reading	Reading					
#1	0.007	0.146	60032.000					
#2	0.011	0.119	59717.000					
#3	0.014	0.143						
Mean		0.136	59931.667					
%RSD	33.848	10.974	0.310					
Final	concentratio	ons						
	ppm	ppm	intensity					
#1	-0.00585	0.00470	-3.51					
#2	-0.00325	-0.00753	-4.98					
#3	-0.00134	0.00311	-4.75					
Mean		0.00009	-4.41					
%RSD	65.03336	7106.46443	17.88					

Raw Data MA23347 page 33 of 235

Raw Data MA23347 page 35 of 235

							⋖ Zoom	In ▶
							Zoom (Jut
Printed:	10/27/2009 8		User: Accut	est				
#1	0.00023	0.00214	0.00547	-0.00156	-0.00188	-0.00799	0.01034	
#2	0.00020	0.00206		0.00355		0.00237	0.00444	
#3	0.00028	0.00161	0.00377	-0.00269			-0.00500	
Mean	0.00024	0.00194		-0.00023	-0.00046	-0.00233	0.00326	
%RSD	18.23729	14.75380	20.38237	1416.61889	663.89762	225.51792	237.11921	
	2203/2	2203/1	INT STD					
IS ra	tioed intensi	ities						
	Reading	Reading	Reading					
#1	0.000	0.171	59340.000					
#2	0.017	0.157	59357.000					
#3	0.010	0.135	59402.000					
Mean	0.009	0.154	59366.333					
%RSD	97.016	11.884	0.054					
Final	concentratio	ons						
	ppm	ppm	intensity					
#1	-0.01029	0.01590	-7.63					
#2	0.00066	0.00932	-5.69					
#3	-0.00387	-0.00035	-5.26					
Mean	-0.00450	0.00829	-6.20					
%RSD	122.37946	98.59199	20.38					

Method	: EPA3		File : it10	2609m1	Printed :	: 10/27/2009	8:12:42
SampleI Analysi	d1 : mp50221 s commenced	-mb1 : 10/26/2009	SampleId 4:54:08 PM	2609ml 2 : 1		[SAMPLE]	
Dilutio	n ratio : 1.	00000 to 1.0	0000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3
IS rati	oed_intensit	ies					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Read
#2	0.064	0.000	0.000	0.001	0.001	0.000	0.
#3	0.063	0.000	0.000	0.001	0.001	0.000	0.
Mean	0.063	0.000	0.000	0.001	0.001	0.000	0.
%RSD	0.400	26.661	18.199	Reading 0.001 0.001 0.001 0.001 15.422	9.422	24.482	3.
Final c	oncentration	s					
	ppm	ppm	ppm	ppm	ppm	ppm	0.00
#1	1.13997	0.00124	0.00084	0.00095	0.01707	0.00084	0.00
#2	1 13183	0.00097	0.00052	0.00067	0.02139	0.00101	0.00
Mean	1.13662	0.00111	0.00063	0.00068	0.01818	0.00070	0.00
#1 #2 #3 Mean %RSD	0.37460	12.30714	29.00109	ppm 0.00095 0.00067 0.00042 0.00068 38.75467	15.51500	57.20452	30.47
				As1890			
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.004	0.018	0.000	-0.001	-0.019	0.012	0.
#2	0.004	0.019	-0.001	-0.003	-0.016	0.012	0.
#3 Mean	0.004	0.018	-0.001	-0.004	-0.017	0.012	0.
%RSD	3.829	1.937	30.295	Reading -0.001 -0.003 -0.004 -0.002 52.384	8.164	0.792	23.
#1	ppm	ppm	ppm	ppm	ppm	ppm	0.00
	0.00125	U./63/3 D 82882	0.00255	-0.00048	0.00320	0.00200	0.00
#3	0.00124	0.71889	0.00083	-0.00300	0.00558	0.00155	0.00
Mean	0.00144	0.77048	0.00173	-0.00135	0.00535	0.00184	0.00
#2 #3 Mean %RSD	23.32680	7.17382	49.86927	0.00048 -0.00152 -0.00300 -0.00135 130.02322	38.08220	14.04016	39.40
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe2
IS rati	oed_intensit	ies					
41	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	-0.001	100.0	-0.012	0.003	0.009	0.034	0.
#3	-0.001	0.001	-0.012	0.003	0.009	0.034	0.
Mean	-0.001	0.001	-0.012	0.003	0.009	0.034	0.
%RSD	11.968	2.815	0.803	Reading 0.003 0.003 0.003 0.003 3.921	0.377	1.054	19.
Final c	oncentration	s		ppm 0.02846 0.03195 0.02959 0.03000 5.94056			
#1	n ngq	n nnn26	0 00077	0 0284e	n nngen	=0 02804	0.01
#2	0.00127	0.00027	0.00069	0.03195	0.00562	-0.02481	0.01
#3	0.00175	0.00025	0.00059	0.02959	0.00409	-0.02753	0.00
Mean	0.00140	0.00026	0.00068	0.03000	0.00453	-0.02679	0.01
%RSD	21.61136	4.88899	12.56348	5.94056	20.84443	6.48805	32.11
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	196
IS rati	oed intensit	ies	m 11	D 11		D 111	
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1 #2	0.000	0.006	-0.006	0.000	0.000	0.024	-0.
#2	0.000	0.006	-0.007	0.000	0.000	0.031	-0.
Mean	0.000	0.006	-0.007	0.000	0.000	0.028	-0.
%RSD	6.500	5.708	6.288	Reading 0.000 0.000 0.000 0.000 5.936	0.054	12.955	9.
Final c		_		ppm			

Raw Data MA23347	page 34 of 235
Raw Dala WAZSS41	page 34 of 233

							◀ Zo Zo
Analysis	EPA3 dl : mp50221 s commenced n ratio : 1.	: 10/26/200	File : it102 SampleId2 9 5:00:15 PM 00000	609ml :	Printed :	10/27/2009 [SAMPLE]	8:12:42 A
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS ratio	oed intensit	ies					
	Reading	Reading	Reading 0.100 0.098 0.098 0.099 1.195	Reading	Reading	Reading	Readin
#1 #2	0.564	0.231	0.100	0.328	0.181	0.098	1.01
#3	0.553	0.226	0.098	0.320	0.177	0.096	0.99
Mean %RSD	0.557	0.229	0.099	0.323	0.179	0.097	1.00
%RSD	1.126	0.943	1.195	1.229	1.149	1.211	1.08
Final co	oncentration	3					
#1	ppm 9 E0112	0 46499	ppm 0.46798 0.45939 0.45775 0.46170 1.19058	0 40443	ppm E 14971	0 40202	n 4960
#2	9.31440	0.46108	0.45939	0.47674	5.06424	0.48323	0.4781
#3	9.32581	0.45633	0.45775	0.47286	5.03765	0.48227	0.4761
Mean	9.38045	0.46080	0.46170	0.47801	5.08387	0.48614	0.4801
*RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS ratio	oed_intensit	ies		D 11		D 11	m
#1	Reading	Keading	Reading -0.001 -0.001 -0.001 -0.001 38.082	Reading	Reading	Reading	keading
#2	0.210	0.075	-0.001	0.322	0.291	0.186	1.80
	0.206	0.073	-0.001	0.316	0.286	0.185	1.79
#3 Mean %RSD	0.207	0.074	-0.001	0.319	0.290	0.187	1.80
*KSD	1.291	1.037	38.082	1.013	0.286 0.290 1.070	1.057	1.07
Final co	oncentration	3	ppm -0.00013 0.00292 0.00069 0.00116 135.67868	nnm	nnm	nnm	pp.
#1	0.47592	9.75575	-0.00013	0.45683	0.45062	0.49293	0.4821
#2	0.46565	9.72322	0.00292	0.45128	0.45148	0.48418	0.4750
#3	0.46493	9.53137	0.00069	0.44778	0.44336	0.48288	0.4721
Mean %RSD	1 31099	1 25386	135 67868	1 00977	0.44848	1 12335	1 0753
UICOD.	Ni2316	Ba4934				Si2881	Fe271
			Ag3280	Ca31/9	A13082	S12881	Fe2/1
IS ratio	oed intensit:	ies	Ponding	Ponding	Ponding	Ponding	Pondin
#1	0.215	0.630	Reading 0.200 0.197	0.402	0.185	0.061	0.09
#2	0.211	0.615	0.197	0.402	0.181	0.061	0.09
#3 Moon	0.210 0.212	0.616 0.620	0.196		0.181	0.062	0.09
Mean %RSD	1.040	1.350	0.198 1.110	1.032	1.137	0.462	1.18
Final co	oncentration	3					
41	ppm	ppm	ppm 0.19193 0.18920 0.18808 0.18973 1.04389	ppm	ppm	ppm	pp
#1 #2	0.47821	0.45883	0.19193	5.53226	4.71882	0.10908	5.2033
#3	0.46889	0.45850	0.18808	5.42285	4.62010	0.11035	5.0821
Mean	0.47272	0.46165	0.18973	5.46930	4.65464	0.10901	5.1396
%RSD	1.03127	1.35084	1.04389	1.03379	1.19529	1.27120	1.1840
	Mn2576	Mo2020	Sn1899	Pb2203		1960/2	1960/
	oed_intensit			D 11		Reading 0.363 0.359 0.357 0.360 0.868	n 11
#1	Reading 0.282	Reading 0.516	Reading -0.011	Reading 0.000	Reading 0.000	Reading	Readin 0.36
#2	0.277				0.000	0.359	0.36
#3	0.276	0.505 0.510	-0.012	0.000	0.000	0.357	0.34
Mean		0.510	-0.011	0.000 0.000 6.469	0.000 0.000 8.280	0.357 0.360 0.868	0.35
%RSD	1.071		7.889	6.469	8.280	0.868	2.71
Final co	oncentration: ppm	B maga	ppm	DDm	ppm	mqq	igg
	ppm	ppm	PPIII	PPIII	ppiii	PPIII	PP

Raw Data MA23347 page 36 of 235

							■ Zoom In	
							Zoom Ou	ıt
	10/27/2009 8	:12:42 AM	User: Accute	st				
#1	0.47228	0.45612	-0.00329	0.49313	0.47738	0.49728	0.43759	
#2	0.46452	0.44821	-0.00118	0.48881	0.47275	0.49026	0.43774	
#3	0.46294	0.44655		0.48344	0.46612	0.48846	0.42144	
Mean	0.46658	0.45029		0.48846	0.47209	0.49200	0.43226	
%RSD	1.07181	1.13637	58.60471	0.99314	1.19896	0.94691	2.16794	
	2203/2	2203/1	INT STD					
IS rat	ioed intensi							
	Reading	Reading	Reading					
#1	0.800	1.191	54746.000					
#2	0.789	1.194	55876.000					
#3	0.786	1.167						
Mean	0.791	1.184	55539.000					
%RSD	0.945	1.263	1.241					
Final	concentration	ns						
	ppm	ppm	intensity					
#1	0.50326	0.47285	4.60					
#2	0.49608	0.47426	1.64					
#3	0.49415	0.46203	6.66					
Mean	0.49783	0.46971	4.30					
%RSD	0.96511	1.42409	58.60					

Raw Data MA23347 page 37 of 235

Raw Data MA23347 page 39 of 235

							■ Zoom I	a
							Zoom O	ut
Printed:	10/27/2009 8:	12:43 AM	User: Accutes	st				
#1	0.47493	0.01028	-0.00084	0.48595	2.15575	2.17553	2.11621	
#2	0.47695	0.00977	-0.00241	0.49401	2.16720	2.18686	2.12786	
#3	0.47385	0.00811	-0.00487		2.16938	2.18930	2.12953	
Mean	0.47524	0.00938	-0.00271	0.49108	2.16411	2.18390	2.12453	
%RSD	0.33110	12.09739	74.98058	0.90632	0.33815	0.33660	0.34165	
	2203/2	2203/1	INT STD					
IS rat	ioed intensit	ies						
	Reading	Reading	Reading					
#1	0.791	1.205	46470.000					
#2	0.806	1.216	46333.000					
#3	0.804	1.216	46550.000					
Mean	0.800	1.212	46451.000					
%RSD	1.024	0.537	0.236					
Final	concentration	ıs						
	ppm	ppm	intensity					
#1	0.53253	0.39281	1.18					
#2	0.54220	0.39763	3.36					
#3	0.54089	0.39799	6.80					
Mean	0.53854	0.39615	3.78					
%RSD	0.97487	0.73003	74.98					

							Zoo
Analysi	is commenced	1-s1 : 10/26/2009	9 5:06:22 PM	2609m1 2 :	Printed	: 10/27/2009 [SAMPLE]	8:12:43 AM
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	ioed intensi	ties					
	Reading	Reading 0.227	Reading	Reading	Reading	Reading	Reading
#1	8.464	0.227	0.100	0.142	5.124	0.096	0.104
#2		0.228	0.100	0.142	5.140		
#3	8.477	0.224	0.100	0.140	5.111	0.096	0.104
Mean %RSD		0.227	0.100	0.142 0.140 0.141 0.815	5.125 0.274	0.096 0.096 0.451	0.104
Final c							
	ppm	ppm	ppm	ppm	ppm	ppm	ngg
#1	140.67570	0.45487	0.46644	0.20949	146.10320	0.48214	0.04856
#2	140.81207	0.45672	0.46711	0.20992	146.53833	0.48324	0.04868
#3	140.90133	0.44947	0.46443	0.20677	145.73814	0.47904	0.04824
Mean	140.79636	0.45369	0.46600	0.20873	146.12655	0.48147	0.04850
%RSD	0.08071	ppm 0.45487 0.45672 0.44947 0.45369 0.83085	0.29918	0.81845	0.27415	0.45299	0.46347
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS rati	ioed intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.121	16.549	-0.001	1.470	1.330	0.221	0.18
#2	0.121	16.587	-0.001	1.483	1.338	0.222	0.18
#3 Mean %RSD	0.121	16.584	-0.002	1.468	1.335	0.219	0.18
Mean	0.121	16.573	-0.001	1.474	1.334	0.220	0.18
%RSD	0.177	Reading 16.549 16.587 16.584 16.573 0.127	18.225	0.570	0.308	0.791	0.76
Final c	concentration	ns					
#1	0 27002	2574 19752	_n nn12E	2 UESES	1 02712	0 57626	0 0400
# 2	0.27002	25/4.13/32	-0.00133	2.00300	1 0/070	0.57020	0.0400
#2	0.27034	2579 56753	-0.00117	2.00203	1 94447	0.50072	0.0492
Mean	0.27038	2577 96774	-0.00323	2.06928	1 94346	0.57604	0.0103
%RSD	0.18080	ppm 2574.19752 2580.13817 2579.56753 2577.96774 0.12714	59.93414	0.56961	0.30349	0.83241	0.7614
		Ba4934					
IS rati	ioed intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.210	2.514	0.052	34.473	0.095	1.528	0.01
#2	0.211	2.517	0.053	34.632	0.095	1.534	0.01
#3	0.209	2.517	0.052	34.213	0.095	1.528	0.01
Mean	0.210	2.516	0.052	34.439	0.095	1.530	0.01
%RSD	0.600	Reading 2.514 2.517 2.517 2.516 0.070	0.955	0.614	0.102	0.223	1.38
Final c	concentration	ns					
	ppm	ppm	ppm	ppm	ppm	ppm	pp
#1	0.47035	1.87084	0.05926	478.65470	2.09043	7.17524	1.0432
#2	0.47420	1.87311	0.05993	480.85927	2.09528	7.20559	1.0525
#3	0.46876	1.87313	0.05906	475.04174	2.09274	7.17938	1.0254
Mean	0.47110	1.87236	0.05942	478.18524	2.09282	7.18673	1.0404
%RSD	0.59352	ppm 1.87084 1.87311 1.87313 1.87236 0.07032	0.76722	0.61421	0.11595	0.22900	1.3266
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS rati	ioed_intensi	Reading 0.012 0.012 0.010 0.010 0.011 11.392	B	D 11	n	D 11	D 11
	keading	keading	keading	keading	keading	keading	keadin
#1 #2	0.283	0.012	-0.011	0.000	0.000	1.512	2.08
#2	0.284	0.012	-0.011	0.000	0.000	1.520	2.09
	0.282	0.010	-0.012	0.000	0.000	1.521	2.09
#3 Mass	0.∠83	0.011	-0.011	0.000	0.000	1.518	2.09
Mean %RSD	0.330	11.392	0.303	0.012	0.230		
	0.330 concentration		0.305	6.012	0.230	0.320	0.30

Raw Data MA23347 page 38 of 235

Analysi Dilutio IS rati #1 #2 #3 Mean %RSD	dl: mp5022 s commenced on ratio: 1 K 7664 oed intensi Reading 8.572 8.567 8.556 0.269	1: 10/26/200 .00000 to 1. Zn2062 ties Reading 0.223 0.224 0.225	File: it10 SampleId 9 5:12:29 PM 00000 Co2286 Reading 0.100	2 : Cr2677	Printed :	10/27/2009 [SAMPLE] V 2924	8:12:43 Ař
IS rati #1 #2 #3 Mean %RSD	K 7664 oed intensi Reading 8.572 8.567 8.530 8.556 0.269	Zn2062 ties Reading 0.223 0.224 0.225	Co2286		Mg2790	V 2924	
#1 #2 #3 Mean %RSD	Reading 8.572 8.567 8.530 8.556 0.269	0.224 0.225	Reading				Be3130
#2 #3 Mean %RSD	8.572 8.567 8.530 8.556 0.269	0.224 0.225	Reading 0.100				
#2 #3 Mean %RSD	8.567 8.530 8.556 0.269	0.224 0.225		Reading	Reading	Reading	Reading
#3 Mean %RSD	8.530 8.556 0.269	0.225	0.100	0.141 0.142	5.047 5.062	0.096 0.096	0.104
Mean %RSD	8.556 0.269		0.100	0.142	5.071	0.097	0.10
		0.224	0.100	0.142	5.060	0.096	0.104
Final c		0.338	0.277	0.104	0.248	0.234	0.20
	oncentratio	ns					
#1	ppm 142.48474	ppm 0.44653	ppm 0.46416	ppm 0.20885	ppm 143.89050	ppm 0.48281	0.0483
#2	142.40111	0.44794	0.46466	0.20912	144.33621	0.48231	0.04850
#3	141.77967	0.44957	0.46660	0.20928	144.59784	0.48448	0.04858
Mean	142.22184		0.46514	0.20908	144.27485	0.48320	0.0484
%RSD	0.27085	0.33904	0.27746	0.10537	0.24789	0.23527	0.2100
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed_intensi	ties					
#1	Reading 0.123	Reading 16.576	Reading -0.001	Reading 1.479	Reading 1.337	Reading 0.222	Reading 0.18
#2	0.123	16.576	-0.001	1.479	1.337	0.222	0.18
#3	0.123	16.536	-0.001	1.484	1.333	0.222	0.18
Mean	0.123	16.574	-0.001	1.482	1.337	0.222	0.18
%RSD	0.140	0.226	44.234	0.180	0.298	0.055	0.83
Final c	oncentratio						
#1	ppm 0 27465	ppm 2578.37600	-0.00140	ppm 2.07655	ppm 1.94807	ppm 0.58122	0.0489
#2	0.27535	2583.78702	0.00075	2.08109	1.95379	0.58071	0.0484
#3	0.27469	2572.12897	0.00205	2.08397	1.94229	0.58058	0.0492
Mean %RSD	0.27490	2578.09733 0.22629	0.00046 376.09965	2.08054 0.17961	1.94805	0.58084 0.05860	0.0489
*RSD							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
IS rati	oed intensi						
#1	Reading 0.210	Reading 2.546	Reading 0.054	Reading 33.761	Reading 0.096	Reading 1.525	Reading 0.01
#2	0.211	2.544	0.054	33.899	0.096	1.528	0.01
#3	0.211	2.534	0.055	33.989	0.096	1.526	0.01
Mean %RSD	0.210 0.336	2.541 0.242	0.054 1.068	33.883 0.339	0.096 0.133	1.526	0.01
			1.000	0.333	0.133	0.071	0.05
Final c	oncentratio ppm		ppm	ppm	ppm	ppm	igg
#1	0.47001	1.89436	0.06058	468.76827	2.12882	7.16481	1.0446
#2	0.47281		0.06110	470.68156	2.12192	7.17496	1.0449
#3 Mean	0.47264		0.06163	471.94068 470.46351	2.12600 2.12558	7.16751 7.16909	1.0594
%RSD	0.33310	0.24278	0.85997	0.33954	0.16324	0.07336	0.8067
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS rati	oed intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.283	0.012	-0.007	0.000	0.000	1.507	2.10
#2	0.283	0.012 0.012	-0.008 -0.008	0.000	0.000	1.511	2.086
Mean	0.283	0.012	-0.008	0.000	0.000	1.517	2.09
%RSD	0.110	1.492	7.017	0.236	0.236	0.340	0.500
Final c	oncentratio						
	ppm	ppm	ppm	ppm	ppm	ppm	ppi

Raw Data MA23347 page 40 of 235

							◀ Zoom I
							Zoom O
Printed: 1	0/27/2009 8:	12:43 AM	User: Accutes	st			
#1	0.47553	0.01055	0.00573	0.48573	2.15801	2.16774	2.13855
#2	0.47633	0.01024	0.00387	0.48865	2.15597	2.17473	2.11847
#3	0.47652	0.01037	0.00353	0.48993	2.16435	2.18278	2.12748
Mean	0.47613	0.01039	0.00438	0.48810	2.15944	2.17508	2.12816
%RSD	0.11061	1.51738	27.14917	0.44081	0.20218	0.34589	0.47260
	2203/2	2203/1	INT STD				
IS rati	oed intensit	ies					
	Reading	Reading	Reading				
#1	0.784	1.222	45232.000				
#2	0.795	1.211	45103.000				
#3	0.794	1.221	45315.000				
Mean	0.791	1.218	45216.667				
%RSD	0.760	0.503	0.236				
Final c	oncentration	s					
	ppm	ppm	intensity				
#1	0.52766	0.40187	-8.01				
#2	0.53463	0.39667	-5.40				
#3	0.53438	0.40103	-4.93				
Mean	0.53223	0.39986	-6.11				
%RSD	0.74261	0.69741	27.15				

Raw Data MA23347 page 41 of 235

Raw Data MA23347 page 43 of 235

							⋖ Zoom	In P
							Zoom C	Jut
	10/27/2009 8	:12:43 AM	User: Accut	est				
#1	0.01711	0.00915	-0.00097	-0.00268	0.00070	0.00271		
#2		0.01303			0.02632	0.01567		
#3			0.01011	0.03860	0.03534		0.03993	
Mean			0.00668	0.02117	0.02079		0.02808	
%RSD	3.51229	18.15914	99.33364	100.96042	86.45526	88.81578	97.77921	
	2203/2	2203/1	INT STD					
IS ra	tioed intensi	ties						
	Reading	Reading	Reading					
#1	0.016	0.158	44707.000					
#2	0.049	0.265	47466.000					
#3	0.078	0.255	47591.000					
Mean		0.226	46588.000					
%RSD	65.502	26.238	3.499					
Final	concentratio	ns						
	ppm	ppm	intensity					
#1	0.03146	-0.07095	1.35					
#2	0.05398		-15.22					
#3	0.07253	-0.02925	-14.12					
Mean		-0.04179	-9.33					
%RSD	39.06138	60.63268	99.33					

							■ Zoom
							Zoom
		55-2 1 : 10/26/200 1.00000 to 1.	File : it10: SampleId: 19 5:18:36 PM	2609ml 2 :	Printed	: 10/27/2009 [SAMPLE]	8:12:43 AM
Diluti	on ratio : 1		Co2286	Cr2677	Mar 2790	V 2924	Re3130
	ioed intensi		C02200	C12077	Mg2790	V 2324	Besiso
is rat	.10ed intensi Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	6.166	0.003	0.000	0.015	4.090	0.000	0.002
#2	5.980	0.005	0.002	0.019	4.244	0.002	0.003
#3 Moon	5.964	0.005	0.001	0.020	4.222	0.002	0.003
%RSD	1.862	31.639	Reading 0.000 0.002 0.001 0.001 106.078	14.111	1.986	57.727	14.309
Final	gongontratio	nn a					
	ppm	ppm	ppm 0.00037 0.00858 0.00777 0.00557 81.15814	ppm	ppm	ppm	ppm
#1	99 28117	0.00540	0.00037	0.02183	120.60845	0.00155	0.00016
#3	99.00896	0.01000	0.00777	0.02879	120.36281	0.00894	0.00042
Mean	100.23017	0.00854	0.00557	0.02621	119.32095	0.00652	0.00034
%RSD	1.88005	31.91947	81.15814	14.53355	1.98627	66.00145	46.77551
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS rat	ioed intensi	ties					
4.1	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.005	16.067	-0.001	0.000	-0.026	0.014	0.001
#3	0.007	15.759	0.004	0.007	-0.015	0.019	0.008
Mean	0.006	15.874	0.002	0.005	-0.019	0.018	0.006
%RSD	15.551	1.061	Reading -0.001 0.004 0.004 0.002 119.814	78.996	32.124	17.650	67.280
Final	concentratio	ons					
#1	0 00416	2498 97764	_n nnn25	n nn589	=0 01466	n nn719	n nnnes
#2	0.00828	2456.76541	0.02296	0.01633	-0.00015	0.02242	0.00270
#3	0.00790	2450.91032	0.02188	0.01525	0.00069	0.02147	0.00248
Mean	0.00678	2468.88446	ppm -0.00025 0.02296 0.02188 0.01486 88.15689	0.01249	-0.00471	0.01703	0.00194
arsu							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2714
IS rat	ioed intensi	ties	D	m 1	D	D 11	D 11
#1	=0 001	Reading	=0 013	Keading	Reading	Reading	Reading 0.001
#2	0.002	0.052	-0.004	32.911	0.012	1.499	0.001
#3	0.002	0.052	-0.004	32.675	0.013	1.490	0.003
Mean	0.001	0.052	Reading -0.013 -0.004 -0.004 -0.007 72.997	32.446	0.013	1.493	0.002
			72.997	1.888	3.416	0.375	62.656
Final	concentratio	ons	nnm	nnm	ppm	nnm	nnm
#1	0.00574	0.03749	ppm 0.00023 0.00852 0.00809 0.00561 83.13305	440.91486	0.02178	6.99218	0.08755
#2 #3 Mean	0.01134	0.03751	0.00852	457.01626	0.04397	7.03993	0.23472
#3	0.01121	0.03740	0.00809	453.73359	0.03775	6.99482	0.23163
Mean %RSD	0.00943	0.03747	0.00561	450.55490	0.03450	7.00898	0.18463
*RSD							
			Sn1899	Pb2203	Se1960	1960/2	1960/1
IS rat	ioed intensi	ities	Pondin-	Pondir-	Bondi	Bondi	Pondir-
#1	0.010	0.012	-0.010	n.nnn	0.0nn	0.038	-0.114
#2	0.010	0.016	-0.004	0.000	0.000	0.047	-0.062
#3	0.010	0.016	-0.005	0.000	0.000	0.059	-0.070
Mean	0.010	0.015	Reading -0.010 -0.004 -0.005 -0.006 48.381	0.000	0.000	0.048	-0.082
%RSD			48.381	1.490	3.571	21.572	34.430
Final	concentration ppm		ppm	mrg	mong	mqq	mag
	ppm	PP	ppiii	ppm	pp	PP	ppiii

Raw Data MA23347	page 42 of 235

							◀ Zo Zoo
Analysi	is commenced	21-sd1 i : 10/26/200 i.00000 to 5.	9 5:24:43 PM	12609ml 12 : 1	Printed	: 10/27/2009 [SAMPLE]	8:12:43 AM
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	ioed intensi	ities					
	Reading	Reading	Reading	Reading 0.004 0.003 0.004	Reading	Reading	Reading
#1 #2	0.908 0.914 0.910	0.009	0.000	0.004	0.875	0.000	0.002
#3	0.914	0.008	0.000	0.003	0.877	0.000	0.002
Mean	0.910 0.315	0.008	0.000	0.004 9.192			0.002
%RSD	0.315	4.216	0.000 0.000 0.000 193.473	9.192	0.282	29.562	1.286
Final o	concentratio	ons					
#1	ppm	ppm	ppm	ppm	ppm	ppm	ppm 0.00004
#1 #2	76 00004	0.09185	0.00820	0.02479	124.64367	0.00/83	0.00004
#3	75.65684	0.09082	0.00778	0.02553	124.96207	0.00250	-0.00010
Mean	75.73109	0.08934	0.00599	0.02366	124.62201	0.00619	0.00004
%RSD	0.31767	3.91592	57.88635	ppm 0.02479 0.02067 0.02553 0.02366 11.05937	0.28197	51.75143	128.97409
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS rati	ioed intensi	ities					
	Reading	Reading	Reading	Reading 0.000 -0.004	Reading	Reading	Reading
#1	0.005	2.427	0.000	0.000	-0.021	0.014	
#2	0.004	2.444	-0.001				0.001
#3 Mean	0.005	2.439 2.437 0.359	0.000	-0.002 -0.002	-0.020 -0.022 9.192	0.011	0.003
%RSD	0.004 0.005 0.005 4.515	0.359	69.322	87.302	9.192	0.013 9.745	40.954
Final o	concentratio	ons					
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.01620	1878.29332	0.01634	0.01194	-0.00663	0.03526	0.00280
#2	0.01289	1891.53589	0.00024	-0.01302	-0.02988	0.00165	0.00085
Mean	0.01554	1885.82428	0.00264	-0.00062	-0.01345	0.01813	0.00321
%RSD	15.36136	0.36091	90.57587	ppm 0.01194 -0.01302 -0.00076 -0.00062 2026.08220	106.23725	92.75294	55.49870
	Ni2316	Ba4934	Ag3280	Ca3179		Si2881	Fe2714
	ioed intensi						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	-0.001	0.011	-0.011	7.363	0.010	0.312	0.001
#2 #3	-0.001 0.000	0.011	-0.013 -0.011	7.315	0.009	0.311	0.000
Mean	-0.000	0.011 0.011	-0.011	7.366 7.348	0.009	0.311	0.001
%RSD	-0.001 22.294	0.357	6.025	0.387	1.879	0.173	31.927
Final o	concentratio	ons					
#1	ppm 0.01626	ppm	ppm	ppm 511.18202 507.85831	ppm	ppm	ppm
#1 #2	0.01626	0.03/51	0.00588	507 85821	-0.01100	6.56960	0.19761
#3	0.01362	0.03738	0.00038	511.36961	-0.03733	6.55571	0.10307
Mean	0.01676	0.03737	0.00410	510.13665	-0.03755	6.55649	0.16451
%RSD	8.71683	0.36890	78.60634	ppm 511.18202 507.85831 511.36961 510.13665 0.38722	63.80622	0.19416	31.96908
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/1
IS rati	ioed intensi						
	Reading	Reading	Reading	Reading 0.000 0.000	Reading 0.000 0.000 0.000	Reading	Reading
#1 #2	0.002	0.007	-0.007 -0.009	0.000	0.000	0.029	-0.086 -0.098
#2	0.002	0.005	-0.009	0.000 0.000 0.000 5.772	0.000	0.033	-0.098
Mean	0.002	0.006	-0.008 -0.008 15.056	0.000	0.000	0.033 0.032	-0.093
%RSD	0.002 2.200	0.005 0.006 0.006 13.860	15.056	5.772	0.224	9.722	6.375
Final o	concentratio						
	ppm	ppm	ppm	ppm	ppm	ppm	ppm

Raw Data MA23347 page 44 of 235

							◀ Zoom II Zoom O
inted:	10/27/2009 8:	12:43 AM 0.01748	User: Accute	est -0.00980	0.00248	-0.01606	0.03955
#2	0.01869	0.01000	-0.00199	0.00662	0.00748	0.01949	-0.01656
#3	0.01935	0.01516	0.01471	0.02724	0.01878	0.02708	0.00218
Mean	0.01919	0.01421	0.01184	0.00802	0.00958	0.01017	0.00839
%RSD	2.30939	26.94458	106.77075	231.46785	87.21023	226.42031	340.39743
	2203/2	2203/1	INT STD				
IS rat	ioed intensit						
	Reading	Reading	Reading				
#1	0.012	0.139	56614.000				
#2	0.021	0.136	56456.000				
#3	0.030	0.138	56707.000				
Mean	0.021	0.138	56592.333				
%RSD	41.222	1.134	0.224				
Final	concentration	ıs					
	ppm	ppm	intensity				
#1	0.02502	-0.07946	-31.86				
#2	0.05269	-0.08551	2.78				
#3	0.08106	-0.08040	-20.54				
Mean %RSD	0.05292 52.93915	-0.08179 3.97912	-16.54 106.77				
*RSD	52.93915	3.9/912	106.77				

Raw Data MA23347 page 45 of 235

Raw Data MA23347 page 47 of 235

							■ Zoom In
							Zoom Ou
rinted	10/27/2009	8:12:43 AM	User: Accute	st			
#1	0.04777		-0.00421	-0.00458	0.00143	0.01640	-0.02850
#2	0.04813		0.00047	-0.00516	0.00001	0.01078	-0.02154
#3	0.04684		-0.00228	-0.00009	0.00594	0.01879	-0.01974
Mear			-0.00201	-0.00328	0.00246	0.01532	-0.02326
%RSI	1.39970	19.84558	117.27463	84.64986	125.96762	26.84497	19.88939
	2203/2	2203/1	INT STD				
IS ra	tioed intens	ities					
	Reading	Reading	Reading				
#1	0.032		45732.000				
#2	0.023		45604.000				
#3	0.036		46598.000				
Mear			45978.000				
%RSI	20.713	8.405	1.176				
Final	concentrati	ons					
	ppm	ppm	intensity				
#1	0.02934		5.88				
#2	0.02387		-0.66				
#3	0.03122		3.19				
Mear			2.80				
%RSI	13.55595	8.26590	117.27				

Method	: EPA3	i5-1 l : 10/26/2009	File : it10	2609ml	Printed	: 10/27/2009	8:12:4
SampleI	d1 : ja3125	5-1	SampleId	2 :		[SAMPLE]	
Analysi	s commenced n ratio : 1	l: 10/26/2009 00000 to 1.0	9 5:30:51 PM				
	K 7664			Cr2677	Mar 2790	V 2924	Re
is rati	oed intensi	.ties Peading	Peading	Peading	Peading	Reading	Pos
#1	5.631	0.001	0.000	2.929	5.051	0.000	0
#2	5.634	0.001	0.000	2.955	5.084	0.000	0
#3	5 484	0.001	0.000	2 873	4 949	0.000	n
Mean	5.583	0.001	0.000	2.919	5.028	0.000	ñ
%RSD	1.532	Reading 0.001 0.001 0.001 0.001 4.741	251.411	1.438	1.395	18.867	2
Final c							
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	93.77380	0.00848	0.00052	4.33943	143.99237	0.00507	0.0
#2	93.81902	0.00844	0.00165	4.37799	144.94301	0.00534	0.0
#3	91.33140	0.00818	0.00144	4.25625	141.10381	0.00572	0.0
Mean	92.97474	0.00837	0.00120	4.32456	143.34640	0.00538	0.0
%RSD		0.00848 0.00844 0.00818 0.00837 1.95965					
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd
IS rati	oed intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.005	18.826	-0.002	-0.023	-0.031	0.014	0
#2	0.006	18.869	-0.001	-0.023	-0.028	0.017	0
#3	0.006	18.391	-0.001	-0.021	-0.029	0.015	0
Mean	0.006	18.695	-0.001	-0.023	-0.029	0.015	0
%RSD	1.894	Reading 18.826 18.869 18.391 18.695 1.413	14.605	4.724	5.334	8.733	14
Final c	oncentratio	ns					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.00470	2927.92569	-0.00309	-0.00021	-0.01532	-0.00393	0.0
#2	0.00478	2934.48816	-0.00213	0.00068	-0.01085	0.00327	0.0
#3	0.00517	2860.24033	-0.00132	0.00204	-0.01302	-0.00022	0.0
%RSD	5.10268	ppm 2927.92569 2934.48816 2860.24033 2907.55139 1.41369	40.69549	135.78984	17.11240	1218.60225	22.1
		Ba4934	A93280	Ca31/9	A13062	512001	re
IS rati	oed intensi	ties	Dandi.	D41	Daniel .	ndi	D.
4.7	Reading	keading	Reading	keading	Reading	keading	Rea 0
#1	0.000	0.059	-0.012	12.090	0.009	1.671	0
#2	0.001	0.059	-0.012	12.010	0.000	1.004	
#3 Moon	0.000	0.057	-0.012	12.404	0.000	1.023	0
%RSD	179.790	Reading 0.059 0.059 0.057 0.057 1.406	2.799	1.393	1.700	1.565	1
	mag	mqq	mag	mag	mag	mag	
#1	0.00512	0.04230	0.00038	176.27181	2.10538	7.92200	2.2
#2	0.00711	0.04230	0.00095	177.85156	2.08313	7.89102	2.2
#3	0.00637	0.04127	0.00086	173.04785	2.02837	7.69083	2.2
Mean	0.00620	0.04196	0.00073	175.72374	2.07229	7.83462	2.2
%RSD	16.27842	0.04230 0.04230 0.04230 0.04127 0.04196 1.41403	41.67175	1.39327	1.91258	1.60167	1.0
	Mn2576		Sn1899				
IS rati	oed intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.028	0.008	-0.012	0.000	0.000	0.042	-0
#2	0.029	0.011	-0.010	0.000	0.000	0.038	-0
#3	0.028	0.010	-0.011	0.000	0.000	0.044	-0
Mean	0.028	0.010	-0.011	0.000	0.000	0.041	-0
%RSD	1.388	Reading 0.008 0.011 0.010 0.010 14.553	10.299	1.169	1.169	6.715	3
						ppm	
Final c	oncentratio	ns					

D D	10 (005
Raw Data MA23347	page 46 of 235

Method : SampleId	EPA3		File : it102	609ml	Printed :	10/27/2009 [FLEXOC]	8:12:43 A
	commenced : ratio : 1.0					[1 Dange]	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS ratio	ed intensiti	es					
	Reading	Reading	Reading	Reading	Reading 1.459 1.438 1.427 1.441 1.127	Reading	Readin
#1 #2	2.299	1.020	0.433	1.365	1.459	0.412	4.33
#3	2.287	0.985	0.424	1.336	1.427	0.404	4.22
Mean %RSD	2.289	1.002	0.429	1.348	1.441	0.407	4.27
%RSD	0.391	1.752	1.068	1.116	1.127	1.027	1.24
Final co	ncentrations				ppm 41.60686 41.02054 40.69210 41.10650 1.12731		
#1	38 59655	2 05073	2 02545	2 02164	41 60686	2 07819	2 0735
#2	38.30352	2.01198	2.00133	1.99118	41.02054	2.04860	2.0396
#3	38.38555	1.98027	1.98283	1.97821	40.69210	2.03726	2.0238
Mean	38.42854	2.01433	2.00320	1.99701	41.10650	2.05468	2.0457
%RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS ratio	ed intensiti	es	D	D		D	
#1	reading	reading	Reading	keading	Reading 1.361 1.333 1.325 1.340 1.430	Keading	Keadir
#2	0.835	0.263	0.422	1.406	1.333	0.762	7.8
#3	0.835	0.261	0.421	1.398	1.325	0.756	7.81
Mean	0.838	0.264	0.423	1.411	1.340	0.764	7.92
%RSD	0.589	0.866	0.725	1.232	1.430	1.143	1.58
Final co	ncentrations						
#1	1.92981	40.43719	1.90484	2.01906	ppm 1.98708 1.94610 1.93479 1.95599 1.40656	2.11267	2.1266
#2	1.90992	40.00599	1.88504	1.98334	1.94610	2.08158	2.0816
#3	1.91050	39.71121	1.87860	1.97218	1.93479	2.06510	2.0619
Mean %RSD	1.91674	40.05146	1.88949	1.99153	1.95599	2.08645	2.0900
*RSD							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe27:
IS ratio	ed intensiti	es		D	D	D	D 111
#1	0.927	2.566	0.266	3.005	Reading 1.459 1.445 1.445 1.450 0.562	1.163	Read11
#2	0.914	2.545	0.263	2.967	1.445	1.150	0.7
#3	0.908	2.553	0.261	2.937	1.445	1.146	0.7
#3 Mean %RSD	0.916	2.555	0.263	2.970	1.450	1.146 1.153 0.789	0.7
Final co	ncentrations	mara	maga	ppm	ppm 39.09931 38.71235 38.72139 38.84435 0.56854	mara	n
#1	2.05382	1.90955	0.25186	41.55112	39.09931	5.39628	40.8056
#2	2.02391	1.89458	0.24872	41.02340	38.71235	5.33219	40.185
#3 Mean	2.01145	1.90058	0.24769	40.60791	38.72139	5.31316	39.8866
Mean %RSD	1.07292	0.39614	0.24942	1.15126	0.56854	0.81443	1.163
					Se1960		
IS ratio	ed intensiti	.es					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	1.178	2.223	0.958	0.000	0.000	1.416	2.01
#2	1.161	2.197	0.942	0.000	0.000	1.411	2.00
#3 Mean	1.165	2.109	0.933	0.000	0.000	1.429	1.99
%RSD	1.007	0.821	1.340	8.959	Reading 0.000 0.000 0.000 0.000 0.240	0.667	1.39
Final co	ncentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	PI

Raw Data MA23347 page 48 of 235

							¬ ∠oom i	a r
							Zoom O	ut
Printed:	10/27/2009 8:	12:43 AM	User: Accute:	st				
#1	1.97526	1.97479	2.05284	2.10606	2.06187	2.07413	2.03735	
#2	1.94744	1.95145	2.01773	2.10018	2.05122	2.06650	2.02067	
#3	1.93726	1.94388	2.00008	2.10439	2.05703	2.09316	1.98477	
Mean	1.95332	1.95671	2.02355	2.10354	2.05671	2.07793	2.01426	
%RSD	1.00691	0.82333	1.32734	0.14412	0.25922	0.66068	1.33383	
	2203/2	2203/1	INT STD					
IS rat	tioed intensit							
	Reading	Reading	Reading					
#1	3.336	4.778	57699.000					
#2	3.330	4.755	57977.000					
#3	3.365	4.684	57833.000					
Mean	3.343	4.739	57836.333					
%RSD	0.555	1.039	0.240					
Final	concentration							
	ppm	ppm	intensity					
#1	2.13491	2.04838	-2867.42					
#2	2.13122	2.03811	-2818.38					
#3	2.15337	2.00643						
Mean %RSD	2.13983 0.55470	2.03097 1.07666	-2826.51 1.33					
*KSD	0.554/0	1.07666	1.33					

Raw Data MA23347 page 49 of 235

Raw Data MA23347 page 51 of 235

							■ Zoom In
							Zoom Ou
Drinted:	10/27/2009 8:	12:44 AM	User: Accut	a e t			
#1	0.00006	0.00541	0.00935	-0.00430	-0.00224	-0.01351	0.02031
#2	0.00020	0.00596	0.01198	0.01591	0.01247	0.00209	0.03322
#3	0.00009	0.00460	0.01049	0.02088	0.01688	0.00692	0.03680
Mean	0.00012	0.00533	0.01061	0.01083	0.00904	-0.00150	0.03011
%RSD	63.68394	12.88002	12.44357	123.17052	110.74877	712.51389	28.80976
	2203/2	2203/1	INT STD				
IS rat	ioed intensit	ies					
	Reading	Reading	Reading				
#1	-0.023	0.219	58846.000				
#2	0.017	0.239	59181.000				
#3	0.023	0.255	59048.000				
Mean	0.006	0.237	59025.000				
%RSD	435.754	7.588	0.286				
Final	concentration						
	ppm	ppm	intensity				
#1	-0.02496	0.03701	-13.06				
#2	0.00076	0.04619	-16.73				
#3	0.00482	0.05301	-14.66				
Mean	-0.00646	0.04541	-14.82				
%RSD	249.95295	17.68129	12.44				

Analysis	commenced	: 10/26/200 00000 to 1.	9 5:43:15 PM	2609ml 2 :	Printed	10/27/2009 [FLEXQC]	8:12:44
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be 3
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1 #2	0.065	-0.001	-0.001	0.000	0.000	0.001	0.
#3	0.065	-0.001	0.000	0.001	0.001	0.002	0.
Mean	0.065	-0.001	0.000	0.001	0.000	0.001	0.
%RSD	0.442	21.837	41.883	33.743	Reading 0.000 0.001 0.000 0.000 41.862	9.194	4.
Final co	ngontration						
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	1.16627	-0.00126	-0.00114	-0.00042	-0.00061	0.00537	-0.00
#2 #3 Mean	1 16796	-0.00023	-0.00053	-0.00013	=0.00040	0.00661	-0.00
Mean	1.16992	-0.00078	-0.00040	-0.00016	0.00192	0.00592	0.00
%RSD	0.42196	66.83790	213.84623	178.78219	ppm -0.00061 0.00848 -0.00210 0.00192 297.76831	10.70075	1368.21
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.003	0.017	-0.002	-0.006	-0.011	0.018	0.
#2	0.004	0.019	-0.001	-0.003	-0.009	0.019	0.
Mean	0.003	0.017	-0.002	-0.004	-0.011	0.018	0.
%RSD	5.070	6.271	31.065	30.690	Reading -0.011 -0.009 -0.011 -0.010 11.051	4.979	30.
Final or	ngontration						
	ppm	ppm	ppm	ppm	ppm	ppm	
#1 #1	0.00035	0.49460	0.00306	-0.00636	0.01515	0.01804	0.00
#3	0.000112	0.58073	-0.00033	-0.00201	0.01/49	0.02214	0.00
Mean	0.00066	0.63272	-0.00153	-0.00419	0.01567	0.01927	0.00
%RSD	61.22144	26.89619	123.93235	45.26834	ppm 0.01515 0.01749 0.01439 0.01567 10.30896	12.92281	65.96
					A13082		
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	-0.002	0.000	-0.013	0.003	0.008	0.031	0.
#3	-0.002	0.000	-0.012	0.003	0.008	0.032	0.
Mean	-0.002	0.000	-0.013	0.003	0.008	0.031	0.
%RSD	26.381	18.691	5.742	2.774	Reading 0.008 0.009 0.008 0.008 1.785	2.426	49.
Final co	ncentration	ıs					
4.7	ppm	ppm	ppm	ppm	ppm	ppm	0.00
#1	0.00060	0.00006	0.00070	0.02226	-0.02297	-0.04212	0.00
#3	-0.00040	0.00007	-0.00051	0.02047	-0.02327	-0.04315	0.02
Mean	0.00009	0.00010	-0.00026	0.02165	-0.02076	-0.04056	0.01
%RSD]	185.67429	55.30728	258.56135	4.71379	ppm -0.02297 -0.01603 -0.02327 -0.02076 19.74625	8.95686	80.57
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	196
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1 #2	0.000	0.010	-0.004	0.000	0.000	0.020	-0.
#2	0.000	0.010	-0.003	0.000	0.000	0.030	-0.
Mean %RSD	0.000	0.009	-0.004	0.000	0.000	0.028	-0.
%RSD	13.660	8.168	16.069	0.286	Reading 0.000 0.000 0.000 0.000 0.286	25.822	15.
					ppm		
Final co	nicentration						

D D-1- MA00047	FO - (OOF
Raw Data MA23347	page 50 of 235

							◀ Zo
	d : EPA3 eIdl : ja3125 sis commenced ion ratio : 1			12609ml 12 : 1	Printed	10/27/2009 [SAMPLE]	8:12:44 AM
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rat	tioed intensi	ties					
	Reading 6.626 6.327 6.301 6.418 2.815	Reading	Reading	Reading	Reading	Reading	Reading
#1 #2	6.626	0.060	-0.001	2.942	7.406	0.003	0.00
#3	6.301	0.070	0.001	3.045	7.717	0.005	0.00
Mean	6.418	0.066	0.000	3.007	7.611	0.005	0.002
%RSD	2.815	8.016	603.553	1.863	2.328	27.834	23.55
Final	concentratio	ns					
#1	110 40424	n laene	_n nnse7	4 2E006	211 17246	n naise	ngq
#2	105.38317	0.14387	0.00549	4.49357	219.80508	0.03300	0.00024
#3	104.95324	0.14550	0.00643	4.51041	220.04022	0.03332	0.00026
Mean	106.91355	0.13848	0.00208	4.45432	217.00625	0.02939	0.0001
*RSD	concentratio ppm 110.40424 105.38317 104.95324 106.91355 2.83468	7.78151	323.17108	1.86356	2.32837	22.21927	208.0838
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rat	tioed intensi	ties					
4.7	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.021	20.044	-0.009	-0.034	-0.019	0.018	0.004
#3	Reading 0.021 0.023 0.023 0.023 4.930	19.971	-0.002	-0.020	-0.002	0.030	0.00
Mean	0.022	20.207	-0.004	-0.025	-0.009	0.026	0.002
*RSD	4.930	1.875	100.375	33.676	108.134	25.935	266.23
Final	concentratio	ns	nnm	nnm	nnm	nnm	ppr
#1	0.03952	3211.36208	-0.03634	ppm -0.01517 0.00637	-0.00115	0.00798	-0.00112
#2	0.04376	3111.81212	-0.00545	0.00637	0.01965	0.03616	0.0010
#3	0.04381	3106.61137	-0.00410	0.00598	0.02261	0.04152	0.0012
%RSD	0.04376 0.04381 0.04236 5.80916	1.87811	119.24095	1309.72687	94.47418	63.09337	341.62378
				Ca3179			
TC							
-0 1d	Reading 0.009 0.013 0.013 0.012 20.383	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.009	0.152	-0.023	23.249	0.365	4.666	0.22
#2	0.013	0.148	-0.012	24.328	0.345	4.517	0.23
Mean	0.013	0.150	-0.011	23.996	0.351	4.566	0.23
%RSD	20.383	1.726	42.304	2.700	3.541	1.905	2.90
Final	concentratio	ns					
#1	ppm	ppm	ppm	ppm	ppm	ppm ppm	pp1
#1 #2	0.02673	0.11136	-0.00960	322.79119	9.4/625	22.38398	12.9135
#3	0.03627	0.10786	0.00129	338.91218	8.86535	21.65056	13.5570
Mean	0.03295	0.10910	-0.00264	ppm 322.79119 337.77646 338.91218 333.15994 2.70067	9.09296	21.89933	13.3372
%RSD	16.34683			2.70067	3.67194	1.91679	2.7519
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS rat	tioed intensi	ties					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.434	0.012	-0.009	0.000	0.000	0.021	-0.089
#3	0.445	0.022	0.000	Reading 0.000 0.000 0.000 0.000 26.000	0.000	0.043	-0.06
Mean	0.441	0.018	-0.004	0.000	0.000	0.036	-0.072
%RSD	0.441 1.392	28.404	141.359	26.000	4.230	35.786	19.99
Final	concentratio	ns					
	ppm	ppm	ppm	ppm	ppm	ppm	ppi

Raw Data MA23347 page 52 of 235

							■ Zoom I	in 🕨
							Zoom C	ut
Printed:	10/27/2009 8:	12:44 AM	User: Accut	est				
#1 #2	0.72807	0.00885	0.00178	-0.01696 0.01444	-0.00118 0.02880	-0.01219 0.02110	0.02084	
#3	0.74693	0.01748	0.02129	0.01951	0.02889	0.02017	0.04632	
Mean	0.73993	0.01408	0.01393	0.00566	0.01884	0.00969	0.03712	
%RSD	1.39584	32.66838	76.12494	348.77226	92.04407	195.61164	38.09337	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit	ies						
	Reading	Reading	Reading					
#1	0.002	0.262	42271.000					
#2	0.061	0.296	45512.000					
#3	0.070	0.302	45375.000					
Mean		0.286	44386.000					
%RSD	83.888	7.588	4.130					
Final	concentration	ıs						
	ppm	ppm	intensity					
#1	0.02143	-0.09375	-2.48					
#2	0.06059	-0.07784	-26.16					
#3	0.06686	-0.07519	-29.74					
Mean		-0.08226	-19.46					
%RSD	49.60417	12.20301	76.12					

Raw Data MA23347 page 53 of 235

Raw Data MA23347 page 55 of 235

							■ Zoom In
							Zoom Ou
Printed:	10/27/2009 8	3:12:44 AM	User: Accut	est			
#1	0.00812	0.00500	-0.00131	-0.00068	0.00070	0.00543	-0.00876
#2	0.00813	0.00513	-0.00179	0.00339	0.00120	0.00568	-0.00775
#3	0.00810	0.00403	-0.00407	0.00286	0.00095	0.00668	-0.01050
Mean	0.00812	0.00472	-0.00239	0.00186	0.00095	0.00593	-0.00900
%RSD	0.17251	12.67784	61.52074	119.04485	26.41238	11.12467	15.47794
	2203/2	2203/1	INT STD				
IS ra	tioed intensi	ties					
	Reading	Reading	Reading				
#1	0.020	0.131	46333.000				
#2	0.025	0.143	46552.000				
#3	0.027	0.135	46664.000				
Mean	0.024	0.136	46516.333				
%RSD	14.535	4.691	0.362				
Final	concentratio	ons					
	ppm	ppm	intensity				
#1	0.03304	-0.06813	1.83				
#2	0.03648	-0.06279	2.51				
#3	0.03729	-0.06598	5.68				
Mean	0.03560	-0.06563	3.34				
%RSD	6.32863	4.09415	61.52				
*RSD	6.32863	4.09415	61.52				
*KSD	0.32003	4.03413	01.32				

Method	: EPA3	6-2	File : it10	2609ml	Printed	10/27/2009	8:12:44
SampleI	d1 : ja3125	6-2	SampleId:	2 :		[SAMPLE]	
Analysi Dilutio	s commenced n ratio : 1	1: 10/26/200 .00000 to 1.	9 5:55:40 PM 00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3
IS rati	oed_intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	4.987	0.005	0.000	0.017	3.662	0.000	0.
#2	4.981	0.005	0.000	0.01/	3.6/8	0.000	0.
#3	4.992	0.005	0.000	0.016	3.665	0.000	0.
#3 Mean %RSD	4.987 0.104	Reading 0.005 0.005 0.005 0.005 3.723	150.601	1.851	3.668 0.232	24.173	2.
Final c							
	mag	mqq	mag	mqq	ppm	ppm	
#1	82.72575	0.01015	0.00181	0.02454	104.41217	0.00090	0.00
#2	82.62719	0.01074	0.00221	0.02420	104.86418	0.00164	0.00
#3	82.80316	0.01004	0.00120	0.02363	104.48473	0.00077	0.00
Mean	82.71870	0.01031	0.00174	0.02412	104.58703	0.00110	0.00
%RSD	0.10662	ppm 0.01015 0.01074 0.01004 0.01031 3.64583	29.03666	1.90697	0.23210	42.60087	22.16
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2
IS rati	oed intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.005	17.690	-0.001	-0.002	-0.028	0.013	0.
#2	0.005	17.701	-0.001	-0.003	-0.031	0.013	0.
#3	0.005	17.697	-0.001	-0.003	-0.033	0.012	0.
Mean	0.005	17.696	-0.001	-0.003	-0.031	0.013	0.
%RSD	2.464	Reading 17.690 17.701 17.697 17.696 0.032	16.446	25.814	9.297	7.755	30.
Final c	oncentratio	ns					
4.7	o oossa	ozei zozoo	o ooooo	o oosea	0 01740	o ooroa	0 00
#1	0.00334	2751.39302	0.00006	0.00257	-0.01740	0.00504	0.00
#2	0.00376	2753.11761	0.00096	0.00077	0.02200	0.00460	0.00
#3	0.00326	2752.47990	0.00027	0.00168	0.02546	0.00024	0.00
%RSD	8.02661	ppm 2751.39302 2753.11761 2752.47990 2752.33017 0.03168	249.94615	53.85322	18.76088	80.59136	22.01
		Ba4934					
TS rati							
10 Idei	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	-0.001	0.045	-0.012	30.849	0.012	0.868	0.
#2	-0.001	0.045	-0.012	31.061	0.012	0.868	0.
#3	-0.001	0.045	-0.012	30.776	0.011	0.866	0.
Mean	-0.001	0.045	-0.012	30.895	0.012	0.867	0.
%RSD	6.145	Reading 0.045 0.045 0.045 0.045 0.045	2.786	0.480	1.664	0.129	8.
Final c	oncentratio	ns					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.00563	0.03186	0.00082	428.37681	0.01872	3.99367	0.03
#2	0.00580	0.03181	0.00142	431.32627	0.01362	3.99091	0.02
#3	0.00568	0.03182	0.00120	427.36111	0.00845	3.98335	0.02
Mean	0.00570	0.03183	0.00115	429.02140	0.01360	3.98931	0.02
%RSD	1.52478	0.08623	26.54743	0.48009	37.75744	0.13403	10.96
	Mn2576	ppm 0.03186 0.03181 0.03182 0.03183 0.08623 Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960
IS rati	oed_intensi	Reading 0.007 0.007 0.006 0.007 9.790					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.004	0.007	-0.010	0.000	0.000	0.040	-0.
#2	0.004	0.007	-0.010	0.000	0.000	0.040	-0.
#3	0.004	0.006	-0.011	0.000	0.000	0.041	-0.
Mean	0.004	0.007	-0.011	0.000	0.000	0.040	-0.
*RSD	0.134	9.790	6.506	0.362	0.362	1.068	1.
Final c	oncentratio	ns ppm			ppm		1

Raw Data MA23347	page 54 of 235

Analysi	: EPA3 dl : mp50203- s commenced :	10/26/2009	6:U1:48 PM	2609ml 2 : 2	Printed :	10/27/2009 [SAMPLE]	8:12:44 A
Dilutio	n ratio : 1.0						
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	oed intensiti	es	D	D 11	n . 11	D 11	n
#1	Reading 0.746	Reading 0.449	Reading 0.196	Reading 0.253	Reading 0.411	Reading 0.184	Readin 0.20
#2	0.744	0.447	0.196	0.252	0.409	0.183	0.20
#3	0.742	0.450	0.196	0.253	0.410	0.184 0.184	0.20
Mean %RSD	0.262	0.310	0.129	Reading 0.253 0.252 0.253 0.253 0.266	0.410	0.326	0.22
Final c							
	ppm	ppm	ppm	ppm	ppm	ppm	PP
#1	12.64115	0.90150	0.91307	0.37439	11.70692	0.94005	0.0952 0.0948
#3	12.57620	0.90252	0.91153	0.37439	11.69070	0.93643	0.0951
Mean	oncentrations ppm 12.64115 12.59899 12.57620 12.60545 0.26141	0.90042	0.91179	0.37381	11.68349	0.93683 0.32535	0.0950
%RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed intensiti	es n	D	Dandin	D	D4:-	Des di
#1	0.203	0.088	-0.001	2.560	2.447	0.367	0 34
#2	0.202	0.088	-0.001	2.543	2.423	0.363	0.36
#3	0.202	0.089	-0.001	2.552	2.429	0.366	0.3
Mean %RSD	0.202	0.088	13.605	Reading 2.560 2.543 2.552 2.552 0.329	0.516	0.601	0.30
Final c							
	0.45813 0.45554 0.45627 0.45665 0.29218	ppm	ppm	ppm	ppm	ppm	0.0953
#1 #2	0.45813	12.34632	0.00049	3.58582	3.52967	0.98207	0.0958
#3	0.45627	12.47996	0.00169	3.57484	3.50339	0.97890 0.97711 0.61892	0.096
Mean	0.45665	12.39594	0.00097	3.57432	3.50945	0.97711	0.095
%RSD							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
IS rati	oed intensiti	es nd:	D	D4:	D	D4:	D
#1	0.417	4.763	0.097	0.873	1.856	0.040	0.90
#2	0.417	4.738	0.097	0.871	1.847	0.040	0.90
#3	0.418	4.735	0.097	0.873	1.848	0.041	0.90
Mean %RSD	0.249	0.331	0.273	Reading 0.873 0.871 0.873 0.873 0.161	0.278	0.040 1.313	0.26
#1	ppm	ppm	mgg o	ppm	ppm 40 cr417	ppm	EO OCT
#1	0.92426	3.54076	0.09932	11.98475	49.39787	-0.00431	50.604
#3	0.92831	3.52549	0.09884	12.01636	49.43789	0.00001	50.682
Mean %RSD	oncentrations ppm 0.92426 0.92444 0.92831 0.92567 0.24696	3.53334	0.09909	12.00695	49.49664	-0.00294 87 03409	50.7179
	Mn2576		Sn1899				
TO wat:	oed intensiti				502300	1960/2 Reading 2.530 2.546 2.544 2.540 0.341	1,500/
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.544	0.004	0.002	0.000	0.000	2.530	3.6
#2 #3	0.540 0.542	0.004	0.002	0.000	0.000	2.546	3.66
Mean	0.542	0.004	0.002	0.000	0.000	2.544 2.540	3.63
%RSD	0.326	10.994	3.301	Reading 0.000 0.000 0.000 0.000 21.520	0.096	0.341	0.86
Final c	oncentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	PI

Raw Data MA23347 page 56 of 235

							Zoom C	ut
Printed:	10/27/2009 8:	:12:44 AM	User: Accute:	st				
#1	0.91176	0.00268	0.02204	0.94205	3.68076	3.71772	3.60684	
#2	0.90583	0.00276	0.02200	0.94796	3.70151	3.74101	3.62249	
#3	0.90901	0.00345	0.02224	0.94179	3.68007	3.73805	3.56410	
Mean	0.90887	0.00296	0.02209	0.94393	3.68745	3.73226	3.59781	
%RSD	0.32623	14.16694	0.57893	0.36937	0.33034	0.33976	0.84002	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit	ties						
	Reading	Reading	Reading					
#1	1.484	2.251	55621.000					
#2	1.501	2.243	55644.000					
#3	1.500	2.203	55542.000					
Mean	1.495	2.232	55602.333					
%RSD	0.626	1.149	0.096					
Final	concentration	18						
	ppm	ppm	intensity					
#1	0.94938	0.92738	-30.78					
#2	0.95987	0.92414	-30.73					
#3	0.95960	0.90618	-31.06					
Mean	0.95628	0.91923	-30.86					
%RSD	0.62496	1.24250	0.58					

Raw Data MA23347 page 57 of 235

Raw Data MA23347 page 59 of 235

-								
								■ Zoom In
								Zoom Out
	Printed:	10/27/2009 8	:12:44 AM	User: Accute	st			
	#1	1.21015		0.03106	1.06801	3.77801	3.81933	3.69537
	#2		0.00431	0.02519		3.77754	3.82981	3.67299
	#3	1.20082	0.00576	0.02482	1.05990	3.76793	3.82772	3.64834
	Mean		0.00588		1.06483	3.77449		3.67223
	%RSD	0.48864	27.87744	12.96726	0.40624	0.15081	0.14497	0.64069
		2203/2	2203/1	INT STD				
	IS ra	tioed intensi	ties					
		Reading	Reading	Reading				
	#1	1.673	2.623	58270.000				
	#2	1.675	2.607					
	#3	1.674	2.564					
	Mean		2.598					
	%RSD	0.061	1.182	0.217				
	Final	concentratio	ns					
		ppm	ppm	intensity				
	#1	1.08338	1.03726	-43.39				
	#2	1.08460	1.03052					
	#3	1.08423	1.01125					
	Mean		1.02634					
	%RSD	0.05796	1.31529	12.97				

Analysis Dilution	EPA3 11 : mp50203 commenced	-sl	File : it102	600-1	Drinted		Z
Analysis	commenced	-s1	File : it102	600-1	Drinted		
Analysis	commenced	-sl	File : it102				
Analysis Dilution	commenced			OUBILL	brinced :	: 10/27/2009	8:12:44
Dilution	commenced ratio : 1.	. 10/05/0000	SampleId2			[SAMPLE]	
		10/26/2009	9 6:U/:55 PM				
IS ratio							
IS ratio	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be31:
41	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.995	0.528	0.207	0.343	0.723	0.218	0.2.
#2	0.994	0.516	0.204	0.339	0.716	0.215	0.2.
#3	0.993	0.518	0.205	0.340	0.716	0.215	0.2.
Mean	0.994	0.521	0.205	0.341	0.719	0.216	0.2.
₹RSD	0.112	1.202	0.631	0.721	0.5/4	0.692	0.7.
Final co	ncentration	.s	ppm 0.96338 0.95187 0.95445 0.95657 0.63170				
4.1	16 01700	1 05010	o ocaso	0 F0747	20 61012	1 12105	0 000
#1	16.91700	1.05918	0.96338	0.50/4/	20.61813	1.13105	0.099
#2	16.09200	1.03550	0.95167	0.50041	20.41939	1.11009	0.098
#3 Moon	16 00517	1.03993	0.95445	0.50236	20.40940	1.11/20	0.098
SPCD	0.03317	1.04407	0.53037	0.30342	0.40233	0.60070	0.033
*KSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.217	0.105	-0.002	2.654	2.534	0.240	0.4
#2	0.216	0.102	-0.003	2.609	2.508	0.236	0.3
#3	0.216	0.102	-0.003	2.613	2.509	0.236	0.3
Mean	0.216	0.103	-0.003	2.625	2.517	0.238	0.3
%RSD	0.271	1.417	Reading -0.002 -0.003 -0.003 -0.003 17.173	0.942	0.591	0.928	1.0
Final co	ncentration	s					
	ppm	ppm	ppm	ppm	ppm	ppm	pj
#1	0.49057	15.34351	-0.00539	3.71592	3.62087	0.63229	0.102
#2	0.48812	14.97279	-0.00974	3.65377	3.58416	0.62150	0.100
#3	0.48841	14.91507	-0.00889	3.65848	3.58459	0.62205	0.100
Mean	0.48904	15.07/12	-0.00801	3.6/606	3.59654	0.62528	0.100
arsu			ppm -0.00539 -0.00974 -0.00889 -0.00801 28.78021				
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe27
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.459	4.865	0.101	1.855	5.262	0.810	2.1
#2	0.455	4.870	0.100	1.835	5.253	0.804	2.1
#3	0.454	4.864	0.100	1.837	5.247	0.804	2.1
Mean	0.456	4.866	Reading 0.101 0.100 0.100 0.101 0.677	1.842	5.254	0.806	2.1
%RSD	0.582	U.066	0.677	0.594	0.146	0.439	0.5
Final co	ncentration	s	ppm 0.10311 0.10214 0.10198 0.10241 0.60170				
	ppm	ppm	ppm	ppm	ppm	ppm	p. p.
#1	1.01830	3.62115	0.10311	25.61076	141./8312	3./1303	123.335
#4	1.00740	3.62496	0.10214	25.33667	141.53/66	3.68524	122.026
#3 Moon	1.00/40	3.62051	0.10198	25.30147	141.3/037	3.68204	122.135
mean anon	1.01160	0.02221	0.10241	45.43630	0.14665	0.46130	122.499
*KSD							
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.721	0.008	0.007	0.000	0.000	2.572	3.7
#2	0.715	0.004	0.005	0.000	0.000	2.579	3.7
#3	0.716	0.006	0.005	0.000	0.000	2.578	3.6
Mean	0.717	0.006	0.006	0.000	0.000	2.576	3.7
%RSD	0.489	29.500	Reading 0.007 0.005 0.005 0.006 29.975	6.703	7.647	0.158	0.6
Final co	ncentration	s					
	ppm	ppm	ppm	ppm	ppm	ppm	p.

Raw Data MA23347	page 58 of 235

Method :	EPA3	-a2	File : it102	2609ml	Printed :	10/27/2009 [SAMDLE]	8:12:44 #
	commenced ratio : 1.			• •		[SAMPLE]	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS ratio	ed intensit:	ies					
#1	Reading	Reading	Reading	Reading	Reading 0.741 0.739 0.740 0.740 0.196	Reading	Readir
#2	0.967	0.543	0.210	0.348	0.741	0.220	0.21
#3	0.965	0.541	0.210	0.347	0.740	0.219	0.21
Mean %RSD	0.967	0.541	0.210	0.347	0.740	0.219	0.23
%RSD	0.152	0.346	0.073	0.293	0.196	0.292	0.39
Final co	ncentration	B DDM	nnm.	DDM	ppm 21.13390 21.05187 21.08374 21.08984 0.19610	nnm	-
#1	16.47099	1.08877	0.97908	0.51473	21.13390	1.14482	0.1019
#2	16.47685	1.08126	0.97773	0.51177	21.05187	1.13887	0.1011
#3	16.43191	1.08550	0.97882	0.51273	21.08374	1.13934	0.1015
Mean	16.45992	1.08518	0.97854	0.51308	21.08984	1.14101	0.1015
%RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS ratio	ed intensit	ies	Danadi.	ndi-	Ddi-	n4:-	D
#1	reading	keading	Reading	keading	keading	keading	Readir
#2	0.215	0.100	-0.004	2.650	2.533	0.243	0.40
#3	0.215	0.101	-0.004	2.661	Reading 2.545 2.533 2.536 2.538 0.258	0.245	0.40
Mean	0.215	0.101	-0.004	2.658	2.538	0.245	0.40
%RSD	0.162	1.068	4.533	0.266	0.258	0.306	0.38
Final co	ncentration	3					DI
#1	0.48719	15.03404	-0.01415	3.72995	ppm 3.63358 3.61607 3.61960 3.62308 0.25555	0.64670	0.103
#2	0.48591	14.69593	-0.01563	3.71090	3.61607	0.64309	0.102
#3	0.48571	14.82526	-0.01399	3.72512	3.61960	0.64662	0.103
Mean %RSD	0.48627	14.85175	-0.01459	3.72199	3.62308	0.64547	0.1030
*RSD							
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe27:
IS ratio	ed intensit	ies	D 11	D	D	D 11	n 111
#1	Reading	keading	Reading	keading	Reading 5.368 5.370 5.362 5.367 0.073	keading	Keadii 2 3
#2	0.467	4.834	0.098	1.862	5.370	0.826	2.3
#3	0.470	4.824	0.098	1.870	5.362	0.829	2.3
#3 Mean %RSD	0.469	4.827	0.098	1.869	5.367	0.828	2.3
*RSD	0.330	0.124	0.341	0.351	0.073	0.217	0.24
Final co	ncentration:	B TOTAL	nom	maa	ppm 144.63766 144.69910 144.49287 144.60988 0.07322	mqq	pi
#1	1.04062	3.59092	0.10053	25.89469	144.63766	3.80778	130.771
#2	1.03590	3.59837	0.09993	25.71388	144.69910	3.79225	130.1436
#3 Mean	1.04253	3.59041	0.10021	25.82197	144.49287	3.80680	130.353
Mean %RSD	0.32818	0.12392	0.10022	0.35250	0.07322	3.80680 3.80228 0.22878	0.245
					Se1960		
IS ratio	ed intensit:						
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.726	0.007	0.005	0.000	0.000	2.620	3.78
#2 #3	0.724 0.724	0.005	0.004	0.000	0.000	2.595	3.76
#3 Mean	0.725	0.006	0.003	0.000	0.000	2.615	3.7
%RSD	0.134	13.063	Reading 0.005 0.004 0.003 0.004 24.646	13.359	0.034	Reading 2.620 2.595 2.615 2.610 0.501	0.20
Final co	ncentration	3					
	ppm	ppm	ppm	ppm	ppm	ppm	PI

Raw Data MA23347 page 60 of 235

Zoom In ▶
 Zoom Out

							¬ ∠oom i	nΡ
							Zoom O	ut
Printed: #1 #2 #3 Mean %RSD	10/27/2009 8 1.21758 1.21440 1.21535 1.21577 0.13427	12:44 AM 0.00656 0.00515 0.00606 0.00592 12.08445		1.07157 1.05224 1.07105	3.84319 3.81361 3.83589 3.83089 0.40224	3.89432 3.85749 3.88667 3.87949 0.50093	3.74091 3.72583 3.73432 3.73369 0.20253	
	2203/2	2203/1	INT STD					
#1 #2 #3 Mean %RSD	Reading 1.686 1.645 1.683 1.672 1.360	Reading 2.612 2.599 2.617 2.609 0.361	59666.000					
Final	concentration							
#1 #2 #3 Mean %RSD	ppm 1.09636 1.09650 1.08314 1.34525	1.02401 1.02401 1.03215 1.02858 0.40456	intensity -36.31 -33.81 -30.13 -33.42 9.31					

Raw Data MA23347 page 61 of 235

Raw Data MA23347 page 63 of 235

		p-3					
							∢ Zoom
							Zoom C
Drinted:	10/27/2009	8:12:45 AM	User: Accute	at			
#1	0.25943		0.02002	0.08403	0.00937	0.01331	0.00149
#2	0.26161	0.00290	0.02468	0.07695	0.00525	0.01099	-0.00622
#3	0.25974	0.00155	0.02262	0.08003	0.00284	0.00714	-0.00577
Mean	0.26026	0.00157	0.02244	0.08034	0.00582	0.01048	-0.00350
%RSI	0.45198	84.03003	10.41594	4.42021	56.75644	29.71616	123.66671
	2203/2	2203/1	INT STD				
IS ra	tioed intens	ities					
	Reading	Reading	Reading				
#1	0.135		60634.000				
#2	0.132		60868.000				
#3	0.131		60841.000				
Mean			60781.000				
%RSI	1.241	5.302	0.211				
Final	concentrati						
	ppm		intensity				
#1	0.08572		-27.96				
#2 #3	0.08416		-34.48 -31.59				
#3 Mean			-31.59				
Mean %RSD			10.42				
andi	1.25551	12.02091	10.42				

							■ Zoom	
							Zoom	
Analysis	EPA3 1 : ja30199- commenced : ratio : 1.0	10/26/200	File : it102 SampleId2 9 6:20:09 PM 00000	609ml	Printed :	10/27/2009 [SAMPLE]	8:12:45 AM	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130	
IS ratio	ed intensitie	es						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	
#1	0.244	0.044	0.003	0.066	0.261	0.021	0.003	
#3	0.244	0.045	0.003	0.066	0.262	0.022	0.003	
Mean %RSD	0.244	0.045	Reading 0.003 0.003 0.003 0.003 6.205	0.066	0.262	0.022	0.003	
rinai co	ncentrations	maga	ppm	mqq	mag	mag	mag	
#1	4.23140	0.09065	0.01561	0.09613	7.44113	0.12357	0.00058	
#2	4.23055	0.09301	0.01740	0.09763	7.48701	0.12569	0.00064	
Mean	4.23049	0.09157	0.01618	0.09624	7.45797	0.12405	0.00061	
%RSD	0.02216	1.32235	ppm 0.01561 0.01740 0.01618 0.01640 5.58744	0.86577	0.33857	0.89372	4.46834	
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265	
IS ratio	ed intensitie	es						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading	
#1	0.019	0.025	-0.003	0.001	-0.009	0.006	0.007	
#2	0.019	0.028	-0.002	0.004	-0.007	0.009	0.009	
Mean	0.019	0.026	-0.003	0.002	-0.007	0.007	0.008	
%RSD	0.596	5.147	Reading -0.003 -0.002 -0.003 -0.003 19.254	96.962	19.312	20.442	8.921	
#1	0 02614	2 1061E	_n nine7	n nn279	_0 00757	_0 01462	n nnnan	
#2	0.03661	2.52388	-0.01007	0.00279	-0.00737	-0.01402	0.00025	
#3	0.03618	2.24725	-0.00811	0.00225	-0.00401	-0.01083	0.00041	
Mean	0.03631	2.29243	ppm -0.01087 -0.00598 -0.00811 -0.00832 29.45431	0.00407	-0.00517	-0.01060	0.00045	
*RSD								
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe2714	
IS ratio	ed_intensitie	es		D	D	D	D	
#1	0.019	0.153	-0.013	0.792	2.40n	0.484	0.920	
#2	0.020	0.152	-0.012	0.801	2.396	0.485	0.928	
#3	0.019	0.152	-0.013	0.794	2.395	0.484	0.921	
Mean	0.019	0.152	Reading -0.013 -0.012 -0.013 -0.013 5.170	0.795	2.397	0.484	0.923	
Final co	ncentrations	mara	maa	maa	nom	mara	mara	
#1	0.04619	0.11270	-0.00065	10.95377	64.64957	2.14281	51.79571	
#2	0.04792	0.11225	0.00053	11.08273	64.55470	2.14826	52.24086	
#3	0.04666	0.11228	-0.00015	10.98529	64.53323	2.14211	51.86980	
Mean %RSD	1.90518	0.22468	-0.00065 0.00053 -0.00015 -0.00009 655.61451	0.61078	0.09586	0.15690	0.45896	
	Mn2576	Mo2020						
TS ratio	ed intensitie	og.						
	Peading	Peading	Reading 0.002	Reading	Reading	Reading	Reading	
#1	0.155	0.003	0.002	0.000	0.000	0.018	-0.092	
#2	0.156	0.006	0.004	0.000	0.000	0.017	-0.100 -0.100	
#3 Mean	0.155	0.004	0.003	0.000	0.000	0.014	-0.100	
	0.452	35.473	0.002 0.004 0.003 0.003 40.352	0.211	0.211	12.906	4.627	
%RSD								
	ncentrations		ppm					

Raw Data MA23347 pag	ge 62 of 235

		-sdl : 10/26/2009 00000 to 5.0	File : it102 SampleId2 6:26:17 PM	:		[SAMPLE]	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading 0.004 0.004 0.004 0.004 3.535	Readin
#1 #2	0.100	0.009	0.001	0.014	0.052	0.004	0.00
#3	0.100	0.009	0.001	0.014	0.052	0.004	0.00
Mean %RSD	0.100	0.009	0.001	0.014	0.052	0.004	0.00
%RSD	0.246	3.162	26.639	2.157	1.231	3.535	2.56
Final co	ncentration	В					
#1	ppm 8 79620	n ngg73	n nasse	n nggie	ppm 7 22272	ppm 0.11611 0.12323 0.12259 0.12064 3.26274	0 0006
#2	8.84018	0.10454	0.03352	0.10359	7.50238	0.12323	0.0007
#3	8.82280	0.10073	0.02803	0.10028	7.35649	0.12259	0.0005
Mean	8.81973	0.10133	0.02814	0.10101	7.39720	0.12064	0.0006
%RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS ratio	ed_intensit	ies					
#1	Reading	Reading	Reading	Reading	Reading	Reading 0.009 0.011 0.010 0.010 13.028	Readir
#1 #2	0.007	0.018	-0.001	0.001	-0.022	0.009	0.00
#3	0.007	0.019	0.000	0.001	-0.020	0.010	0.00
#2 #3 Mean %RSD	0.007	0.019	0.000	0.002	-0.020	0.010	0.00
%RSD	1.523	6.344	142.710	84.723	9.004	13.028	16.5
Final co	ncentration	В					
#1	0 04469	4 100E1	n nnesa	n n169n	_n nzile	ppm -0.03248 0.00385 -0.00952 -0.01272 144.45218	o oos
#2	0.04673	6.00421	0.02727	0.03355	-0.00546	0.00385	0.0054
#3	0.04701	4.81621	0.01172	0.01441	-0.01614	-0.00952	0.004
Mean	0.04615	4.97364	0.01513	0.02159	-0.01759	-0.01272	0.004
*RSD							
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe27:
IS ratio	ed_intensit	ies					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#2	0.003	0.031	-0.012	0.160	0.485	0.125	0.10
#3	0.003	0.031	-0.011	0.161	0.484	0.125	0.18
Mean	0.003 11.554	0.032	-0.011	0.161	0.484	Reading 0.125 0.127 0.125 0.126 0.765	0.18
arsu	11.554	0.364	0.405	0.004	0.100	0.765	0.7.
Final co	ncentration	S Drm	npm	DDm	npm	DDm	***
#1	0.05375	0.11535	0.00475	10.99146	64.13266	2.05608	51.007
#2	0.06228	0.11606	0.01108	11.13850	64.34874	2.10117	51.7428
#3	0.05676	0.11530	0.00831	11.05184	64.20276	2.07192	51.3326
Mean %RSD	0.05760 7.51128	0.11557	0.00805 39.38974	0.66821	04.22806 0.17164	ppm 2.05608 2.10117 2.07192 2.07639 1.10162	0.717
	Mn2576						
TC wati-							
10 14010	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.031	0.003	-0.009	0.000	0.000	0.029	-0.09
#2	0.031	0.005	-0.006	0.000	0.000	0.025	-0.09
#3 Mean	0.031	0.004	-0.008	0.000	0.000	0.029	-0.09
#2 #3 Mean %RSD	0.667	25.235	20.639	0.199	0.199	Reading 0.029 0.025 0.029 0.028 7.601	2.4
	ncentration						
	ppm	ppm	ppm	ppm	ppm	ppm	PE

Raw Data MA23347 page 64 of 235

0/27/2009 8 0.25757 0.26105 0.25918 0.25927 0.67203 2203/2 ped intensi: Reading 0.035 0.034	-0.00125 0.00732 0.00201 0.00270 160.51808	User: Accute -0.00459 0.02852 0.00610 0.01001 168.82845 INT STD Reading 58596.000 58809.000	0.07529 0.06268 0.08074 0.07290 12.71265	0.01667 -0.00852 0.01017 0.00610 214.24265	0.02912 0.00188 0.02785 0.01962 78.34945	Zoom 0 -0.00824 -0.02934 -0.02521 -0.02093 53.41427	ut
0.25757 0.26105 0.25918 0.25927 0.67203 2203/2 ped intensi Reading 0.035 0.034	-0.00125 0.00732 0.00201 0.00270 160.51808 2203/1 ties Reading 0.190	-0.00459 0.02852 0.00610 0.01001 168.82845 INT STD Reading 58596.000	0.07529 0.06268 0.08074 0.07290	-0.00852 0.01017 0.00610	0.00188 0.02785 0.01962	-0.02934 -0.02521 -0.02093	
0.26105 0.25918 0.25927 0.67203 2203/2 ped intensi: Reading 0.035 0.034	0.00732 0.00201 0.00270 160.51808 2203/1 ties Reading 0.190	0.02852 0.00610 0.01001 168.82845 INT STD Reading 58596.000	0.06268 0.08074 0.07290	-0.00852 0.01017 0.00610	0.00188 0.02785 0.01962	-0.02934 -0.02521 -0.02093	
0.25918 0.25927 0.67203 2203/2 ped intensi Reading 0.035 0.034	0.00201 0.00270 160.51808 2203/1 ties Reading 0.190	0.00610 0.01001 168.82845 INT STD Reading 58596.000	0.08074 0.07290	0.01017 0.00610	0.02785 0.01962	-0.02521 -0.02093	
0.25927 0.67203 2203/2 Ded intensi Reading 0.035 0.034	0.00270 160.51808 2203/1 ties Reading 0.190	0.01001 168.82845 INT STD Reading 58596.000	0.07290	0.00610	0.01962	-0.02093	
0.67203 2203/2 bed intensi Reading 0.035 0.034	160.51808 2203/1 ties Reading 0.190	168.82845 INT STD Reading 58596.000					
2203/2 ped intensi Reading 0.035 0.034	2203/1 ties Reading 0.190	INT STD Reading 58596.000	12.71265	214.24265	78.34945	53.41427	
ned intensi Reading 0.035 0.034	ties Reading 0.190	Reading 58596.000					
Reading 0.035 0.034	Reading 0.190	58596.000					
0.035	0.190	58596.000					
0.034							
	0.178						
0.041							
	0.182	58620.000					
0.036	0.183	58675.000					
9.995	3.531	0.199					
oncentration	ns						
ppm	ppm	intensity					
0.07106	0.08376	6.41					
0.06649	0.05504	-39.83					
0.08858	0.06508	-8.52					
15.46485	21.44940	168.83					
	ppm 0.07106 0.06649	0.07106 0.08376 0.06649 0.05504 0.08858 0.06508 0.07538 0.06796	ppm ppm intensity 0.07106 0.08376 6.41 0.06649 0.05504 -39.83 0.0858 0.06508 -8.52 0.07538 0.06796 -13.98	ppm ppm intensity 0.07106 0.08376 6.41 0.06649 0.05504 -39.83 0.08858 0.06508 -8.52 0.07538 0.06796 -13.98	ppm ppm intensity 0.07106 0.08376 6.41 0.06649 0.05504 -39.83 0.08858 0.06508 -8.52 0.07538 0.06796 -13.98	ppm ppm intensity 0.07106 0.08376 6.41 0.06649 0.05504 -39.83 0.08858 0.06508 -8.52 0.07538 0.06796 -13.98	ppm ppm intensity 0.07106 0.08376 6.41 0.06649 0.05504 -39.83 0.08858 0.06508 -8.52 0.07538 0.06796 -13.98

Raw Data MA23347 page 65 of 235

Raw Data MA23347 page 67 of 235

							⋖ Zoom	In ▶
							Zoom (Jut
Darlant and a	10/27/2009 8:	10:45 NM	User: Accute					
#1	0.44063	0.00219	0.02427	0.07980	0.00838	0.01283	-0.00052	
#2	0.44976		0.02753	0.08434	0.01467	0.01203		
#3	0.44674	0.00065	0.02057	0.07032	-0.00057	0.00751	-0.01672	
Mean	0.44571	0.00182	0.02412	0.07815	0.00750	0.01307	-0.00366	
%RSD	1.04294	56.77359	14.44803	9.15780	102.16601	43.50061	322.51565	
	2203/2	2203/1	INT STD					
TC vot	tioed intensit	ion						
15 Iai	Reading	Reading	Reading					
#1	0.135	0.372	62415.000					
#2	0.141	0.385						
#3	0.121	0.347						
Mean	0.133	0.368	61622.000					
%RSD	7.652	5.176	1.250					
Final	concentration	18						
	ppm	ppm	intensity					
#1	0.08563	0.06814	-33.90					
#2 #3	0.08988 0.07712	0.07327	-38.46 -28.73					
#3 Mean	0.07/12	0.05671	-33.69					
%RSD	7.71509	12.83954	14.45					
*******	7.72303	12.03331	21.15					

Method SampleId Analysis	EPA3 11 : ja30199 commenced	-2 : 10/26/200	File : it102 SampleId2 9 6:32:24 PM	609ml	Printed	: 10/27/2009 [SAMPLE]	8:12:4
Dilution	n ratio : 1.	00000 to 1.	00000				
	K 7664		Co2286	Cr2677	Mg2790	V 2924	Be
IS ratio	oed intensit	ies	Ponding	Roading	Ponding	Ponding	Pon
#1	0.260	0.054	0.003	0.067	0.302	0.020	nea 0
#2	0.265	0.056	0.004	0.069	0.309	0.020	ō
#3	0.264	0.054	0.003	0.068	0.304	0.019	0
Mean %RSD	0.263	0.055	Reading 0.003 0.004 0.003 0.003 6.816	0.068	0.305	0.020	2
m1 - 1							
rinai co	ppm	maa	maa	maa	mag	maa	
#1	4.46750	0.11044	0.01714	0.09854	8.58721	0.11015	0.0
#2	4.54446	0.11355	0.01811	0.10125	8.80036	0.11307	0.0
#3	4.53664	0.10986	0.01599	0.09924	8.66312	0.11005	0.0
%RSD	0.93786	1.78617	ppm 0.01714 0.01811 0.01599 0.01708 6.19226	1.40886	1.24414	1.54442	4.7
			Pd3404				
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.027	0.022	-0.001	0.007	-0.009	0.012	0
#2	0.028	0.021	-0.001	0.009	-0.009	0.014	0
#3 Mean	0.027	0.019	-0.002	0.003	-0.012	0.010	0
%RSD	1.614	7.139	Reading -0.001 -0.001 -0.002 -0.002 38.889	47.489	18.824	17.323	14
m1							
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.05435	1.53752	-0.00137	0.01146	0.00002	0.00200	0.0
#3	0.05441	1.12628	-0.00123	0.01595	-0.00110	-0.00446	0.0
Mean	0.05496	1.39151	-0.00293	0.01043	-0.00211	0.00138	0.0
%RSD	1.83449	16.53506	ppm -0.00137 -0.00123 -0.00620 -0.00293 96.43507	39.49342	129.47176		
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe
IS ratio	oed_intensit	ies	D 11	D 11	D		
#1	Reading	Reading	Reading	Reading	Reading	Keading	Rea
#2	0.020	0.203	-0.011	0.510	2.489	0.569	0
#3	0.028	0.208	Reading -0.011 -0.011 -0.014 -0.012 10.971	0.503	2.486	0.565	ō
Mean	0.028	0.206	-0.012	0.504	2.471	0.564	0
%RSD	2.122	1.362	10.971	1.113	1.147	1.162	1
Final co	oncentration	s nrm	ppm 0.00128 0.00121 -0.00081 0.00056 212.81680	npm	npm	Drm	
#1	0.06597	0.15032	0.00128	6.88030	65.69188	2.49444	40.1
#2	0.06836	0.15371	0.00121	7.03503	67.05564	2.55602	40.9
#3	0.06616	0.15412	-0.00081	6.94838	66.98081	2.53752	40.5
Mean	0.06683	0.15272	0.00056	6.95457	66.57611	2.52933	40.5
*RSD	1.99072	1.36555	212.81680	1.11510	1.15158	1.24925	1.0
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS ratio	ed intensit	ies Readira	Peadira	Peading	Reading	Reading	Rea
#1	0.263	0.005	Reading 0.003 0.005 0.002 0.003 51.683	0.000	0.000	0.023	-0
#2	0.268	0.005	0.005	0.000	0.000	0.027	-0
#3	0.266	0.003	0.002	0.000	0.000	0.019	-0
Mean %RSD	0.266	0.005	0.003	0.000	0.000	0.023	-0
*RSD	1.042	25.456	51.683	1.249	1.249	16.532	12
Final co	oncentration	8	ppm	-		n	
	ppm	ppm			ppm	ppm	

Raw Data MA23347	page 66 of 235
Raw Dala WAZSS4/	Daue of Ol 233

Method :	EPA3 1 : ja30199-		File : it102	609ml	Printed :	10/27/2009	8:12:45 #
						[SAMPLE]	
Dilution	ratio : 1.00	0000 to 1.0	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS ratio	ed intensitie	es					
	ed intensitie Reading 0.421 0.419 0.419 0.420 0.267	Reading	Reading	Reading	Reading	Reading	Readin
#1 #2	0.421	0.073	0.007	0.074	0.521	0.018	0.00
ii n	0.419	0.073	0.007	0.074	0.519	0.018	0.00
#3 Mean %RSD	0.420	0.073	0.007	0.074	0.521	0.018	0.00
%RSD	0.267	1.009	3.216	0.668	0.381	0.805	1.95
Final co	ncentrations						
4.7	7 26010	ppm	ppm	ppm	ppm	ppm	o ool
#1	7.20910	0.14798	0.03022	0.10002	14.00113	0.11015	0.0010
#3	7.24024	0.14784	0.03553	0.10801	14.78225	0.10985	0.0010
Mean	7.24805	0.14877	0.03649	0.10844	14.84509	0.11045	0.0010
%RSD	ncentrations ppm 7.26918 7.23475 7.24024 7.24805 0.25523	0.99962	3.06746	0.67504	0.38096	0.72549	3.6614
			Pd3404				
IS ratio	ed intensitie	es					
	Reading 0.030 0.030 0.030 0.030 0.030 0.030 0.030	Reading	Reading	Reading	Reading	Reading	Readir
#1	0.030	0.024	-0.003	0.007	-0.003	0.008	0.01
#2 #3	0.030	0.026	-0.002	0.010	-0.000	0.010	0.0.
Mean	0.030	0.025	-0.003	0.008	-0.002	0.009	0.0
%RSD	0.385	3.206	15.285	23.439	84.925	10.303	8.31
Final co	ncentrations						
	ppm 0.06042 0.06083 0.06034 0.06053 0.43170	ppm	ppm	ppm	ppm	ppm	pp
#1	0.06042	2.11148	-0.00687	0.01103	-0.00528	-0.00909	0.0010
#3	0.06034	2.10297	-0.00685	0.00949	-0.00371	-0.00740	0.001
Mean	0.06053	2.17974	-0.00594	0.01169	-0.00331	-0.00690	0.001
%RSD	0.43170	5.76513	26.94282	22.17870	65.95607	35.80234	21.8230
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe27:
IS ratio	ed intensitie	es					
	Reading 0.043 0.043 0.043 0.043 0.043	Reading	Reading	Reading	Reading	Reading	Readin
#1 #2	0.043	0.140	-0.012	0.864	1.188	0.400	1.1
	0.043	0.139	-0.011	0.860	1.183	0.397	1.16
#3 Mean %RSD	0.043	0.139	-0.012	0.864	1.184	0.399	1.16
	0.217	0.390	7.152	0.427	0.247	0.413	0.39
Final co	ncentrations ppm 0.09982 0.10024 0.10002 0.10003 0.20986						PE
#1	0.09982	0.10316	0.00048	11.95272	քբm 31.8597Ո	1.73975	65.8116
#2	0.10024	0.10236	0.00178	12.00628	31.71772	1.73375	66.043
#3	0.10002	0.10266	0.00047	11.90398	31.72875	1.72402	65.5234
Mean %RSD	0.10003 0.20986	0.10273	0.00091 82.67432	11.95433 0.42804	31.76872 0.24862	1.73250 0.45815	0.3958
			Sn1899				
TS ratio							
	Reading	Reading	Reading	Reading	Reading	Reading	Readir
#1	0.360	0.011	0.000	0.000	0.000	0.019	-0.10
#2 #3	0.360	0.013	0.002	0.000	0.000	0.017	-0.09
#3 Mean	0.358	0.011	0.000	0.000	0.000	0.018	-0.08
%RSD	0.279	11.591	Reading 0.000 0.002 0.000 0.001 120.245	10.727	0.150	0.017 0.018 0.018 5.096	8.88
Final co	ncentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	PI

Raw Data MA23347 page 68 of 235

114 of 247
ACCUTEST.
JA30201 Laboratories

	·						■ Zoom	ı In ▶
							Zoom	Out
Printed:	10/27/2009 8	:12:45 AM	User: Accute	est				
#1 #2 #3 Mean %RSD	0.60348 0.60414 0.60095 0.60286 0.27937	0.00783 0.00970 0.00746 0.00833 14.40906	0.01669 0.01936 0.01594 0.01733 10.37066	0.01738 0.01466 0.01883 0.01696 12.48593	0.01138 0.01217 0.01613 0.01323 19.23988	0.02329 0.02075 0.02207 0.02204 5.76592	-0.01243 -0.00500 0.00424 -0.00439 190.08403	
	2203/2	2203/1	INT STD					
#1 #2 #3 Mean %RSD	Reading 0.051 0.046 0.043 0.047 8.836	Reading 0.193 0.189 0.226 0.203 9.989	Reading 61354.000 61526.000 61498.000 61459.333 0.150					
Final	concentration							
#1 #2 #3 Mean %RSD	0.02907 0.02578 0.02378 0.02621 10.18430	-0.00599 -0.00758 0.00893 -0.00155 589.12782	intensity -23.31 -27.04 -22.27 -24.21 10.37					

Raw Data MA23347 page 69 of 235

Raw Data MA23347 page 71 of 235

							∢ Zoom	ı In I
							Zoom	Out
m 1	10/27/2009 8		User: Accute					
					0.00700	0.01240	0.00335	
#1	0.44540	0.01569	0.02516	0.03386	0.00782	0.01340	-0.00335	
#2	0.44242	0.01491	0.02401	0.03208	0.00497	0.01104	-0.00718	
#3	0.44432	0.01616	0.02551	0.03907	0.01062	0.01185	0.00814	
Mean	0.44405	0.01559		0.03501	0.00780	0.01210	-0.00080	
%RSD	0.34020	4.03565	3.15553	10.37839	36.21012	9.90829	1000.66694	
	2203/2	2203/1	INT STD					
IS rat	tioed intensi	ties						
	Reading	Reading	Reading					
#1	0.073	0.232	59797.000					
#2	0.075	0.217	59718.000					
#3	0.077	0.258	59855.000					
Mean	0.075	0.236						
%RSD	2.322	8.715	0.115					
Final	concentratio	ns						
	mqq	ppm	intensity					
#1	0.05463	-0.00769	-35.14					
#2	0.05531	-0.01437	-33.53					
#3	0.05678	0.00366	-35.63					
Mean	0.05557	-0.00613	-34.77					
%RSD	1.97641	148.63926	3.16					
*RSD	1.37041	110.03920	3.10					

	FDAR		File : i+10	2609m1	Drinted	: 10/27/2009	8:12:4
SampleTd	11 : i=30199	-4	SampleId	2609ml 2 :	FIIIICEG	[SAMDI.F]	0.12.7
Analygic	commenced	: 10/26/200	9 6:44:38 PM	-		[CARAL DE]	
	ratio : 1.						
							_
			Co2286	Cr2677	Mg2790	V 2924	Be
IS ratio	ed intensit	ies	D	D4:	D	D4:	D
#1	0 207	0 111	0.004	n ner	0.647	0.015	Rea
#1	0.397	0.111	0.004	0.007	0.647	0.015	0
#2	0.397	0.109	0.003	0.007	0.645	0.015	u
#3	0.397	0.110	0.004	0.087	0.645	0.015	ū
Mean	0.397	0.110	0.004	0.087	0.645	0.015	U
%RSD	0.077	1.012	4.873	Reading 0.087 0.087 0.087 0.087 0.087	0.279	1.003	1
Final co	ncentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	6.62444	0.22320	0.01884	0.12835	18.44265	0.09085	0.0
#2	6.61826	0.21876	0.01769	0.12733	18.34000	0.08926	0.0
#3	6.62791	0.22121	0.01929	0.12803	18.38951	0.09000	0.0
Mean	6.62354	0.22106	0.01860	0.12790	18.39072	0.09004	0.0
%RSD	6.62444 6.61826 6.62791 6.62354 0.07378	1.00729	4.44145	ppm 0.12835 0.12733 0.12803 0.12790 0.40800	0.27914	0.87995	4.2
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd
IS ratio	ed_intensit	ies					_
	Reading	Reading	Reading	Reading 0.005	Reading	Reading	Rea
#1	0.034	0.024	-0.008	0.005	-0.005	0.011	0
#2	0.033	0.022	-0.009	0.003	-0.005	0.010	0
#3	0.034	0.023	-0.008	0.004	-0.005	0.012	0
Mean	0.034	0.023	-0.008	0.004	-0.005	0.011	0
%RSD	0.875	4.813	5.723	0.003 0.004 0.004 25.523	3.488	8.952	8
Final co	ncentration	ıs					
	mag	mqq	mqq	ppm	mag	mqq	
#1	0.07026	1.71723	-0.03028	0.00975	-0.00421	-0.00156	0.0
#2	0.06894	1.38847	-0.03368	0.00678	-0.00358	-0.00447	0.0
#3	0.06934	1.64073	-0.03002	0.00866	-0.00397	0.00075	0.0
Mean	0.06951	1.58214	-0.03132	0.00840	-0.00392	-0.00176	0.0
%RSD	0.97214	10.87332	6.51630	ppm 0.00975 0.00678 0.00866 0.00840 17.92049	8.09636	148.69937	21.2
				Ca3179			
TS ratio							
,	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.026	0.186	-0.013	16.302	1.173	0.651	0
#2	0.026	0 107	-0.014	16 150	1 174	0.647	0
#2	0.026	0.107	-0.014	16 222	1 177	0.047	
#3	0.026	0.186	-0.013	16.232	1.1/3	0.647	U
medn	0.026	0.186	-0.013	Reading 16.302 16.159 16.232 16.231 0.441	1.1/4	0.648	0
			4.130	0.441	0.066	0.379	U
Final co	ncentration	IS _	_	ppm 226.35463 224.36597			
#1	ppm	ppm	o ooooo	ppm ppm	21 45637	2 04732	40 4
#1	0.06408	0.13/68	0.00029	220.35463	31.45617	2.94/32	49.4
#2	0.06414	0.13790	-0.00057	224.36597	31.48598	2.92687	49.1
#3	0.06402	0.13747	U.00024	225.37895	31.44541	2.92669	49.3
Mean	0.06408	0.13768	-0.00002	225.36652	31.46252	2.93362	49.3
%RSD	0.09453	0.15692	3218.45318	224.36597 225.37895 225.36652 0.44123	0.06680	0.40421	0.2
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
TS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading 0.000 0.000 0.000 0.000 0.115	Reading	Reading	Rea
#1	0.265	0.019	0.004	0.000	0.000	0.023	-0
#2	0.264	0.019	0.001	0.000	0.000	0.023	_0
#3	0.265	0.010	0.003	0.000	0.000	0.021	_0
Mean	0.205	0.020	0.004	0.000	0.000	0.022	-0
%RSD	0.205	0.019	10.004	0.000	0.000	0.022	-0
			10.294	0.115	0.115	3.381	,
m:	ncentration	_					

Raw Data MA23347	page 70 of 235
Naw Dala WAZJJ41	page 10 01 233

Method	: EPA3 dl : CCV	1	File : it102	609ml	Printed :	10/27/2009	8:12:45 #
MHGIYSI	d1 : CCV s commenced : n ratio : 1.0	10/20/2009	0.30.40 PM	:		[FLEXQC]	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS ratio	oed intensiti	es					
#1	Reading	Reading	Reading	Reading	Reading 1.450 1.454 1.467	Reading	Readir 4.30
#2	2.241	1.023	0.436	1.355	1.454	0.403	4.29
#3	2.234	1.041	0.439	1.367	1.467	0.406	4.35
Mean %RSD	2.240 0.227	1.027	0.439 0.437 0.500	1.359	1.457	0.404 0.412	4.31
							0.73
Final C	ppm	mag	mag	mqq	mag	mag	pr
#1	37.67157	2.04834	2.03154	2.00536	41.36272	2.03476	2.0631 2.0574
#2	37.61918	2.05633	2.03768	2.00752	41.45533	2.03656	2.0574
#3 Mean	37.59922	2.06603	2.05146	2.02503	41.55164	2.05017	2.0686
%RSD	oncentrations ppm 37.67157 37.61918 37.50691 37.59922 0.22374	1.16416	0.49995	0.53601	0.60484	2.04050 0.41296	0.7103
					T11908		
IS rati							
	Reading	Reading	Reading	Reading	Reading 1.331 1.330 1.348 1.337 0.761	Reading	Readir
#1 #2	0.825	0.257	0.420	1.405	1.331	0.763	8.0
#3	0.825	0.250	0.420	1.424	1.330	0.767	8.1
Mean	0.825	0.258	0.420	1.411	1.337	0.764	8.08
%RSD	0.039	0.471	0.175	0.757	0.761	0.456	0.59
Final c	oncentrations						
#1	1.88819 1.88686 1.88807 1.88771 0.03909	39.07494	1.87482	1.98268	1.94414	2.08432	2.129
#2	1.88686	39.18546	1.87460	1.98315	1.94264	2.07590	2.121
#3	1.88807	39.44962	1.88039	2.00895	1.96865	2.09513	2.146
Mean %RSD	1.88771	39.23667	1.87661	1.99159	0.74926	0.08511	2.132
*RSD							
			Ag3280	Ca3179	A13082	S12881	Fe27.
IS ratio	oed intensiti	es Ponding	Ponding	Ponding	Ponding	Ponding	Pondi
#1	0.928	2.528	0.263	3.004	1.434	1.154	0.7
#2	0.929	2.524	0.263	3.011	1.435	1.156	0.7
#3	0.937	2.516	0.264	3.038	1.434	1.159	0.7
Mean %RSD	0.552	0.253	0.270	0.604	Reading 1.434 1.435 1.434 1.435 0.061	0.223	0.5
	ppm	ppm	ppm	ppm	ppm	ppm 5.35100 5.36249	40 F10
#1 #2	2.05513	1.88166	0.24925	41.53532	38.42928	5.35100	40.510
#3	2.07615	1.87242	0.25050	42.01384	38.41362	5.37555	40.910
Mean %RSD	2.06314	1.87769	0.24978	41.72814	ppm 38.42928 38.45836 38.41362 38.43375 0.05908	5.36301	40.6626
%RSD		0.25314	0.25832				
	Mn2576	Mo2020	Reading 0.948 0.948 0.960 0.952 0.745	Pb2203	Se1960	1960/2	1960,
IS ratio	oed intensiti Reading	es Reading	Peading	Reading	Peading	Peading	Readir
#1	1.169	2.199	0.948	Reading 0.000 0.000	0.000	Reading 1.416 1.447	1.9
#2	1.171	2.205	0.948	0.000 0.000 0.000	0.000	1.447	1.98
#3 Mean	1.177 1.172	2.223	0.960 0.952	0.000		1.429	2.00
%RSD	0.372	0.555	0.952	10.081			0.7
Final c	oncentrations						
		ppm	ppm	ppm	ppm	ppm	PI

Raw Data MA23347 page 72 of 235

							■ Zoom Ir	ır
							Zoom Ou	ıt
Printed:	10/27/2009 8::	12:45 AM	User: Accutes	st				
#1	1.96009	1.95311	2.03028	2.13375	2.04906	2.07354	2.00010	
#2	1.96456	1.95862	2.03069	2.15980	2.08170	2.11941	2.00630	
#3		1.97414	2.05654	2.13752	2.07195			
Mean		1.96196	2.03917	2.14369	2.06757	2.09577		
%RSD	0.37201	0.55587	0.73786	0.65671	0.81032	1.09567	0.70328	
	2203/2	2203/1	INT STD					
IS rat:	ioed intensit:	ies						
	Reading	Reading	Reading					
#1	3.397	4.788	58658.000					
#2	3.455	4.797	58527.000					
#3	3.389	4.836	58765.000					
Mean	3.414	4.807	58650.000					
%RSD	1.051	0.532	0.203					
Final	concentrations	3						
	ppm	ppm	intensity					
#1	2.17416	2.05293	-2835.91					
#2	2.21119	2.05700	-2836.48					
#3	2.16906	2.07443	-2872.59					
Mean	2.18480	2.06145	-2848.33					
%RSD	1.05254	0.55390	0.74					

Raw Data MA23347 page 73 of 235

Raw Data MA23347 page 75 of 235

rian Data ii		pago . o o	_00				
							◀ Zoom In
							Zoom Ou
Darley and a	10/27/2009	0.10.46 3M	User: Accute				
#1 #2 #3 Mean %RSD	0.00028 0.00017 0.00003 0.00016 76.02897	0.00095 -0.00072	-0.00190 -0.00548 -0.00957 -0.00565 67.89788	-0.00106 -0.00895 -0.00816 -0.00606 71.80454	0.00278 -0.00578 -0.00470 -0.00257 181.69381	0.00813 0.00057 0.00608 0.00493 79.38959	-0.00792 -0.01847 -0.02627 -0.01755 52.45293
	2203/2	2203/1	INT STD				
IS rat	ioed intens						
#1 #2 #3 Mean %RSD	Reading 0.017 0.008 0.015 0.013 34.671	0.124 0.097 0.084	Reading 59210.000 58851.000 58595.000 58885.333 0.525				
Final	concentration						
#1 #2 #3 Mean %RSD	0.00104 -0.00482 -0.00077 -0.00152 197.21674	-0.00524 -0.01721 -0.02294 -0.01513	intensity 2.65 7.66 13.36 7.89 67.90				

Method SampleI	: EPA3 d1 : CCB		File : itl0	12609ml 12 :	Printed	: 10/27/2009 [FLEXQC]	8:12:46
Analysi Dilutio	s commenced n ratio : 1.	: 10/26/200 00000 to 1.	9 6:57:03 PM 00000	1			
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be:
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.067	-0.001	0.000	0.001	0.001	0.000	0
#2	0.067	-0.001	0.000	0.001	0.001	0.000	0
#3	0.067	-0.001	0.000	0.000	0.000	0.000	0
Mean	0.067	-0.001	0.000	0.001	0.001	0.000	0
%RSD			97.481	Reading 0.001 0.001 0.000 0.001 71.717	29.586	349.727	7
Final c	oncentration	8		ppm 0.00073 -0.00017 -0.00067 -0.00004 1812.54820			
4.7	1 20067	0 00046	0 00170	0.00073	0.01040	0 00000	0.0
#1	1.20007	0.00046	0.00170	0.00073	0.01040	0.00000	0.00
#2	1.192/3	-0.00033	-0.00027	-0.00017	0.004/1	-0.00085	-0.01
Moon	1 10406	-0.00032	0.00030	-0.00007	0.00040	-0.00137	-0.00
&PSD	0 41707	264 14232	200 65613	1812 54820	97 07274	93 52914	6529 81
UNDE							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd:
IS rati	oed_intensit	ies	n		D	D	Read
#1	keading	Reading	Reading	Reading -0.002	Keading	keading	Read 0
	0.004	0.021	0.000	-0.002	-0.022	0.012	
#2 #3	0.004	0.019	-0.001	-0.005	-0.027	0.010	U
#3 Mean	0.004	0.019	-0.001	-0.005	-0.029	0.009	Ü
%RSD	5.666	5.865	55.067	-0.005 -0.005 -0.004 46.993	12.825	15.524	45
m:1 -	oncentration						
Final C	oncentration	B					
#1	0 00179	1 179/2	n nnaer	-0 00044	_0 00179	0 00210	0.0
#1	0.00170	0 02001	0.00203	-0.00044	-0.00179	-0.00310	0.0
#2	0.00117	0.93901	-0.00004	-0.00434	-0.00300	-0.00214	0.0
Mean	0.00002	0.02077	0.00172	-0.00301	-0.01000	-0.00363	0.0
%RSD	38.79470	18.35194	591.37716	ppm -0.00044 -0.00434 -0.00504 -0.00327 75.65538	66.38668	283.18923	76.2
				Ca3179			
TC							
10 Idil	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	-0.001	0.001	-0.011	0.002	0.009	0.033	0
#2	-0.001	0.001	-0.013	0.002	0.008	0.032	n
#3	-0.002	0.000	-0.013	0.002	0.008	0.031	ō
Mean	-0.001	0.001	-0.012	0.002	0.008	0.032	ō
%RSD	12.624	23.827	7.283	Reading 0.002 0.002 0.002 0.002 6.824	1.702	2.702	341
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.00115	0.00030	0.00115	0.01709	-0.01930	-0.03234	0.0
#2	0.00113	0.00019	0.00008	0.01497	-0.02339	-0.03829	-0.0
#3	0.00048	0.00011	-0.00043	0.01301	-0.02702	-0.04018	-0.0
Mean	0.00092	0.00020	0.00027	0.01502	-0.02324	-0.03693	-0.0
%RSD	41.55332	46.58844	302.95871	ppm 0.01709 0.01497 0.01301 0.01502 13.56620	16.61703	11.07052	750.3
	Mn2576						
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading 0.000 0.000 0.000 0.000 0.524	Reading	Reading	Rea
#1	0.000	0.005	-0.010	0.000	0.000	0.035	-0
#2	0.000	0.003	-0.011	0.000	0.000	0.029	-0
#3	0.000	0.001	-0.013	0.000	0.000	0.033	-0
#3 Mean %RSD	0.000	0.003	-0.012	0.000	0.000	0.032	-0
*RSD	21.320	64.112	15.677	0.524	0.524	8.175	8
m:1 -	oncentration	В					
rinai c	ppm		mag	ppm	mqq	mqq	

Raw Data MA23347 page 74 of 235

Method Sample	d : EPA3 eId1 : ja30199-5 sis commenced :	5 10/26/200	File : it102 SampleId2 9 7:03:21 PM	609ml :	Printed	: 10/27/2009 [SAMPLE]	8:12:46 /
Dilut	ion ratio : 1.00	0000 to 1.	00000				
	K 7664	Zn2062	Co2286	CF26//	Mg2790	V 2924	Be313
IS rat	tioed intensitie Reading		Reading	Reading	Reading	Reading	Readir
#1	0.509	0.398	0.015	0.153	0.589	0.033	0.00
#2	0.508	0.392	0.015 0.015	0.151 0.153	0.585	0.032	0.00
#3 Mean	0.508	0.398	0.015	0.153	0.588	0.033	0.00
%RSD	0.054	0.892	1.314	0.689	0.397	0.690	1.1
Final	concentrations						
	ppm	ppm	ppm 0.07178	ppm 0.22452	ppm 16.77284	ppm	PI
#1 #2	8.61444 8.60361	0.80085 0.78844	0.07178	0.22182	16.65151	0.18393 0.18175	0.001
#3	8.61007	0.80059	0.07204	0.22449	16 75906	0 18381	0.001
Mean		0.79663	0.07139	0.22361	16.72780	0.18316	
%RSD	0.06329	0.89041	1.29055	0.69314	0.39712	0.66911	1.998
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rat	tioed intensitie	es	Reading -0.007	m - 11-	Reading -0.006	D	
#1	Reading 0.053	0.050	keading	Reading 0.018	-0.006	Reading 0.010	Readin 0.01
#1	0.053	0.048	-0.007	0.018	-0.009	0.010	0.0
#3	0.053	0.049	-0.007	0.018	-0.004	0.010	0.0
Mean %RSD	0.053	0.049	-0.007 4.596	0.018	-0.006 47.453	0.010 4.762	0.0
	0.773		4.596	3.889	47.453	4.762	0.6
Final	concentrations ppm		ppm	ppm	maga	mqq	101
#1	0.11475	5.95467	-0.02485 -0.02709	0.02720	-0.00566	-0.00309	0.005
#2	0.11317	5.71238	-0.02709	0.02603	-0.01081	-0.00494	0.005
#3 Mean	0.11485 0.11426	5.90681 5.85795	-0.02459	0.02795			0.004
%RSD	0.11426	2.19052	-0.02551 5.38101	3.57507			
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe27
			A93200	Casirs	A13002	312001	1627
IS rat	tioed intensitie Reading		Reading	Reading	Reading	Reading	Readi
#1	0.089	0.568	-0.012	0.460	3.691	0.574	1.1
#2	0.087	0.568	-0.013	0.456	3.686	0.570	1.1
#3 Mean	0.088	0.568	-0.012 -0.012	0.460	3.690 3.689	0.573 0.572	1.1
%RSD	0.765	0.008	4.470	0.515	0.071	0.335	0.4
Final	concentrations						
	mag	mqq	ppm	ppm	ppm	ppm	P
#1	0.19997	0.42178	0.00074	6.32488	99.57408	2.57655	63.240
#2	0.19734 0.19987	0.42174	-0.00016 0.00065	6.26932 6.32669	99.43832 99.53949	2.56020 2.57582	62.690
#3 Mean		0.42171	0.00065	6.30696	99.53949	2.57582	
%RSD	0.74895	0.00825	119.84940	0.51707	0.07089	0.35932	
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960
IS rat	tioed intensitie	es					
#1	Reading 0.321	Reading	Reading	Reading 0.000	Reading 0.000	Reading 0.026	Readin -0.1
#1 #2	0.321	0.006	0.004	0.000	0.000	0.026	-0.1
#3	0.321	0.007	0.004	0.000	0.000	0.023	-0.1
Mean	0.321	0.006	0.004	0.000	0.000	0.024	-0.1
%RSD	0.433	17.315	17.933	10.798	0.119	8.497	6.0
Final	concentrations					_	
	ppm	ppm	ppm	ppm	ppm	ppm	Pl

Raw Data MA23347 page 76 of 235

							■ Zoom II	0
							Zoom O	ut
Printed:	10/27/2009 8	:12:46 AM	User: Accute	st				
#1	0.53903	0.00420	0.02573	0.06601	0.01477	0.03182	-0.01933	
#2	0.53502	0.00297	0.02313	0.06705	0.01564	0.02688	-0.00683	
#3	0.53908	0.00489	0.02548	0.06540	0.01264	0.02613	-0.01433	
Mean	0.53771	0.00402	0.02478	0.06615	0.01435	0.02828	-0.01350	
%RSD	0.43351	24.21444	5.78971	1.26583	10.75716	10.94035	46.59417	
	2203/2	2203/1	INT STD					
IS rat	tioed intensit	ties						
	Reading	Reading	Reading					
#1	0.118	0.334	61734.000					
#2	0.108	0.368	61877.000					
#3	0.109	0.355						
Mean	0.112	0.352	61815.000					
%RSD	4.817	4.966	0.119					
Final	concentration	18						
	ppm	ppm	intensity					
#1	0.08003	0.03797	-35.95					
#2	0.07378	0.05360	-32.31					
#3	0.07429	0.04761	-35.59					
Mean	0.07603	0.04640	-34.62					
%RSD	4.56292	16.99687	5.79					

Raw Data MA23347 page 77 of 235

Raw Data MA23347 page 79 of 235

Raw Data I	MA23347	page 77 of 2	235					
							◀ Zoom In	▶
							Zoom Out	
Printed: #1 #2 #3 Mean %RSD	10/27/2009 8 1.11996 1.11925 1.11652 1.11858 0.16226	0.01203 0.01241 0.01171 0.01205 2.93171	User: Accute 0.01937 0.02140 0.01840 0.01972 7.75634	0.06246 0.06092 0.05791 0.06043 3.83482	0.01862 0.01805 0.01478 0.01715 12.09212	0.02732 0.02157 0.02638 0.02509 12.29187	0.00121 0.01102 -0.00844 0.00126 769.75105	
	2203/2	2203/1	INT STD					
IS ra	tioed intensi	ties						
#1	Reading 0.107	Reading 0.368	Reading 61436.000					
#1	0.107	0.392	61430.000					
#3	0.103	0.348	61245.000					
Mean	0.102	0.369	61370.333					
%RSD	6.022	6.015	0.177					
Final	concentratio	ns						
#1 #2 #3 Mean %RSD	ppm 0.07125 0.06358 0.06889 0.06791 5.77772	0.04490 0.05560 0.03595 0.04549 21.63274	intensity -27.06 -29.89 -25.70 -27.55 7.76					

							Z
Method	: EPA3 d1 : ja30199-		File : it102	609m1	Printed :	10/27/2009	8:12:46 3
Samplel	d1 : ja30199-	-6	SampleId2			[SAMPLE]	
Analysi	s commenced : n ratio : 1.0	10/26/2009	7:09:28 PM				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be31:
IS rati	oed intensiti	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1 #2	0.810	0.121	0.011	0.120	0.746	0.037	0.0
	0.810	0.122	0.011	0.120	0.745	0.037	0.0
#3 Mean	0.809	0.120	0.010	0.120	0.744	0.037	0.0
%RSD	0.066	0.461	1.079	Reading 0.120 0.120 0.120 0.120 0.287	0.136	0.502	0.9
Final c							
	ppm	ppm	ppm	ppm	ppm	ppm	P.
#1	13.89307	0.24509	0.05124	0.17660	21.25230	0.22439	0.002
#2	13.87963	0.24561	0.05125	0.17698	21.22467	0.22437	0.002
#3	13.87496	0.24346	0.05033	0.17597	21.19472	0.22266	0.002
Mean	13.88255	0.24472	0.05094	0.17652	21.22390	0.22381	0.002
%RSD	13.89307 13.87963 13.87496 13.88255 0.06775						
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd22
IS rati	oed intensiti	.es	n	n 11	n	D 11	
	Reading	keading	Reading	Keading	Reading	keading	Readi
#1	0.054	0.061	-0.003	0.022	0.014	0.009	0.0
#2	0.055	0.062	-0.002	0.022	0.017	0.009	0.0
#3	0.055	0.061	-0.002	0.021	0.013	0.009	0.0
Mean %RSD	oed intensiti Reading 0.054 0.055 0.055 0.054 0.120	0.061	7.306	1.585	13.334	2.681	7.0
	nom	nnm	mag	ppm	maa	ppm	n
#1	0.11695	8.08528	-0.00671	0.02988	-0.00828	-0.00738	0.002
#2	0.11719	8.24047	-0.00519	0.02995	-0.00362	-0.00657	0.001
#3	0.11723	8.14250	-0.00602	0.02909	-0.00836	-0.00610	0.002
Mean	0.11712	8.15608	-0.00597	0.02964	-0.00675	-0.00668	0.001
%RSD	oncentrations ppm 0.11695 0.11719 0.11723 0.11712 0.12850	0.96224	12.75101	1.60882	40.18096	9.69422	20.722
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe27
IS rati	oed intensiti	.es					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.056	0.261	-0.012	0.832	2.779	0.585	2.1
#2	0.056	0.261	-0.011	0.833	2.779	0.580	2.1
#3	0.055	0.261	-0.011	0.830	2.775	0.580	2.1
Mean	0.056	0.261	-0.011	0.832	2.778	0.582	2.1
*KSD	oed intensiti Reading 0.056 0.056 0.055 0.056 0.056	0.159	1.114	U.185	0.090	0.484	0.1
#1	0.12837	0.19329	0.00106	11.49887	74.90526	2.62790	123.412
#2	0.12838	0.19280	0.00126	11.50726	74.89824	2.60455	123.539
#3	0.12641	0.19272	0.00107	11.46683	74.78474	2.60417	123.095
Mean	0.12772	0.19294	0.00113	11.49098	74.86275	2.61221	123.349
%RSD	oncentrations ppm 0.12837 0.12838 0.12641 0.12772 0.88859	0.15990	10.17252	0.18567	0.09036	0.52036	0.185
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960		
IS rati	oed intensiti	.es					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.668	0.015	0.003	0.000	0.000	-0.001	-0.0
#2	0.667	0.015	0.004	0.000	0.000	-0.005	-0.0
#3	0.666	0.014	0.002	0.000	0.000	-0.002	-0.1
Mean	0.667	0.015	0.003	0.000	0.000	-0.002	-0.0
	oed intensiti Reading 0.668 0.667 0.666 0.667 0.162	2.673	23.606	6.101	0.177	86.730	10.6
*RSD							
	oncentrations		ppm		ppm		p

Raw Data MA23347 page 78 of 235

Method SampleI	: EPA3 dl : ja30199-	7	File : it102 SampleId2	609ml	Printed	10/27/2009 [SAMPLE]	8:12:46 #
	s commenced : n ratio : 1.0						
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	oed intensiti	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Readir
#1 #2	0.377	0.137	0.006	0.061	1.020	0.027	0.00
	0.377	0.139	0.007	0.063	1.024	0.028	0.00
Mean	0.377	0.138	0.006	0.062	1.023	0.028	0.00
%RSD	0.100	0.705	Reading 0.006 0.007 0.006 0.006 2.616	0.968	0.252	0.418	2.03
Final c	oncentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	pp
#1	6.47447	0.27619	0.03129	0.08976	29.07281	0.15948	0.000
#3	6.47520	0.27998	0.03195	0.09074	29.20355	0.16066	0.000
Mean	6.47859	0.27837	0.03203	0.09068	29.15768	0.16022	0.000
%RSD	oncentrations ppm 6.47447 6.48610 6.47520 6.47859 0.10055	0.70196	2.47459	0.98057	0.25234	0.39962	5.5116
			Pd3404				
IS rati	oed intensiti	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.076	0.022	-0.003	0.028	-0.007	0.011	0.0
#2 #3	0.076	0.023	-0.003	0.030	-0.004	0.012	0.0
Mean	0.076	0.023	-0.003	0.030	-0.004	0.012	0.0
%RSD	0.361	3.471	Reading -0.003 -0.003 -0.003 -0.003 11.867	5.036	86.822	7.603	3.30
Final c							
	ppm 0.16675 0.16789 0.16779 0.16747 0.37740	ppm	ppm	ppm	ppm	ppm	PI
#1	0.16675	1.72676	-0.01089	0.03952	-0.01349	-0.00090	0.002
#3	0.16779	1.97100	-0.00330	0.04329	-0.00300	0.00337	0.002
Mean	0.16747	1.83496	-0.00930	0.04191	-0.00915	0.00198	0.002
%RSD	0.37740	6.78362	17.50655	4.94312	50.57611	126.16775	6.215
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe27
IS rati	oed intensiti	es					
#1	Reading	Reading	Reading -0.013 -0.012 -0.012 -0.012 4.510	Reading	Reading	Reading	Readi
#1 #2	0.028	0.213	-0.013	4.805	1.389	0.505	1.2
#3	0.020	0.213	-0.012	4.831	1.387	0.506	1.2
Mean	0.028	0.212	-0.012	4.822	1.389	0.505	1.2
#3 Mean %RSD	1.082	0.178	4.510	0.313	0.134	0.116	0.2
Final c	oncentrations						
#1	ppm 0.06708	0.15727	-0.00006	ppm 66.68213	ppm 37.30382	2.24228	70.413
#2	0.06723	0.15730	0.00045	67.04405	37.35582	2.24652	70.773
#3	0.06832	0.15680	0.00094	67.04652	37.25549	2.24765	70.731
Mean %RSD	0.06755	0.15712	-0.00006 0.00045 0.00094 0.00044 113.11726	66.92423	37.30504 0.13451	2.24548	70.639
	Mn2576		Sn1899			1960/2	
TO wat:	oed intensiti						
ro rati	Peading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.389	0.007	0.002	0.000	0.000	0.020	-0.1
#2	0.391	0.008	0.004	0.000	0.000	0.020	-0.10
#3 Mean	0.391	0.008	0.002	0.000	0.000	0.019	-0.10 -0.10
%RSD	0.390	6.514	Reading 0.002 0.004 0.002 0.003 25.924	4.947	0.116	4.187	7.6
Final c	oncentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	PI

Raw Data MA23347 page 80 of 235

							■ Zoom Ir	ır
							Zoom Ou	ıt
Printed:	10/27/2009 8:	12:46 AM	User: Accutes	вt				
#1	0.65306	0.00465	0.02113	0.17580	0.01120	0.02662	-0.01963	
#2	0.65604	0.00537	0.02365	0.18385	0.01649	0.02662	-0.00376	
#3	0.65521	0.00547	0.02080	0.17709	0.01287	0.02460	-0.01060	
Mean	0.65477	0.00516	0.02186	0.17891	0.01352	0.02595	-0.01133	
%RSD	0.23458	8.66228	7.12734	2.41470	19.99532	4.48015	70.24702	
	2203/2	2203/1	INT STD					
IS rat	ioed intensit	ies						
	Reading	Reading	Reading					
#1	0.309	0.519	60476.000					
#2	0.311	0.568	60409.000					
#3	0.302	0.549	60549.000					
Mean	0.308	0.545	60478.000					
%RSD	1.618	4.468	0.116					
Final	concentration:	В						
	ppm	ppm	intensity					
#1	0.19925	0.12891	-29.52					
#2	0.20063	0.15027	-33.03					
#3	0.19455	0.14218	-29.05					
	0.19814 1.61043	0.14045	-30.53					
Mean %RSD		7.67899	7.13					

Raw Data MA23347 page 81 of 235

Raw Data MA23347 page 83 of 235

		3					
							◀ Zoom In
							Zoom Ou
Printed:	10/27/2009 8:	12:46 AM	User: Accute	est			
#1	0.36996	0.00953	0.02009	0.02476	0.00559	0.01483	-0.01287
#2	0.36826	0.00845	0.01597	0.02575	0.00698	0.01858	
#3	0.36940	0.00932	0.01731	0.02002	0.00280	0.01251	-0.01663
Mean	0.36920	0.00910	0.01779	0.02351	0.00513	0.01531	-0.01524
%RSD	0.23491	6.30087	11.82027	13.02532	41.56797	20.01469	13.50860
	2203/2	2203/1	INT STD				
IS ra	tioed intensit	ies					
	Reading	Reading	Reading				
#1	0.056	0.224	57920.000				
#2	0.061	0.217					
#3	0.050	0.210	58090.000				
Mean		0.217					
%RSD	9.872	3.297	0.194				
Final	concentration	18					
	ppm	ppm	intensity				
#1	0.03106	0.01216	-28.06				
#2	0.03414	0.00896	-22.30				
#3	0.02711	0.00583					
Mean		0.00898	-24.85				
%RSD	11.44722	35.23859	11.82				

Method : SampleId Analysis	EPA3 11 : ja30199 commenced	-8 : 10/26/2009	File : it102 SampleId2 7:21:43 PM	2609ml 2 :	Printed	: 10/27/2009 [SAMPLE]	8:12:4
Dilution	ratio : 1.	00000 to 1.0	10000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.360	0.056	0.004	0.058	0.371	0.016	0
#3	0.360	0.055	0.004	0.057	0.370	0.015	0
Mean	0.360	0.056	0.004	0.058	0.371	0.015	ŏ
%RSD	0.044	0.895	4.281	Reading 0.058 0.057 0.058 0.058 0.651	0.218	1.203	2
	ppm	ppm	ppm	ppm 0.08472 0.08363 0.08437 0.08424 0.65988	ppm	ppm	
#1	6.22566	0.11430	0.02083	0.08472	10.58195	0.09416	0.0
#2	6.22546	0.11237	0.01931	0.08363	10.54379	0.09257	0.0
#3	6.22112	0.11380	0.02046	0.08437	10.58530	0.09433	0.0
Mean %PSD	0.22400	0.11349	3 91422	0.00424	0.37035	1 03632	9.1
UICOD.							
				As1890			
IS ratio	ed intensit	ies	Dandin.	Reading 0.008 0.005 0.006 0.006 20.885	Daniel.	D41.	D.
#1	Reading	Reading	-n nn?	keading	Reading	keading	kea n
#1	0.026	0.023	=0.003	0.000	-0.007	0.003	0
#3	0.026	0.021	-0.003	0.005	-0.003	0.007	ň
Mean	0.026	0.022	-0.003	0.006	-0.008	0.008	0
%RSD	0.055	3.576	8.176	20.885	14.393	9.926	4
Final co	oncentration	в		ppm 0.01154 0.00817 0.00877 0.00949 18.96975			
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.05305	1.77602	-0.00749	0.01154	-0.00451	-0.00704	0.0
#2	0.05306	1.55545	-0.00850	0.00817	-0.00723	-0.01097	0.0
Mean	0.05307	1.69960	-0.00751	0.00949	-0.00550	-0.00841	0.0
%RSD	0.06263	7.34967	13.07231	18.96975	27.49422	26.46171	10.2
	Ni2316	Ba4934	Ag3280				Fe
IS ratio							
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.019	0.142	-0.011	1.397	0.855	0.442	0
#2	0.019	0.142	-0.012	1.386	0.855	0.437	0
#3	0.019	0.142	-0.011	1.395	0.856	0.440	0
%RSD	1.372	0.093	3.194	Reading 1.397 1.386 1.395 1.392 0.417	0.049	0.516	0
Final co	ncentration	R					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.04750	0.10496	0.00160	19.36533	22.87136	1.94101	52.5
#2	0.04638	0.10484	0.00096	19.21228	22.85785	1.91936	52.2
#3	0.04665	0.10477	0.00130	19.33274	22.88052	1.93258	52.4
Mean	0.04684	0.10486	0.00129	19.30345	22.86991	1.93098	52.4
ansD	1.24523	0.09378	25.13191	ppm 19.36533 19.21228 19.33274 19.30345 0.41762	0.04986	0.56512	0.2
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS ratio	ed_intensit	ies					_
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.221	0.013	0.002	0.000	0.000	0.018	-0
#2	0.220	0.012	0.000	0.000	0.000	0.021	-0
Mean	0.220	0.013	0.000	0.000	0.000	0.019	-0
%RSD	0.235	5.040	151.748	Reading 0.000 0.000 0.000 0.000 0.193	0.193	11.241	1
				ppm			
		-					

Raw Data MA23347	page 82 of 235
Raw Data MA23341	page 62 of 235

Method :	EPA3	۵	File : it10:	2609ml 2 :	Printed :	10/27/2009	8:12:46 #
Analysis	commenced :	10/26/2009	7:27:51 PM	۷.		[SAMPLE]	
Dilution	ratio : 1.0	0000 to 1.0	0000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS ratio	ed intensiti	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.293	0.053	0.005	0.058	0.311	0.014	0.00
#2 #3	0.297	0.047	0.003	0.053	0.295	0.012	0.00
#3 Mean	0.296	0.047	0.003	0.055	0.294	0.012	0.00
Mean %RSD	0.574	7.057	37.037	Reading 0.058 0.053 0.053 0.055 5.781	3.175	9.334	10.37
Final co	ncentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	PI
#1	5.04298	0.10732	0.02332	0.08495	8.84634	0.07812	0.0012
#2	5.09036	0.09579	0.01371	0.07714	8.39136	0.06797	0.0009
#3 Mann	5.08222	0.09493	0.01339	0.07660	8.36256	0.06/56	0.0003
PDCD	0.07100	6 96100	0.01061	ppm 0.08495 0.07714 0.07660 0.07956 5.86972	0.00042	0.0/122	10 642
*RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS ratio	ed intensiti	es n:-	Daniel.	ndi-	Dandin.	D4:-	D 31
#1	veanina	veaning	-0 003	reauring	-0.017	vearing.	Readil
#2	0.026	0.062	=0.003	=0.003	-0.017	=0.008	-0.00
#3	0.026	0.052	-0.008	-0.008	-0.030	-0.002	-0.00
Mean	0.027	0.055	-0.006	-0.004	-0.025	0.001	0.00
%RSD	0.026 0.026 0.027 4.126	10.175	51.625	Reading 0.003 -0.006 -0.008 -0.004 155.290	27.959	381.678	492.20
Final co	ncentrations						
41	ppm	ppm	ppm	ppm	ppm	ppm	0.0004
#1	0.05073	6 22652	-0.00002	-0.00567	-0.00962	-0.00966	-0.001
#2	0.05236	6 19516	-0.03136	-0.00073	-0.02337	-0.03402	-0.001
Mean	0.05382	6.77386	-0.02339	-0.00358	-0.02102	-0.02678	-0.000
%RSD	4.69713	13.03175	61.34426	0.00567 -0.00673 -0.00967 -0.00358 227.65931	47.12653	-0.03606 -0.02678 55.43215	125.881
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe27:
IS ratio	ed intensiti	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.032	0.160	-0.013	0.741	1.430	0.554	0.59
#2	0.027	0.160	-0.022	0.710	1.436	0.541	0.5
#3	0.027	0.160	-0.022	0.708	1.434	0.542	0.5
Mean %RSD	8.594	0.102	28.191	Reading 0.741 0.710 0.708 0.720 2.534	0.203	0.542 0.545 1.300	2.32
	ppm	ppm	ppm	ppm	ppm	ppm	PI
#1	0.07386	0.11813	-0.00023	10.25290	38.42079	2.48073	33.781
#2	0.06468	0.11837	-0.00853	9.82692	38.57722	2.41948	32.524
#3 Moon	0.0641/	0.11829	-0.008/5	9.80348	38.51140	2.42417	32.3894
%RSD	8.06780	0.11625	83.16834	ppm 10.25290 9.82692 9.80348 9.96110 2.53968	0.20399	1.39635	2.3330
				Pb2203			
IS ratio	ed intensiti	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Readir
#1	0.247	0.006	0.001	0.000	0.000	0.021	-0.08
#2	0.241	0.000	-0.006	0.000	0.000	0.000	-0.16
#3 Mean	0.241	-0.001	-0.007	0.000	0.000	-0.004	-0.15 -0.1
%RSD	0.241 0.241 0.243 1.428	219.880	110.983	Reading 0.000 0.000 0.000 0.000 14.973	10.232	228.260	31.04
Final co	ncentrations						
	ppm		ppm	ppm	ppm	ppm	PE

Raw Data MA23347 page 84 of 235

							■ Zoom I	
							Zoom O	ut
Printed:	10/27/2009 8	:12:46 AM	User: Accute	est				
#1	0.41407	0.00304	0.01970	0.02752	0.00730	0.00758	0.00674	
#2	0.40482	-0.00261	0.00583	-0.02404	-0.03773	-0.02435	-0.06448	
#3	0.40331	-0.00313	0.00288	-0.02848	-0.04031	-0.03037	-0.06020	
Mean	0.40740	-0.00090	0.00947	-0.00833	-0.02358	-0.01571	-0.03931	
%RSD	1.42929	380.89734	94.83572	373.50572	113.56003	129.82486	101.60357	
	2203/2	2203/1	INT STD					
IS rat	ioed intensi	ties						
	Reading	Reading	Reading					
#1	0.051	0.257	62251.000					
#2	-0.010	0.085	59224.000					
#3	-0.024	0.096	59254.000					
Mean	0.006	0.146	60243.000					
%RSD	707.573	65.968	2.887					
Final	concentration	ns						
	ppm	ppm	intensity					
#1	0.02860	0.02536	-27.51					
#2	-0.01058	-0.05098	-8.15					
#3	-0.01982	-0.04581	-4.02					
Mean	-0.00060	-0.02381	-13.23					
%RSD	4296.05029	179.19266	94.84					

Raw Data MA23347 page 85 of 235

Raw Data MA23347 page 87 of 235

							◀ Zoom Ir
							Zoom O
Printed	: 10/27/2009	8:12:47 AM	User: Accute	st			
#1	0.82897	0.00603	0.02067	0.07928	0.00765	0.00541	0.01213
#2	0.83393	0.00658	0.02407	0.08082	0.00921	0.01078	0.00608
#3	0.83043	0.00597	0.02117	0.07320	-0.00080	-0.00146	0.00052
Mean	n 0.83111	0.00619	0.02197	0.07777	0.00535	0.00491	0.00624
%RS	0.30646	5.44660	8.34691	5.18366	100.61457	124.96214	93.05224
	2203/2	2203/1	INT STD				
IS r	atioed intens	ities					
	Reading	Reading	Reading				
#1	0.135	0.353	57922.000				
#2	0.140	0.348	57568.000				
#3	0.132	0.321	57667.000				
Mean	n 0.136	0.341	57719.000				
%RSI	3.203	5.015	0.316				
Fina	l concentrati	ons					
	ppm	ppm	intensity				
#1	0.10745		-28.88				
#2			-33.62				
#3			-29.57				
Mean							
%RSI	2.65879	43.51976	8.35				

Method : SampleId	EPA3 11 : ja30199	-10	File : it10 SampleId	2609ml 2 :	Printed	: 10/27/2009 [SAMPLE]	8:12:47
Analysis	commenced	: 10/26/2009 00000 to 1.0	7:33:58 PM				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be31
IS ratio	ed_intensit	ies					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#2	0.563	0.095	0.006	0.047	3.300	0.026	0.0
#3	0.564	0.094	0.006	0.047	3.310	0.026	0.0
Mean %RSD	0.564	0.095	0.006	0.047	3.313	0.027	0.0
%RSD	0.111	0.651	1.572	Reading 0.047 0.047 0.047 0.047 0.185	0.215	0.635	1.1
Final co	ncentration	В					
	ppm	ppm	ppm	ppm	ppm	ppm	P
#1	9.21969	0.19019	0.02938	0.06922	94.31248	0.15464	0.000
#2	9.23725	0.19222	0.02996	0.06937	94.68649	0.15640	0.000
#3 Mean	9.23005	0.10990	0.02910	0.06936	94.30120	0.15497	0.000
%RSD	0.10626	0.64823	1.48624	ppm 0.06922 0.06937 0.06948 0.06936 0.18726	0.21527	0.59999	2.495
				As1890			
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.041	0.024	-0.004	0.014	0.004	0.011	0.0
#2	0.042	0.025	-0.003	0.016	0.003	0.013	0.0
#3 Mean	0.041	0.024	-0.004	0.014	0.004	0.012	0.0
%RSD	0.718	2.447	6.839	Reading 0.014 0.016 0.014 0.014 8.843	15.116	5.709	5.1
Final co	ncentration	8		ppm 0.02180 0.02505 0.02213 0.02299 7.78614			
	ppm	ppm	ppm	ppm	ppm	ppm	p
#1	0.08706	1.60556	-0.01219	0.02180	-0.00407	-0.00064	0.002
#2	0.08685	1.70232	-0.01051	0.02505	-0.00363	0.00308	0.002
Mean	0.08734	1.67701	-0.01175	0.02299	-0.00453	0.00131	0.002
%RSD	0.78202	5.56112	9.31298	7.78614	21.03968	140.98211	9.124
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe27
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.028	0.305	-0.011	25.849	1.200	0.509	1.2
#2	0.029	0.306	-0.011	25.041	1.203	0.511	1.2
Mean	0.028	0.305	-0.011	25.923	1.202	0.509	1.2
%RSD	1.103	0.066	1.762	Reading 25.849 26.041 25.877 25.923 0.401	0.120	0.321	0.3
Final co	ncentration	В		ppm 358.92023 361.59207 359.31454 359.94228 0.40070			
#1	n nege	n saeee	ppm 0 00161	ppm ppm	22 16602	2 25521	70 263
#1	0.00000	0.22584	0.00161	361.592023	32.10092	2.25531	70.262
#3	0.06963	0.22562	0.00161	359.31454	32.22135	2.25192	70.249
Mean	0.06958	0.22567	0.00172	359.94228	32.21020	2.25802	70.413
%RSD	1.00634	0.06450	10.60463	0.40070	0.12083	0.34636	0.385
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960
IS ratio	ed intensit	ies		D 11	D	m - 11	
4.7	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1 #2	0.494	0.007	0.002	0.000	0.000	0.011	-0.0
#4	0.497	0.008	0.003	0.000	0.000	0.014	-0.1
Mean	0.495	0.007	0.002	0.000	0.000	0.010	-0.1
#2 #3 Mean %RSD	0.306	5.016	34.842	Reading 0.000 0.000 0.000 0.000 0.316	0.316	39.513	5.9
	ncentration	В					
	nnm	ppm					7

D D-1- MA00047	00 -f 00F
Raw Data MA23347	page 86 of 235

Method	: EPA3 Idl : ja30199-1	1	File : it102	609ml	Printed	: 10/27/2009	8:12:47 #
Analys	is commenced :	10/26/200	9 7:40:06 PM			[SAMPLE]	
Diluti	on ratio : 1.00	0000 to 1.	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rat	ioed intensitie	es .					
#1	Reading	Reading	Reading 0.004 0.004 0.004	Reading	Reading	Reading	Readir
#1 #2	0.364	0.172	0.004	0.121	0.272	0.026	0.00
#3	0.302	0.171	0.004	0.120	0.270	0.026	0.00
Mean	0.363	0.172	0.004	0.120	0.271	0.026	0.00
%RSD	0.424	0.172 0.480	0.004 0.004 3.506	0.120 0.120 0.120 0.417	0.271 0.271 0.350	0.166	0.89
Final	concentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	PI
#1	6.11931	0.34675	0.01856	0.17722	7.72666	0.13890	0.000
#2	6.07303	0.34447	0.01077	0.17579	7.67200	0.13031	0.000
Mean	6.09029	0.34630	0.01902	0.17641	7.69908	0.13863	0.000
%RSD	ppm 6.11931 6.07305 6.07850 6.09029 0.41515	0.47807	ppm 0.01856 0.01877 0.01972 0.01902 3.25688	0.41910	0.35009	0.17077	2.721
			Pd3404				

15 rat	ioed intensitie Reading	Reading	Reading -0.007 -0.006 -0.006 -0.006 5.475	Reading	Reading	Reading	Readin
#1	0.030	0.044	-0.007	0.001	-0.011	0.010	0.0
#2	0.030	0.044	-0.006	-0.001	-0.013	0.011	0.0
#3	0.030	0.045	-0.006	0.000	-0.010	0.013	0.0
Mean	0.030	0.044	-0.006	0.000	-0.011	0.011	0.0
%RSD	0.619	1.401	5.475	363.993	12.319	10.488	8.5
Final	concentrations ppm	nnm	nn.	nnm.	nnm	n.m.	101
#1	0.06107 0.06035 0.06033 0.06058 0.69570	4.88722	-0.02485	0.00392	0.00086	-0.00187	0.000
#2	0.06035	5.00657	-0.02382	0.00093	-0.00148	0.00015	0.000
#3	0.06033	5.07869	-0.02186	0.00284	0.00241	0.00456	0.000
Mean	0.06058	4.99083	-0.02351	0.00256	0.00060	0.00095	0.000
%RSD	0.69570	1.93763	ppm -0.02485 -0.02382 -0.02186 -0.02351 6.46194	58.99811	328.38961	348.08096	22.343
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe27
IS rat	ioed_intensitie	s					
#1	Reading	Reading	Reading -0.013 -0.013 -0.012 -0.013	Reading	Reading	Reading	Readi
#2	0.023	0.585	-0.013	0.165	3 979	0.680	0.5
#3	0.023	0.584	-0.012	0.165	3.978	0.682	0.5
Mean	0.023	0.586	-0.012 -0.013 4.239	0.164	3.979 3.978 3.989 0.454	0.683	0.5
%RSD	0.143	0.465	4.239	0.334	0.454	0.459	0.3
Final	concentrations ppm 0.05577 0.05576 0.05590 0.05581 0.13467						
#1	0.05577	0.43764	-0.0003 <i>0</i>	2.23771	108.18502	3.12127	32.668
#2	0.05576	0.43434	0.00008	2.22370	107.34803	3.09165	32.438
#3	0.05590	0.43396	0.00058	2.23547	107.32643	3.10084	32.626
Mean	0.05581	0.43531	0.00009	2.23229	107.61983	3.10459	32.577
%RSD	0.13467	0.46549	541.90742	0.33719	0.45493	0.48833	0.374
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960
IS rat	ioed_intensitie	s					
#1	Reading 0.148	Reading 0.006	Reading	Reading	Reading 0.000 0.000 0.000 0.000	Reading 0.017	Readin -0.0
#2	0.146	0.006	0.005	0.000	0.000		-0.0
#3	0.148	0.006	0.006	0.000	0.000	0.000	-0.08
Mean	0.148	0.006	0.006	0.000	0.000	0.020 0.020 15.268	-0.0
%RSD	0.365	0.766	0.005 0.006 0.006 0.006 10.336	24.484	7.289	15.268	8.96
Final	concentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	PI

Raw Data MA23347 page 88 of 235

							¬ ∠00Π	ı ın 🗠
							Zoom	Out
Printed: #1 #2 #3 Mean %RSD	10/27/2009 8: 0.24905 0.24726 0.24840 0.24824 0.36521	12:47 AM 0.00315 0.00321 0.00322 0.00319 1.17596	User: Accute 0.02936 0.03023 0.03187 0.03049 4.18234	0.03695 0.04083 0.03647 0.03808 6.27995	0.00803 0.01148 0.00631 0.00861 30.58727	-0.00056 0.00831 0.00332 0.00369 120.46193	0.02521 0.01781 0.01229 0.01844 35.15610	
***************************************	2203/2	2203/1	INT STD	0.27333	30.30727	120.10193	33.13010	
	2203/2	2203/1	INI SID					
IS rat	cioed intensit							
#1 #2	Reading 0.029 0.045	Reading 0.389 0.371	Reading 61277.000 61625.000					
#3 Mean	0.037 0.037	0.363	61470.000 61457.333					
%RSD	20.554	3.580	0.284					
Final	concentration	S						
#1 #2 #3 Mean %RSD	ppm 0.02291 0.03259 0.02787 0.02779 17.41424	0.06502 0.05732 0.05368 0.05868 9.86906	intensity -41.01 -42.23 -44.52 -42.59 4.18					

Raw Data MA23347 page 89 of 235

Raw Data MA23347 page 91 of 235

							◀ Zoom I
							Zoom O
Printed:	10/27/2009 8	3:12:47 AM	User: Accute	est			
#1	0.39808	0.00342	0.02264	0.03197	0.00981	0.03303	-0.03664
#2	0.39164	-0.00130	0.01058	0.00867	-0.00666	0.01299	-0.04595
#3	0.39294	-0.00122	0.00985	0.00837	-0.00777	0.01003	
Mean	0.39422	0.00030	0.01435	0.01633	-0.00154	0.01869	-0.04199
%RSD	0.86412	899.21559	50.03198	82.89147	639.44963	66.96974	11.45628
	2203/2	2203/1	INT STD				
IS ra	tioed intensi	ties					
	Reading	Reading	Reading				
#1	0.109	0.118	62369.000				
#2	0.055	0.115					
#3	0.051	0.125					
Mean		0.119	60690.333				
%RSD	44.857	4.038	2.399				
Final	concentratio	ons					
	ppm	ppm	intensity				
#1	0.06503	-0.03416	-31.62				
#2	0.03064	-0.03528					
#3	0.02811	-0.03112					
Mean		-0.03352	-20.05				
%RSD	49.98457	6.41334	50.03				

Method:	EPA3		File : it102 SampleId2	609ml	Printed	: 10/27/2009	8:12:4
Sampleid	II : Ja30199	9-12	SampleId2	:		[SAMPLE]	
Analysis	commenced	: 10/26/200	9 7:46:13 PM				
Dilution	ratio : 1.	00000 to 1.	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be
TS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.424	0.062	0.007	0.052	0.447	0.017	0
#2	0.430	0.058	0.005	0.047	0.430	0.015	0
# 2	0.422	0.050	0.006	0.049	0.421	0.016	0
#3	0.432	0.056	0.005	0.040	0.431	0.015	Ü
mean	0.429	0.059	0.006	0.049	0.436	0.016	- 0
*RSD	0.990	4.323	Reading 0.007 0.005 0.005 0.006 15.905	5.179	2.184	6.089	13
Final co	ncentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	7.24965	0.12636	0.03275	0.07575	12.74486	0.09737	0.0
#2	7.34941	0.11719	0.02522	0.06899	12.26066	0.08854	0.0
#3 Mean %RSD	7.38105	0.11773	0.02582	0.06953	12.28874	0.08886	0.0
Mean	7.32671	0.12043	0.02793	0.07142	12.43142	0.09159	0.0
%RSD	0.93603	4.27351	14.98823	5.26391	2.18644	5.46889	89.6
31102		1.2.331	ppm 0.03275 0.02522 0.02582 0.02793 14.98823		2.10014		
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd
IS ratio	ed intensit	ies					
	Reading	Reading	Reading 0.002 -0.002 -0.002 -0.001 361.131	Reading	Reading	Reading	Rea
#1	0.042	0.032	0.002	0.010	-0.008	0.011	0
#2	0.041	0.024	-0.002	0.002	-0.023	0.003	0
#3	0.041	0.024	-0.002	0.002	-0.023	0.003	ñ
Moon	0.011	0.021	-0.001	0.002	-0.019	0.005	n n
an on	1.052	16 777	261 121	07.005	46 505	0.000	20
			301.131	97.019	40.505	07.770	39
Final co	ncentration	is ppm	nn.	nnm	p.p.m	nnm	
44.7	0 00004	2 16701	0 01475	0.01450	0 00163	0 00022	0.0
#1	0.08894	3.16/81	0.014/5	0.01459	-0.00163	0.00032	0.0
#2	0.08701	1.95683	-0.00527	0.00357	-0.02226	-0.02298	0.0
#3	0.08753	1.94143	-0.00581	0.00447	-0.02182	-0.02328	0.0
Mean	0.08783	2.35536	0.00122	0.00755	-0.01524	-0.01531	0.0
%RSD	1.13737	29.87432	ppm 0.01475 -0.00527 -0.00581 0.00122 958.02512	81.11568	77.34054	88.43360	77.1
			Ag3280				
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.025	0.181	-0.004	1.391	0.971	0.449	0
#2	0.021	0 102	-0.011	1 250	0.079	0.443	0
# 4	0.021	0.103	-0.011	1.330	0.970	0.444	0
#3	0.022	0.184	-0.011	1.354	0.982	0.444	ū
Mean	0.023	0.183	-0.009	1.365	0.977	0.445	0
*RSD	8.253	0.679	Reading -0.004 -0.011 -0.011 -0.009 49.021	1.629	0.573	0.700	1
Final co	ncentration	ıs	0.00801 0.00128 0.00145 0.00358 107.26064				
	ppm	ppm	ppm	ppm	ppm	ppm	40 -
#1	0.05893	0.13428	0.00801	19.27692	26.00399	1.97308	42.7
#2	0.05171	0.13564	0.00128	18.71765	26.18939	1.94530	41.5
#3	0.05191	0.13605	0.00145	18.77173	26.30409	1.94975	41.6
Mean	0.05418	0.13532	0.00358	18.92210	26.16582	1.95604	41.9
&PSD	7 59615	0.68491	107 26064	1 63024	0.57873	0.76266	1 5
andu	7.33013	0.00191	207.20004	1.03024	0.57073	0.70200	1.5
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.237	0.006	0.003	0.000	0.000	0.035	-0
#2	0.234	0.001	-0.003	0.000	0.000	0.022	-0
	0.234	0.001	-0.003	0.000	0.000	0.022	n
	0.234	0.001	-0.003	0.000	0.000	0.020	-0
#3 Moon	0.233	102 255	-0.001	17.000	0.000	20.025	-0
#3 Mean		±∪2.365	209.483	17.850	2.36/	32.385	3
#1 #2 #3 Mean %RSD	0.005						
	ncentration	18	ppm				

Raw Data MA23347	page 90 of 235
Raw Dala WAZSS4/	Daue 90 OI 233

Method	: EPA3 dl : ja30199-1	2	File : it102	609ml	Printed	: 10/27/2009	8:12:47 #
Analyei	g: :]a30199-1	.3 10/26/200	9 7:52:21 DM			[SAMPLE]	
Dilutio	n ratio : 1.00	0000 to 1.	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	oed intensitie	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1 #2	0.326	0.048	0.005	0.071	0.334	0.019	0.00
#3	0.326	0.048	0.005	0.070	0.333	0.019	0.00
Mean	0.326	0.048	0.005	0.071	0.334	0.019	0.00
%RSD	0.074	0.313	Reading 0.005 0.005 0.005 0.005 1.777	0.217	0.175	0.620	1.29
Final c	oncentrations						
#1	ppm E 61E10	n nazez	o ossae ppm	n 10222	ppm 0 51207	n 10074	o ooo
#2	5.62140	0.09744	0.02343	0.10315	9.48106	0.10881	0.0002
#3	5.61439	0.09803	0.02311	0.10360	9.50261	0.10991	0.0002
Mean	5.61699	0.09776	0.02308	0.10336	9.49918	0.10948	0.0002
%RSD	oncentrations ppm 5.61518 5.62140 5.61439 5.61699 0.06835	0.30801	1.65013	0.21991	0.17550	0.54309	5.8846
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed_intensitie	s					
#1	Reading	Reading	Reading -0.002 -0.003 -0.002 -0.002 14.171	Reading	Reading	Reading	Readin
#2	0.021	0.024	-0.002	0.001	-0.005	0.012	0.00
#3	0.020	0.023	-0.003	0.001	-0.007	0.010	0.00
Mean	0.021	0.024	-0.002	0.001	-0.006	0.011	0.00
%RSD	0.816	2.940	14.171	22.753	19.729	6.647	12.60
Final c	oncentrations						
#1	ppm 0.03974 0.03924 0.04000 0.03966 0.97399	1 06692	-u uu430	n nnava	n noini	n nosia	n nnns
#2	0.03924	1.80328	-0.00698	0.00222	-0.00205	-0.00192	0.000
#3	0.04000	2.01216	-0.00495	0.00273	0.00083	0.00053	0.000
Mean	0.03966	1.92742	-0.00541	0.00246	-0.00007	0.00027	0.000
%RSD							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe27
IS rati	oed intensitie	s					
#1	Reading	Reading	Reading -0.012 -0.013 -0.012 -0.013 4.160	Reading	Reading	Reading	Readi
#2	0.048	0.123	-0.012	0.635	1.540	0.436	0.8
#3	0.047	0.123	-0.012	0.638	1.548	0.435	0.8
Mean	0.048	0.123	-0.013	0.637	1.550	0.436	0.8
%RSD	0.425	0.199	4.160	0.637	0.197	0.436 0.042	0.0
Final c	oncentrations	DDm	nem	Drom	nem	DDm	***
#1	0.10937	0.09104	0.00014	8.80896	41.61933	1.91125	46.770
#2	0.10986	0.09137	-0.00068	8.78268	41.75778	1.90990	46.744
#3	0.10897	0.09106	0.00016	8.81628	41.61106	1.90956	46.7788
Mean %RSD	oncentrations ppm 0.10937 0.10986 0.10897 0.10940 0.40712	0.09116	-0.00013 376.95700	8.80264 0.20074	41.66272 0.19784	1.91024 0.04653	0.0378
			Sn1899				
IS rati	oed intensitie	s					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.252	0.011	0.003	0.000	0.000	0.017	-0.09
#2 #3	0.252	0.010	0.003	0.000	0.000	0.023	-0.08
Mean	0.252	0.011	0.003	0.000	0.000	0.023 0.020 0.020	-0.09
%RSD	0.060	5.450	Reading 0.003 0.003 0.003 0.003 4.906	6.954	Reading 0.000 0.000 0.000 0.000 0.129	14.350	5.75
Final c	oncentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	PE

Raw Data MA23347 page 92 of 235

							₹ 200m	ın 🖻
							Zoom ()ut
Printed:	10/27/2009 8:	12:47 AM	User: Accute	est				
#1	0.42225	0.00718	0.02299	0.00917	0.00459	0.00915	-0.00452	
#2	0.42180	0.00644	0.02243	0.01754	0.01345	0.01765	0.00505	
#3	0.42182	0.00741	0.02284	0.01281	0.01036	0.01394	0.00320	
Mean		0.00701	0.02275	0.01317	0.00947	0.01358	0.00124	
%RSD	0.06040	7.19846	1.26888	31.84130	47.48267	31.37603	407.99795	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit							
	Reading	Reading	Reading					
#1	0.025	0.208	60021.000					
#2	0.038	0.228	59970.000					
#3	0.031	0.217	60122.000					
Mean		0.218	60037.667					
%RSD	20.150	4.630	0.129					
Final	concentration	ıs						
	ppm	ppm	intensity					
#1	0.01264	0.00224	-32.11					
#2	0.02073	0.01116	-31.33					
#3	0.01614	0.00614	-31.90					
Mean		0.00651	-31.78					
%RSD	24.57119	68.67999	1.27					

Raw Data MA23347 page 93 of 235

Raw Data MA23347 page 95 of 235

							◀ Zoom I
							Zoom O
Printed:	10/27/2009 8:	12:47 AM	User: Accutes	st			
#1	0.53487	0.00283	0.02240	0.03813	0.00695	0.01343	-0.00601
#2	0.53622	0.00467	0.02351	0.04170	0.00823	0.01586	-0.00703
#3	0.53178	0.00378	0.02269	0.03752	0.00505	0.01622	-0.01728
Mean	0.53429	0.00376	0.02287	0.03911	0.00674	0.01517	-0.01011
%RSD	0.42526	24.52938	2.52237	5.77113	23.70585	9.99420	61.67387
	2203/2	2203/1	INT STD				
IS rat:	ioed intensit	ies					
	Reading	Reading	Reading				
#1	0.083	0.256	59320.000				
#2	0.093	0.252	59565.000				
#3	0.091	0.228	59686.000				
Mean	0.089	0.246	59523.667				
%RSD	5.708	6.097	0.313				
Final	concentration	18					
	ppm	ppm	intensity				
#1	0.05313	0.00811	-31.29				
#2	0.05928	0.00653	-32.84				
#3	0.05807	-0.00359	-31.70				
Mean	0.05683	0.00369	-31.94				
%RSD	5.73127	172.19780	2.52				
%RSD	5.73127	172.19780	2.52				

******	PD 3 2		m: 1	500 3	B 1	. 10/05/0000	0.10.4
Method :	EPA3	-14	File : itl02	1609ml	Printed	[SAMDLE]	8:12:4
Analysis	commenced ratio : 1.	: 10/26/2009	7:58:28 PM			(omit III)	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading 0.945	Reading	Rea
#1	0.402	0.088	0.106	0.051	0.945	0.016	0
#2	0.400	0.089	0.106	0.052	0.946	0.016	0
#3 Mean	0.399	0.088	0.105	0.051	0.940	0.016	0
%RSD	0.284	0.674	0.544	0.355	0.945 0.946 0.940 0.943 0.324	0.811	ő
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	6.85383	0.17822	0.49503	0.07487	26.92491	0.09394	0.0
#2	6.82387	0.17978	0.49543	0.07533	26.95968	0.09482	0.0
#3	6.81735	0.17744	0.49061	0.07485	26.79412	0.09347	0.0
Mean %RSD	0.28478	0.17848	0.49369	0.07502	ppm 26.92491 26.95968 26.79412 26.89290 0.32462	0.09408	1.6
					T11908		
TC							
IS TACIC	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.042	0.025	-0.004	0.006	-0.008	0.012	0
#2	0.042	0.026	-0.003	0.006	-0.004	0.013	0
#3	0.042	0.025	-0.004	0.005	-0.007	0.013	0
Mean	0.042	0.026	-0.004	0.006	-0.006	0.012	0
			0.520	12.009	Reading -0.008 -0.004 -0.007 -0.006 36.386	0.353	2
Final co	ncentration	S nnm	nnm	nnm	-0.00474 0.00157 -0.00343 -0.00220 151.37289	nnm	
#1	0.08904	2.18725	-0.01178	0.01023	-0.00474	0.00135	0.0
#2	0.08984	2.38868	-0.00925	0.00979	0.00157	0.00520	0.0
#3	0.08922	2.21484	-0.01131	0.00837	-0.00343	0.00507	0.0
Mean	0.08937	2.26359	-0.01078	0.00946	-0.00220	0.00387	0.0
4KSD							
	Ni2316		Ag3280	Ca3179	A13082	Si2881	Fe
IS ratio	ed intensit	ies		D	Reading 1.115 1.110 1.109 1.112 0.292	D	
#1	0.026	0 144	0.010	5 614	1 115	0 988	n n
#2	0.026	0.143	0.011	5.622	1.110	0.986	0
#3	0.026	0.143	0.010	5.577	1.109	0.965	ō
Mean %RSD	0.026	0.143	0.010	5.604	1.112	0.980	0
%RSD	0.913	0.328	4.551	0.430	0.292	1.303	0
Final co	ncentration	B DDM	nnm	nnm	29.88775 29.75060 29.72464 29.78766 0.29423	n.m.	
#1	0.06435	0.10601	0.02061	77.91252	29.88775	4.57513	49.5
#2	0.06419	0.10538	0.02124	78.02970	29.75060	4.56870	49.6
#3	0.06335	0.10543	0.02043	77.40029	29.72464	4.46529	49.3
Mean	0.06396	0.10561	0.02076	77.78084	29.78766	4.53637	49.5
%RSD	0.84008	0.32976	2.03855	0.43035	0.29423	1.35891	0.3
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS ratio	ed intensit	ies	D	n 11.	D	D 111	
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1 #2	0.319	0.006	0.003	0.000	0.000	0.019	-0
#2	0.320	0.008	0.003	0.000	0.000	0.021	-0
Mean	0.319	0.007	0.003	0.000	0.000	0.021	-0
%RSD	0.425	15.658	9.952	6.872	Reading 0.000 0.000 0.000 0.000 7.759	5.094	6
Final co	ncentration	В					
						ppm	

Raw Data MA23347	page 94 of 235

							◀ Zo
							20
Method SampleI	: EPA3 dl : CCV		File : it102 SampleId2	609ml	Printed :	10/27/2009 [FLEXQC]	8:12:47 A
Analvsi	s commenced	: 10/26/2009 00000 to 1.0	8:04:35 PM				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS ratio	oed intensit	ies		D	D	D 11	D 111
#1	keading	keading	Reading	keading	Reading 1.459 1.454 1.467 1.460 0.446	Reading	Reading
#2	2.243	1.025	0.435	1.358	1.454	0.405	4.32
#3	2.237	1.043	0.438	1.370	1.467	0.407	4.358
Mean %RSD	2.245	1.031	0.436	1.362	1.460	0.406	4.332
%RSD	0.447	0.993	0.437	0.451	0.446	0.326	0.526
Final c	oncentration	s					
#1	27 00004	2 061E0	2 03606 ppm	2 0120E	41 610E1	2 04779	2 nees
#2	37.64761	2.06190	2.03090	2.01395	41.47155	2.04778	2.0002
#3	37.55763	2.09740	2.04883	2.02857	ppm 41.61851 41.47155 41.84074 41.64360 0.44633	2.05652	2.0871
Mean	37.69539	2.07361	2.03906	2.01812	41.64360	2.04921	2.07490
%RSD	0.44266	0.99370					
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS ratio	oed intensit	ies					
#1	Reading	Reading	Reading	Reading	Reading 1.344 1.341 1.349	Reading	Reading
#1 #2	0.830	0.259	0.421	1.421	1.344	0.768	8.07
#3	0.828	0.262	0.422	1.429	1.349	0.769	8.15
Mean	0.828	0.260	0.422 0.421 0.255	1.423	1.345	0.768	8.089
%RSD	0.826 0.828 0.828 0.238	0.619					
Final c	oncentration	s			1.96184 1.95798 1.96968 1.96317 0.30379		
4.7	ppm	20 24141	ppm	ppm	ppm	ppm	2 1205
#2	1.89000	39.37948	1.87558	2.00316	1.95798	2.09734	2.1217
#3	1.89415	39.79754	1.88467	2.01568	1.96968	2.10105	2.1506
Mean	1.89440	39.50614	1.88101	2.00793	1.96317	2.09681	2.1343
%RSD	0.23911	0.64059	0.25493	0.33704	0.30379	0.21581	0.6954
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
	oed intensit	ies					
#1	Reading 0.928	Reading 2.537	Reading	Reading	Reading 1.442	Reading	Reading
#1	0.928	2.537	0.263	3.017	1.442	1.155	0.72
#2 #3 Mean %RSD	0.937	2.515	0.263 0.264 0.263	3.043	1.435	1.160	0.72
Mean	0.937 0.931 0.508	2.525	0.263	3.043 3.025	1.435	1.160	0.72
%RSD	0.508	0.436	0.303	0.515	0.295	0.241	0.49
Final c	oncentration	s	Ag3280 Reading 0.263 0.264 0.263 0.303				
#1	2 05626	ppm 1 88819	ppm n 24913	41 71020	ppm 38 62406	ppm 5 37928	40 6361
#2	2.05707	1.87703	0.24895	41.69162	38.42083	5.35866	40.5371
#3	2.07475	1.87222	0.25028	42.07450	38.43488	5.38370	40.9245
Mean	2.06269	1.87915	0.24946	41.82544	ppm 38.62406 38.42083 38.43488 38.49326 0.29484	5.37388	40.6993
%RSD							
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS ratio	oed intensit	ies	D	ndi-	D4:-	D	D
#1	keading	keading	Reading	Reading	Reading	keading	Reading
#2	1.170	2.206	0.949	0.000	0.000	1.424	2.00
#3	1.179	Reading 2.211 2.206 2.226 2.214	0.959	0.000	0.000	1.436	1.986
Mean	1.174	2.214	0.953	0.000 0.000 0.000 19.867	Reading 0.000 0.000 0.000 0.000 7.596	1.433	1.998
%RSD	0.363	0.475	0.571	19.867	7.596	0.580	0.51
Final c	oncentration ppm	s ppm	npm	ppm	ppm	ppm	nnr
	PPIII	PPIII	PPIII	PPIII	PPIII	PPIII	pp

Raw Data MA23347 page 96 of 235

1113	uc.	IVIAZO	,-,,				▼ Zoom
							Zoom C
							200111
Printed: 1	0/27/2009 8:	12:47 AM	User: Accute:	st			
#1	1.96901	1.96422	2.03750	2.15026	2.08103	2.10860	2.02587
#2	1.96275	1.95907	2.03328	2.13048	2.06501	2.08543	2.02418
#3	1.97700	1.97721	2.05506	2.13613	2.07219	2.10434	2.00790
Mean	1.96959	1.96684	2.04195	2.13896	2.07274	2.09946	2.01932
%RSD	0.36266	0.47534	0.56555	0.47640	0.38698	0.58751	0.49126
	2203/2	2203/1	INT STD				
IS rati	oed intensit	ies					
	Reading	Reading	Reading				
#1	3.425	4.818	58094.000				
#2	3.380	4.816	58458.000				
#3	3.406	4.778	58337.000				
Mean	3.404	4.804	58296.333				
%RSD	0.669	0.473	0.318				
Final c	oncentration						
	ppm	ppm	intensity				
#1	2.19214	2.06650	-2845.99				
#2	2.16303	2.06537	-2840.10				
#3	2.17994	2.04850 2.06012	-2870.52 -2852.20				
Mean %RSD	0.67105	0.48946	-2852.2U 0.57				
ansu	0.67105	0.40940	0.57				

Raw Data MA23347 page 97 of 235

Raw Data MA23347 page 99 of 235

✓ Zoom C						
Zoom C						
2:48 AM User: Accutest		st	User: Accut	:12:48 AM	10/27/2009 8	Printed:
0.00342 0.00499 -0.00160 0.00383 0.00098 0.00954	0.00383	-0.00160	0.00499	0.00342	0.00035	#1
0.00132 -0.00043 -0.00149 -0.00079 -0.00418 0.00598		-0.00149	-0.00043	0.00132	0.00016	#2
0.00059 -0.00155 -0.00292 -0.00076 -0.00090 -0.00049	-0.00076	-0.00292	-0.00155	0.00059	0.00013	#3
0.00177 0.00100 -0.00200 0.00076 -0.00137 0.00501	0.00076	-0.00200	0.00100	0.00177	0.00021	Mean
82.68845 348.90854 39.62429 350.92369 190.93927 101.54703	350.92369 1	39.62429	348.90854	82.68845	55.17867	%RSD
2203/1 INT STD			INT STD	2203/1	2203/2	
28				ties	ioed intensi	IS rat
Reading Reading			Reading	Reading	Reading	
0.136 60662.000					0.012	#1
0.147 60114.000					0.009	#2
0.131 60424.000					0.011	#3
0.138 60400.000					0.010	Mean
5.809 0.455			0.455	5.809	16.635	%RSD
				ns	concentratio	Final
ppm intensity					ppm	
0.00008 -6.97					-0.00245	#1
0.00485 0.60					-0.00466	#2
-0.00212 2.17					-0.00332	#3
0.00094 -1.40					-0.00347	Mean
380.17465 348.91			348.91	380.17465	32.06599	%RSD

Method	1 : EPA3 eId1 : CCB		File : it10:	2609ml	Printed	: 10/27/2009	8:12:4
Sample	eIdl : CCB		SampleId:	2 :		[FLEXQC]	
Analys	318 commencea	: 1U/26/2UU	9 8:10:53 PM				
Diluti	ion ratio : 1.	00000 to 1.	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Ве
IS rat	ioed intensit	ies					
	Reading	Reading	Reading	Reading 0.002	Reading	Reading	Rea
#1	0.070	0.000	0.000	0.002	0.001	0.000	
#2	0.069	-0.001	0.000	0.001	0.001	0.000	
#3	0.069	-0.001	0.000	0.001	0.000	0.000	0
Mean	0.069	-0.001 -0.001 -0.001 38.565	0.000	0.001 0.001 0.001 48.576	0.001	0.000	C
%RSD	0.532	38.565	87.711	48.576	35.997	27.981	7
Final	concentration	is					
	ppm	ppm	0.00162 0.00015	ppm	ppm	ppm	
#1	1.23982	0.00065	0.00162	0.00120	0.01410	0.00155	0.0
#2	1.23596	-0.00049	0.00015	0.00011	0.00532	0.00073	0.0
#3	1.22742	-0.00051	-0.00016	-0.00009	0.00098	0.00056	-0.0
Mean	1.23440	-0.00012	0.00054	0.00040	0.00680	0.00095	0.0
%RSD				0.00120 0.00011 -0.00009 0.00040 172.04051			
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd
IS rat	ioed_intensit	ies					_
	Reading	Reading	Reading	Reading -0.001 -0.003 -0.002 -0.002 69.566	Reading	Reading	Rea
#1	0.004	0.021	0.000	-0.001	-0.016	0.012	0
#2	0.003	0.019	-0.001	-0.003	-0.019	0.010	9
#3	0.003	0.019	-0.001	-0.002	-0.020	0.009	Ġ
Mean %RSD	0.004	0.020	-0.001	-0.002	-0.018	0.011 12.698	4.0
*RSD	5./18	0.021 0.019 0.019 0.020 5.673	79.806	69.566	13.030	12.698	40
Final	concentration ppm						
#1	0.00148	ppm 1.20017	0.00429	0.00126	ppm 0.00793	ppm 0.00261	
#2	0.00148	0.02602	0.00429	-0.00274	0.00793	-0.00261	0.0
#3	0.00066	0.92003	-0.00036	-0.00274	0.00331	-0.00264	0.0
Mean	0.00004	1 00013	0.00050	-0.00123	0.00131	-0.00450	0.0
%RSD	50.48838	17.51441	163.19093	-0.00274 -0.00123 -0.00090 223.12964	81.23589	-0.00264 -0.00456 -0.00153 242.87455	69.8
				Ca3179			
			_				
is rat	ioed intensit	nes Ponding	Ponding	Ponding	Ponding	Ponding	Rea
#1	-0.001	0.001	-0.011	0.002	n nna	0.022	r.ee
#2	-0.001	0.001	-0.011	0.002	0.009	0.033	Č
#3	-0.001	0.000	-0.013	0.002	0.000	0.032	Č
Mean	-0.001	0.000	-0.013	0.002	0.008	0.031	č
%RSD	24.228	16.734	7.756	Reading 0.002 0.002 0.002 0.002 4.170	2.610	2.938	86
Final	concentration	ıs					
	ppm	ppm 0.00021	ppm	ppm	ppm	ppm	
#1	0.00198	0.00021	0.00128	0.01215	-0.01904	-0.03086	0.0
#2	0.00075	0.00013	-0.00016	0.01085	-0.02774	-0.03573	0.0
#3	0.00146	0.00010	-0.00025	0.01004	-0.03020	-0.03986	0.0
Mean	0.00140	0.00015	0.00029	0.01213 0.01085 0.01004 0.01102 9.67804	-0.02566	-0.03548	0.0
%RSD	44.27061	38.15178	298.79780	9.67804	22.84666	12.69503	144.9
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS rat	ioed_intensit	ies			D	D 111	
		Reading	Reading	Reading	Reading		
#1	0.000			0.000			
#2	0.000	0.005	-0.009	0.000	0.000		
#3 Mean	0.000	0.004	-0.010 -0.008		0.000		
%RSD	18 572	30.005	19.627				
	10.5/2	50.207	12.02/	5.005	0.100	0.275	
	concentration ppm	0.007 0.005 0.004 0.005 30.287	mag	ppm	mag	mqq	

Raw Data MA23347 page 98 of 235

							◀ Zo
							200
Method SampleI	: EPA3 dl : mp50224	-mb1	File : it102 SampleId2 9 8:17:11 PM	609ml	Printed	10/27/2009 [SAMPLE]	8:12:48 AM
Analysi Dilutio	s commenced n ratio : 1.	000000 to 1.	00000 9 8:17:11 PM				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	oed intensit	ies					
#1	Reading	Reading	Reading 0.000 0.000 0.000 0.000	Reading	Reading	Reading	Reading 0.001
#2	0.068	-0.000	0.000	0.001	0.000	0.000	0.001
#3	0.068	-0.001 -0.001 -0.001	0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001
Mean	0.068	-0.001 11.183	0.000 24.645	0.000 0.000 0.000 26.707	0.000	0.000	0.001
%RSD	0.297	11.183	24.645	26.707	26.452	121.068	1.882
Final c	oncentration	ıs					
#1	1 2100n	0 00064	n nnnee	_n nnn21	0 00166	_n nnn77	-0.00011
#2	1.21324	0.00041	0.00002	-0.00043	-0.00388	-0.00208	-0.00008
#3	1.21725	0.00044	-0.00014	-0.00054	-0.00153	-0.00159	-0.00009
Mean	1.21679	0.00049	0.00055 0.00002 -0.00014 0.00014 250.52593	-0.00039	-0.00125	-0.00148	-0.00010
%RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS rati	oed intensit	ies					
	Reading	Reading	Reading -0.001 -0.001	Reading	Reading -0.021 -0.024	Reading	Reading
#1 #2	0.004	0.018 0.017	-0.001 -0.001	-0.006 -0.006	-0.021	0.007	0.002
#2	0.004				-0.024	0.006	0.001
Mean	0.004	0.017	-0.001	-0.005	-0.022	0.007	0.002
%RSD	2.314	3.432	27.570	13.760	-0.022 -0.022 -0.022 6.576	5.536	25.128
Final c	oncentration	ıs					
#1	ppm	ppm	ppm	ppm	ppm	ppm	ppn
#2	0.00082	0.71806	-0.00075	-0.00601	-0.00011	-0.01102	0.00028
#3	0.00049	0.57480	-0.00200	-0.00333	-0.00125	-0.01230	0.00016
Mean	0.00070	0.61290	-0.00102	-0.00539	-0.00185	-0.01220	0.00016
%RSD	26.45126	15.04458	0.00075 -0.00208 -0.00174 -0.00102 151.39631	18.80153	113.78984	8.40927	68.89571
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2714
IS rati	oed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1 #2	-0.001 -0.001	0.001	-0.012 -0.013	0.003	0.008	0.032	0.000
#3	-0.001	0.001	-0.013	0.003	0.008 0.008 0.008	0.033	0.000
Mean	-0.001	0.001	-0.012	0.003	0.008	0.033	0.000
%RSD	7.157	8.997	4.790	1.646	0.110	3.169	52.558
Final c	oncentration	ıs					
#1	ppm 0.00137	0.00024	ppm 0.00078	0.02643	-0.02439	-0.03701 -0.02694	0.01006
#2	0.00165	0.00017	-0.00021	0.02515	-0.02493	-0.02694	-0.00250
#3	0.00132	0.00021	-0.00008	0.02620	-0.02461	_0 02100	0.00470
Mean	0.00144	0.00021	-0.00021 -0.00008 0.00016 330.72875	0.02592	-0.02461 -0.02464 1.10769	-0.03192	0.00412
%RSD							
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/1
IS rati	oed_intensit			D 111	D 111	D 111	D
#1	Reading 0.000	Reading 0.002	Reading -0.008	Reading 0.000	Reading 0.000	Reading	Reading -0.102
#2	0.000	0.001	-0.008	0.000	0.000	0.030	-0.110
#3	0.000	0.002	-0.008	0.000	0.000	0.030	-0.101
Mean %RSD	0.000	0.002	-0.008 4.533	0.000 8.997	0.000	0.031	-0.104 4.552
			4.533	0.33/	U.256	Reading 0.032 0.030 0.031 4.519	4.552
Final c	oncentration	ıs ppm	ppm	ppm	ppm	ppm	naa
	22	r Pill	r.c.m	r Pill	F 2'''	r P.m	pp.

Raw Data MA23347 page 100 of 235

1116								
							■ Zoom	In ▶
							Zoom C)ut
Printed:	10/27/2009 8:	12:48 AM	User: Accute	st				
#1	0.00012	-0.00141	0.00204	-0.00124	-0.00081	0.00471	-0.01187	
#2	0.00007	-0.00203	0.00225	-0.00762	-0.00582	0.00079	-0.01905	
#3	0.00004	-0.00169	0.00082	-0.00741	-0.00237	0.00173	-0.01058	
Mean	0.00008	-0.00171	0.00170	-0.00542	-0.00300	0.00241	-0.01383	
9.D.CD	E2 1 E 4 4 1	10 00453	AE EE176	66 00000	OF 20011	04 04771	22 01040	

***	0.00012	0.00111	0.00201	0.00121	0.00001	0.001/1	0.01107	
#2	0.00007	-0.00203	0.00225	-0.00762	-0.00582	0.00079	-0.01905	
#3	0.00004	-0.00169	0.00082	-0.00741	-0.00237	0.00173	-0.01058	
Mean	0.00008	-0.00171	0.00170	-0.00542	-0.00300	0.00241	-0.01383	
%RSD	53.15441	18.08453	45.55176	66.80080	85.39911	84.94771	33.01040	
	2203/2	2203/1	INT STD					
IS rat	ioed intensit	ies						
	Reading	Reading	Reading					
#1	0.027	0.097	61629.000					
#2	0.015	0.087	61524.000					
#3	0.011	0.100	61320.000					
Mean	0.011	0.094	61491.000					
%RSD	45.794	7.312	0.256					
*KSD	45.794	7.312	0.256					
Final	concentration							
FIHAL			Anna anna anna anna					
	ppm	ppm	intensity					
#1	0.00683	-0.01739	-2.85					
#2	-0.00048	-0.02190	-3.15					
#3	-0.00312	-0.01599	-1.14					
Mean	0.00108	-0.01843	-2.38					
%RSD	478.34583	16.76094	45.55					

Raw Data MA23347 page 101 of 235

Raw Data MA23347 page 103 of 235

							◀ Zoom In
							Zoom Ou
Printed: #1	10/27/2009 8	:12:48 AM -0.00045		st 0.98765	3.80381	3.84561	3.72021
#1		-0.00045	0.01794	0.98765	3.80381	3.84561	3.72021
#3	0.93263	-0.00001		0.98517	3.79339	3.82975	3.72068
Mean		-0.00014	0.01892	0.98762	3.79781	3.83725	3.71892
%RSD		113.56990	6.69099	0.24622	0.14189	0.20764	0.07136
VILUE	0.10057	113.30330	0.05055	0.21022	0.11103	0.20701	0.07130
	2203/2	2203/1	INT STD				
TC	tioed intensi						
15 Ia	Reading		Reading				
#1	1.565	2.326	57059.000				
#2	1.574	2.315					
#3	1.561	2.321					
Mean		2.321					
%RSD	0.443	0.244	0.093				
Final	concentratio	ns					
	ppm	ppm	intensity				
#1	1.00107	0.96081	-25.06				
#2	1.00717	0.95576	-25.79				
#3	0.99852	0.95848	-28.42				
Mean		0.95835	-26.42				
%RSD	0.44370	0.26355	6.69				

Method Sample1	: EPA3 [dl : mp50224- is commenced :	b1	File : it102 SampleId2	609ml	Printed	: 10/27/2009 [SAMPLE]	8:12:4
	on ratio : 1.0						
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be
IS rati	loed_intensiti	es					_
#1	Reading 0.731	Reading 0.466	Reading 0.202	Reading 0.258	Reading 0.424	Reading 0.186	Rea 0
#2	0.731	0.467	0.202	0.260	0.424	0.186	ō
#3	0.730	0.471	0.203	0.260	0.426	0.187	0
Mean %RSD	0.731	0.468	Reading 0.202 0.202 0.203 0.203 0.371	0.259	0.425	0.187	0
m:							
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	12.40202	0.93623	0.94162	0.38175	12.08512	0.95130	0.0
#3	12.37660	0.93626	0.94127	0.38355	12.14519	0.95107	0.0
Mean	12.39121	0.94003	0.94347	0.38294	12.10396	0.95270	0.0
%RSD	12.40202 12.39500 12.37660 12.39121 0.10596	0.52405	0.37144	0.27049	0.29534	0.27513	0.1
			Pd3404				
IS rati	loed_intensiti	es					
4.7	Reading 0.202 0.202 0.201 0.201 0.202 0.173	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.202	0.087	-0.002	2.606	2.4/4	0.365	0
#3	0.201	0.088	-0.002	2.612	2.480	0.365	ő
Mean	0.202	0.087	-0.002	2.609	2.477	0.365	0
			14.360	0.107	0.117	0.114	0
Final o	concentrations						
#1	0.45619	12.14980	ppm -0.00370 -0.00284	3.65044	3.56756	0.97552	0.0
	0.45534	12.24091	-0.00284	3.65357	3.57317	0.97691	0.0
#3	0.45459	12.33002	-0.00134	3.65822	3.57567	0.97463	0.1
Mean	0.45534 0.45459 0.45537 0.17614	12.24024	-0.00263 45 47808	3.65408	3.57213 0.11634	0.97569 0.11753	0.0
			Aq3280				
			A93260	Ca31/9	A13062	512001	re
IS rati	ioed intensiti	es Reading	Reading	Reading	Reading	Reading	Rea
#1	0.433	4.796	0.097	0.905	1.867	0.039	0
#2	0.435	4.793	0.097	0.905	1.868	0.039	0
#3 Mean	0.434	4.777	0.097	0.908	1.866	0.039	0
%RSD		0.207	0.281	0.213	0.063	0.182	0
#1	0.96593 0.96343 0.96311 0.31110	ppm	ppm	ppm	ppm 40 05707	ppm	F0 7
#1 #2	0.95996	3.5/081	0.09896	12.45/68	49.95/05	-0.00847	52.1 52.2
#3	0.96343	3.55730	0.09945	12.50231	49.91311	-0.00781	52.3
Mean	0.96311	3.56576	0.09920	12.47140	49.94788	-0.00817	52.2
%RSD						4.07099	0.1
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS rati	ioed intensiti	es Pondin-	Pondir-	Pondin-	Pondir-	Pondin-	De-
#1	0.554	0.000	0.000	0.000	0.000	2.616	rea.
	0.555	0.001	0.000	0.000	0.000	2.610	3
#2 #3	0.556	0.001	Reading 0.000 0.000 0.001 0.000 186.647	0.000	0.000	2.606	3
Mean %RSD	0.555	0.001	0.000	0.000	0.000	2.611	3
*RSD	0.167	36.031	186.647	10.732	0.093	0.208	0
Final c	concentrations		ppm				
			mag	PPm	ppm	ppm	

Raw Data MA23347 page 102 of 235	Raw	Data I	MA23347	page 102 of 235	ı
----------------------------------	-----	--------	---------	-----------------	---

							∢ Zo
Samplel	: EPA3 Idl : mp50224 is commenced on ratio : 1.	: 10/26/200	File : it102 SampleId2 9 8:29:26 PM 00000		Printed	: 10/27/2009 [SAMPLE]	8:12:48 A
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	ioed intensit	ies					
#1	Reading 1.783	Reading 1.432	Reading 0.213	Reading 0.397	Reading 1.901	Reading 0.244	Readin 0.21
#2	1.781	1.430	0.213	0.397	1.899	0.244	0.21
#3	1.778	1.434	0.213	0.398	1.903	0.244	0.21
Mean %RSD	1.781	1.432	0.213	0.397	1.901 0.121	0.244	0.21
Final (concentration	ıs					
	mqq	maa	ppm	ppm	ppm	ppm	pp
#1 #2	30.50242 30.47090	2.87580 2.87344	0.99449	0.58646 0.58583	54.22312 54.16489	1.30828	0.1018
#3	30.47090	2.88118	0.99227	0.58817	54.29601	1.30710	0.1019
Mean	30.46346	2.87681	0.99242	0.58682	54.22801	1.30698	0.1019
%RSD	0.14170		0.20173	0.20674	0.12114	0.10494	0.1339
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	ioed intensit	ies	Danidi.	D4:.	Daniel.	Dandi.	D21
#1	0.425	Reading 0.101	Reading -0.011	Reading 2.666	Reading 2.416	Reading 0.169	Readin 0.39
#2	0.425	0.100	-0.011	2.660	2.410	0.170	0.40
#3	0.424	0.101	-0.011	2.668	2.412	0.168	0.40
Mean %RSD	0.424	0.101 0.191	-0.011 2.350	2.665 0.157	2.413 0.129	0.169 0.576	0.40 0.45
Final (concentration	ıs					
	ppm	mqq	ppm	ppm	ppm	ppm	pp
#1 #2	0.96676	15.53641 15.52553	-0.04425 -0.04435	3.72928 3.72031	3.39113 3.38258	0.43727 0.43943	0.0981
#3	0.96648 0.96596 0.96640 0.04171	15.58095	-0.04232	3.73134	3.38485	0.43412	0.0991
Mean	0.96640	15.54763	-0.04364	3.72698	3.38619	0.43694	0.0985
%RSD	0.04171	0.18888	2.62463	0.15722	0.13083	0.61134	0.4878
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
IS rati	ioed intensit						
#1	Reading 0.490	Reading 5.370	Reading 0.093	Reading 3.096	Reading 6.148	Reading 1.074	Readin 4.62
#2	0.491	5.364	0 002	2 005	6 1/6	1.070	4.61
#3	0.490	5.350	0.093	3.100	6.137	1.072	4.62
Mean %RSD	0.490 0.103	5.361 0.188	0.093 0.126	3.097 0.088	6.143 0.097	1.072 0.187	4.62
*****			0.126	0.000	0.097	0.187	0.04
Final o	concentration ppm		ppm	ppm	ppm	ppm	pp
#1	1.08777	3.99638	0.09505	42.77481	165.75170	4.97530	260.6275
#2	1.08978	3.99171 3.98171	0.09491	42.75412 42.82765	165.65787 165.43967	4.95605 4.96382	260.3782
#3 Mean	1.08851	3.98171	0.09511			4.96382	
%RSD	0.10153	0.18783	0.11074		0.09667	0.19504	0.0490
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS rat	ioed intensit						
#1	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1 #2	2.956 2.950	0.009	0.025	0.000	0.000	2.417 2.397	3.53 3.52
#3	2.954	0.009	0.025	0.000	0.000	2.432	3.56
Mean	2.953	0.009	0.025	0.000	0.000	2.415	3.54
%RSD	0.114	2.405	1.756	0.190	0.190	0.731	0.58
Final o	concentration	ıs ppm	mag	ppm	mqq	ppm	aa
	Ppm	ppm	Ppm	PPm	PPIII	PPIII	PP

Raw Data MA23347 page 104 of 235

							■ Zoom In ▶
							Zoom Out
#1 #2 #3	10/27/2009 8 4.95994 4.94873 4.95545	0.01143 0.01129 0.01168	User: Accute 0.06255 0.06441 0.06377	1.50710 1.49772 1.52443	3.61666 3.59583 3.64240	3.67231 3.64266 3.69463	3.50536 3.50216 3.53795
Mean %RSD	4.95470 0.11388	0.01147 1.70349	0.06358 1.48640	1.50975 0.89751	3.61830 0.64481	3.66986 0.71036	3.51516 0.56344
	2203/2	2203/1	INT STD				
IS ra	tioed intensi						
#1 #2 #3 Mean %RSD	Reading 2.378 2.356 2.397 2.377 0.873	Reading 3.605 3.605 3.665 3.625 0.962	Reading 62695.000 62934.000 62812.000 62813.667 0.190				
Final	concentratio	ns					
#1 #2 #3 Mean %RSD	ppm 1.54348 1.52942 1.55599 1.54296 0.86171	ppm 1.43435 1.43432 1.46130 1.44332 1.07853	intensity -87.37 -89.97 -89.08 -88.81 1.49				

Raw Data MA23347 page 105 of 235

Raw Data MA23347 page 107 of 235

						■ Zoom Ir	1)
						Zoom O	ıt
10/27/2009 8:	12:48 AM	User: Accutest					
3.92390	0.00412	0.03355	1.34561	3.16203	3.22726	3.03156	
3.94014	0.00508	0.03625	1.33282	3.15100	3.22124	3.01050	
3.93308	0.00387	0.03078	1.34628	3.17465	3.25907	3.00582	
3.93237	0.00436	0.03353	1.34157	3.16256	3.23586	3.01596	
0.20707	14.77502	8.16604	0.56535	0.37428	0.62816	0.45458	
2203/2	2203/1	INT STD					
oed intensit	ies						
Reading	Reading	Reading					
0.769	0.545	0.319					
concentration	ıs						
ppm	ppm						
1.38287	1.25898	-46.83					
0.76193	0.62756	8.17					
	3.92390 3.94014 3.93038 3.93237 0.20707 2203/2 coed intensit Reading 2.134 2.114 2.147 2.132 0.769 concentration ppm 1.38439 1.37165 1.39256	3.94014 0.00508 3.93308 0.00387 3.93237 0.00436 0.20707 14.77502 2203/2 2203/1 oed intensities Reading 2.134 3.194 2.114 3.166 2.147 3.163 2.132 3.174 0.769 0.545 concentrations ppm 1.38439 1.26806 1.37165 1.26516 1.39256 1.25516	3,92390 0.00412 0.03355 3.94014 0.00508 0.03625 3.93308 0.00387 0.03378 3.93237 0.00436 0.03353 0.20707 14.77502 8.16604 2203/2 2203/1 INT STD coed intensities Reading Readin	3.92390 0.00412 0.03355 1.34561 3.94014 0.00508 0.03625 1.33282 3.93308 0.00387 0.03078 1.34628 3.93237 0.00436 0.03353 1.34157 0.20707 14.77502 8.16604 0.56535 2203/2 2203/1 INT STD .coed intensities Reading Re	3.92390 0.00412 0.03355 1.34561 3.16203 3.94014 0.00508 0.03625 1.33282 3.15100 3.993308 0.00387 0.03078 1.34628 3.17465 3.93237 0.00436 0.03837 1.34627 3.16236 0.20707 14.77502 8.16604 0.56535 0.37428 2203/2 2203/1 INT STD coed intensities Reading Reading Reading Reading Reading 2.134 3.194 67793.000 2.132 0.0769 0.545 0.3987 0.00 2.132 0.0769 0.545 0.319 0.0769 0.545 0.319 0.0769 0.545 0.319 0.00000000000000000000000000000000000	3.92390 0.00412 0.03355 1.34561 3.16203 3.22726 3.94014 0.00508 0.03625 1.33282 3.15100 3.22124 3.93308 0.00387 0.03378 1.34628 3.17465 3.25907 3.93237 0.00436 0.0353 1.34157 3.16236 3.25386 0.20707 14.77502 8.16604 0.56535 0.37428 0.62816 2203/2 2203/1 INT STD .ced intensities Reading Reading Reading 2.134 3.194 67793.000 2.132 3.174 67831.667 0.0769 0.545 0.0769 0.545 0.319 .concentrations ppm intensity 1.3849 1.25506 0.319 .concentrations ppm intensity 1.3849 1.25506 4.6.86 1.37165 1.25516 -50.64 1.37165 1.25516 -50.64 1.37265 1.25517 -42.99	0/27/2009 8:12:48 AM User: Accutest 3.92390

							- 4
							Z
Method	: FDA3		File : it102 SampleId2	609m1	Drinted	: 10/27/2009	8:12:48
SampleI	d1 : mp50224	-s2	SampleId2			[SAMPLE]	
Analysi	s commenced	: 10/26/200	9 8:35:33 PM				
Dilutio	n ratio : 1.	00000 to 1.	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be31
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	1.668	0.666	0.184	0.317	1.896	0.210	0.1
#2	1.665	0.673	0.186	0.318	1.905	0.211	0.1
#3	1.677	0.667	0.185	0.317	1.900	0.210	0.1
Mean	1.670	0.669	0.185	0.318	1.900	0.210	0.1
%RSD	0.374	0.616	Reading 0.184 0.186 0.185 0.185 0.378	0.242	0.238	0.171	0.4
Final c	oncentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	I
#1	28.40485	1.33597	0.85815	0.46822	54.07136	1.12165	0.082
#2	28.36744	1.35161	0.86465	0.47029	54.32876	1.12561	0.083
#3	28.56177	1.33909	0.86186	0.46843	54.18552	1.12334	0.083
Mean	28.44469	1.34222	0.86155	0.46898	54.19521	1.12353	0.083
%RSD	0.36248	0.61687	ppm 0.85815 0.86465 0.86186 0.86155 0.37836	0.24284	0.23798	0.17687	0.446
	Cu3247						
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.342	0.094	-0.003	2.318	2.110	0.152	0.
#2	0.312	0.001	-0.003	2.310	2 126	0.154	0
#2	0.344	0.033	-0.003	2.320	2.120	0.151	0
Moon	0.311	0.034	-0.004	2.327	2.110	0.151	0
%RSD	0.317	0.971	Reading -0.003 -0.003 -0.004 -0.003 10.471	0.182	0.405	0.932	0.7
Final o	ongontration						
	maa	maa	maa	maa	mag	maa	ī
#1	0.77780	14.12320	-0.00974	3.24288	2.96992	0.39091	0.086
#2	0.78107	14.40548	-0.00772	3.25434	2.99373	0.39584	0.085
#3	0.70107	14 19782	-0.00772	3 25106	2 97851	0.39901	0.00
Mean	0.70271	14 24217	-0.01003	3 24943	2 98072	0.30011	0.00
%RSD	0.32015	1.02703	ppm -0.00974 -0.00772 -0.01069 -0.00938 16.19575	0.18161	0.40454	0.99938	0.81
			Ag3280				
TO							
15 laci	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.422	4.706	0.078	3.773	5.243	0.774	3.1
#2	0.425	4 701	0.079	3 793	5 247	0.778	3 .
#3	0.422	4.733	0.078	3.780	5.267	0.779	ξ.
Moan	0.122	4 713	0.078	3 782	5 252	0.777	ž.,
Mean %RSD	0.493	0.359	Reading 0.078 0.079 0.078 0.078 0.862	0.269	0.248	0.305	0.:
Final c	oncentration	ıs	ppm 0.08236 0.08304 0.08182 0.08241 0.74093				
	ppm	ppm	ppm	ppm	ppm	ppm	1
#1	0.93701	3.50249	0.08236	52.20867	141.26757	3.52933	212.20
#2	0.94573	3.49875	0.08304	52.48792	141.36139	3.54746	213.356
#3	0.93877	3.52221	0.08182	52.31390	141.91791	3.55041	212.741
Mean	0.94050	3.50782	0.08241	52.33683	141.51562	3.54240	212.766
%RSD	0.48991	0.35940	0.74093	0.26947	0.24840	0.32221	0.27
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read:
#1	2.339	0.002	0.010	0.000	0.000	2.135	3.4
#2	2.349	0.003	0.012	0.000	0.000	2.130	3 1
#3	2.344	0.002	0.009	0.000	0.000	2.156	3 1
Mean	2 344	0.002	0.009	0.000	0.000	2 140	3.1
%RSD	0.207	28.879	Reading 0.010 0.012 0.009 0.010 12.446	10.610	0.319	0.647	0.4
Final o	oncentration						
Final c	oncentration ppm		ppm	mrrg	marg	mrg	т

Raw Data MA23347	page 106 of 235

Samplel							
Analysi Dilutio	: EPA3 [dl : ja30252 is commenced on ratio : 1.	-1 : 10/26/2009	9 8:41:41 PM	609ml ::	Printed	: 10/27/2009 [SAMPLE]	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	loed intensit	ies					
#1	Reading 1.091 1.088	Reading	Reading	Reading	Reading	Reading	Readin 0.00
#2	1.091	0.316 0.320	0.020	0.131	1 430	0.068	0.00
#3	1.088	0.319	0.020	0 131	1.426	0.069	0.00
Mean %RSD	1.089	0.318	0.020	0.131	1.426	0.069	0.00
*RSD	0.196	0.694	0.833	0.313	0.316	0.483	1.90
Final c	concentration	3					
#1	18.78956 18.73298 18.72822 18.75025 0.18198	ppm 0.63563	0.09528	ppm 0.19177	40.54242	0.40615	0.0021
#2	18.73298	0.64433	0.09682	0.19274	40.79954	0.40980	0.0022
#3	18.72822	0.64161	0.09580	0.19288	40.66997	0.40773	0.0021
Mean	18.75025	0.64052	0.09597	0.19246	40.67064	0.40789	0.0021
4KSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	loed intensit	ies	ndi-	pandi.	Daniel.	ndi	D==-2.11
#1	Reading	Reading	Reading -0.007 -0.006	Reading	keading	keading	Readin
#2	0.144	0.032	-0.007	0.176	0.043	0.012	0.03
#3	0.144	0.030	-0.007	0.176 0.174 0.174	0.044	0.010	
Mean %RSD		0.030	-0.007				0.03
*RSD	0.118	4.280	6.836	1.148	1.799	12.003	0.45
Final c	0.118 concentration: ppm 0.32409 0.32337 0.32347 0.32364 0.12165	3					
#1	n 324n9	ppm 3 67975	_n n2725	ppm n 23791	n nnase	=n nn263	U UU3E
#2	0.32337	4.07631	-0.02325	0.24345	0.00063	0.00374	0.0035
#3	0.32347	3.78752	-0.02486	0.24024	0.00225	-0.00235	0.0035
Mean %RSD	0.32364	3.84786	-0.02512	0.24053	0.00208	-0.00041	0.0035
arsu	0.12165	5.32090	7.99729	1.15490	00.03504	672.20360	1.1521
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
IS rati	ioed intensit	ies					
#1	Reading 0.064	Reading	Reading -0.011 -0.009	Reading	Reading	Reading	Readin
#2	0.064	0.896 0.892	-0.011	2.119	4.079	0.661	3.54
#3	0.065	0.892	-0.010	2.114	4.075 4.079	0.656	3.53
Mean %RSD	0.064	0.893	-0.010 7.483	2.114 2.113 0.311	4.079 0.123	0.658	3.53
*KSD			7.403	0.311	0.123	0.376	0.20
Final c	concentration:	B Drm	npm	nrm	nem	Drom	pp
#1	0.14745	0.66478	0.00157	29.13484	110.17489	2.97016	198.7611 199.8208
#2	0.14764	0.66181	0.00289	29.31674	110.01868	2.98293	199.8208
#3 Mean	0.14901	0.66223	0.00250	29.23872	109.90475	2.95903 2.97071	199.2920
%RSD	0.57503	0.24247	ppm 0.00157 0.00289 0.00250 0.00232 29.17835	0.31220	0.12326	0.40250	
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
TS rati	loed intensit	ies					
	Reading	Peading	Reading	Reading	Reading	Reading	Readir
#1	2.230	0.003	0.007	0.000	0.000	-0.019	-0.10
#2 #3	2.236 2.230	0.004		0.000	0.000	-0.023 -0.021	-0.09
Mean	2.232	0.003	0.006 0.007	0.000	0.000	-0.021	-0.09
%RSD			16.300	5.793	0.331	8.076	4.18
Final c	concentration						
	ppm	ppm	ppm	ppm	ppm	ppm	PF

Raw Data MA23347 page 108 of 235

							■ Zoom	In ℙ
							Zoom	Out
Printed:	10/27/2009 8	12:48 AM	User: Accute	st				
#1	3.74141	0.00365	0.02439	0.42369	0.02856	0.04355	-0.00142	
#2	3.75206	0.00429	0.02787	0.41667	0.02695	0.03915	0.00255	
#3	3.74207	0.00342	0.02332	0.42338	0.02944	0.04096	0.00641	
Mean	3.74518	0.00379	0.02519	0.42125	0.02832	0.04122	0.00251	
%RSD	0.15935	11.99481	9.43967	0.94103	4.46397	5.37054	155.97015	
	2203/2	2203/1	INT STD					
IS rat	tioed intensit	ies						
	Reading	Reading	Reading					
#1	0.679	1.182	64015.000					
#2	0.662	1.185	64403.000					
#3	0.670	1.206	64059.000					
Mean	0.670	1.191	64159.000					
%RSD	1.291	1.067	0.331					
Final	concentration	18						
	ppm	ppm	intensity					
#1	0.44569	0.37969	-34.07					
#2	0.43462	0.38078	-38.93					
#3	0.44002	0.39010	-32.58					
Mean	0.44011	0.38352	-35.19					
%RSD	1.25774	1.49122	9.44					

Raw Data MA23347 page 109 of 235

Raw Data MA23347 page 111 of 235

							■ Zoom	ln
							Zoom)ut
Printed: 1 #1 #2 #3 Mean %RSD	0/27/2009 8 4.06664 4.06577 4.08704 4.07315 0.29548	:12:49 AM -0.00028 0.00720 0.00204 0.00299 128.18257	User: Accute: 0.01914 0.03209 0.02596 0.02573 25.16351	0.44629 0.46708 0.47087 0.46141 2.86814	0.05138 0.06100 0.04929 0.05389 11.59098	0.10434 0.10581 0.09270 0.10095 7.11427	-0.05455 -0.02863 -0.03755 -0.04024 32.71822	
	2203/2	2203/1	INT STD					
IS rati	oed intensi	ties						
#1 #2 #3 Mean %RSD	Reading 0.168 0.172 0.174 0.172 1.993	Reading 0.322 0.337 0.336 0.332 2.509	Reading 60867.000 60748.000 60428.000 60681.000 0.374					
Final c	oncentration	ns						
#1 #2 #3 Mean %RSD	ppm 0.50846 0.52302 0.53008 0.52052 2.11807	ppm 0.32193 0.35519 0.35243 0.34318 5.37794	intensity -26.74 -44.82 -36.27 -35.94 25.16					

				609ml	Printed	: 10/27/2009 [SAMPLE]	8:12:49
Dilutio	n ratio : 1.						
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3
IS rati	oed intensit	ies					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Read
#2	0.265	0.068	0.004	0.029	0.302	0.015	0.
#3	0.267	0.068	0.004	0.029	0.302	0.015	Ö.
Mean	0.265	0.068	0.004	0.029	0.301	0.015	0.
%RSD	0.416	0.476	2.330	1.403	0.307	Reading 0.015 0.015 0.015 0.015 0.015	1.
Final c	oncentration	s					
	ppm	ppm	ppm	ppm	ppm	ppm	0.00
#1	23.03541	0.68503	0.10123	0.20408	42.79742	0.44241	0.00
#3	23.03000	0.69129	0.10303	0.20923	43 05444	0.44355	0.00
Mean	23.08948	0.68867	0.10358	0.20753	42.94315	0.44388	0.00
%RSD	0.40320	0.47149	2.14626	1.44222	0.30721	ppm 0.44241 0.44569 0.44355 0.44388 0.37457	5.40
						Sb2068	
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.033	0.020	-0.002	0.034	-0.008	0.011	0.
#2	0.034	0.022	-0.002	0.036	-0.007	0.012	0.
#3 Mean	0.033	0.021	-0.002	0.035	-0.005	0.010	0.
%RSD	0.279	4.520	16.057	3.355	21.340	Reading 0.011 0.012 0.010 0.011 4.695	10.
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.34653	6.40758	-0.02353	0.23957	-0.00648	-0.00109	0.00
#2	0.34/4/	7.8/5/1	-0.01446	0.25561	0.00269	_0.00514	0.00
Mean	0.34644	7.15491	-0.02221	0.24857	0.00341	-0.00168	0.00
%RSD	0.31143	10.26463	32.34863	3.29720	301.17042	ppm -0.00109 0.00514 -0.00908 -0.00168 424.45954	26.51
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.013	0.192	-0.012	0.456	0.859	0.174	0.
#2	0.013	0.191	-0.011	0.457	0.858	0.175	0.
Mean	0.013	0.192	-0.012	0.457	0.861	0.171	0.
%RSD	0.326	0.496	3.546	0.221	0.450	Reading 0.174 0.175 0.171 0.173 1.135	ō.
Final c	oncentration	s				ppm 3.22401 3.24793 3.15640 3.20945 1.47915	
41	ppm	ppm	ppm	ppm	ppm	ppm	214 71
#1	0.16206	0.71238	0.001/3	31.45466	114.88/20	3.22401	214.71
#3	0.16292	0.71670	0.00275	31.59434	115.66441	3.15640	216.14
Mean	0.16238	0.71292	0.00330	31.52565	115.07305	3.20945	215.24
%RSD	0.28655	0.49719	57.57412	0.22162	0.45516	1.47915	0.36
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	196
IS rati	oed intensit	ies				Reading 0.026 0.027 0.025 0.026 4.004	
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.485	0.002	-0.006	0.000	0.000	0.026	-0.
#2	U.485 N 487	0.004	-0.005	0.000	0.000	0.027	-0.
Mean	0.486	0.003	-0.006	0.000	0.000	0.025	-0.
%RSD	0.295	26.991	10.917	21.346	7.780	4.004	2.
	oncentration	.8				ppm	

Raw Data MA23347 page 110 of 235

							∢ Zo
Analysi	: EPA3 dl : ja30252 s commenced n ratio : 1.0	: 10/26/2009	File : it102 SampleId2 9 8:53:55 PM 00000		Printed	10/27/2009 [SAMPLE]	8:12:49 AM
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	oed intensit	ies					
#1	Reading 0.913	Reading 0.430	Reading 0.022	Reading 0.136	Reading 1.418	Reading 0.081	Reading 0.009
#2	0.912	0.426	0.022	0.136	1.412	0.080	0.00
#3 Mean	0.913	0.431	0.022	0.137	1.421	0.081	0.00
%RSD	0.913 0.055	0.429 0.591	0.022 1.106	0.136 0.345	1.417	0.081 0.441	0.009
Final c	oncentrations	3					
#1	ppm 15.90435	ppm 0.86485	ppm 0.10614	ppm 0.20011	ppm 40.45937	ppm 0.47815	0.0026
#2	15.90435	0.85749	0.10614	0.19927	40.45937	0.47428	0.0026
#3	15.90944	0.86728	0.10623	0.20064	40.54773	0.47682	0.0026
Mean	15.90098	0.86321	0.10553	0.20001	40.42844	0.47642	0.0026
%RSD	0.06637	0.59077	1.08551	0.34677		0.41250	1.3578
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed intensit: Reading	ies Reading	Reading	Reading	Reading	Reading	Reading
#1	0.140	0.023	-0.009	0.586	0.055	0.014	0.03
#2	0.140	0.022	-0.009	0.583	0.052	0.012	0.03
#3 Mean	0.140 0.140	0.023	-0.009 -0.009	0.588	0.053	0.013	0.03
%RSD	0.123	2.628	2.346	0.438	2.865	4.935	2.65
Final c	oncentrations						
#1	ppm 0.31367	ppm 2.88124	-0.03592	ppm 0.81593	ppm 0.00608	ppm 0.00727	0.0033
#2	0.31301	2.69580	-0.03764	0.81166	0.00247	0.00374	0.0029
#3	0.31370	2.83629	-0.03604	0.81875	0.00254	0.00554	0.0033
Mean %RSD	0.31346	2.80444	-0.03654	0.81545 0.43779	0.00370	0.00552	0.0031
4KSD		3.44941	2.62163			31.97294	7.2492
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
IS rati	oed intensit: Reading		Reading	Reading	Reading	Reading	Readin
#1	0.070	1.117	-0.009	2.470	4.234	0.559	4.02
#2	0.068	1.118	-0.010	2 456	4.235	0.555	4.00
#3	0.069	1.118	-0.010	2.473	4.240	0.557	4.02
Mean %RSD	0.993	1.118 0.022	-0.010 4.017	0.358	4.236 0.075	0.557 0.387	0.28
Final c	oncentrations						
#1	ppm 0.16009	ppm 0.82987	ppm 0.00281	ppm 34.18085	ppm 114.20248	ppm 2.49057	226.7146
#2	0.15711	0.83023	0.00214	33.98553	114.23582	2.46988	225.6890
#3	0.15812	0.83001	0.00267	34.21062	114.36579	2.47927	
Mean %RSD	0.15844	0.83003 0.02195	0.00254 13.96337	34.12567 0.35830	114.26803 0.07551	2.47991 0.41769	0.2870
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS rati	oed intensiti	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1 #2	2.632 2.620	0.004	0.011	0.000	0.000	-0.032 -0.030	-0.10
#2	2.620	0.004	0.010	0.000	0.000	-0.030	-0.10
Mean	2.629	0.004	0.010	0.000	0.000	-0.031	-0.10
%RSD	0.328	4.684	3.564	0.321	0.321	3.445	3.18
Final c	oncentrations	s ppm	mag	mqq	mag	maa	igg
	PPIII	Ppm	ppiii	ppm	ppiii	Ppm	ppi

Raw Data MA23347 page 112 of 235

							7 Z0011	11111
							Zoom	Out
Printed:	10/27/2009 8:3	12:49 AM	User: Accute:	st				
#1	4.41505	0.00535	0.03162	6.15494	0.02692	0.04116	-0.00156	
#2	4.39532	0.00508	0.03015	6.09576	0.02919	0.04341	0.00075	
#3	4.42354	0.00547	0.03110	6.18199	0.03074	0.04385	0.00450	
Mean	4.41130	0.00530	0.03096				0.00123	
%RSD	0.32817	3.70264	2.40778	0.71780	6.62845	3.37051	249.10592	
	2203/2	2203/1	INT STD					
TS rat	tioed intensit:	ies						
	Reading	Reading	Reading					
#1	9.815	13.486	64453.000					
#2	9.652	13.555	64259.000					
#3	9.818	13.658	64041.000					
Mean	9.762	13.566	64251.000					
%RSD	0.971	0.638	0.321					
Final	concentrations	В						
	ppm	ppm	intensity					
#1	6.30366	5.85749	-44.17					
#2	6.19950	5.88828	-42.12					
#3	6.30598	5.93401	-43.44					
Mean	6.26971	5.89326	-43.24					
%RSD	0.97008	0.65331	2.41					

Raw Data MA23347 page 113 of 235

Raw Data MA23347 page 115 of 235

							■ Zoom I	n
							Zoom O	ut
Printed: 3	10/27/2009 8:	12:49 AM	User: Accutes	st.				
#1	3.95648	0.00599	0.02536	0.28978	0.02688	0.04317	-0.00569	
#2	3.93275	0.00670	0.02403	0.28860	0.02447	0.03882	-0.00421	
#3	3.94969	0.00704	0.02727	0.28989	0.02646	0.04129	-0.00320	
Mean	3.94630	0.00658	0.02555	0.28942	0.02594	0.04109	-0.00437	
%RSD	0.30965	8.14456	6.37424	0.24814	4.96258	5.31818	28.64802	
	2203/2	2203/1	INT STD					
IS rat:	ioed intensit							
	Reading	Reading	Reading					
#1	0.473	0.882	64252.000					
#2	0.471	0.880	64582.000					
#3	0.473	0.883	64517.000					
Mean	0.472	0.881	64450.333					
%RSD	0.266	0.178	0.271					
Final o	concentration	s						
	ppm	ppm	intensity					
#1	0.31331	0.24271	-35.43					
#2	0.31171	0.24237	-33.56					
#3	0.31305	0.24358	-38.09					
Mean	0.31269	0.24289	-35.69					
%RSD	0.27468	0.25761	6.37					

Method SampleIo Analysi: Dilution	EPA3						
HHATYST	EPA3						
HHATYST			File : it102	609ml	Printed	: 10/27/2009	8:12:49
HHATYST	il : ja30252-	-3	SampleId2	1		[SAMPLE]	
Dilutio	s commenced .	10/20/2003	9 - UU - U3 PM				
	n ratio : 1.0	00000 to 1.0	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3
IS rati	oed_intensiti	.es					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.748	0.331	0.021	0.154	1.298	0.074	0.
#2	0.744	0.328	0.021	0.153	1.289	0.073	0.
#3	0.744	0.331	0.021	0.155	1.297	0.074	0.
Mean	0.745	0.330	0.021	0.154	1.295	0.074	0.
*RSD	0.278	0.560	Reading 0.021 0.021 0.021 0.021 0.021 0.586	0.525	0.376	0.250	0.
Final c	oncentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	13.15434	0.6561	0.09891	0.22646	37.03436	0.44195	0.00
#2	13.08922	0.65957	0.09856	0.22546	36.78145	0.43985	0.00
#3	13.09549	0.66635	0.09968	0.22784	37.00692	0.44178	0.00
Mean	13.11301	0.66384	0.09905	0.22659	36.94091	0.44119	0.00
%RSD	0.27395	0.55997	ppm 0.09891 0.09856 0.09968 0.09905 0.57600	0.52901	0.37567	U.26478	0.51
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2
IS ratio	oed intensiti	.es					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.168	0.028	-0.011	0.542	0.051	0.011	0.
#2	0.167	0.028	-0.011	0.540	0.055	0.010	0.
#3	0.167	0.029	-0.010	0.539	0.056	0.011	0.
Mean	0.167	0.028	-0.011	0.540	0.054	0.011	0.
%RSD	0.320	2.647	Reading -0.011 -0.011 -0.010 -0.011 2.567	0.258	4.626	6.070	î.
Final c	oncentrations	3					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.37751	3.53322	-0.04307	0.75455	0.00113	0.00034	0.00
#2	0.37554	3.60510	-0.04358	0.75225	0.00744	-0.00279	0.00
#3	0.37524	3.75859	-0.04128	0.75069	0.00789	0.00034	0.00
Mean	0.37610	3.63230	-0.04264	0.75250	0.00549	-0.00070	0.00
%RSD	0.32700	3.16946	ppm -0.04307 -0.04358 -0.04128 -0.04264 2.83104	0.25801	68.88258	257.05882	5.79
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe2
IS ratio	oed intensiti	.es					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.070	0.749	-0.009	2.229	3.978	0.600	3.
#2	0.070	0.745	-0.010	2.211	3.960	0.598	3.
#3	0.069	0.745	-0.009	2.230	3.964	0.590	3.
Mean	0.070	0.746	-0.010	2.224	3.967	0.596	3.
Mean %RSD	0.297	0.313	Reading -0.009 -0.010 -0.009 -0.010 2.714	0.473	0.240	0.857	0.
Final c	oncentrations	1					
	ppm	ppm	ppm	ppm	ppm	ppm	004
#1	0.15973	0.55538	0.00286	30.84411	107.29949	2.69132	224.11
#2	0.16026	0.55239	0.00254	30.59402	106.81063	2.67836	222.74
#3	0.15937	0.55235	0.00300	30.84891	106.91631	2.64356	223.95
Mean	0.15979	0.55337	0.00280	30.76235	107.00881	2.67108	223.60
%RSD	0.28005	0.31368	ppm 0.00286 0.00254 0.00300 0.00280 8.30682	0.47395	0.24037	0.92456	0.33
			Sn1899				
IS ratio	oed intensiti	.es					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	2.358	0.006	0.008	0.000	0.000	-0.030	-0.
#2	2.344	0.006	0.007	0.000	0.000	-0.032	-0.
#3	2.354	0.007	0.009	0.000	0.000	-0.031	-0.
Mean	2.352	0.006	0.008	0.000	0.000	-0.031	-0.
%RSD	0.310	9.837	Reading 0.008 0.007 0.009 0.008 10.122	28.009	7.621	3.881	î.
Final c	oncentrations	3					
	ppm	ppm	ppm	ppm	ppm	ppm	

	Raw Data MA23347	page 114 of 235
--	------------------	-----------------

							Z
Anaiysi	: EPA3 dl : ja30252 s commenced on ratio : 1.	10/26/200	File : it102 SampleId2 9 9:06:10 PM 00000	609ml ::	Printed	: 10/27/2009 [SAMPLE]	8:12:49 #
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readir
#1 #2	0.936	0.308	0.033	0.217	1.788	0.090	0.02
# 2	0.933	0.313	0.032	0.219	1.805	0.091	0.0
Mean %RSD	0.934	0.308	0.033	0.217	1.790	0.090	0.03
%RSD	0.187	1.498	Reading 0.033 0.032 0.033 0.033 1.438	1.006	0.775	0.799	1.54
Final c	oncentration	3					
	ppm	ppm	ppm	ppm	ppm	ppm	pi
#1	16.47199	0.61928	0.15544	0.31911	50.99503	0.55837	0.0079
#2	16.43426	0.63008	0.15822	0.32306	51.48933	0.55245	0.007
Mean	16.43943	0.62031	0.15583	0.31960	51.06374	0.55813	0.0079
%RSD	0.18435	1.49831	ppm 0.15544 0.15384 0.15822 0.15583 1.42406	1.01138	0.77497	0.79639	1.786
	Cu3247						
TC wati	oed intensit						
LU TACI	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.135	0.023	-0.017	0.045	0.089	0.010	0.0
#2	0.134	0.022	-0.017	0.045	0.088	0.009	0.0
#3	0.135	0.025	-0.016	0.049	0.095	0.013	0.0
Mean %RSD	0.135 0.135 0.402	0.023 6.464	Reading -0.017 -0.017 -0.016 -0.017 3.966	0.046 5.011	4.019	20.937	2.6
rinal c	oncentration: ppm	ppm	ppm -0.07148 -0.07268 -0.06705 -0.07040 4.21540	ppm	ppm	ppm	p
#1	0.30008	3.21535	-0.07148	0.05627	0.00715	-0.00215	0.002
#2	0.29838	3.06951	-0.07268	0.05698	0.00686	-0.00743	0.002
#3	0.30077	3.54746	-0.06705	0.06208	0.01418	0.00480	0.003
%RSD	0.41006	7.47377	4.21540	5.42729	44.09701	384.63251	8.395
	Ni2316						Fe27:
IS rati	oed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.113	1.163	-0.012	2.193	7.058	0.575	5.7
#2	0.113	1.160	-0.013	2.177	7.038	0.575	5.7
#3 Mean	0.115	1.159	-0.011	2.207	7.061	0.579	5.82 5.7
#2 #3 Mean %RSD	0.937	0.185	Reading -0.012 -0.013 -0.011 -0.012 9.303	0.693	0.176	0.387	0.78
	ppm	ppm	ppm	ppm	ppm	ppm	P
#1	0.25606	0.86263	0.00050	30.30488	190.58302	2.56609	325.5562
#2	0.25560	0.00034	0.00003	30.07/56	190.05033	2.50500	323.230
Mean	0.25729	0.86084	0.00079	30.29329	190.44167	2.57196	325.704
%RSD	0.91941	0.18613	ppm 0.00050 -0.00003 0.00189 0.00079 126.00418	0.69379	0.17631	0.41200	0.783
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960
S rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	2.849	0.001	0.006	0.000	0.000	-0.070 -0.066	-0.0
#4	2.869	0.000	0.006	0.000	0.000	-0.000	-0.1
Mean	2.850	0.002	0.007	0.000	0.000	-0.072 -0.070 3.902	-0.1
#2 #3 Mean %RSD	0.641	90.471	Reading 0.006 0.006 0.009 0.007 25.678	21.650	0.017	3.902	5.5
Final c	concentration	3					
	ppm	ppm	ppm	ppm	ppm	ppm	p

Raw Data MA23347 page 116 of 235

							■ Zoom	ı In 🏲
							Zoom	Out
Printed:	10/27/2009 8:	12:49 AM	User: Accute	st				
#1	4.77992	0.00400	0.01812	0.16515	0.03010	0.04223	0.00585	
#2	4.75326	0.00313	0.01671	0.16623	0.02960	0.04670	-0.00458	
#3	4.81440	0.00573	0.02381	0.15820	0.02939	0.04209	0.00401	
Mean	4.78253	0.00429	0.01955	0.16319	0.02970	0.04367	0.00176	
%RSD	0.64093	30.81153	19.21238	2.66925	1.22432	6.00677	316.33834	
	2203/2	2203/1	INT STD					
IS rat	tioed intensit							
	Reading	Reading	Reading					
#1	0.240	0.753	68143.000					
#2	0.245	0.745	68120.000					
#3	0.227	0.745	68130.000					
Mean	0.237	0.748	68131.000					
%RSD	3.890	0.586	0.017					
Final	concentration	ıs						
	ppm	ppm	intensity					
#1	0.17699	0.14148	-25.31					
#2	0.17988	0.13892	-23.34					
#3	0.16869	0.13724	-33.25					
Mean	0.17519	0.13921	-27.30					
%RSD	3.31810	1.53311	19.21					

Raw Data MA23347 page 117 of 235

Raw Data MA23347 page 119 of 235

							■ Zoom I
							Zoom O
Drinted: 10	0/27/2009 8::	2:49 AM	Haer: Accutes	+			
#1	4.99960	0.00360	0.02195	0.13153	0.02673	0.03925	0.00167
#2	5.00631	0.00377	0.02277	0.13288	0.02784	0.03981	0.00389
#3	4.98509	0.00354	0.02118	0.14197	0.03495	0.04490	0.01504
Mean	4.99700	0.00364	0.02197	0.13546	0.02984	0.04132	0.00687
%RSD	0.21710	3.19727	3.62738	4.19130	14.95419	7.53826	104.27772
	2203/2	2203/1	INT STD				
IS ratio	ed intensit	ies					
	Reading	Reading	Reading				
#1	0.217	0.562	64380.000				
#2	0.219	0.563	64597.000				
#3	0.228	0.599	64345.000				
Mean	0.221	0.575	64440.667				
%RSD	2.690	3.667	0.212				
Final co	ncentrations						
	ppm	ppm	intensity				
#1	0.14695	0.10068	-30.66				
#2	0.14865	0.10134	-31.81				
#3	0.15422	0.11747	-29.59				
Mean	0.14994	0.10649	-30.68				
%RSD	2.53465	8.92871	3.63				

							■ Zoon
							Zoom
Analysis	EPA3 1 : ja30252-5 commenced : ratio : 1.00	10/26/2005	9 9:12:1/ PM	609ml :	Printed	: 10/27/2009 [SAMPLE]	8:12:49 AM
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS ratio	ed intensitie	es					
#1	Reading 0.504	Reading 0.182	Reading 0.027	Reading 0.145	Reading 1.040	Reading 0.090	Reading 0.010
#2	0.505	0.182	0.027	0.145	1.041	0.090	0.010
#3 Mean	0.504	0.182	0.027	0.144	1.039	0.089	0.010
%RSD	0.100	0.102	Reading 0.027 0.027 0.027 0.027 0.386	0.322	0.114	0.090 0.090 0.089 0.090 0.265	0.330
Final co	ngontrations						
#1	ppm 9 16280	ppm n 36635	ppm 0 12884	0 21330	29 68065	ppm 0 52212	n nn312
#2	9.17212	0.36637	0.12914	0.21343	29.71040	0.52282	0.00315
#3	9.15263	0.36634	0.12818	0.21217	29.64305	0.52028	0.00315
%RSD	ppm 9.16280 9.17212 9.15263 9.16251 0.10638	0.36635	0.12872	0.21297	0.11372	0.25184	0.51018
			Pd3404				
IS ratio	ed intensitie	es					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#2	0.108	0.021	-0.012	0.028	0.052	0.009	0.033
#3	0.107	0.021	-0.012	0.028	0.052	0.009	0.032
#3 Mean %RSD	Reading 0.107 0.108 0.107 0.108 0.433	0.021	-0.012 0.297	0.028 1.761	0.054 4.688	0.009 1.861	0.033 2.700
Final co	ncentrations						
#1	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#2	0.23949	2.69160	-0.04717	0.03538	0.00172	-0.00575	0.00270
#3	0.23736	2.70634	-0.04730	0.03573	0.00275	-0.00531	0.00230
Mean %RSD	ppm 0.23833 0.23949 0.23736 0.23840 0.44772	2.70451 0.44771	-0.04715 0.32290	0.03517 1.96623	0.00431 84.18197	-0.00529 8.86949	0.00256 8.84675
			Ag3280				
IS ratio	ed intensitie	es					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#2	0.071	0.582	-0.012	1.477	3.845	0.664	4.027
#3	0.071	0.581	-0.012	1.472	3.837	0.663	4.019
Mean %RSD	0.071 0.068	0.581	Reading -0.012 -0.012 -0.012 -0.012 2.772	1.474	3.841 0.117	0.664 0.179	4.026 0.173
Final co	ncentrations						
#1	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.16374	0.43061	0.00079	20.34940	103.62279	2.99871	227.09511
#3	0.16378	0.43036	0.00021	20.31913	103.47470	2.99337	227.09511 227.44796 226.66187 227.06831
Mean %RSD	0.16370	0.43070	0.00079 0.00036 0.00021 0.00045 66.21065	0.18730	103.60472	2.99895 0.19026	227.06831 0.17340
		Mo2020					
IS ratio	ed intensitie	28					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1 #2	2.980	0.003	Reading 0.006 0.006 0.006 0.006 6.375	0.000	0.000	-0.034	-0.099
	2.971	0.003	0.006	0.000	0.000	-0.029	-0.085
Mean	2.979	0.003	0.006	0.000	0.000	-0.032	-0.093
%RSD			6.375	0.212	0.212	7.006	8.003
	ncentrations						
Final co	ppm	mqq	ppm	nnm		ppm	mqq

Raw Data MA23347 page 118 of 2	235
--------------------------------	-----

							◀ Zo
							200
Analvsi	: EPA3 dl : CCV s commenced on ratio : 1.	: 10/26/2009	9:18:26 PM	609ml	Printed :	10/27/2009 [FLEXQC]	8:12:49 AM
				Cr2677	Mg2790	V 2924	Be3130
TS rati	oed intensit	ies					
#1 #2 #3 Mean %RSD	Reading 2.258 2.268 2.274 2.267 0.351	Reading 1.041 1.023 1.031 1.031 0.856	Reading 0.437 0.434 0.436 0.436 0.314	Reading 1.372 1.363 1.369 1.368 0.348	Reading 1.470 1.459 1.468 1.466 0.407	Reading 0.410 0.408 0.410 0.409 0.341	Readin 4.35 4.29 4.33 4.32 0.67
Final c							
#1 #2 #3 Mean %RSD	oncentration 37.91132 38.06975 38.17450 38.05186 0.34822 Cu3247	2.09251 2.05709 2.07245 2.07402 0.85624					
			F43404	AB1090	111900	302000	CUZZU.
#1 #2 #3 Mean %RSD	oed intensit Reading 0.830 0.832 0.834 0.832 0.253	Reading 0.267 0.264 0.267 0.266 0.732	Reading 0.423 0.422 0.424 0.423 0.180	Reading 1.434 1.422 1.433 1.430 0.479	Reading 1.351 1.341 1.356 1.349 0.578	Reading 0.768 0.765 0.772 0.768 0.443	Reading 8.150 8.059 8.099 8.100 0.589
Final c	concentration	s					
#1 #2 #3 Mean %RSD	ncentration ppm 1.89910 1.90280 1.90872 1.90354 0.25479	ppm 40.62615 40.11050 40.65684 40.46450 0.75857	ppm 1.88745 1.88593 1.89240 1.88859 0.17911	2.02365 2.00605 2.02160 2.01710 0.47702	ppm 1.97200 1.95791 1.97998 1.96996 0.56726	2.09840 2.08880 2.10760 2.09827 0.44816	2.1504 2.1254 2.1369 2.1376 0.5855
	Ni2316		Ag3280			Si2881	Fe271
IS rati	oed intensit	ies					
#1 #2 #3 Mean %RSD	Reading 0.939 0.929 0.937 0.935 0.589	Reading 2.524 2.537 2.546 2.536 0.433	Reading 0.264 0.263 0.264 0.264 0.197	3.011 3.034 3.029	Reading 1.438 1.442 1.449 1.443 0.372	1.156	0.72 0.72 0.72
Final c	concentration	s					
#1 #2 #3 Mean %RSD	2.08000 2.05719 2.07596 2.07105 0.58756	ppm 1.87893 1.88817 1.89525 1.88745 0.43358	ppm 0.25008 0.24930 0.25014 0.24984 0.18838	ppm 42.06515 41.63643 41.95632 41.88597 0.53204	ppm 38.53484 38.63611 38.81888 38.66328 0.37233	ppm 5.38025 5.36344 5.39313 5.37894 0.27684	41.0658 40.6530 40.9745 40.8977 0.5302
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS rati	oed intensit	ies					
#1 #2 #3 Mean %RSD	Reading 1.175 1.169 1.175 1.173 0.332	Reading 2.226 2.216 2.226 2.223 0.251	Reading 0.966 0.957 0.962 0.962 0.466	Reading 0.000 0.000 0.000 0.000 14.017	Reading 0.000 0.000 0.000 0.000 0.508	Reading 1.417 1.421 1.448 1.428 1.172	Reading 1.95 2.02 1.98 1.98
Final c	oncentration		ppm	mada	ppm	ppm	nn
	PPIII	Ppm	PPIII	P-Put	PPIII	PPm	PP

Raw Data MA23347 page 120 of 235

							■ Zoom I	n▶
							Zoom O	ut
Printed:	10/27/2009 8:	12:49 AM	User: Accute	st				
#1	1.97142	1.97721	2.06922	2.10509	2.04168	2.07565	1.97373	
#2	1.95990	1.96858	2.05020	2.13763	2.06847	2.08166	2.04209	
#3	1.97101	1.97715	2.06021	2.14256	2.08267	2.12109	2.00581	
Mean		1.97431	2.05988	2.12842	2.06427	2.09280	2.00721	
%RSD	0.33222	0.25157	0.46183	0.95652	1.00834	1.17955	1.70401	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit							
	Reading	Reading	Reading					
#1	3.372	4.667	58281.000					
#2	3.395	4.820	57849.000					
#3	3.425	4.767						
Mean		4.751	57949.000					
%RSD	0.783	1.641	0.509					
Final	concentration	s						
	ppm	ppm	intensity					
#1	2.15809	1.99908	-2890.30					
#2	2.17271	2.06746	-2863.73					
#3	2.19211	2.04344	-2877.72					
Mean		2.03666	-2877.25					
%RSD	0.78486	1.70334	0.46					

Raw Data MA23347 page 121 of 235

Raw Data MA23347 page 123 of 235

							■ Zoom I	ď
							Zoom O	į
Printed:	10/27/2009 8	:12:50 AM	User: Accut	est				
#1	0.00070	0.00138	-0.00352	0.00000	0.00050	0.00681	-0.01212	
#2	0.00069	-0.00005	-0.00477	-0.00153	-0.00092	0.00782	-0.01838	
#3	0.00069	0.00016	-0.00516	0.00717	0.00591	0.00873	0.00029	
Mean	0.00069	0.00049	-0.00448	0.00188	0.00183	0.00778	-0.01007	
%RSD	0.25574	156.18415	19.13857	246.99484	196.81177	12.33582	94.33092	
	2203/2	2203/1	INT STD					
IS rat	ioed intensi	ties						
	Reading	Reading	Reading					
#1	0.018	0.129	56915.000					
#2	0.017	0.122	55601.000					
#3	0.026	0.154	56993.000					
Mean	0.020	0.135	56503.000					
%RSD	24.525	12.462	1.384					
Final	concentratio	ns						
	ppm	ppm	intensity					
#1	0.00149	-0.00299	4.92					
#2	0.00068	-0.00594	6.66					
#3	0.00660	0.00831	7.21					
Mean	0.00293	-0.00021	6.26					
%RSD	109.76994	3589.39714	19.14					

Markard	: EPA3		m:1- : :+100	1600-1	Darley and	. 10/27/2000	0.10.5
Sample	Idl : CCB		File : it102 SampleId2	5 :	Princed	[FLEXQC]	0.12.5
	is commenced on ratio : 1.						
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be
IS rat	ioed intensit	ies					_
#1	Reading	Reading	Reading 0.000 -0.001	Reading	Reading 0.000		Rea 0
#2	0.065	-0.001	-0.001	0.001	0.000		0
#3	0.064	-0.001	0.000	0.000	0.000	0.000	0
Mean	0.065	-0.001	0.000 0.000 20.489	0.000	0.000	0.000	0
%RSD	1.110	12.581	20.489	3.723	17.960	390.739	3
Final	concentration	18					
#1	1 15012	=0 00057	=0 00002	=0 00027	0 00227	=0 00066	0.0
#2	1.16764	-0.00120	-0.00081	-0.00031	-0.00202	-0.00111	0.0
	1.14480	-0.00089	-0.00026	-0.00032	0.00075	-0.00084	0.0
Mean %RSD	1.15419	-0.00089	-0.00002 -0.00081 -0.00026 -0.00037 111.78255	-0.00030	0.00033	-0.00087	0.0
aRSD							
			Pd3404	As1890	T11908	Sb2068	Cd
IS rat	ioed intensit	ies Pooding	Ponding	Roading	Ponding	Roading	Pon
#1	0.004	0.019	-0.001	-0.003	-0.024	0.009	0
#2	0.004	0.019	-0.002	-0.005	-0.025	0.009	0
#3	0.003	0.018	-0.001	-0.003	-0.023	0.010	0
Mean %RSD	0.004 4.795	1.340	Reading -0.001 -0.002 -0.001 -0.001 11.535	-0.004 24.363	-0.024 4.730	0.009 5.951	56
Final	concentration						
	ppm 0.00138 0.00076 0.00064 0.00093 42.83587	ppm	ppm	ppm	ppm	ppm	
#1	0.00138	0.87027	-0.00082	-0.00232	-0.00368	-0.00541	-0.0
#3	0.00064	0.79220	-0.00223	-0.00229	-0.00291	-0.00705	0.0
Mean	0.00093	0.83005	-0.00157	-0.00300	-0.00421	-0.00550	0.0
%RSD	42.83587	4.70898	45.22677	40.45034	38.71078	27.25849	152.7
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe
IS rat	ioed intensit	ies	D 11	D			
#1	_0 001	0.001	Reading -0.013	Reading	Reading	Reading	Rea 0
#2	-0.001	0.001	-0.013	0.002	0.009	0.032	0
#3	-0.002	0.001	-0.013	0.002	0.009	0.032	ō
Mean	-0.002	0.001 0.001 0.001 3.098	-0.013	0.002 0.002 0.002 1.856	0.009	Reading 0.032 0.033 0.032 0.033 1.958	0
%RSD			4.643	1.856	1.611	1.958	8
Final	concentration	is nom	nnm	nnm	nnm	nnm	
#1	0.00077	0.00025	-0.00007	0.00598	-0.00193	-0.03407	0.0
#2	0.00061	0.00028	-0.00116	0.00601	0.00585	-0.03043	0.0
#3 Mean	0.00023	0.00028	-0.00048	0.00671	0.00010	-0.03654	0.0
%RSD	51.80959	5.31855	ppm -0.00007 -0.00116 -0.00048 -0.00057 97.26251	6.56475	301.02955	9.12677	9.7
			Sn1899				
TS rat							
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.001	0.005	-0.011	0.000	0.000	0.034	-0
#2 #3	0.001	0.003	-0.011	0.000	0.000	0.034	-0
#3 Mean	0.001	0.004	-0.011	0.000	0.000	0.035	-0
%RSD	0.166	0.004 21.659	Reading -0.011 -0.011 -0.011 -0.011 3.682	6.247	1.395	1.900	9
Final	concentration						
	ppm	ppm	ppm	ppm	ppm	ppm	

	Raw Data MA23347	page 122 of 235
--	------------------	-----------------

							◀ Zo Zo
Analvsi	: EPA3 dl : ja30252 s commenced n ratio : 1.	: 10/26/200	File : it102 SampleId2 9 9:31:03 PM 00000	609ml	Printed	: 10/27/2009 [SAMPLE]	8:12:50 A
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	oed intensit	ies					
	Reading	Reading	Reading 0.029 0.028 0.028 0.028 2.649	Reading	Reading	Reading	Readin
#1 #2	0.665	0.904	0.029	0.158	1.589	0.168	0.01
#3	0.676	0.880	0.028	0.154	1.562	0.165	0.01
Mean	0.674	0.888	0.028	0.156	1.572	0.167	0.01
%RSD	1.072	1.579	2.649	1.336	0.926	0.797	2.25
Final c	oncentration	s					
#1	ppm	ppm	ppm	ppm	ppm	ppm	ppi
#1	12.05843	1.76937	0.13801	0.23237	45.31448	0.92624	0.0048
#3	12.02997	1.76876	ppm 0.13801 0.13198 0.13190 0.13397 2.61447	0.22651	44.55020	0.91241	0.0046
Mean	11.98784	1.78534	0.13397	0.22889	44.83860	0.91805	0.0046
%RSD			2.61447				
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed intensit	ies					
	Reading	Reading	Reading -0.014 -0.017	Reading	Reading	Reading	Readin
#1 #2	0.260	0.032	-0.014	0.122	0.066	0.011	0.03
#3	0.262	0.026	-0.017	0.116	0.056	0.004	0.03
#3 Mean %RSD	0.262	0.028	-0.017 -0.016 11.575	0.116 0.118 3.298	0.059	0.005 0.007 56.761	0.03
%RSD	0.721	9.938	11.575	3.298	9.916	56.761	7.53
Final c	oncentration	s					
#1	n sozse	4 26207	_n ns776	0 16630	0 00714	0 0017E	o ooss
#2	0.59617	3.54553	-0.07251	0.15655	-0.00655	-0.01763	0.0032
#3	0.59296	3.63915	-0.07164	0.15770	-0.00546	-0.01633	0.0021
Mean	0.59223	3.84952	ppm -0.05776 -0.07251 -0.07164 -0.06730 12.29958	0.16021	-0.00162	-0.01074	0.0025
arsu					400.09420	100.93400	20.0022
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Reading 0.838 0.838 0.842 0.839 0.265	Fe271
	oed_intensit	ies					
#1	Reading 0.113	Reading 0.749	Reading -0.012 -0.017 -0.016 -0.015 17.385	Reading	Reading 4.861	Reading	Readin 4.61
#2	0.110	0.761	-0.012	4.145	4.920	0.838	4.56
#3	0.109	0.757 0.756	-0.016	4.135 4.160	4.890 4.890	0.842	4.55
Mean %RSD	0.111 1.650	0.756 0.823	-0.015	4.160 0.838	4.890 0.605	0.839 0.265	4.57 0.71
			17.305	0.030	0.605	0.265	0.71
Final c	oncentration ppm 0 25550	S	nnm	nnm	ppm	nnm	pp
#1	0.25550	0.55513	ppm 0.00070 -0.00354	58.17921	ppm 131.21081 132.80945	ppm 3.83158 3.83520	260.3002
#2	0.24917	0.56424	-0.00354	57.41635	132.80945	3.83520	257.5319
#3 Moon	0.24795	0.56115	-0.00315	57.28271	132.01462	3.85190	256.7864 258.2062
Mean %RSD	1.61476	0.82714	0.00070 -0.00354 -0.00315 -0.00200 117.48496	0.83929	0.60550	0.28227	0.7170
			Sn1899			1960/2	
IS rati	oed intensit	ies					
	Reading	Roading	Reading	Reading	Reading	Reading -0.048 -0.056 -0.056 -0.053 8.434	Reading
#1	2.808	0.011	0.044	0.000	Reading 0.000 0.000	-0.048	-0.09 -0.11
#2 #3	2.797 2.788	0.006	0.038	0.000	0.000	-0.056	-0.11
Mean	2.798	0.007	0.044 0.038 0.039 0.040 8.036	0.000 0.000 0.000	0.000	-0.053	-0.11
%RSD	0.349	37.385	8.036	0.000 0.000 0.000 17.383	1.847	8.434	
Final c	oncentration						
	ppm	ppm	ppm	ppm	ppm	ppm	pp

Raw Data MA23347 page 124 of 235

						4
						▼ Zoom I Zoom O
						Zoom O
0/27/2009 8:	:12:50 AM	User: Accute	st			
4.71065	0.01161	0.10150	0.79538	0.02776	0.03689	0.00950
4.69234	0.00717	0.08884	0.78699	0.01217	0.02327	-0.01001
4.67800	0.00737	0.09092	0.77248	0.00935	0.02374	-0.01941
4.69366	0.00872	0.09375	0.78495	0.01643	0.02797	-0.00664
0.34865	28.72712	7.23878	1.47608	60.34317	27.65367	222.08472
2203/2	2203/1	INT STD				
oed intensit	ies					
Reading	Reading	Reading				
1.255	2.054	65411.000				
1.255	1.997	63226.000				
1.235	1.958	63480.000				
1.248	2.003	64039.000				
0.940	2.409	1.866				
oncentration	18					
ppm	ppm					
0.92906	2.93961	7.24				
	4.71065 4.69234 4.67800 4.69366 0.34865 2203/2 bed intensit Reading 1.255 1.255 1.235 1.248 0.940	4.69234 0.00717 4.69366 0.00872 0.34865 28.72712 2203/2 2203/1 bed intensities Reading Reading 1.255 1.997 1.255 1.997 1.255 1.997 1.248 2.003 0.940 2.409 concentrations ppm 7400 0.82081 0.72356 0.82081 0.72373 0.81560 0.72374	4.71065 0.01161 0.10150 4.6923 0.00737 0.08884 4.6923 0.00717 0.08884 4.6923 0.00717 0.08884 4.6926 0.08872 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.08878 0.0988 0	4.71065 0.01161 0.10150 0.79538 4.69234 0.00717 0.08884 0.78699 4.67800 0.00737 0.09892 0.77248 0.465366 0.00872 7.28878 1.47608 0.36879 0.09372 0.7248 0.3685 0.36879 0.09372 7.28878 1.47608 0.09372 0.09372 0.78495 0.78495 0.36879 0.09372 0.09372 0.09372 0.78495 0.78495 0.09372	4.71065 0.01161 0.10150 0.79538 0.02776 4.69234 0.00717 0.08884 0.78699 0.01217 4.67800 0.00737 0.09892 0.77248 0.00935 4.63366 0.00872 7.28878 1.47608 0.34317 2203/2 2203/1 INF STD Ped intensities Reading Reading Reading Reading 1.255 2.054 65411.000 1.255 1.996 65411.000 1.255 1.997 63226.000 1.235 1.958 63480.000 1.248 2.003 64039.000 0.940 2.409 0.74605 610000000000000000000000000000000000	4.71055

Raw Data MA23347 page 125 of 235

Raw Data MA23347 page 127 of 235

							■ Zoom I	n
							Zoom O	ut
Printed:	10/27/2009 8:	:12:50 AM	User: Accute:	st				
#1	3.91744	0.00411	0.02221	0.14286	0.02620	0.03621	0.00618	
#2	3.92848	0.00513	0.02379	0.13665	0.02165	0.02898	0.00700	
#3	3.92824	0.00498	0.02390	0.14598	0.02493	0.03592	0.00294	
Mean	3.92472	0.00474	0.02330	0.14183	0.02426	0.03370	0.00537	
%RSD	0.16070	11.58269	4.06004	3.34954	9.67387	12.15082	40.00629	
	2203/2	2203/1	INT STD					
IS rat	ioed intensit							
	Reading	Reading	Reading					
#1	0.229	0.597	63993.000					
#2	0.212	0.605	63972.000					
#3	0.231	0.612	63715.000					
Mean	0.224	0.605	63893.333					
%RSD	4.791	1.191	0.242					
Final	concentration							
	ppm	ppm	intensity					
#1	0.15741	0.11376	-31.03					
#2	0.14629	0.11736	-33.23					
	0.15882	0.12029	-33.39					
#3		0.11714	-32.55					
Mean %RSD	0.15418 4.45159	2.79356	4.06					

							Zoom
							200111
Method SampleI	: EPA3 [dl : ja30252-	7	File : it102 SampleId2	609ml	Printed	: 10/27/2009 [SAMPLE]	8:12:50 AM
Analysi Dilutio	is commenced : on ratio : 1.0	10/26/200 00000 to 1.	9 9:37:10 PM 00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	loed intensiti	es	D	n	D	D4:	Reading
#1	0.603	0 224	Reading 0.024	0 130	1 211	0.086	0.009
#2		0.226	0.024	0.131	1.215	0.087	0.009
#3	0.605 0.604	0.225	0.024 0.024 0.024 0.024	0.131 0.131 0.246	1.213	0.086	0.009
Mean	0.604	0.225	0.024	0.131	1.213 0.189	0.086	0.009
%RSD	0.106	0.226 0.225 0.225 0.321	0.427	0.246	0.189	0.288	0.488
Final c	concentrations						
#1	ppm 10.75556	ppm 0.45146 0.45428	ppm	ppm	24 E2721	o rorso	ppm
#2	10.75556	0.45146	0.11240	0.19134	34.55/31	0.50536	0.00282
#3	10.76111 10.77630 10.76432 0.09975	0.45349	0.11253	0.19245	34.60255	0.50692	0.00279
Mean	10.76432	0.45308	0.11278	0.19208	34.60269	0.50683	0.00281
%RSD	0.09975	0.32114	ppm 0.11248 0.11333 0.11253 0.11278 0.42134	0.24767	0.18912	0.27720	0.73975
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS rati	loed intensiti	.es					
		Reading	Reading		Reading	Reading	Reading
#1	0.119	0.072	-0.013	0.061	0.058	0.010	0.033
#2 #3	0.119 0.119	0.072		0.062	0.061	0.011	0.033
#3 Mean	0.119	0.072	-0.013	0.060	0.056	0.011 0.010	0.032
%RSD		0.072 0.157	-0.013 0.561	0.062 0.060 0.061 1.996	0.056 0.058 4.275	5.308	1.730
Final c	concentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.26487	10.46645	-0.05169	0.08156	0.00716	-0.00362	0.00242
#2	0.26478	10.47457	-0.05108	0.08303	0.01163	-0.00129	0.00249
#3 Mean	0.26451	10.43939	-0.05151	0.07964	0.00482	-0.00075	0.00221
%RSD	0.26487 0.26478 0.26451 0.26472 0.07091	0.17610	0.61336	2.08849	44.00256	ppm -0.00362 -0.00129 -0.00075 -0.00189 80.99822	6.21753
			Ag3280				
IS rati							
10 1401	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.067	0.616	-0.013	2.680	4.064	0.589	4.063
#2	0.068	0.616	-0.013	2.689	4.069	0.574	4.080
#3 Mean	0.068	0.616	-0.013	2.690	4.068	0.574	4.074
%RSD	0.834	0.016	Reading -0.013 -0.013 -0.013 -0.013 0.913	0.209	0.063	1.482	0.211
Final c	concentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.15386	0.45641	-0.00001	37.10701	109.63063	2.63724	229.13595
#2	0.15622	0.45637	0.00005	37.23277	109.76392	2.56576	230.08919
#3	0.15572	0.45634	-0.00016	37.24943	109.73451	2.56498	229.75671
%RSD	ppm 0.15386 0.15622 0.15572 0.15527 0.80244	0.45637	265.81834	0.20934	0.06383	1.60257	0.21067
	Mn2576		Sn1899				
TC							
ro rati	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	2.335	0.003	0.006	0.000	0.000	-0.036	-0.094
#2	2.342	0.005	0.007	0.000	0.000	-0.042	-0.094
#3	2.341	0.004	0.007	0.000	0.000	-0.037	-0.098
Mean %RSD	Reading 2.335 2.342 2.341 2.339 0.161	0.004	0.007	0.000	0.000	-0.038	-0.095
			6.663	21.742	7.636	7.667	2.339
Final c	concentrations			mqq	mag	mqq	maga
	ppill	ppm	ppm	ppm	ppm	ppm	ppm

	Raw Dat	ta MA23347	page 126	of 235
--	---------	------------	----------	--------

Analysis Dilution IS ratio #1 #2 #3 Mean %RSD Final co #1 #2 #3 Mean %RSD IS ratio #1 #1 #2 #3 #3 #4 #4 #4 #4 #5 #5 #5 #6 #6 #6 #6 #6 #6 #7 #6 #7 #6 #7 #7 #7 #7 #7 #7 #7 #7 #7 #7 #7 #7 #7	11: ja30252: i ratio: 1.6 K 7664 ed intensit: Reading 0.673 0.679 0.679 0.679 0.447 encentration 11:89297 11:99817 11:99817 11:95357 0.45505 Cu3247 end intensit: Reading 0.212	2n20622000000 to 1. Zn2062 Reading	File: it102 SampleId2 9 9:43:18 PM 00000 Co2286 Reading 0.056 0.056 0.056 1.114 0.26154 0.26254 0.26250 0.26270 1.10725		Printed: Mg2790 Reading 2.071 2.076 2.097 2.081 0.680 ppm 59.07424 59.20753 59.83087	10/27/2009 [SAMPLE] V 2924 Reading 0.097 0.098 0.098 0.708 ppm 0.56623 0.566657	8:12:50 A Be313 Readin 0.00 0.00 0.00 1.22
#1 #2 #3 Mean %RSD #1 #2 #3 Mean %RSD	K 7664 sed intensit: Reading 0.673 0.679 0.679 0.676 0.474	Zn2062 ies Reading 0.345 0.344 0.351 0.346 1.053 ppm 0.69239 0.69101 0.70433 0.69591 1.05254 Na3302	Co2286 Reading 0.056 0.056 0.057 0.056 1.114 ppm 0.26154 0.26254 0.26702 0.26370	Reading 0.158 0.158 0.160 0.159 1.015 ppm 0.23157 0.23173 0.23577	Reading 2.071 2.076 2.097 2.081 0.680 ppm 59.07424 59.20753	Reading 0.097 0.097 0.098 0.098 0.708	Readin 0.00 0.00 0.00 0.00 1.22
#1 #2 #3 Mean %RSD Final co #1 #2 #3 Mean %RSD	Reading 0.673 0.673 0.677 0.679 0.679 0.447 oncentrations ppm 11.89297 11.96957 11.95357 0.45505 Cu3247 oed intensit: Reading 0.212	Reading 0.345 0.344 0.351 0.346 1.053 0.69239 0.69101 0.70433 0.69591 1.05254 Na3302	0.056 0.057 0.056 1.114 ppm 0.26154 0.26254 0.26370	0.158 0.158 0.160 0.159 1.015 ppm 0.23157 0.23173 0.23577	2.071 2.076 2.097 2.081 0.680 ppm 59.07424 59.20753	0.097 0.097 0.098 0.098 0.708	0.00 0.00 0.00 0.00 1.22
#2 #3 Mean %RSD Final co. #1 #2 #3 Mean %RSD IS ratio	0.673 0.677 0.679 0.676 0.447 oncentrations 11.89297 11.98697 11.9987 0.45505 Cu3247 oed intensit: Reading 0.212	0.345 0.344 0.351 0.346 1.053 0.69239 0.69101 0.70433 0.69591 1.05254 Na3302	0.056 0.057 0.056 1.114 ppm 0.26154 0.26254 0.26370	0.158 0.158 0.160 0.159 1.015 ppm 0.23157 0.23173 0.23577	2.071 2.076 2.097 2.081 0.680 ppm 59.07424 59.20753	0.097 0.097 0.098 0.098 0.708	0.00 0.00 0.00 0.00 1.22
#2 #3 Mean %RSD Final co. #1 #2 #3 Mean %RSD IS ratio	0.677 0.679 0.679 0.447 0.447 0.447 0.447 0.4505 11.98297 11.99817 11.99817 11.95357 0.45505 Cu3247 0.456d intensit: Reading 0.212	0.344 0.351 0.346 1.053 0.69239 0.699101 0.70433 0.69591 1.05254 Na3302	0.056 0.057 0.056 1.114 ppm 0.26154 0.26254 0.26370	0.158 0.160 0.159 1.015 ppm 0.23157 0.23173 0.23577	2.076 2.097 2.081 0.680 ppm 59.07424 59.20753	0.097 0.098 0.098 0.708	0.00 0.00 0.00 1.22
#3 Mean %RSD Final co #1 #2 #3 Mean %RSD IS ratio #1	0.679 0.676 0.447 oncentrations ppm 11.89297 11.96957 11.95357 0.45505 Cu3247 sed intensit: Reading 0.212	0.351 0.346 1.053 0.69239 0.69101 0.70433 0.69591 1.05254 Na3302	0.057 0.056 1.114 ppm 0.26154 0.26254 0.26702 0.26370	0.160 0.159 1.015 ppm 0.23157 0.23173 0.23577	2.097 2.081 0.680 ppm 59.07424 59.20753	0.098 0.098 0.708 ppm 0.56623	0.00 0.00 1.22
Mean %RSD Final co #1 #2 #3 Mean %RSD IS ratio #1	0.676 0.447 encentrations ppm 11.98297 11.96957 11.99817 11.95357 0.45505 Cu3247 ed intensit: Reading 0.212	0.346 1.053 ppm 0.69239 0.69101 0.70433 0.69591 1.05254 Na3302	0.056 1.114 ppm 0.26154 0.26524 0.26702 0.26370	0.159 1.015 ppm 0.23157 0.23173 0.23577	2.081 0.680 ppm 59.07424 59.20753	0.098 0.708 ppm 0.56623	0.00 1.22
Final co. #1 #2 #3 Mean %RSD	ppm 11.89297 11.96957 11.99817 11.95357 0.45505 Cu3247 ed intensit: Reading 0.212	ppm 0.69239 0.69101 0.70433 0.69591 1.05254 Na3302	ppm 0.26154 0.26254 0.26702 0.26370	ppm 0.23157 0.23173 0.23577	ppm 59.07424 59.20753	ppm 0.56623	qq
#1 #2 #3 Mean %RSD	ppm 11.89297 11.96957 11.99817 11.99357 0.45505 Cu3247 ed intensit: Reading 0.212	0.69239 0.69101 0.70433 0.69591 1.05254 Na3302	0.26154 0.26254 0.26702 0.26370	0.23157 0.23173 0.23577	59.07424 59.20753	0.56623	
#2 #3 Mean %RSD IS ratio #1 #2	11.89297 11.996957 11.99817 11.95357 0.45505 Cu3247 Ded intensit: Reading 0.212	0.69239 0.69101 0.70433 0.69591 1.05254 Na3302	0.26154 0.26254 0.26702 0.26370	0.23157 0.23173 0.23577	59.07424 59.20753	0.56623	
#2 #3 Mean %RSD IS ratio #1 #2	11.96957 11.99817 11.95357 0.45505 Cu3247 ed intensiti Reading 0.212	0.69101 0.70433 0.69591 1.05254 Na3302	0.26254 0.26702 0.26370	0.23173 0.23577	59.20753	0.50023	
#3 Mean %RSD IS ratio #1 #2	11.99817 11.95357 0.45505 Cu3247 ed intensit: Reading 0.212	0.70433 0.69591 1.05254 Na3302	0.26702 0.26370	0.23577			0.0019
%RSD IS ratio #1 #2	0.45505 Cu3247 ed intensiti Reading 0.212	1.05254 Na3302		0.23303		0.57336	0.0020
IS ratio	Cu3247 ed intensiti Reading 0.212	Na3302	1.10725		59.37088	0.56872	0.0020
#1 #2	ed intensiti Reading 0.212			1.02087	0.68029	0.70751	1.9907
#1 #2	Reading 0.212		Pd3404	As1890	T11908	Sb2068	Cd226
#2	0.212						
#2		Reading 0.053	Reading -0.016	Reading 0.131	Reading 0.059	Reading 0.014	Readin 0.04
	0.213	0.053	-0.016	0.131	0.059	0.014	0.04
#3	0.214	0.055	-0.016	0.132	0.061	0.012	0.04
Mean	0.213	0.054	-0.016	0.131	0.060	0.013	0.04
%RSD	0.415	2.608	2.414	1.142	2.071	10.635	3.27
Final co	ncentrations						
#1	ppm 0.47809	ppm 7.75347	-0.06728	0.18021	ppm 0.00388	ppm 0.00856	0.0041
#2	0.48097	7.64296	-0.06926	0.17733	0.00332	0.00175	0.0034
#3	0.48198	8.08088	-0.06580	0.18134	0.00532	0.00828	0.0038
Mean	0.48035	7.82577	-0.06745	0.17963	0.00417	0.00619	0.0037
%RSD	0.42041	2.91007	2.56641	1.15195		62.22461	9.1229
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
IS ratio	ed intensit						
#1	Reading 0.096	Reading 1.158	Reading -0.012	Reading 6.509	Reading 5.511	Reading 0.877	Readin 4.37
#2	0.096	1.156	-0.012	6.527	5.552	0.884	4.38
#3	0.097	1.168	-0.012	6.600	5.565	0.891	4.43
Mean %RSD	0.096 0.619	1.164	-0.013 6.462	6.545 0.736	5.542 0.509	0.884	4.40
*RSD	0.619	0.500	6.462	U./36	0.509	0.758	0.71
Final co	ncentrations ppm		ppm	ppm	ppm	ppm	gg
#1	0.21836	0.85922	0.00042	90.23152	148.73052	4.02004	246 6701
#2	0.21831	0.86611	-0.00075	90.49227	149.83299	4.05205	247.4414
#3 Mean	0.22065	0.86718	0.00059	91.49701 90.74027	150.19534 149.58628	4.08439	250.0364 248.0493
%RSD	0.60965	0.50006	839.99742	0.73638	0.51003	0.79403	0.7109
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
TS ratio	ed intensiti						
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	3.516	0.007	0.008	0.000	0.000	-0.040	-0.10
#2 #3	3.533 3.564	0.006	0.007	0.000	0.000	-0.039 -0.042	-0.10 -0.10
Mean	3.538	0.007	0.008	0.000	0.000	-0.042	-0.10
%RSD	0.694	11.282	14.195	7.266	8.117	4.417	3.60
Final co	ncentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	pp

Raw Data MA23347 page 128 of 235

							Zoom	Jut
#1	10/27/2009 8: 5.89842	0.00825	User: Accute: 0.02579	0.24901	0.02465	0.03836	-0.00278	
#2	5.92784	0.00746	0.02400	0.25669	0.02905	0.04146	0.00423	
#3	5.97978	0.00884	0.02865	0.25260	0.02479	0.03773		
Mean %RSD	5.93535 0.69408	0.00819 8.46994	0.02614 8.96832	0.25277 1.52004	0.02616 9.57114	0.03918 5.10484	0.00012 2952.02571	
*RSD	0.09400	0.40994	0.90032	1.52004	9.5/114	5.10404	2952.025/1	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit	ies						
	Reading	Reading	Reading					
#1	0.385	0.880	62248.000					
#2	0.393	0.908	61670.000					
#3	0.387	0.899	61719.000					
Mean	0.388	0.896	61879.000					
%RSD	1.159	1.552	0.518					
Final	concentration	S						
	ppm	ppm	intensity					
#1	0.26623	0.21458	-36.02					
#2	0.27200	0.22608	-33.52					
#3	0.26818	0.22142	-40.01					
Mean	0.26880	0.22069	-36.52					
%RSD	1.09168	2.62072	8.97					

Raw Data MA23347 page 129 of 235

Raw Data MA23347 page 131 of 235

							◀ Zoom In
							Zoom Ou
Drinted:	10/27/2009 8:	12:50 AM	User: Accute	o+			
#1	4.47564	0.00740	0.08732	11.30033	0.02340	0.02699	0.01621
#2		0.00809	0.09002	11.31488	0.03145	0.03904	
#3	4.47211	0.00812	0.08934	11.28146	0.02618	0.03508	
Mean		0.00787	0.08889	11.29889	0.02701		0.01362
%RSD	0.10924	5.20001	1.58098	0.14831	15.14614	18.22064	33.31443
	2203/2	2203/1	INT STD				
IS ra	tioed intensit	ies					
	Reading	Reading	Reading				
#1	17.947	24.728	64337.000				
#2	18.002	24.668					
.#3	17.973						
Mean		24.641					
%RSD	0.152	0.421	0.251				
Final	concentration	ıs					
	ppm	ppm	intensity				
#1	11.51417	10.87265	-121.97				
#2	11.54929	10.84605	-125.74				
#3	11.53074	10.78288					
Mean %RSD		10.83386	-124.17 1.58				
ansu	0.15257	0.42500	1.50				

							4
Method Sample Analys	d: EPA3 eId1: ja30252-9 sis commenced: ion ratio: 1.00	10/26/2009	File : it102 SampleId2 9:49:25 PM	609ml	Printed	: 10/27/2009 [SAMPLE]	8:12:50
DITUC			Co2286	Cr2677	Ma 2790	V 2924	Re31
TC vot							
15 140	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.537	0.893	0.022	0.156	0.916	0.083	0.0
#2	0.537	0.898	0.023	0.157	0.920	0.084	0.0
#3 Moon	0.536	0.898	0.023	0.157	0.918	0.083	0.
%RSD	Reading 0.537 0.537 0.536 0.536 0.105	0.307	0.751	0.457	0.179	0.300	0.
	ppm	ppm	ppm	ppm	ppm	ppm	1
#1	9.61431	1.79667	0.10634	0.22884	26.14881	0.48214	0.00
#3	9.59682	1.80566	0.10729	0.23042	26.19749	0.48290	0.00
Mean %RSD	9.60760	1.80303	0.10718	0.23003	26.19622	0.48327	0.003
%RSD							
			Pd3404				
IS rat	Reading 0.316 0.316 0.315 0.315 0.315 0.316	es n4:	D	n	D	D4:	D4
#1	0.316	0.023	-0.008	2.034	0.046	0.016	n n
#2	0.316	0.024	-0.008	2.040	0.048	0.019	0.0
#3	0.315	0.024	-0.007	2.037	0.049	0.018	0.0
Mean	0.316	0.024	-0.008	2.037	0.048	0.018	0.0
Final	concentrations ppm 0.71693 0.71700 0.71617 0.71670 0.06387	ppm	maa	ppm	maa	maa	
#1	0.71693	2.75026	-0.03083	2.84227	0.00612	0.01580	0.00
#2	0.71700	2.93525	-0.02954	2.85155	0.00870	0.02280	0.00
#3 Mean	0.71617	2.89051	-0.02900	2.84/50	0.00921	0.02087	0.00
%RSD	0.06387	3.37625	3.15054	0.16336	20.63734	18.24242	3.27
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe27
IS rat	tioed intensitie	es					
4.7	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.078	0.760	-0.012	2.441	3.920	0.805	3.1
#3	0.078	0.758	-0.011	2.444	3.919	0.791	3.1
Mean	rioed intensitie Reading 0.078 0.078 0.078 0.078 0.078 0.238	0.759	-0.012	2.443	3.923	0.797	3.6
Final	concentrations	mara	mgg	mrg	mag	pnm	,
#1	0.17791	0.56363	0.00036	33.76716	105.92919	3.67761	203.60
#2	0.17839	0.56286	0.00098	33.82320	105.87039	3.62443	204.25
#3 Mean	0.17873	0.56211	0.00098	33.81740	105.74814	3.61204	204.030
%RSD	concentrations ppm 0.17791 0.17839 0.17873 0.17834 0.23151	0.13480	46.56889	0.09117	0.08726	0.95753	0.16
	Mn2576	Mo2020					
IS rat	tioed intensitie	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Read:
#1 #2	2.668	0.007	0.036	0.000	0.000	-0.033	-0.0
#3	2.666	0.008	0.037	0.000	0.000	-0.025	-0.0
Mean	Reading 2.668 2.671 2.666 2.668 0.109	0.008	0.037	0.000	0.000	-0.028	-0.0
%RSD	0.109	6.024	1.822	5.756	0.251	14.261	5.4
Final	concentrations	nnm	ppm	npm	nem	Drm	
	ppul	PPIII	ppm	ppm	ppiii	ppiii	

Metho	d : EPA3 eId1 : ja30252-1	_	File : it102	609ml	Printed	: 10/27/2009	8:12:50 A
Analy:	eIdl : ja30252-1 sis commenced : ion ratio : 1.00	10/26/2009	9 9:55:32 PM	: :		[SAMPLE]	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS ra	tioed intensitie	s Ponding	Ponding	Ponding	Ponding	Roading	Pondir
#1	1 334	0.148	0.017	0 111	1 743	0.055	0.00
#2	1.336	0.148	0.017	0.111	1.743	0.055	0.00
#3	1.338	0.147	0.017	0.111	1.741	0.054	0.00
Mean %RSD	1.336 1.338 1.336 0.147	0.148	0.017	0.111 0.187	1.742	Reading 0.055 0.055 0.054 0.055 0.181	0.00
Final	gongontrations						
	ppm	ppm	ppm	ppm	ppm	ppm	PE
#1 #2	22.6/920	0.29/14	0.07994	0.16352	49.69818	0.32397	0.0000
#2	22.70300	0.29759	0.00010	0.16291	49.71400	0.32305	0.0001
Mean	22.70871	0.29697	0.07983	0.16320	49.68880	0.32358	0.0000
%RSD	22.67920 22.70386 22.74309 22.70871 0.14190	0.24336	0.52071	0.18908	0.06363	0.17421	58.720
	Cu3247						
IS ra	tioed_intensitie	s					
	Reading	Reading	Reading	Reading	Reading	Reading	Readir
#1 #2	0.117	0.043	-0.012	0.015	0.025	0.010	0.0
#2	0.117	0.043	-0.012	0.017	0.023	0.011	0.0.
Mean	0.117	0.042	-0.012	0.016	0.023	0.010	0.0
%RSD	Reading 0.117 0.117 0.117 0.117 0.117 0.110	1.012	1.132	6.286	5.471	4.929	0.6
Final	concentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	PE
#1 #2	0.25950	5.55351	-0.04842	0.01995	-0.00576	-0.00340	0.0009
#3	0.26006	5.40903	-0.04828	0.02260	-0.00950	-0.00085	0.000
Mean	0.25976	5.48688	-0.04868	0.02130	-0.00775	-0.00305	0.0010
%RSD	concentrations ppm 0.25950 0.26008 0.25970 0.25976 0.11298	1.24204	1.23273	6.67449	24.29680	56.79862	4.014
	Ni2316	Ba4934	Ag3280				
IS ra	tioed intensitie	s					
	Reading	Reading	Reading -0.013 -0.013 -0.014 -0.013 3.305	Reading	Reading 3.216	Reading	Readin 2.7
#1	0.048	0.833	-0.013	4.449	3.216	0.639	2.7
#2 #3		0.834	-0.013				2.7
Mean.	0.048	0.834	-0.014	4.433	3.222	0.641	2.7
%RSD		0.099	-0.014 -0.013 3.305	4.433 4.444 0.214	3.220 0.098	0.641 0.212	0.1
Final	concentrations						
#1	ppm	ppm	ppm	ppm	ppm	ppm	PI PI
#1 #2	0.11265	0.61897	-0.00055	61 71172	86 80802	2.88162	156.4088
#3	0.11103	0.61988	-0.00011	61.47113	86.82918	2.89244	156.088
Mean	0.11175	0.61918	-0.00052	61.62315	86.76956	2.88918	156.348
%RSD	0.11265 0.11168 0.11092 0.11175 0.77500	0.09922	76.01291	0.21455	0.09865	0.22726	0.1508
	Mn2576	Mo2020					
IS ra	tioed intensitie	s					
	Reading 1.713	Reading	Reading	Reading	Reading	Reading	Readir
#1 #2	1.713	0.004	0.008	0.000	0.000	-0.016 -0.021	-0.09
#2	1.714	0.003	0.007	0.000	0.000	-0.021	-0.09
Mean		0.003	0.007	0.000	0.000	-0.018	0.00
%RSD	0.147	15.550	0.007 0.007 0.007 7.245	0.060	0.060	12.613	2.18
Final	concentrations						
	mag				ppm	mqq	pp

Raw Data MA23347 page 132 of 235

Raw Data MA23347 page 130 of 235

130 of 247
ACCUTEST.
JA30201 Laboratories

							¬ ∠00m	in F
							Zoom	Out
Dani 1 2 -	10/27/2009 8:	12.F0 NM	User: Accute					
#1	2.87351	0.00361	0.02844	0.07330	0.01853	0.02326	0.00907	
#2	2.87558	0.00283	0.02627	0.06899	0.01283	0.01661	0.00528	
#3	2.86747	0.00277	0.02764			0.02024	0.00773	
Mean			0.02745		0.01581	0.02004	0.00736	
%RSD	0.14675	15.18720	3.99491	3.17843	18.06909	16.62554	26.05990	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit	ies						
	Reading	Reading	Reading					
#1	0.108	0.448	62248.000					
#2	0.102	0.436	62174.000					
#3	0.107	0.445						
Mean		0.443	62214.000					
%RSD		1.436	0.060					
*KSD	2.910	1.430	0.000					
Final	concentration							
	ppm	ppm	intensity					
#1	0.07855	0.06280	-39.72					
#2	0.07488	0.05720	-36.70					
#3	0.07794	0.06133	-38.61					
Mean		0.06044	-38.34					
%RSD	2.54843	4.79969	3.99					

Raw Data MA23347 page 133 of 235

Raw Data MA23347 page 135 of 235

							■ Zoom	In
							Zoom	Эu
Printed: #1 #2 #3 Mean %RSD	10/27/2009 8: 4.83203 4.84146 4.84969 4.84106 0.18249	0.00351	User: Accute 0.02065 0.02256 0.02380 0.02234 7.11747	0.19957 0.20042 0.19550	0.03031 0.02715 0.02501 0.02749 9.69871	0.04373 0.04308 0.03717 0.04133 8.75196	0.00346 -0.00472 0.00068 -0.00019 2143.97744	
	2203/2	2203/1	INT STD					
IS rat	tioed intensit	ties						
#1 #2 #3 Mean %RSD	Reading 0.311 0.319 0.302 0.310 2.708	Reading 0.752 0.735 0.751 0.746 1.258	Reading 62510.000 62390.000 62490.000 62463.333 0.103					
Final	concentration	18						
#1 #2 #3 Mean %RSD	ppm 0.21250 0.21753 0.20677 0.21227 2.53785	0.17372 0.16618 0.17298 0.17096 2.43072	intensity -28.84 -31.51 -33.25 -31.20 7.12					

							■ Zoon
							Zoom
Analysi	s commenced	: 10/26/200	File : it102 SampleId2 9 10:01:40 PM	2609ml 2 :	Printed	: 10/27/2009 [SAMPLE]	8:12:51 AM
Dilutio	n ratio : 1.0 K 7664			0.0577		** 0004	Be3130
			Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	oed intensit:	ies	D4:	D4:	D4:	D4:	D
#1	0.706	0.255	0.025	0.194	1.264	0.083	0.012
#2	0.704	0.256	0.025	0.195	1.268	0.084	0.012
#3	0.703	0.258	Reading 0.025 0.025 0.025	0.196	1.270	0.084	0.012
Mean %RSD	0.704	0.256	0.025 0.025 1.080	0.195	1.268	0.084	0.012 0.889
			1.000	0.401	0.261	0.406	0.009
Final c	oncentration	8					
#1	12.50157	0.51243	ppm 0.11852 0.12040 0.12096 0.11996 1.06234	0.28534	36.05914	0.49647	0.00420
#2	12.47907	0.51577	0.12040	0.28718	36.18387	0.49924	0.00423
#3	12.46501	0.51864	0.12096	0.28806	36.24473	0.50018	0.00429
Mean %RSD	12.48189	0.51561	0.11996	0.28686	36.16258	0.49863	0.00424
*RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS rati	oed intensit	ies					
	Reading	Reading	Reading -0.013	Reading	Reading	Reading	Reading
#1	0.113	0.025	-0.013	0.220	0.056	0.011	0.037
#2	0.113	0.026	-0.013 -0.012 -0.013 1.894	0.223	0.058	0.011	0.038
Mean	0.113	0.026	-0.013	0.222	0.057	0.011	0.038
%RSD	0.247	2.914	1.894	0.635	1.974	8.553	0.737
Final c	oncentration	В					
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1 #2	0.25097	3.25463	-0.05334	0.30454	-0.00187	-0.00070	0.00323
#3	0.25131	3.47641	-0.05121	0.30687	0.00004	0.00326	0.00333
Mean	0.25078	3.39105	-0.05219	0.30661	-0.00039	0.00027	0.00330
%RSD	0.25554	3.52044	ppm -0.05334 -0.05201 -0.05121 -0.05219 2.05521	0.63882	342.19538	982.25585	1.81353
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe2714
IS rati	oed intensit	ies					
	Reading	Reading	Reading -0.013 -0.013 -0.012 -0.013 2.776	Reading	Reading	Reading	Reading
#1 #2	0.083	0.790	-0.013	1.914	5.010	0.614	4.341
#2	0.083	0.788	-0.013	1.919	5.006	0.608	4.356
Mean	0.083	0.789	-0.013	1.919	5.006	0.609	4.354
%RSD	0.207	0.154	2.776	0.289	0.085	0.685	0.284
Final c	oncentration	В					
#1	ppm	ppm	ppm -0.00020 -0.00005	ppm	ppm	ppm	ppm 244.72733
#1	0.19024	0.58589	-0.00020	26.45081	135.21/51	2.75405	245.59253
#3	0.18954	0.58417	0.00040	26.60413	134.98850 135.10171 0.08477	2.72413	246.10825
Mean	0.18996	0.58417 0.58486 0.15544	0.00005	26.52462	135.10171	2.73125	246.10825 245.47604
%RSD	0.19600	0.15544	609.02926	0.28960	0.08477	0.73985	0.28426
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/1
IS rati	oed intensit	ies					
	Reading	Reading	Reading 0.006 0.007	Reading	Reading	Reading	Reading
#1 #2	2.880	0.002	0.006	0.000	0.000	-0.037	-0.098
#2	2.886	0.002	0.007	0.000	0.000	-0.038	-0.106 -0.101
Mean	2.886	0 000	0.007	0.000	0.000	-0.039	
%RSD	0.182	22.566	11.693	6.035		6.897	4.248
Final c	oncentration	8					
	ppm	ppm	ppm	ppm	ppm	ppm	ppm

Raw Data MA23347	page 134 of 235

							∢ Zo
Sample1 Analysi	: EPA3 [dl : ja30252 is commenced on ratio : 1.	-12 : 10/26/200	9 10:07:50 PM		Printed	: 10/27/2009 [SAMPLE]	8:12:51 A
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	loed intensit	ies					
#1	Reading	Reading	Reading 0.021 0.021	Reading	Reading	Reading	Readin 0.01
#2	0.738	0.261	0.021	0.146	1.131	0.070	0.01
#3	0.740	0.258	0.021	0.145	1.125	0.070	0.01
Mean %RSD	0.739 0.119	0.260	0.021 0.870	0.146	1.129	0.070	0.01
			0.870	0.517	0.291	0.469	0.55
Final c	concentration:		ppm	nnm.	nnm	ppm	gg
#1	13.01692	0.52605	0.10234	0.21534	32.26391	0.42731	0.0041
#2	13.02641	0.52434	0.10193	0.21456	32.23768	0.42716	0.0041
#3 Mean	13.04185	0.51880	ppm 0.10234 0.10193 0.10067 0.10165 0.85492	0.21314	32.09007	0.42402	0.0041
%RSD	13.01692 13.02641 13.04185 13.02840 0.09659	0.72452	0.85492	0.52078	0.29107	0.43660	0.6945
		Na3302			T11908		
			PU3404	WRIOAO	111308	3D2U68	Cu226
ıs ratı	loed intensit: Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.105	0.041	Reading -0.012 -0.012	0.347	0.055	0.013	0.04
#2	0.104			0.348	0.054	0.012	
#3 Mean	0.104	0.040	-0.012 -0.012	0.342	0.054 0.051 0.053	0.012 0.011 0.012	0.03
%RSD	0.181	1.762	2.655	0.920	4.196	8.799	2.76
Final c	concentration	8	ppm -0.04808 -0.04802 -0.05050 -0.04887 2.89295				
#1	ppm	ppm	ppm	ppm	ppm	ppm	pp
#1	0.23171	5.71540	-0.04808	0.48135	0.00262	0.00598	0.0042
#3	0.23086	5.49140	-0.05050	0.47461	-0.00267	0.00018	0.0037
Mean	0.23125	5.61745	-0.04887	0.47964	0.00066	0.00281	0.0039
%RSD	0.18624	2.04036	2.89295	0.92438	440.26859	104.56011	6.7673
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
IS rati	ioed intensit						
#1	Reading	Reading	Reading -0.012 -0.012	Reading	Reading	Reading 0.613 0.621	Readin
#2	0.087 0.087	0.769	-0.012	1.843	4.333	0.613	4.09
#3	0.086	0.771	-0.013	1 830	4.340 4.337		
Mean	0.086	0.770	-0.012	1.838	4.337	0.617	4.08
%RSD	0.447	0.167	2.765	0.381	0.079	0.646	0.28
Final c	concentration:	B nrm	npm	nem	nem	ppm	pp
#1	0.19779	0.57019	ppm 0.00018 0.00049	25.47781	116.90751	2.75429	230.8784
#2	0.19716	0.57057	0.00049	25.45546			230.7127
#3 Mean	0.19609	0.57201	-0.00013	25.29949	117.09188 117.00467	2.76505	229.6820 230.4244
%RSD	0.43622	0.16845	ppm 0.00018 0.00049 -0.00013 0.00018 171.09500	0.38229	0.07913	0.69413	
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS rati	loed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1 #2	2.436	0.004	0.007	0.000	0.000	-0.027 -0.026	-0.11 -0.09
#2	2.434	0.004	0.007	0.000	0.000	-0.026	-0.09
Mean	2.433	0.004	0.006 0.007	0.000	0.000	-0.028	-0.10
%RSD	0.136	20.012	14.309	0.194	0.194	9.338	9.00
Final c	concentration						
	ppm	ppm	ppm	ppm	ppm	ppm	pp

Raw Data MA23347 page 136 of 235

							■ Zoom I	n▶
							Zoom O	ut
Printed: 1	0/27/2009 8:	12:51 AM	User: Accutes	st				
#1	4.08696	0.00480	0.02350	0.15671	0.02836	0.05081	-0.01653	
#2	4.08266	0.00500	0.02442	0.16686	0.03574	0.05285	0.00152	
#3	4.07596	0.00374	0.02064	0.15796	0.02859	0.04474	-0.00372	
Mean	4.08186	0.00452	0.02285	0.16051	0.03090	0.04947	-0.00624	
%RSD	0.13577	15.02355	8.63379	3.44937	13.57392	8.52262	148.71651	
	2203/2	2203/1	INT STD					
IS rati	oed intensit	ies						
	Reading	Reading	Reading					
#1	0.265	0.588	62670.000					
#2	0.273	0.636	62828.000					
#3	0.253	0.632	62588.000					
Mean	0.264	0.619	62695.333					
%RSD	3.786	4.301	0.195					
Final c	oncentration	ıs						
	ppm	ppm	intensity					
#1	0.18074	0.10864	-32.83					
#2	0.18537	0.12983	-34.11					
#3	0.17271	0.12846	-28.82					
	0.17960 3.56834	0.12231	-31.92					
Mean %RSD		9.69300	8.63					

Raw Data MA23347 page 137 of 235

Raw Data MA23347 page 139 of 235

Raw Data I	MA23347	page 137 of	235					
							◀ Zoom I	n ▶
							Zoom O	ut
Printed: #1 #2 #3 Mean %RSD		3:12:51 AM 0.00145 0.00234 0.00375 0.00251 46.24818	User: Accute 0.01749 0.01813 0.02412 0.01991 18.35876	0.14939 0.14455 0.14016 0.14470 3.19075	0.03106 0.02658 0.02549 0.02771 10.64609	0.04666 0.04147 0.04238 0.04351 6.37211	-0.00015 -0.00321 -0.00829 -0.00388 105.80919	
	2203/2	2203/1	INT STD					
IS ra #1 #2 #3	Reading 0.243 0.238 0.232	Reading 0.610 0.593 0.581	Reading 64742.000 64796.000 65304.000					
Mean %RSD	0.238	0.595 2.480	64947.333 0.477					
Final	concentration	ons						
#1 #2 #3 Mean %RSD	ppm 0.16832 0.16502 0.16094 0.16476	0.11152 0.10360 0.09859 0.10457 6.23500	intensity -24.43 -25.32 -33.69 -27.81 18.36					

Method SampleI Analysi	: EPA3 dl : ja30252 s commenced	-13 : 10/26/2009	File : it102 SampleId2 9 10:13:57 PM	609ml ::	Printed	: 10/27/2009 [SAMPLE]	8:12:5
Dilutio	n ratio : 1.	00000 to 1.0	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Ве
IS rati	oed intensit	ies					
4.7	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.563	0.243	0.023	0.145	1.359	0.090	0
#3	0.557	0.247	0.023	0.147	1.364	0.091	n n
Mean	0.561	0.245	0.023	0.146	1.362	0.091	ō
%RSD	0.538	0.908	Reading 0.023 0.023 0.024 0.023 1.299	0.707	0.197	0.291	0
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	10.13315	0.48815	0.10996	0.21262	38.76645	0.53470	0.0
#2	10.12761	0.49159	0.11009	0.21389	38.88475	0.53761	0.0
#3 Moon	10.04569	0.49701	0.11247	0.21566	38.91034	0.53639	0.0
%RSD	0.48477	0.90823	ppm 0.10996 0.11009 0.11247 0.11084 1.27544	0.71283	0.19757	0.27226	0.0
			Pd3404				
TO							
15 laci	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.124	0.027	-0.015	0.570	0.057	0.009	0
#2	0.124	0.027	-0.014	0.574	0.059	0.009	0
#3	0.124	0.029	-0.014	0.577	0.061	0.012	0
Mean	0.124	0.028	-0.014	0.574	0.059	0.010	0
%RSD	0.153	5.136	Reading -0.015 -0.014 -0.014 -0.014 3.984	0.563	3.459	19.070	1
Final c	oncentration	3	ppm -0.06086 -0.05984 -0.05607 -0.05892 4.28620				
4.7	ppm	ppm	o ocose	ppm	ppm	ppm	0.0
#1	0.27563	3.52133	-0.06086	0.79315	-0.00527	-0.00642	0.0
#2	0.27503	2 02000	-0.05964	0.79070	0.00267	0.00563	0.0
Mean	0.27550	3.68783	-0.05892	0.79798	-0.00263	-0.00311	0.0
%RSD	0.15848	6.02225	4.28620	0.56528	105.05855	178.83820	6.1
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe
TS rati	oed intensit	ies					
	Reading	Reading	Reading -0.013 -0.013 -0.012 -0.013 6.855	Reading	Reading	Reading	Rea
#1	0.086	0.738	-0.013	2.557	4.385	0.631	4
#2	0.086	0.738	-0.013	2.566	4.387	0.633	4
#3	0.086	0.729	-0.012	2.569	4.350	0.629	4
Mean	0.086	0.735	-0.013	2.564	4.374	0.631	4
*RSD	0.529	0.691	6.855	0.245	0.473	0.312	U
Final c	oncentration	3	-0.00067 -0.00044 0.00080 -0.00010 771.53078				
#1	n 19549	n 54729	_n nnne7	25 39317	118 30772	2 83912 ppm	251 5
#2	0.19507	0.54722	-0.00044	35.51449	118.36748	2.85077	252 3
#3	0.19698	0.54071	0.00080	35.56200	117.36966	2.83187	252.1
Mean	0.19585	0.54507	-0.00010	35.48987	118.01495	2.84059	252.0
%RSD	0.51308	0.69371	771.53078	0.24530	0.47421	0.33564	0.1
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
TS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	2.282	0.000	0.005	0.000	0.000	-0.038	-0
#2	2.288	0.001	0.005	0.000	0.000	-0.042	-0
#3	2.285	0.003	0.008	0.000	0.000	-0.042	-0
Mean	2.285	0.001	0.006	0.000	0.000	-0.041	-0
*RSD	0.132	105.468	Reading 0.005 0.005 0.008 0.006 29.819	0.476	0.476	5.056	4
Final c	oncentration	3			ppm		
rinar c							

Raw Data MA23347 page 138 of 235

commenced: 1.00 K 7664 and intensities Reading 0.488 0.491 0.489 0.271 and an arrangement of the commence of t	Zn2062 es Reading 0.550 0.547 0.546 0.548 0.361	Co2286	or Cr2677	Printed: Mg2790 Reading 2.066	V 2924	Be3130
commenced: 1.00 K 7664 and intensities Reading 0.488 0.491 0.489 0.271 and an arrangement of the commence of t	Zn2062 es Reading 0.550 0.547 0.546 0.548 0.361	Co2286	or Cr2677	Mg2790	V 2924	Be3130
ed intensitie Reading 0.488 0.491 0.489 0.489 0.271 coentrations ppm 8.61844 8.66227 8.63208 8.63750 0.25967	Reading 0.550 0.547 0.546 0.548 0.361			_		
Reading 0.488 0.491 0.489 0.271 centrations ppm 8.61844 8.66227 8.63208 8.63760 0.25967	Reading 0.550 0.547 0.546 0.548 0.361	Reading 0.028 0.028 0.028 0.028 0.028	Reading 0.569 0.570	Reading 2.066	Reading	
ppm 8.61844 8.66227 8.63208 8.63760 0.25967		Reading 0.028 0.028 0.028 0.028 0.443	Reading 0.569 0.570	Reading 2.066	Reading	
ppm 8.61844 8.66227 8.63208 8.63760 0.25967		0.028 0.028 0.028 0.028 0.443	0.569	2.066		Reading
ppm 8.61844 8.66227 8.63208 8.63760 0.25967		0.028 0.028 0.443	0.570	2 067	0.095	0.00
ppm 8.61844 8.66227 8.63208 8.63760 0.25967		0.028	0.569	2.062	0.094	0.00
ppm 8.61844 8.66227 8.63208 8.63760 0.25967		0.443	0.569	2.065	0.095	0.00
ppm 8.61844 8.66227 8.63208 8.63760 0.25967	ppm 1.10646		0.094	0.141	0.267	1.036
ppm 8.61844 8.66227 8.63208 8.63760 0.25967	ppm 1.10646					
8.61844 8.66227 8.63208 8.63760 0.25967	1.10646	ppm	ppm	ppm	ppm	ppn
8.63208 8.63760 0.25967		0.13325	0.84182	58.90814	0.54396	0.00098
8.63760 0.25967	1.09862	0.13209	0.84092	58.79545	0.54199	0.0009
0.25967	1.10216	0.13267	0.84174	58.88716	0.54353	0.0009
	0.36069	0.43698	0.09401	0.14134	0.25403	2.73429
Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
d intensitie	0.0					
Reading	Reading	Reading	Reading	Reading 0.053 0.051	Reading	Reading
0.222	0.055	-0.016	0.098	0.053	0.014	0.042
0.223	0.055 0.056 0.055	-0.016	0.097	0.051	0.013	0.04
0.222	0.055	-0.016	0.094 0.096 2.538	0.049 0.051 4.377	0.012 0.013 7.442	0.042
0.223 0.222 0.222 0.268	0.688	1.796	2.538	4.377	7.442	0.66
ppm	ppm	ppm	ppm	ppm	ppm	ppr
0.50033	7.35510	-0.06642	0.13938	0.00586	0.00764	0.0053
0.50113	7.34058	-0.06880	0.13276	-0.00033	0.00213	0.0055
0.50149	7.38683	-0.06792	0.13657	0.00259	0.00491	0.0054
0.27239	0.81411	1.91347	2.50142	120.04517	56.15133	1.5163
Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2714
	es					
Reading	Reading	Reading	Reading	Reading	Reading	Readin
0.251	0.543	-0.010	11.327	4.016	0.605	3.77
0.250	0.544	-0.012	11.280	4.025	0.608	3.76
0.251	0.544	-0.011	11.304	4.026	0.605	3.76
0.145	0.278	6.977	0.208	0.274	0.345	0.17
centrations						
ppm 0.56012	0.40159	0.00222	ppm 157.18780	108.34987	2.72097	212.5535
0.55937	0.40383	0.00097	156.87369	108.94541	2.71286	212.9100
0.55851	0.40277	0.00100	156.53390	108.61007	2.73294	212.1785
0.55933	0.40273	0.00140	156.86513	108.63512	2.72226	212.5473
		Sn1899	Pb2203	Se1960	1960/2	1960/
		Pondir-	Pondir-	Pondir-	Bondin-	Reading
1.752	0.018	0.035	0.000	0.000	-0.029	-0.10
	0.017	0.034	0.000	0.000	-0.028	-0.109
	0.018	0.034	0.000	0.000	-0.033	-0.099
1.751	0.018 2.162	0.034 1.134	0.000 6.016	0.000	-0.030 8.171	
1.751 1.753 0.155						
1.753 0.155						
1.753 0.155 ncentrations		ppm	ppm	ppm	ppm	ppi
100	centrations Depm 2	centrations	Description Description	Description Description	Description Description	Description Description

Raw Data MA23347 page 140 of 235

							₹ 20011	11111
							Zoom	Out
Printed:	10/27/2009 8:	12:51 AM	User: Accute:	st				
#1	2.93979	0.01762	0.08396	0.23688	0.02212	0.03428	-0.00220	
#2	2.94605	0.01698	0.08258	0.24265	0.02496	0.03661	0.00164	
#3	2.93721	0.01712	0.08249			0.02913	0.00674	
Mean	2.94101	0.01724				0.03334	0.00206	
%RSD	0.15454	1.96775	0.99222	1.28508	7.78255	11.49099	217.50391	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit	ies						
	Reading	Reading	Reading					
#1	0.374	0.799	60361.000					
#2	0.384	0.808	60267.000					
#3	0.371	0.816	60109.000					
Mean	0.376	0.807	60245.667					
%RSD	1.906	1.037	0.211					
Final	concentration	s						
	ppm	ppm	intensity					
#1	0.25750	0.19564	-117.27					
#2	0.26425	0.19945	-115.35					
#3	0.25535	0.20309	-115.22					
Mean	0.25903	0.19940	-115.95					
%RSD	1.79212	1.87003	0.99					

Raw Data MA23347 page 141 of 235

Raw Data MA23347 page 143 of 235

							■ Z00m ii	40.0
							Zoom O	ut
Printed: #1 #2 #3 Mean %RSD	10/27/2009 8: 6.02422 6.02871 6.02171 6.02488 0.05881	12:51 AM 0.00588 0.00523 0.00512 0.00541 7.60737	User: Accute: 0.02496	0.10152 0.09958 0.10366 0.10158 2.00831	0.03090 0.02938 0.03168 0.03065 3.81378	0.03993 0.03870 0.04231 0.04031 4.54449	0.01283 0.01073 0.01041 0.01132 11.59086	
	2203/2	2203/1	INT STD					
IS rat	ioed intensit	ies						
	Reading	Reading	Reading					
#1	0.145	0.581	65255.000					
#2	0.146	0.566	65637.000					
#3	0.154	0.569						
Mean	0.149	0.572	65547.333					
%RSD	3.310	1.362	0.396					
Final	concentration	s						
	ppm	ppm	intensity					
#1	0.10743	0.08970	-34.86					
#2	0.10775	0.08323	-33.73					
#3	0.11302	0.08493	-32.59					
	0.10940 2.86964	0.08596 3.89854	-33.73 3.37					
Mean %RSD								

Method SampleI Analysi Dilutio	: EPA3 d1 : ja30252 s commenced n ratio : 1.	-15 : 10/26/200 00000 to 1.	File : it102 SampleId2 9 10:26:12 PM 00000	2609ml 2 :	Printed	: 10/27/2009 [SAMPLE]	8:12:5
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be:
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1 #2	0.647	0.247	0.028	0.181	1.325	0.096	0
#2	0.647	0.247	0.028	0.101	1.324	0.097	0
#3 Mean	0.647	0.246	0.028	0.180	1.322	0.096	0
%RSD	0.130	0.238	Reading 0.028 0.028 0.028 0.028 0.028	0.249	0.114	0.141	Ö
Final c							
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	11.64054	0.49712	0.13311	0.26678	37.80634	0.57118	0.0
#2	11.63/0/	0.49621	0.13356	0.26576	37.78152	0.57180	0.0
Mean	11 63008	0.49476	0.13231	0.26503	37.72200	0.57029	0.0
%RSD	0.13074	0.23749	ppm 0.13311 0.13356 0.13291 0.13319 0.24987	0.25084	0.11379	0.13327	0.1
		Na3302					
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.103	0.022	-0.014	0.115	0.066	0.012	0
#2	0.103	0.021	-0.014	0.116	0.070	0.011	0
#3 Mann	0.103	0.021	-0.014	0.115	0.069	0.012	U
%RSD	0.349	1.624	Reading -0.014 -0.014 -0.014 -0.014 0.613	0.450	3.260	3.755	1
m:		_					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.22827	2.99944	-0.05942	0.15582	0.00121	0.00171	0.0
#2	0.22/50	2.00990	-0.06020	0.15/22	0.00746	0.00102	0.0
Mean	0.22748	2.94086	-0.05979	0.15643	0.00330	0.00333	0.0
%RSD	0.36269	1.87500	-0.05942 -0.06020 -0.05975 -0.05979 0.65445	0.46195	67.61607	59.72210	6.0
			Ag3280				
IS rati	oed intensit	ies					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Rea
	0.087	0.862	-0.012	1.651	5.273	0.646	4
#2	0.088	0.863	-0.013	1.650	5.283	0.635	4
#3 Mean	0.067	0.001	-0.013	1.649	5.2/3	0.633	4
%RSD	0.087 0.087 0.316	0.158	Reading -0.012 -0.013 -0.013 -0.013 1.647	0.048	0.112	1.163	0
Final c							
4.7	ppm	ppm	ppm 0 0007 f	ppm	ppm	ppm	272 2
#1	0.19965	0.63906	-0.00014	22.7/641	142.31498	2.90/90	272.3
#3	0.19877	0.63823	-0.00024	22.75485	142.32438	2.84094	271 8
Mean	0.19945	0.63918	-0.00007	22.76508	142.41224	2.86706	272.1
%RSD	0.30696	0.15869	0.00014 -0.00014 -0.00021 -0.00007 273.01983	0.04754	0.11262	1.24964	0.0
		Mo2020			Se1960		
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	3.591	0.004	0.008	0.000	0.000	-0.051	-0
#2	3.593	0.003	800.0	0.000	0.000	-0.051	-0
#3 Moon	3.589	0.003	0.007	0.000	0.000	-0.049	-0
%RSD	0.059	12.584	Reading 0.008 0.008 0.007 0.008 4.926	9.827	0.396	2.671	1
	oncentration:	3	ppm			mqq	

	Raw Data MA23347	page 142 of 235
--	------------------	-----------------

							⊲ Zo
Analysi	dl : CCV	: 10/26/2009	File : it102 SampleId2 0 10:32:20 PM 00000	:	Printed :	10/27/2009 [FLEXQC]	8:12:51 A
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	oed intensit	ies					
#1	Reading 2.263	Reading 1.040	Reading 0.438	Reading 1.374	Reading 1.472	Reading 0.409	Readin 4.35
#2	2.272	1.052	0.441	1.384	1.484	0.412	4.39
#3	2.262	1.053	0.441	1.384	1.485	0.411	4.39
Mean %RSD	2.266	1.048	0.440	1.381	1.481	0.411	4.38
			0.115	0.110	0.152	0.515	0.50
Final c	oncentration ppm	mag	maa	mag	maa	mag	gg
#1	37.99234	2.09111	2.04424	2.03572	41.98377	2.06599	2.0835
#2	38.13937 37.97394	2.11457	2.06025	2.05025 2.05028	42.32846 42.35774	2.07905	2.1053
#3 Mean	38.03522	2.11802 2.10790	2.05490	2.05028		2.07761 2.07421	2.1038
%RSD	0.23838		0.44939			0.34531	
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed intensit	ies					
#1	Reading	Reading	Reading 0.422	Reading 1.425	Reading	Reading 0.764	Readin 8.14
#1 #2	0.831	0.266 0.268	0.422	1.425	1.350	0.764	8.14
#3	0.831	0.267	0.424	1.438	1.366	0.768	8.22
Mean	0.832	0.267	0.423	1.434	1.361	0.768	8.18
%RSD	0.211	0.402	0.329	0.541	0.727	0.602	0.49
Final c	oncentration						
#1	ppm 1.90131	ppm 40.47746	ppm 1.88474	2.01084	ppm 1.97090	ppm 2.08604	2.1484
#2	1 90845	40 81531	1.89643	2.02991	1.99674	2.11163	2.1619
#3			1.89429	2.02958	1.99413	2.09805	2.1695
Mean %RSD	1.90381	40.62959 0.42188	1.89182	2.02344 0.53955	1.98726 0.71571	2.09857 0.60992	2.1599
4KSD							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
IS rati	oed intensit	ies Reading	D	D4:	D	n	D
#1	0.939	2.530	Reading 0.263	Reading 3.048	Reading 1.441	Reading 1.160	Readin 0.73
#2	0.949	2.540	0.266	2 076	1 449	1 172	0.73
#3	0.947	2.529	0.265	3.073	1.444	1.168	0.73
Mean %RSD	0.945 0.568	2.533 0.234	0.265 0.572	3.066 0.496	1.445	1.167	0.73
			0.372	0.150	0.233	0.527	0.10
	oncentration ppm		ppm	ppm	ppm	ppm	pp
#1	2.07979	1 88277	0.24904	42.14865	38.61039	5.38304	41.0988
#2 #3	2.10245	1.89036 1.88268	0.25168 0.25098	42.53285 42.48958	38.80942 38.70241	5.44172 5.41909	41.4035 41.3723
#3 Mean	2.09715	1.88268	0.25098		38.70241	5.41909	41.3723
%RSD	0.56623	0.23368	0.54561		0.25734	0.54656	0.4059
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS rati	oed intensit						
41	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1 #2	1.175	2.218	0.965 0.972	0.000	0.000	1.443	1.98
#3	1.182	2.242	0.974	0.000	0.000	1.432	1.98
Mean	1.180	2.233	0.971	0.000	0.000	1.441	1.99
%RSD	0.384	0.582	0.532	11.055	7.325	0.524	0.76
Final c	oncentration		maga	maa	mag	ppm	pp
	PPIII	PPIII	Ppm	PPIII	ppm	PM	pp

Raw Data MA23347 page 144 of 235

133 of 247
ACCUTEST.

JA30201 Laboratories

			,41				
							■ Zoom I
							Zoom O
rinted:	10/27/2009 8:	:12:51 AM	User: Accute:	.+			
#1	1.97011	1.96997	2.06618	2.14738	2.07761	2.11386	2.00510
#2	1.98384	1.98810	2.08277	2.15707	2.09155	2.12085	2.03296
#3	1.98265	1.99145		2.13934	2.06953	2.09910	2.01039
Mean	1.97887	1.98318		2.14793	2.07957	2.11127	2.01615
%RSD	0.38431	0.58265	0.52723	0.41327	0.53573	0.52594	0.73383
	2203/2	2203/1	INT STD				
IS rat	ioed intensit	ties					
	Reading	Reading	Reading				
#1	3.434	4.774	57647.000				
#2	3.437	4.831	57555.000				
#3	3.402	4.810	57901.000				
Mean	3.424	4.805	57701.000				
%RSD	0.552	0.606	0.311				
Final	concentration	18					
	ppm	ppm	intensity				
Mean %RSD							
	0.55288	0.6254/	0.53				
#1 #2 #3 Mean	2.19774 2.19774 2.19951 2.17769 2.19165 0.55288	2.04667 2.07218 2.06264 2.06050 0.62547	-2886.06 -2909.23				

Raw Data MA23347 page 145 of 235

Raw Data MA23347 page 147 of 235

							■ Zoom In
							Zoom Ou
Drinted:	10/27/2009 8:	12:52 AM	User: Accut	aat			
#1	0.00067	-0.00018	-0.00720	0.00302	0.00542	0.01635	-0.01642
#2	0.00056	-0.00156	-0.00809	-0.00016	0.00445	0.01305	-0.01274
#3	0.00074	-0.00165	-0.00839	0.00021	0.00270	0.01071	-0.01332
Mean	0.00066	-0.00113	-0.00789	0.00103	0.00419	0.01337	-0.01416
%RSD	13.74784	73.01699	7.85607	169.72828	32.94483	21.18770	13.98107
	2203/2	2203/1	INT STD				
IS ra	tioed intensit	ies					
	Reading	Reading	Reading				
#1	0.032	0.110	56523.000				
#2	0.027	0.104	56292.000				
#3	0.020	0.125	56311.000				
Mean		0.113	56375.333				
%RSD	22.655	9.639	0.227				
Final	concentration						
	ppm	ppm	intensity				
#1	0.01027	-0.01146	10.05				
#2	0.00683	-0.01415	11.31				
#3	0.00268	-0.00473	11.71				
Mean	0.00659	-0.01011	11.02				
%RSD	57.60370	47.97439	7.86				

			m13	0500 3			0.10
Method	EPA3		File : it10: SampleId:	700amT	Printed	: 10/2//2009	8:12:5
Sambrei	II · CCB		9 10:38:39 PI	2 .		[LTEVÃC]	
				M			
Dilution	n ratio : 1.	00000 to 1.	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.066	-0.001	0.000	0.001	0.001	0.000	0
#2	0.065	-0.001	0.000	0.001	0.000	0.000	0
#3	0.065	-0.001	0.000	0.001	0.001	0.000	0
Mean	0.065	-0.001	0.000	0.001	0.001	0.000	Ó
#3 Mean %RSD	0.430	12.584	Reading 0.000 0.000 0.000 0.000 46.983	38.180	27.823	43.206	1
Final c		_					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	1.17456	-0.00052	0.00104	0.00065	0.00791	-0.00137	0.0
#2	1.16618	-0.00113	-0.00004	-0.00011	-0.00062	-0.00191	0.0
#3	1.16640	-0.00084	ppm 0.00104 -0.00004 0.00037 0.00046 119.91629	-0.00013	0.00343	-0.00208	0.0
Mean	1.16905	-0.00083	0.00046	0.00014	0.00357	-0.00179	0.0
%RSD	0.40856	37.08014	119.91629	322.70969	119.45436	20.83970	18.8
		Na3302	Pd3404	As1890	T11908	Sb2068	Cd
IS ratio	oed_intensit	ies					_
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.004	0.018	-0.001	-0.002	-0.026	-0.004	0
#2	0.004	0.016	-0.001	-0.003	-0.028	-0.005	0
#3	0.004	0.017	-0.001	-0.002	-0.029	-0.004	0
Mean	0.004	0.017	-0.001	-0.002	-0.028	-0.004	0
%RSD	3.200	4.955	Reading -0.001 -0.001 -0.001 -0.001 21.841	15.360	4.871	18.725	35
Final c	oncentration	s					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.00136	0.74141	0.00064	-0.00098	-0.00770	-0.04055	0.0
#2	0.00107	0.48692	-0.00111	-0.00202	-0.01057	-0.04500	0.0
#3	0.00082	0.54976	-0.00150	-0.00132	-0.01145	-0.04231	0.0
Mean	0.00108	0.59270	-0.00066	-0.00144	-0.00991	-0.04262	0.0
%RSD	24.92487	22.36688	ppm 0.00064 -0.00111 -0.00150 -0.00066 174.00505	36.71147	19.77087	5.25403	66.6
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	-0.001	0.001	-0.012	0.002	0.009	0.033	0
#2	-0.002	0.000	-0.013	0.002	0.009	0.032	n
#3	-0.002	0.000	=0.013	0.002	0.009	0.032	ň
Mean	-0.001	0.001	-0.013	0.002	0.009	0.032	n
%RSD	17.539	14.503	Reading -0.012 -0.013 -0.013 -0.013 4.171	5.041	0.571	1.777	9
	ppm	ppm	ppm 0.00051 -0.00039	ppm	ppm	ppm	
#1	0.00098	0.00027	0.00051	0.00957	-0.00547	-0.03145	0.0
#2	0.00018	0.00015	-0.00039	0.00799	-0.00686	-0.03688	0.0
#3	0.00124	0.00022	-0.00022	0.01043	-0.00405	-0.03512	0.0
Mean	0.00080	0.00021	-0.00003	0.00933	-0.00546	-0.03448	0.0
&PSD	68 77887	27 55460	-0.00039 -0.00022 -0.00003 1416.67948	13 29429	25 65471	8 03620	12 4
1130							
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS ratio	oed_intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.001	0.003	-0.012	0.000	0.000	0.040	-0
#2	0.001	0.002	-0.013	0.000	0.000	0.038	-0
#3	0.001	0.002	-0.013	0.000	0.000	0.036	-0
Mean	0.001	0.002	-0.013	0.000	0.000	0.038	-0
	8.363	42.415	2.320	Reading 0.000 0.000 0.000 0.000 6.693	0.227	5.037	1
%RSD							
%RSD	oncentration	.s	ppm				

	Raw Data MA2334	7 page 146 of 235
--	-----------------	-------------------

Method SampleI Analysi							
Method SampleI Analysi							
	: EPA3 dl : ja30252 s commenced n ratio : 1.0	-16 : 10/26/2009	File : it102 SampleId2 0 10:44:57 PM	609ml ::	Printed	: 10/27/2009 [SAMPLE]	8:12:52 AM
DITUCIO							
			Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	oed intensit:	ies Peading	Peading	Peading	Peading	Peading	Reading
#1	0.617	0.266	0.029	0.186	1.337	0.097	0.013
#2	0.616	0.263	0.029	0.185	1.334	0.097	0.013 0.013 0.013
#3 Mean	0.616	0.266	0.029	0.186	1.340	0.098	0.013
%RSD	0.078	0.482	Reading 0.029 0.029 0.029 0.029 0.437	0.412	0.234	0.373	0.392
Final c							
	ppm	ppm	ppm	ppm	ppm	ppm	ppn
#1	11.14267	0.53443	0.13966	0.27350	38.13798	0.58042	0.00455
#2	11.13542	0.52980	0.13875	0.27186	38.05716	0.57823	0.00452
Mean	11.13556	0.53275	0.13943	0.27313	38.14349	0.58027	0.00454
%RSD	11.14267 11.13542 11.12857 11.13556 0.06333	0.48141	0.43153	0.41477	0.23388	0.34106	0.47837
	Cu3247	Na3302					
IS rati	oed intensit:	ies					
	Reading	Reading	Reading -0.013 -0.013	Reading	Reading	Reading	Reading
#1	0.114	0.022	-0.013	0.092	0.073	0.012	0.042
#2	0.114	0.022 0.023	-0.013	0.093	0.073 0.077	0.012 0.013	0.043 0.043
#3 Moon	0.114	0.023			0.074	0.013	
%RSD	0.114 0.114 0.114 0.266	2.265	1.538	0.660	2.751	4.352	2.010
Final c	oncentration	3					
#1	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#2	0.25349	3.02902	-0.05328	0.12295	0.00450	0.00197	0.00336
#3	0.25270	3.11918	-0.05237	0.12435	0.00906	0.00462	0.00371
Mean	0.25276	3.03472	-0.05326	0.12394	0.00588	0.00294	0.00362
%RSD	0.25349 0.25210 0.25270 0.25276 0.27543	2.69429	1.66300	0.69087	46.92659	50.01095	6.27423
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2714
IS rati	oed intensit						
#1	Reading 0.087	Reading	Reading -0.010	Reading 1.892	Reading 5.154	Reading	Reading 5.049
#1	0.087	0.805	-0.010	1.892 1.882	5.154	0.553	5.049
#3	0.087	0.806	-0.010	1.898	5.151	0.556	5.054 5.047
Mean	0.087 0.087 0.438	0.806 0.806 0.108	-0.010	1.898 1.891 0.419	5.151 5.156	0.551	5.047
%RSD	0.438	0.108	-0.010 4.337	0.419	0.113	0.963	0.168
Final c	oncentration	в				_	
#1	ppm 0 19788	ppm n 59694	n nnans	26 13979	139 10862	ppm 2 45776	284 68063
#2	0.19759	0.59823	0.00162	26.00019	139.32216	2.42209	284.04863
#3	0.19917	0.59770	0.00243	26.21693	139.01422	2.47175	284.99256
Mean %RSD	0.19822	0.59762	ppm 0.00208 0.00162 0.00243 0.00204 19.75057	26.11897	139.14833	2.45053	284.57394
VICOD			Sn1899				
TO 1 .							1,00/1
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	3.108	0.004	0.008	0.000	0.000	-0.053	-0.096
#2	3.101	0.004	0.007	0.000	0.000	-0.046	-0.100
#3 Mean	3.110	0.005	0.008	0.000	0.000	-0.052 -0.051	-0.088 -0.095
%RSD	0.157	18.051	Reading 0.008 0.007 0.008 0.008 7.505	21.787	7.686	7.619	6.525
Final c	oncentration	3					
	ppm	ppm	ppm	ppm	ppm	ppm	ppm

Raw Data MA23347 page 148 of 235

							₹ 200m	nr
							Zoom C)ut
Printed:	10/27/2009 8:	12:52 AM	User: Accutes	st				
#1	5.21451	0.00600	0.02380	0.12367	0.03124	0.04358	0.00656	
#2	5.20184	0.00535	0.02199	0.12767	0.03655	0.05373	0.00220	
#3	5.21718		0.02438	0.12553	0.03485	0.04527		
Mean	5.21118	0.00604	0.02339	0.12563	0.03421	0.04753	0.00759	
%RSD	0.15723	11.74955	5.34500	1.59280	7.92149	11.43398	78.71187	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit							
	Reading	Reading	Reading					
#1	0.186	0.612	65887.000					
#2	0.205	0.586	66053.000					
#3	0.188	0.620	66155.000					
Mean	0.193	0.606	66031.667					
%RSD	5.236	2.947	0.205					
Final	concentration	ıs						
	ppm	ppm	intensity					
#1	0.13394	0.10314	-33.24					
#2	0.14566	0.09169	-30.71					
#3	0.13502	0.10656	-34.06					
Mean	0.13821	0.10046	-32.67					
%RSD	4.68975	7.75421	5.35					

Raw Data MA23347 page 149 of 235

Raw Data MA23347 page 151 of 235

							◀ Zoom Ir
							Zoom Ou
Printed: #1 #2 #3 Mean		0.00345 0.00344 -0.00693	User: Accute 0.01700 0.01551 -0.00805 0.00815	0.16181 0.16084 0.08036 0.13433	0.03561 0.03296 -0.03619 0.01079		-0.00359 -0.00032 -0.08136 -0.02843
%RSD	1.14172	45368.59116	172.41642	34.80036	377.17221	125.68933	161.37281
	2203/2	2203/1	INT STD				
IS rat	tioed intens						
#1 #2 #3 Mean %RSD	Reading 0.249 0.242 0.127 0.206 33.063	0.706 0.719 0.502 0.642	Reading 65405.000 65144.000 61508.000 64019.000 3.403				
Final	concentrati	ons					
#1 #2 #3 Mean %RSD	ppm 0.18181 0.17726 0.10374 0.15427 28.40183	0.12181 0.12799 0.03358 0.09446	intensity -23.75 -21.66 11.25 -11.39 172.42				

Method :	EPA3		File : it102 SampleId2	609ml	Printed	: 10/27/2009	8:12:5
Sampleid	II : Ja30252	:-1/	Sampieid2 9 10:51:04 PM			[SAMPLE]	
		000000 to 1.					
DITUCTOR	i lacio . i.	00000 00 1.	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.500	0.227	0.044	0.130	2.308	0.133	0
#2	0.499	0.227	0.044	0.130	2.310	0.133	0
#3	0.514	0.209	0.040	0.123	2.208	0.126	0
Mean	0.504	0.221	0.042	0.128	2 275	0.131	ñ
%RSD	1.662	4.632	Reading 0.044 0.044 0.040 0.042 5.177	3.312	2.576	2.974	7
Final co	ncentration						
	ppm	ppm	ppm 0.20625 0.20607 0.18838 0.20023 5.12680	ppm	ppm	ppm	
#1	9.24517	0.45518	0.20625	0.19069	65.85042	0.77151	0.0
#2	9.24517 9.22676 9.43969 9.30387 1.26812	0.45594	0.20607	0.19110	65.88437	0.77032	0.0
#3	9.43969	0.41995	0.20607 0.18838 0.20023 5.12680	0.18004	62.97190	0.73368	0.0
Mean	9 30387	0.44369	0.20030	0.10004	64 90222	0.75851	0.0
Mean %RSD	1 26012	4 62427	E 12602	2 24607	2 57507	2 02510	12 6
4820							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1							
#2	0.168	0.036	-0.013	0.020	0.084	0.011	0
#3	0.171	0.024	-0.020	0.005	0.062	-0.005	ū
Mean	0.169	0.032	-0.015	0.015	0.078	0.006	ū
#3 Mean %RSD	0.782	19.710	-0.013 -0.020 -0.015 26.035	57.486	17.150	151.055	13
Final co	ncentration	ıs					
	maa	maa	mag	maa	mag	mara	
#1	0.37809	5.22812	-0.05422	0.02116	0.00332	0.00246	0.0
#2	0.37689	5 36920	-0.05329	0.02154	0.00091	0.00039	0.0
#2	0.37003	3.50520	-0.00325	0.02151	-0.00031	-0.00033	0.0
Moon	0.30271	4 71906	-0.06100	0.00000	-0.02377	-0.01311	0.0
%RSD	0.81117	21.36689	ppm -0.05422 -0.05329 -0.08458 -0.06403 27.80353	83.02689	224.94691	191.63341	47.3
			Ag3280				
is ratio	ed intensit	Pondir-	Reading -0.012 -0.011 -0.022 -0.015 38.394	Pondir-	Pondi	Pondi	D
#1	Reading	Reading	Reading	Reading	Reading	Reading	Kea
#1	0.088	0.584	-0.012	4.365	6.246	0.551	5
#2	0.089	0.581	-0.011	4.356	6.231	0.546	5
#3	0.082	0.592	-0.022	4.182	6.311	0.528	5
Mean	0.086	0.586	-0.015	4.301	6.263	0.541	5
%RSD	4.119	0.990	38.394	2.397	0.682	2.172	1
Final co	ncentration	ıs					
	ppm	ppm	ppm 0.00040 0.00107	ppm	ppm	ppm	205 -
#1	0.20256	0.43135	0.00040	60.45309	168.66406	2.43955	326.7
#2	0.20310	0.42931	0.00107	60.32792	168.24256	2.41579	326.9
#3	0.18911	0.43764	-0.00837	57.91607	170.41976	2.33245	315.9
Mean	0.19826	0.43277	-0.00230	59.56569	169.10880	2.39593	323.2
%RSD	3.99748	1.00267	0.00107 -0.00837 -0.00230 229.09586	2.40069	0.68283	2.34747	1.9
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	3.905	0.000	0.006	0.000	0.000	-0.061	-0
#2	3.903	0.000	0.005	0.000	0.000	-0.065	-0
#3	3 827	-0.011	-0.005	0.000	0.000	=0.103	=0
Mean	3 879	-0.001	0.000	0.000	0.000	-0.103	_0
%RSD	1.142	188.662	Reading 0.006 0.005 -0.006 0.001 464.207	3.470	3.470	30.572	35
	ncentration						

	Raw Data MA23347	page 150 of 235
--	------------------	-----------------

							◀ Zo
Analy	d : EPA3 eId1 : mp50217-1 sis commenced : ion ratio : 1.0	10/26/200	9 10:5/:12 P	2609ml 2 : M	Printed	: 10/27/2009 [SAMPLE]	8:12:52 AM
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS ra	tioed intensiti	es					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Reading 0.001
#2	0.067	0.000	0.000	0.001	0.001	0.000	0.001
#3	0.067	0.000	0.000	0.001	0.001	0.000	0.002
Mean %RSD	0.067	0.000	0.000	Reading 0.001 0.001 0.001 0.001 30.038	0.001	0.000 36 517	0.003 5.97
			57.055	30.030	20.250	30.317	3.57
Final	concentrations	DDM	ppm	nnm	nnm	DDM	ppn
#1	1.18424	0.00121	0.00027	0.00002	0.00656	-0.00058	-0.00008
#2	1.19155	0.00168	0.00058	0.00018	0.01387	-0.00049	-0.00009
#3 Mean	1.19730	0.00223	0.00169	0.00080	0.01566	-0.00024	-0.00001
%RSD		29.83065	88.10815	122.61880	40.07260	40.71329	69.8135
	Cu3247	Na3302					
			PU3404	AS1090	111900	SD2008	CU220:
IS ra	tioed intensiti	es Reading	Reading	Reading -0.003 -0.002 0.000	Reading	Reading	Reading
#1	0.007	0.018	-0.001	-0.003	-0.027	0.010	0.00
#2	0.008	0.019	-0.001	-0.002	-0.024	0.010	0.002
#3 Mean		0.019 0.019 0.018	-0.001 -0.001	0.000	-0.025 -0.025	0.012	0.00
%RSD		4.580	41.802	74.501	6.846		44.41
Final	concentrations						
	ppm	ppm 0.65544 0.80900	-0.00107	ppm -0.00232 -0.00115	ppm	ppm -0.00373	ppr 0.0000
#1 #2	0.00972 0.01008	0.65544	-0.00107	-0.00232	-0.00908 -0.00430	-0.00373 -0.00290	0.00002
#2	0.01008	0.80900	0.00012	0.00115			0.00028
Mean	0.01065 0.01015 4.61054	0.79401	0.00046	0.00152 -0.00065 302.07302	-0.00626	-0.00163	0.0002
%RSD	4.61054	16.58972	373.32820	302.07302	39.88622	180.50357	91.1345
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2714
IS ra	tioed intensiti						
#1	Reading -0.001	Reading	Reading -0.012 -0.012 -0.011	Reading 0.003	Reading	Reading	Reading 0.00
#1	-0.001	0.001	-0.012	0.003	0.009	0.039	0.00
#3	0.000	0.001 0.001 0.001	-0.011	0.003	0.010	0.040	0.00
Mean		0.001	-0.012	0.003	0.009	0.039 0.039 0.040 0.040	0.00
%RSD	37.624	11.827	5.935	3.549	1.421	1.460	12.92
Final	concentrations		_				
#1	ppm 0.00152	ppm 0.00026	0.00036	ppm 0.02806	ppm 0.00096	-0.00222	0.0525
#2	0.00204	0.00036	0.00018	0.03123	0.00766	-0.00025	0.0689
#3	0.00287	0.00037	0.00136	0.02930	0.00676	0.00325	0.0676
Mean %RSD	0.00214	U.00033	0.00063	0.02806 0.03123 0.02930 0.02953 5.40347	0.00513	0.00026 1060.44643	0.0630
orcon.		Mo2020					
	Mn2576		Sn1899	Pb2203	Se1960	1960/2	1960/
IS ra	tioed intensiti Reading	Ponding	Peading	Peading	Peading	Reading	Reading
#1	0.001	0.001	-0.010	Reading 0.000 0.000	0.000	0.032	-0.10
#2	0.001		-0.010	0.000	0.000	0.031	-0.103
#3	0.001	0.003	-0.009	0.000	0.000	0.032	-0.10
Mean %RSD		0.002 42.906		0.000			-0.104 2.189
			0.580	0.264	0.254	2.609	2.18
Final	concentrations ppm		nnm	mag	nnm	nnm.	igg
	ppiii	ppm	ppm	ppiii	ppm	ppm	ppi

Raw Data MA23347 page 152 of 235

							■ Zoom	ın 🟴
							Zoom C	ut
Printed:	10/27/2009 8	:12:52 AM	User: Accute	st				
#1	0.00085	-0.00188	-0.00189	-0.00079	-0.00121	0.00502	-0.01365	
#2	0.00123	-0.00173	-0.00295	-0.00222	-0.00195	0.00260	-0.01105	
#3	0.00105	-0.00057	0.00045	-0.00156	-0.00256	0.00385	-0.01539	
Mean		-0.00139	-0.00146	-0.00152	-0.00191	0.00382	-0.01337	
%RSD	17.93161	51.62042	118.89844	46.98262	35.68671	31.69456	16.35561	
	2203/2	2203/1	INT STD					
IS ra	tioed intensi	ties						
	Reading	Reading	Reading					
#1	0.023	0.109	59142.000					
#2	0.021	0.107	58970.000					
#3	0.022	0.108	59282.000					
Mean		0.108	59131.333					
%RSD	5.657	1.175	0.264					
Final	concentration	18						
	ppm	ppm	intensity					
#1	0.00479	-0.01196	2.64					
#2	0.00320	-0.01308	4.13					
#3	0.00384	-0.01235	-0.63					
Mean		-0.01246	2.05					
%RSD	20.25652	4.56666	118.90					

Raw Data MA23347 page 153 of 235

Raw Data MA23347 page 155 of 235

							◀ Zoom In I
							Zoom Out
Drintod:	10/27/2009 8:	12.E2 AM	User: Accute	at			
#1	0.47230	0.46099		0.50499	0.47908	0.47582	0.48560
#2	0.47152	0.45945	0.00407	0.51694	0.49064	0.49795	0.47603
#3	0.47067	0.45953	0.00239	0.51208	0.48788	0.48960	0.48445
Mean	0.47150	0.45999	0.00357	0.51134	0.48587	0.48779	0.48203
%RSD	0.17322	0.18804	28.70900	1.17512	1.24245	2.29014	1.08334
	2203/2	2203/1	INT STD				
IS rat	ioed intensit	ies					
	Reading	Reading	Reading				
#1	0.802	1.265	58725.000				
#2	0.832	1.260					
#3	0.819	1.264					
Mean	0.818	1.263					
%RSD	1.824	0.211	0.379				
Final	concentration:	В					
	ppm	ppm	intensity				
#1	0.50459	0.50578	-5.92				
#2	0.52364	0.50353	-5.69				
.#3	0.51550	0.50525	-3.34 -4.98				
Mean %RSD	0.51458 1.85736	0.50485	-4.98 28.71				
*KSD	1.65/36	0.23323	28.71				

Analysis	EPA3 11 : mp50217 commenced ratio : 1.	: 10/26/2009	File : it102 SampleId2 11:03:19 PM	509ml :	Printed :	10/27/2009 [SAMPLE]	8:12:5
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1 #2	0.512	0.246	0.102	0.330	0.188	0.097	1
	0.513	0.244	0.102	0.329	0.107	0.097	1
Mean	0.512	0.243	0.102	0.329	0.187	0.097	i
#3 Mean %RSD	0.100	0.643	Reading 0.102 0.102 0.102 0.102 0.364	0.441	0.363	0.160	Ô
Final co	ncentration	3					
	ppm	ppm	ppm	ppm	ppm	ppm	
#±	8.64222	0.49549	0.47900	0.48874	5.34905	0.48681	0.4
#2	8 64381	0.49204	0.47573	0.48667	5.32237	0.48530	0.4
Mean	8.64787	0.49224	0.47704	0.48661	5.32760	0.48592	0.4
%RSD	0.09770	0.64121	ppm 0.47900 0.47638 0.47573 0.47704 0.36243	0.44172	0.36362	0.16214	0.4
			Pd3404				
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.198	0.071	-0.001	0.324	0.300	0.189	1
#2	0.199	0.071	-0.002	0.320	0.298	0.188	1
#3 Mean	0.198	0.009	-0.002	0.319	0.300	0.107	1
%RSD	0.079	1.670	Reading -0.001 -0.002 -0.002 -0.002 21.810	0.867	0.336	0.515	ō
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.44833	9.22438	-0.00102	0.45898	0.46374	0.49261	0.5
#2	0.44872	9.08315	-0.00377	0.45374	0.46093	0.49008	0.5
Mean	0.44835	9 05613	-0.00433	0.45155	0.46252	0.40720	0.5
%RSD	0.08067	2.02356	ppm -0.00102 -0.00377 -0.00453 -0.00311 59.35969	0.85885	0.31182	0.54443	0.3
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe
IS ratio	ed intensit	ies					
4.5	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.222	0.600	0.195	0.415	0.179	0.069	0
#2	0.222	0.602	0.194	0.413	0.179	0.067	0
Mean	0.221	0.601	0.194	0.413	0.179	0.067	0
%RSD	0.174	0.158	Reading 0.195 0.194 0.194 0.194 0.338	0.400	0.092	1.566	ō
Final co	ncentration	3					
#1	o vosos	0 44647	ppm 0 10741	ppm 5 70630	4 E7002	0 14447	E 2
#1	0.49393	0.4404/	0.10/41	5.70030	4.57956	0.1444/	5.3
#3	0.49235	0.44742	0.18623	5.66122	4.57135	0.13483	5.2
Mean	0.49332	0.44724	0.18683	5.68601	4.57461	0.13866	5.2
%RSD	0.17335	0.15838	ppm 0.18741 0.18685 0.18623 0.18683 0.31682	0.40232	0.10142	3.68909	0.5
	Mn2576		Sn1899				
IS ratio	ed_intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1 #2	0.282	0.522	-0.007	0.000	0.000	0.349	0
#2	0.281	0.520	-0.007	0.000	0.000	0.364	0
Mean	0.281	0.520	-0.008	0.000	0.000	0.350	n
%RSD	0.173	0.187	Reading -0.007 -0.007 -0.008 -0.008 6.285	5.801	0.378	2.130	1
Final co	ncentration	3	ppm				

	Raw Data MA23347	page 154 of 235
--	------------------	-----------------

							◀ Zo
Method	: EPA3		File : it10	2609m1	Printed	: 10/27/2009	8:12:52 AM
Analysi	d1 : mp50217 s commenced n ratio : 1.	: 1U/26/2UU	9 II:U9:26 P	2609ml 2 : M	11111000	[SAMPLE]	0.12.32 15
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	oed_intensit	ies		D 11		D 11	D
#1	Reading	Reading	Reading 0 101	Keading	Reading	Reading	Reading 0 10
#2	1.644	0.238	0.101	0.134	1.196	0.097	0.10
#3	1.635	0.240	0.101	0.136	1.200	0.098	0.108
Mean %RSD	1.640	0.238	0.101	Reading 0.135 0.134 0.136 0.135 0.451	1.196	0.097	0.10
			0.203	0.131	0.507	0.255	0.51
Final c	oncentration	.s maa	mara	ppm 0.19925 0.19816 0.19995 0.19912 0.45346	mara	mara	וממ
#1	27.39755	0.47591	0.47035	0.19925	34.00696	0.48680	0.0499
#2	27.45994	0.47703	0.47131	0.19816	34.10094	0.48743	0.05006
#3	27.29938	0.48228	0.47226	0.19995	34.21601	0.48957	0.05026
Mean %RSD	27.38562	0.4/841	0.4/130	0.19912	0 20607	0.48793	0.0500
4KSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed intensit	ies Peading	Peading	Peadira	Peadiro	Peadira	Peading
#1	0 105	0.316	=0.002	Reading 1.348 1.352	1 255	0 196	0.189
#2	0.105	0.317	-0.002	1.352	1.252	0.196	0.19
#3	0.105	0.317	-0.001	1.355 1.352 0.251	1.260 1.256 0.331	0.196 0.196 0.176	0.19
Mean		0.317	-0.001 34.263	1.352	1.256	0.196	0.190
%RSD	0.153	0.238	34.263	0.251	0.331	0.176	0.73
Final c	oncentration	.S					
#1	n azzza	47 44241	-u uussa	ppm 1.89053 1.89602 1.89999	1 02606	ppm 0.50984 0.50860	o over
#2	0.23441	47.66616	-0.00222	1.89602	1.83222	0.50860	0.05008
#3	0.23444	47.61539	0.00124	1.89999	1.84394	0.51048	0.0504
Mean	0.23421	47.57465	-0.00109 184.89583	1.89552 0.25067	1.83741	0.50964 0.18680	0.0500
%RSD	0.15761	0.24657	184.89583	0.25067	0.32506		
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe271
IS rati	oed intensit	ies					
#1	Reading	Reading	Reading	Reading 7.473 7.506	Reading	Reading	Readin
#1 #2	0.216	2.447	0.043	7.473	0.081	0.983	0.02
4.5		2.433	0.044	7.518	0.081	0.984	0.02
Mean	0.216			7.499	0.081	0.984	
%RSD	0.272	0.347	1.972	0.309	0.155	0.097	1.399
Final c	oncentration	ıs					
#1	ppm 0.48142	ppm 1.82226	0.05053	ppm 103.71207	1.74201	ppm 4.55276	1.6786
#2	0.48189	1.82301	0.05107	104.16836	1.74719	4.56197	1.6945
#3	0.48387	1.81172	0.05207	104.33302	1.74222	4.55719	1.7244
Mean	0.48239	1.81900	0.05122	104.07115	1.74381	4.55731	1.69920
%RSD	0.26953	0.34709	1.52743	ppm 103.71207 104.16836 104.33302 104.07115 0.30910	0.16798	0.10113	1.36859
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS rati	oed_intensit	ies		D 11	D	D 111	D
#1	Reading 0.294	Reading 0.004	Reading -0.010 -0.010	Reading 0.000	Reading 0.000	Reading 1.367	Reading 1.86
#1	0.294	0.004	-0.010	0.000	0.000	1.367	1.86
#3	0.295	0.004		0.000	0.000	1.365	1.87
Mean	0.295 0.295	0.004		0.000	0.000	1.365	1.88
%RSD	0.146	17.060	8.367	12.854	7.418	0.130	1.139
Final c	oncentration	ıs					
	mag	mqq	ppm	ppm	ppm	ppm	ppi

Raw Data MA23347 page 156 of 235

Zoom In ▶
 Zoom Out

							■ Zoom I	n₽
							Zoom O	ut
Printed: 1	0/27/2009 8:	12:52 AM	User: Accute:	st				
#1	0.49318	0.00159	-0.00099	0.49228	1.94474	1.97190	1.89042	
#2	0.49401	0.00075	-0.00106	0.49870	1.95934	1.97449	1.92902	
#3	0.49462	0.00190	0.00191	0.49450	1.94518	1.96926	1.89703	
Mean	0.49394	0.00141	-0.00004	0.49516	1.94975	1.97188	1.90549	
%RSD	0.14674	42.19057	3793.79472	0.65867	0.42581	0.13277	1.08334	
	2203/2	2203/1	INT STD					
IS rati	oed intensit							
	Reading	Reading	Reading					
#1	0.810	1.192	55775.000					
#2	0.810	1.234	55888.000					
#3	0.810	1.206	56260.000					
Mean	0.810	1.211	55974.333					
%RSD	0.041	1.744	0.453					
Final c	oncentration							
	ppm	ppm	intensity					
#1	0.51636	0.44412	1.38					
#2	0.51681	0.46249	1.47					
#3 Mean	0.51668 0.51662	0.45012 0.45224	0.06					
Mean %RSD	0.51662	2.07097	3793.79					
*KSD	0.044/3	2.07097	3/93./9					

Raw Data MA23347 page 157 of 235

Raw Data MA23347 page 159 of 235

Ra	w Data N	/IA23347	page 157 of	235				
								◀ Zoom In ▶
								Zoom Out
	Printed: #1 #2 #3 Mean %RSD	10/27/2009 8 0.51090 0.50783 0.50869 0.50914 0.31061	8:12:53 AM 0.00263 0.00159 0.00152 0.00191 32.44615	User: Accute: 0.00449 0.00119 0.00295 0.00288 57.40898	0.51004 0.51956 0.51456 0.51472 0.92539	1.98938 2.01109 1.99509 1.99852 0.56331	2.00035 2.03251 2.01280 2.01522 0.80470	1.96743 1.96827 1.95969 1.96513 0.24062
		2203/2	2203/1	INT STD				
	IS rat	ioed intens	ities					
		Reading	Reading	Reading				
	#1	0.831	1.250	58503.000				
	#2	0.850	1.260	58727.000				
	#3	0.837	1.264	58694.000				
	Mean	0.839	1.258	58641.333				
	%RSD	1.148	0.547	0.206				
	Final	concentration	ons					
		ppm	ppm	intensity				
	#1	0.53023	0.46966	-6.28				
	#2	0.54228	0.47413	-1.66				
	#3	0.53399	0.47570	-4.12				
	Mean	0.53550	0.47316	-4.02				
	%RSD	1.15143	0.66141	57.41				

Method	: EPA3	-0	File : it10	2609ml 2 :	Printed	: 10/27/2009	8:12:5:
Samprei	ar . mpsuzi/ s commenced	-82	Sampleid	Z ·		[SAMPLE]	
	n ratio : 1.			PI .			
DIIUCIO							
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be:
IS rati	oed_intensit	ies					_
#1	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	1.588	0.25/	0.106	0.142	1.236	0.100	U
	1.591	0.254	0.106	0.141	1.232	0.100	U
#3	1.590	0.254	0.105	0.141	1.230	0.100	0
Mean	1.589	0.255	0.106	0.141	1.233	0.100	0
%RSD	0.095	0.692	0.346	Reading 0.142 0.141 0.141 0.141 0.513	0.223	0.386	0
Final c	oncentration	.s					
4.7	oe Eroor	o Fiere	0.40477	0 20024	DE DOVE	o cossi	0.0
#1	26.51261	0.51575	0.494//	0.20924	35.22434	0.50271	0.0
#2	20.56219	0.50940	0.49256	0.20733	35.12946	0.50010	0.0
#3 Mann	26.54/96	0.50986	0.49141	ppm 0.20924 0.20733 0.20745 0.20801 0.51507	35.06906	0.49893	0.0
Mean	26.54099	0.51167	0.49291	0.20801	35.14102	0.50058	0.0
₹RSD	oncentration ppm 26.51281 26.56219 26.54796 26.54099 0.09577 Cu3247	0.69239	0.34612	0.51507			
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1					1.298	0.199	0
#2	0.105	0.314	-0.001	1.403			Δ.
#3	0.105	0.313	-0.001	1.398	1.301	0.196	ō
Mean %RSD	0.105	0.314	-0.001	1.403	1.300	0.197	ō
%RSD	0.182	0.314 0.313 0.314 0.254	32.536	0.388	1.301 1.300 0.136	0.196 0.197 0.797	0
Final c	oncentration	s					
	ppm	ppm	ppm	ppm	ppm	ppm 0.51834 0.51105	
#1	0.23407	47.28851	0.00293	1.97556	1.89775	0.51834	0.0
#2	0.23323	47.21838	0.00111	1.96700	1.90120	0.51105	0.0
#2	0.23344	47.04688	0.00134	1.96033	1.90272	0.51065	0.0
Mean	0.23358	47.18459	0.00179	1.96763	1.90056	0.51335	0.0
%RSD	0.18729	0.26345	55.18105	ppm 1.97556 1.96700 1.96033 1.96763 0.38793	0.13393	0.84358	0.6
				Ca3179			
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.229	2.443	0.045	7.726	0.081	0.987	0
#2	0.227	2.447	0.045	7.676	0.081	0.984	0
# 2	0.226	2.446	0.045	7.680	0.081	0.984	ō
Mean	0.227	2.446	0.045	7.694	0.081	0.985	ō
Mean %RSD	0.667	0.078	0.410	Reading 7.726 7.676 7.680 7.694 0.360	0.170	0.200	Ö
Final c	oncentration	s					
	ppm	ppm	ppm	ppm 107.22779	ppm	ppm	
#1	0.51066	1.81925	0.05256	107.22779	1.75297	4.57376	1.8
#2	0.50550	1.82204	0.05242	106.53703	1.74515	4.55728	1.8
#3	0.50439	1.82112	0.05223	106.58990	1 74070		
Mean	0.50685	1.82080	0.05240	106.78491	1.74896		1.8
%RSD		0.07804	0.32073	106.78491 0.36003	0.22385		
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	196
TO vati	::_						
19 Tati	Reading	Reading	Reading	Reading 0.000 0.000	Reading	Reading	Rea
#1	0.205	0.005	-0.007	0.000	0.000	1 207	1
#2	0.305	0.005	-0.007	0.000	0.000	1.387	1
#2	0.303	0.004	-0.009	0.000	0.000	1.408	1
#3 Mean	0.303	0.004	-0.008	0.000	0.000	1.395	Ţ
Mean %RSD	0.304	0.004 0.004 0.004 15.582	-0.008	0.000 0.000 0.000 21.754	0.000	1.408 1.395 1.397 0.788	1
₹RSD	0.310	15.582	9.515	21.754	0.206	0.788	0
Final c	oncentration ppm	s. maga			mag		

Raw Data MA23347 page 158 of 235

SampleId Analysis Dilution	1 : ja30201 commenced ratio : 1.	-3 : 10/26/200 00000 to 1.	SampleId 9 11:21:41 P 00000	2609ml 2 : M		[SAMPLE]	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS ratio	ed_intensit	ies					
#1	Reading	Reading	Reading	Reading 0.006 0.005 0.006 0.006 5.909	Reading	Reading	Readin
#2	0.245	0.005	0.000	0.005	0.310	0.000	0.00
#3	0.243	0.005	0.000	0.006	0.312	0.000	0.00
Mean	0.243	0.005	0.000	0.006	0.313	0.000	0.00
%RSD	0.755	5.352	202.099	5.909	1.126	12.981	2.00
Final co	ncentration	IS					
#1	4 15625	0 01211	n nnann	0 00777	a uuaus	0 00151	0 0000
#2	4.09598	0.01100	0.00028	0.00679	8.80862	0.00097	-0.0000
#3	4.11725	0.01154	0.00075	0.00742	8.89690	0.00123	0.0000
Mean %RSD	4.12316	0.01155	0.00101	0.00733	8.90485	0.00124	0.0000
*RSD	0.74136	4.76634		ppm 0.00777 0.00679 0.00742 0.00733 6.74243			
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS ratio	ed intensit	ies	D	D . 11	D	D	
41	Reading	Reading	Reading	Reading	Reading	Reading	Readir
#1 #2	0.004	0.149	-0.000	Reading 0.001 -0.004 -0.001 -0.002 157.699	-0.015	0.012	0.00
#3	0.004	0.147	-0.001	-0.001	-0.019	0.010	0.00
Mean	0.004	0.147	-0.001	-0.002	-0.018	0.011	0.00
%RSD	3.929	1.371	42.272	157.699	12.526	11.882	100.76
Final co	ncentration	ıs					
#1	n nn194	21 24120	0 00341	ppm 0.00348 -0.00352 0.00038 0.00011 3083.36988	0 00797	n nnaai	0 000
#2	0.00134	20.61139	-0.00041	-0.00340	0.00757	-0.00221	-0.000
#3	0.00166	20.95667	0.00087	0.00038	0.00244	-0.00271	-0.000
Mean	0.00161	20.93645	0.00096	0.00011	0.00432	-0.00164	0.000
%RSD							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe27:
IS ratio	ed_intensit	ies					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#2	0.000	0.050	-0.012	5.751	0.010	0.951	0.0.
#3	-0.001	0.050	-0.012	5.678	0.009	0.940	0.0
Mean	0.000	0.050	-0.012	5.683	0.009	0.940	0.0
%RSD	77.869	1.044	3.374	Reading 5.751 5.619 5.678 5.683 1.167	2.078	1.098	2.88
Final co	ncentration	ıs					
#1	n nnaar	ppm n narra	n nnnea	ppm 70 04EE2	_0 02041	4 40004	0 756.
#2	0.00353	0.03/12	-0.00062	78.00813	-0.02041	4.30141	0.756
#3	0.00265	0.03667	0.00032	ppm 79.84553 78.00813 78.82829 78.89398 1.16670	-0.02562	4.34744	0.735
Mean	0.00346	0.03672	0.00027	78.89398	-0.02546	4.34993	0.7360
%RSD							
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readir
#1	0.017	0.006	-0.006	0.000	0.000	0.027	-0.07
#3	0.017	0.005	-0.008	0.000	0.000	0.032	-0.00
Mean	0.017	0.005	-0.007	0.000	0.000	0.030	-0.08
%RSD	1.499	16.506	16.460	Reading 0.000 0.000 0.000 0.000 0.533	0.533	8.446	2.15
	ncentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	PI

Raw Data MA23347 page 160 of 235

							■ Zoom	ıln⊩
							Zoom	Out
Printed:	10/27/2009 8:	12:53 AM	User: Accute	est				
#1	0.02880	0.00202	0.00699	-0.00659	0.00188	-0.00480	0.01523	
#2	0.02793	0.00064	0.00219	-0.00342	0.00554	0.00209	0.01242	
#3	0.02836	0.00115	0.00393	-0.00444	0.00589	0.00110	0.01547	
Mean	0.02836	0.00127	0.00437	-0.00482	0.00443	-0.00054	0.01437	
%RSD	1.51972	54.84157	55.57759	33.57938	50.10554	696.04918	11.77832	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit	ies						
	Reading	Reading	Reading					
#1	0.009	0.150	59071.000					
#2	0.016	0.149	59621.000					
#3	0.014	0.148	59616.000					
Mean	0.013	0.149	59436.000					
%RSD	29.966	0.742	0.532					
Final	concentration	18						
	ppm	ppm	intensity					
#1	-0.00024	-0.01930	-9.76					
#2	0.00457	-0.01941	-3.06					
#3	0.00332	-0.01994	-5.49					
Mean	0.00255	-0.01955	-6.11					
%RSD	97.75338	1.77380	55.58					

Raw Data MA23347 page 161 of 235

Raw Data MA23347 page 163 of 235

							∢ Zoom	In
							Zoom C	Jut
orinted:	10/27/2009 8	R:12:53 AM	User: Accute	art				
#1	0.02987			-0.02283	0.01304	-0.01065	0.06043	
#2				-0.00566	0.02190		0.02911	
#3	0.03057	0.00195		-0.01042	-0.00855		0.03872	
Mean	0.03041	0.00040		-0.01297	0.00880	-0.00818	0.04275	
%RSD	1.57653	1088.11539	67.43501	68.33510	178.05065	309.63529	37.52244	
	2203/2	2203/1	INT STD					
IS ra	tioed intensi	ities						
	Reading	Reading	Reading					
#1	0.006	0.141	60584.000					
#2	0.016	0.134						
#3	0.011	0.144						
Mean	0.011	0.140	60351.667					
%RSD	47.346	3.645	0.461					
Final	concentratio	ons						
	ppm	ppm	intensity					
#1 #2	-0.02740 0.00631	-0.01370 -0.02961	-4.59 -23.37					
#2	-0.01171	-0.02961	-23.37					
#3 Mean	-0.01171		-13.92					
%RSD	154.33468	65.99003	67.44					
THOS			07.11					

							4
							Z
M-+b-d	. BD32		m:1- : :+102	1600-1	Duinted	. 10/27/2000	0.10.53
Sample	: EPA3 Id1 : mp50217 is commenced	-sd1	SampleId2	! :	FIIIICEG	[SAMPLE]	0.12.33
Analys	is commenced	: 10/26/200	9 11:27:48 PM			(Danie LLD)	
Diluti	on ratio : 1.	00000 to 5.	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be31
IS rat	ioed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.102	0.002	0.000	0.001	0.064	0.000	0.0
#2	0.103	0.002	0.000	0.002	0.064	0.000	0.0
Mean	0.103	0.002	0.000	0.002	0.064	0.000	0.0
%RSD	Reading 0.102 0.103 0.103 0.102 0.737	2.339	29.318	19.318	0.347	36.374	0.2
m:1		_					
	ppm	ppm	ppm	ppm	ppm	ppm	P
#1	8.85078	0.03002	-0.00095	0.00476	9.05628	-0.00123	-0.000
#2	8.933/3	0.03106	0.00290	0.00773	9.09400	0.00212	-0.000
Mean	8 91979	0.03071	0.00170	0.00934	9.11944	0.00259	-0.000
%RSD	8.85078 8.85078 8.93373 8.97488 8.91979 0.70865	1.74129	161.98058	32.84979	0.34957	179.13964	4.642
			Pd3404				
IS rat	ioed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.003	0.043	-0.001	-0.003	-0.024	0.008	0.0
#2	0.004	0.045	-0.001	-0.004	-0.021	0.009	0.0
#3	0.004	0.045	-0.001	-0.003	-0.022	0.009	0.0
Mean	0.004	0.045	-0.001	-0.003	-0.022	0.009	0.0
- Lan	ioed intensit Reading 0.003 0.004 0.004 0.004 5.449	2.231	13.091	9.195	0.4/0	9.915	59.0
Final	concentration ppm 0.00286 0.00544 0.00743 0.00524 43.65616	s maga	mag	mqq	mag	mqq	p
#1	0.00286	23.48987	-0.00935	-0.01179	-0.02485	-0.04621	-0.000
#2	0.00544	24.77724	-0.00279	-0.01610	0.00098	-0.02267	0.000
#3	0.00743	24.88590	-0.00333	-0.01323	-0.00467	-0.03536	0.000
%RSD	43.65616	3.18457	70.51719	16.02496	142.72373	33.90345	1761.308
	Ni2316						
TS rat							
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	-0.001	0.010	-0.013	1.156	0.009	0.217	0.0
#2	-0.001	0.011	-0.013	1.160	0.009	0.217	0.0
#3	-0.001	0.011	-0.013	1.166	0.009	0.218	0.0
Mean	Reading -0.001 -0.001 -0.001 -0.001 -0.780	0.011	-0.013 0.325	1.161	0.009	0.217	0.0
mi1		_	0.525	0.150	0.055	0.102	3.3
rinai	concentration ppm 0.00459 0.00510 0.00978 0.00649 44.07336	ppm	ppm	ppm	ppm	ppm	F
#1	0.00459	0.03769	-0.00143	80.17021	-0.08027	4.27411	0.734
#2	0.00510	0.03804	-0.00128	80.48871	-0.06599	4.27257	0.772
#3	0.00978	0.03816	-0.00106	80.90351	-0.06743	4.30987	0.815
Mean	44 07226	0.03796	-0.00126	0.52081	11 02/72	0.49347	0.774
*RSD	44.07336	0.64314	15.11035	0.45666	11.034/9	0.49247	5.200
	Mn2576		Sn1899	Pb2203	Se1960	1960/2	1960
IS rat	ioed intensit Reading 0.004 0.004 0.004 0.004 1.481	ies Reading	Reading	Reading	Reading	Reading	Readi
#1	0.004	0.002	-0.009	0.000	0.000	0.028	-0.0
#2	0.004	0.004	-0.007	0.000	0.000	0.032	-0.0
#3	0.004	0.004	-0.008	0.000	0.000	0.025	-0.0
Mean	0.004	0.004	-0.008	0.000	0.000	0.028	-0.0
%RSD	1.481	27.824	7.960	0.462	0.462	12.197	4.0
Final	concentration	s pr-	ppm	-	n==	-	_
							P

D D	100 (005
Raw Data MA23347	page 162 of 235

							◀ Zo
							200
Method SampleI Analysi	: EPA3 d1 : mp50217 s commenced n ratio : 1.	-s3 : 10/26/200	File : it10: SampleId: 9 11:33:56 PM	2609ml 2 : M	Printed	: 10/27/2009 [SAMPLE]	8:12:53 AM
DIIUCIO				Cr2677	Ma 2790	W 2924	Be3130
					_		
is rati	oed intensit	nes Reading	Reading	Reading	Reading	Reading	Reading
#1	1.672	0.236	0.101	0.132	1.162	0.098	0.108
#2 #3	1.629	0.257	0.107	0.141	1.216	0.103	0.112
Mean	1.643	0.250	0.107	0.138	1.198	0.103	0.112
%RSD	1.561	4.887	3.327	Reading 0.132 0.141 0.141 0.138 3.744	2.600	2.595	2.422
Final c	oncentration	ıs					
4.7	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	27.931/1	0.4/347	0.4/098	0.19426	33.13014	0.49189	0.05019
#3	27.17626	0.51594	0.49863	0.20731	34.66626	0.51503	0.05236
Mean	27.43613	0.50182	0.48979	0.20308	34.15602	0.50714	0.05165
%RSD	1.56493	4.89278	3.32830	ppm 0.19426 0.20766 0.20731 0.20308 3.76140	2.60115	2.60524	2.45583
	Cu3247						
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.108	0.323	-0.002	1.369	1.269	0.200	0.189
#2	0.109	0.331	0.004	1.420	1.320	0.212	0.208
Mean	0.109	0.331	0.004	1.410	1.319	0.211	0.206
%RSD	0.109 0.109 0.109 0.109 0.387	1.533	151.775	Reading 1.369 1.420 1.416 1.402 2.045	2.256	3.174	5.120
#1	ppm	ppm 40 40760	ppm	ppm	ppm	ppm ppm	ppm
#2	0.24162	40.49709	0.00239	1.91909	1 93012	0.52114	0.04988
#3	0.24250	49.85100	0.02250	1.98552	1.92872	0.55143	0.05431
Mean	0.24255	49.40217	0.01434	1.96535	1.90506	0.54207	0.05301
%RSD	0.39634	1.58557	101.05138	ppm 1.91909 1.99145 1.98552 1.96535 2.04421	2.21531	3.35023	5.13011
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe2714
IS rati	oed intensit						
#1	Reading 0.216	Reading 2.535	Reading	Reading 7.258	Reading 0.083	Reading 1.029	Reading 0.024
#1	0 228	2 488	0.054	7 604			
#3	0.230 0.225 3.251	2.485	0.053 0.050 10.954	7.589 7.484 2.609	0.083 0.083 0.401	1.048	0.027
Mean	0.225	2.502	0.050	7.484	0.083	1.041	0.026
%RSD	3.251	1.125	10.954	2.609	0.401	1.041 0.965	7.732
Final c	oncentration	ıs					
#1	0.48227	1.88740	0.05134	ppm 100.73219	1.79573	ppm 4.77769 4.85491	ppm 1.36864 1.56446
#2	0.50882	1.85213	0.06016	105.52662	1.81453	4.85491	1.56446
#3	0.51149	1.85008	0.05982	105.32383	1.81697	4 86673	1.56210
Mean %RSD	0.50086	1.86320	0.05710	ppm 100.73219 105.52662 105.32383 103.86088 2.61063	1.80908	4.83311 1.00061	1.49840
VICOD.				Pb2203			
			3111099	502203	361300	1900/2	1900/1
	oed intensit Reading	les Reading	Reading	Reading	Reading	Reading	Reading
#1	0.297	0.001	-0.014	0.000	0.000	1.400	1.904
#2	0.306	0.009	-0.005	0.000	0.000	1.393	1.968
#3 Mean	0.305	0.009	-0.005	0.000	0.000	1.405	1.983
%RSD	1.668	77.961	64.659	Reading 0.000 0.000 0.000 0.000 16.093	9.088	0.407	2.145
Final c	oncentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	ppm

Raw Data MA23347 page 164 of 235

							Zoom C	ut
Printed:	10/27/2009 8	:12:53 AM	User: Accutes	вt				
#1	0.49815	-0.00154	-0.00898	0.49644	1.98912	2.01987	1.92761	
#2	0.51343	0.00604	0.01026	0.53137	2.00334	2.01026	1.98950	
#3	0.51217	0.00588	0.00925	0.53474	2.01923	2.02696	2.00376	
Mean	0.50791	0.00346	0.00351	0.52085	2.00390	2.01903	1.97362	
%RSD	1.67011	125.28599	308.43760	4.07165	0.75177	0.41533	2.05129	
	2203/2	2203/1	INT STD					
IS ra	tioed intensi	ties						
	Reading	Reading	Reading					
#1	0.824	1.183	54605.000					
#2	0.857	1.322	57113.000					
#3	0.861	1.333	57103.000					
Mean	0.847	1.279	56273.667					
%RSD	2.442	6.535	2.568					
Final	concentratio	ns						
	ppm	ppm	intensity					
#1	0.52493	0.43946	12.54					
#2	0.54674	0.50061	-14.33					
#3	0.54937	0.50549	-12.93					
Mean	0.54035	0.48185	-4.90					
%RSD	2.48303	7.63624	308.44					

Raw Data MA23347 page 165 of 235

Raw Data MA23347 page 167 of 235

							◀ Zoom Ir
							Zoom O
							Zoom Oi
Printed: 1	0/27/2009 8:	12:53 AM	User: Accute:	st.			
#1	0.52018	0.00167	0.00250	0.51675	2.01407	2.03479	1.97262
#2	0.49439	0.00008	-0.00267	0.50403	1.95783	1.97754	1.91840
#3	0.49795	0.00143	0.00124	0.50070	1.95165	1.97482	1.90529
Mean	0.50417	0.00106	0.00036	0.50716	1.97451	1.99572	1.93210
%RSD	2.77245	80.78738	755.14059	1.67072	1.74186	1.69688	1.84740
	2203/2	2203/1	INT STD				
IS rati	oed intensit	ies					
	Reading	Reading	Reading				
#1	0.843	1.264	56519.000				
#2	0.825	1.229	58451.000				
#3	0.824	1.212	58404.000				
Mean	0.831	1.235	57791.333				
%RSD	1.322	2.162	1.907				
Final c	oncentration						
	ppm	ppm	intensity				
#1	0.53836	0.47353	-3.50				
#2	0.52636	0.45936	3.73				
#3	0.52531	0.45147	-1.73				
Mean	0.53001	0.46145	-0.50				
%RSD	1.36803	2.42284	755.14				

Analys	l: EPA3 Eldl: mp50217- sis commenced:	10/26/200	9 11:40:03 PI	2609ml 2 : M	Printed	10/27/2009 [SAMPLE]	8:12:
Diluti	on ratio : 1.0						
			Co2286	Cr2677	Mg2790	V 2924	В
IS rat	ioed intensiti	es Peading	Peading	Peading	Peading	Peading	Pe
#1	1.658	0.265	0.107	0.139	1.275	0.102	100
#2	1.593	0.251	0.102	0.132	1.212	0.097	
#3	1.590	0.254	0.102	0.133	1.218	0.097	
%RSD	Reading 1.658 1.593 1.590 1.613 2.383	2.912	2.774	2.856	2.820	2.841	
	gongontrations						
#1	ppm 27 68358	ppm	ppm	ppm	ppm	ppm	
#1	26.60239	0.53252	0.50013	0.20574	36.35443	0.51057	0.0
#3	26.54933	0.51001	0.47783	0.19678	34.71928	0.48726	0.0
Mean	26.94510	0.51557	0.48469	0.19920	35.21111	0.49436	0.0
%RSD				ppm 0.20574 0.19510 0.19678 0.19920 2.87090			
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Co
IS rat	Reading 0.107 0.102 0.102 0.102 0.104 2.532	es Peadira	Peading	Posdira	Peadira	Peading	Por
#1	0.107	0.332	-0.001	1.426	1.330	0.204	Kec (
#2	0.102	0.316	-0.001	1.354	1.256	0.192	
#3	0.102	0.316	-0.001	1.362	1.262	0.194	(
Mean	0.104	0.322	-0.001	1.381	1.283	0.197	9
			40.450	2.009	3.210	3.107	
Final	concentrations	DDM	mara	nnm	mara	mara	
#1	0.23804	49.98019	0.00197	ppm 2.00021 1.89879	1.94456	0.53115	0.0
#2	0.22741	47.50701	-0.00122	1.89879	1.83839	0.49896	0.0
#3	0.22776	47.51422	0.00190	1.91046	1.84598	0.50419	0.0
#2 #3 Mean %RSD	2.61218	2.94993	207.06371	ppm 2.00021 1.89879 1.91046 1.93649 2.86567	3.15675	3.37750	3.6
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe
IS rat	ioed_intensiti	es					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.231	2.383	0.045	7.656	0.002	1.040	
#3	0.221	2.378	0.043	7.691	0.079	1.040	Č
Mean		2.415	0.043	7.800	0.080	1.055	9
			2.871	2.814	2.574	2.548	3
Final	concentrations ppm	ppm	maga	mqq	maga	maga	
#1	0.51427	1.84949	0.05185	111.75706	1.78180	5.05226	1.4
#2	0.48859	1.77428	0.04978	106.25617	1.69188	4.82878	1.3
#3 Mean	0.49302	1.77038	0.05005	106./3515	1.69511	4.82638	1
%RSD	2.75278	2.47984	2.22527	ppm 111.75706 106.25617 106.73515 108.24946 2.81489	2.96050	2.64614	3.0
	Mn2576	Mo2020					
IS rat	ioed_intensiti	es					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.310	0.004	-0.008	0.000	0.000	1.410	:
#3	0.297	0.004	-0.009	0.000	0.000	1.369	
Mean	0.301	0.004	-0.009	Reading 0.000 0.000 0.000 0.000 9.971	0.000	1.384	
%RSD	2.770	26.693	13.425	9.971	1.928	1.661	
Final	concentrations		ppm	ppm	ppm	ppm	
	ppull	PPIII	ppm	ppm	22111	PPIII	

	Raw Data MA23347	page 166 of 235
--	------------------	-----------------

							■ Z
							2.0
Method	: EPA3		File : it102 SampleId2	:609ml	Printed	: 10/27/2009	8:12:53 A
Samplel	dl : ccv	. 10/05/000	SampleId2 9 11:46:11 PM	:		[FLEXQC]	
	s commenced on ratio : 1.						
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1 #2	2.239	1.046	0.436	1.372	1.484	0.411	4.33
#2	2.232	1.032	0.431	1.358	1.469	0.406	4.28
Mean	2.240	1 042	0.436	1 367	1.400	0.411	4.33
#3 Mean %RSD	0.351	0.843	Reading 0.436 0.431 0.436 0.435 0.608	0.610	0.630	0.659	0.63
	ppm	ppm	ppm	ppm	ppm	ppm	PF
#1	37.59286	2.10349	2.03681	2.03199	42.33412	2.07289	2.0749
#2	37.47280	2.07485	2.01605	2.01089	41.90300	2.04980	2.0535
#3	37.73619	2.10705	2.03798	2.03259	42.38890	2.07388	2.0775
Mean	37.60062	2.09513	2.03028	2.02516	42.20867	2.06552	2.0686
∜RSD	0.35071	0.84266	ppm 2.03681 2.01605 2.03798 2.03028 0.60768	0.61013			
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed_intensit	ies					
	Reading	Reading	Reading 0.417 0.413	Reading	Reading	Reading	Readin
#1 #2	0.821	0.262	0.417	1.428	1.363	0.765	8.19
#2	0.816	0.259	0.413	1.420	1.355	0.756	8.06
#3 Mean	0.023	0.263	0.418	1 428	1.302	0.765	8.21
%RSD	0.427	0.806	0.413 0.418 0.416 0.620	1.434 1.428 0.471	0.337	0.765 0.762 0.683	0.97
Final c	concentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	PE
#1	1.87867	39.78202	1.86291	2.01539	1.98986	2.08950	2.1622
#2	1.85/34	39.2/682	1.84447	2.00422	1.97/61	2.05427	2.1284
Mean	1 87670	39.50734	1 85765	2.02300	1 98512	2.00099	2.100
%RSD	0.42839	0.84191	ppm 1.86291 1.84447 1.86556 1.85765 0.61858	0.47099	0.33156	0.69299	0.9730
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
IS rati	oed intensit	ies					
	Reading	Reading	Reading 0.262 0.260 0.262 0.261 0.448	Reading	Reading	Reading	Readir
#1	0.942	2.520	0.262	3.042	1.438	1.154	0.73
#2	0.930	2.507	0.260	3.008	1.429	1.145	0.72
#3	0.940	2.525	0.262	3.043	1.441	1.156	0.73
#2 #3 Mean %RSD	0.937	2.518	0.261	3.031	1.436	1.151	0.72
*KSD	0.694	U.376	U.448	0.6/1	0.417	0.508	0.69
Final o	oncentration	is nnm	ppm 0.24789 0.24621 0.24818 0.24743 0.42845	DDm	ppm	ppm	nr
#1	2.08667	1.87601	0.24789	42.06756	38.52065	5.35210	41.1166
#2	2.06000	1.86595	0.24621	41.58551	38.28652	5.30823	40.6248
#3	2.08262	1.87955	0.24818	42.07756	38.59686	5.36078	41.118
Mean	2.07643	1.87384	0.24743	41.91021	38.46801	5.34037	40.9534
%RSD	0.69224	0.37634	0.42845	0.67106	0.42043	0.52750	0.6947
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS rati	oed intensit	ies	D . 11		D	D	m
4.1	Reading	Reading	Reading	Reading	Reading	Reading	Readir
#1 #2	1.171	2.230 2.211	0.9/4	0.000	0.000	1.436	
#2 #3 Mean	1 172	2.211	0.905	0.000	0.000	1 422	2.00
Mean	1.172 1.167	2.226	0.970	0.000	0.000	1.423	2.00
%RSD	0.661	2.226 0.595	Reading 0.974 0.965 0.972 0.970 0.508	0.271	7.781	0.470	0.76
Final c	concentration						
	ppm	ppm	ppm	ppm	ppm	ppm	PI

Raw Data MA23347 page 168 of 235

							■ Zoom II	1 1
							Zoom O	ıt
Printed:	10/27/2009 8	3:12:53 AM	User: Accute	вt				
#1	1.96430	1.98032	2.08587	2.14849	2.08202	2.10347	2.03913	
#2	1.94289	1.96381	2.06596	2.13919	2.06203	2.08825	2.00960	
#3	1.96621	1.98666	2.08149	2.14405	2.06577	2.08477	2.02778	
Mean	1.95780	1.97693	2.07777	2.14391	2.06994	2.09216	2.02551	
%RSD	0.66130	0.59644	0.50341	0.21695	0.51339	0.47532	0.73535	
	2203/2	2203/1	INT STD					
IS rat	ioed intens	ities						
	Reading	Reading	Reading					
#1	3.418	4.827	59054.000					
#2	3.411	4.784	59285.000					
#3	3.410	4.820						
Mean	3.413	4.810						
%RSD	0.130	0.475	0.271					
Final	concentration	ons						
	ppm	ppm	intensity					
#1	2.18753	2.07040	-2913.55					
#2	2.18296	2.05164						
#3	2.18231	2.06753						
Mean	2.18427	2.06319						
%RSD	0.13032	0.48980	0.50					

Raw Data MA23347 page 169 of 235

Raw Data MA23347 page 171 of 235

# Zoom In Printed: 10/27/2009 8:12:54 AM								
Printed: 10/27/2009 8:12:54 AM								⋖ Zoom
#1 0.00029 0.00215 -0.00266 -0.00259 -0.00268 -0.00239 0.00473 0.00597 0.00226 #2 0.00026 0.00155 -0.00158 -0.00158 -0.0039 0.00473 0.00597 0.00226 #3 0.00029 0.00163 0.00023 0.00105 0.00266 0.00210 0.00197 Mean 5.51968 20.95642 109.01769 330.28506 110.0578 92.99033 289.50856 #2 203/2 2203/1 INT STD #2 203/2 2203/1 INT STD #2 203/2 2203/1 INT STD #2 203/2 2203/1 INT STD #2 203/2 200.0009 0.00097 Mean 6.00097 Mean 6.00097 Mean 6.00097 Mean 6.00097 Mean 6.0014 0.137 58901.333 #88D 6.000 #3 0.007 0.00097 Mean 6.0014 0.137 58901.333 #88D 6.000 Mean 6.0014 0.137 58901.333 #88D 6.000 Mean 6.0014 0.00097 Mean 6.00097								Zoom
#1 0.00029 0.00215 -0.00266 0.00029 0.00473 0.00597 0.00226 #2 0.00026 0.00155 -0.00158 -0.00158 -0.0039 0.00473 0.00597 0.00226 #3 0.00029 0.00163 0.00023 0.00105 0.00266 0.00210 0.00197 Mean 5.51968 20.95642 109.21769 330.88506 110.06578 92.99033 289.50856 2203/2 2203/1 INT STD IS ratioed intensities Reading #1 0.015 0.0140 88979.000 #2 0.009 0.130 58801.000 #3 0.017 0.140 58824.000 Mean 0.014 0.137 58901.333 #RSD 22 8.973 4.067 0.155 Final concentrations #1 -0.0066 0.00218 3.70 0.155 Final concentrations #1 -0.0066 0.00218 3.70 0.155 #2 0.00064 0.00158 -0.00218 3.70 0.155 #3 0.00064 0.00158 -0.00218 3.70 0.155 #3 0.00064 0.00158 -0.00218 3.70 0.155 #4 0.00064 0.00159 0.00185 -0.0018 3.70 0.155	Printed	: 10/27/2009 8	3:12:54 AM	User: Accut	est			
#3 0.00029 0.00163 0.00023 0.00165 0.00206 0.00210 0.00197 MRSD 0.00028 0.00181 -0.00134 -0.00075 0.00222 0.00293 0.00079 RRSD 5.51968 20.95642 109.21769 330.58506 110.06578 92.99033 289.50856 Z203/2 2203/1 INT STD IS ratioed intensities Reading Reading Reading 1 0.0015 88979.000 #2 0.009 0.130 58891.000 #3 0.017 0.140 58924.000 Mean 0.014 0.137 58901.333 RRSD 28.973 4.067 0.155 Final concentrations pum pum intensity #1 -0.00566 0.00218 3.72 #2 -0.00425 -0.00227 2.20 #3 0.00064 0.00218 3.72 #3 0.00064 0.00185 -0.322 Mean -0.00144 0.00059 1.87	#1	0.00029	0.00225	-0.00266	0.00029	0.00473	0.00597	0.00226
Mean 0.00028 0.00181 -0.00134 -0.00075 0.0022 0.00293 0.00079 \$203/2 20.3/1 INT STD 10.06578 92.99033 289.50856 Is ratioed intensities Reading Reading Reading 1 0.00 0.10 58891.00 92.9903 289.50856 #2 0.009 0.130 58891.00 98.9979.00 </td <td>#2</td> <td>0.00026</td> <td>0.00155</td> <td>-0.00158</td> <td>-0.00359</td> <td>-0.00014</td> <td>0.00072</td> <td>-0.00185</td>	#2	0.00026	0.00155	-0.00158	-0.00359	-0.00014	0.00072	-0.00185
\$RSD 5.51968 20.95642 109.21769 330.58506 110.06578 92.99033 289.50856 2203/2 2203/1 INT STD IS ratioed intensities Reading 1 Reading 2 Reading 2 Reading 3 Reading 3 Reading 3 Reading 4 Reading 4 Reading 4 Reading 4 Reading 5 Reading 5 Reading 5 Reading 6 Reading 7 Reading 7 Reading 7 Reading 8 Reading 8 Reading 8 Reading 8 Reading 8 Reading 9 Reading	#3							
18 ratioed intensities Reading	Mean	n 0.00028	0.00181	-0.00134	-0.00075	0.00222	0.00293	0.00079
IS ratioed intensities Reading Reading Reading Reading 11	%RSI	D 5.51968	20.95642	109.21769	330.58506	110.06578	92.99033	289.50856
Reading Reading Reading Reading Reading #1 0.015 0.140 58979.000 #2 0.009 0.130 58979.000 #3 0.017 0.140 58924.000 #3 0.017 0.140 58924.000 Mean 0.014 0.137 58901.333 #RSD 28.973 4.067 0.155 Final concentrations ppm ppm ppm ppm intensity #1 -0.0056 0.00218 3.72 #2 -0.00425 -0.00227 2.20 #3 0.00064 0.00185 -0.32 Mean -0.00142 0.00059 1.87		2203/2	2203/1	INT STD				
#1 0.015 0.140 58979.000 #2 0.009 0.130 58801.000 #3 0.017 0.140 58924.000 Mean 0.014 0.137 58901.333 Mean 0.014 0.137 58901.333 Final concentrations #1 -0.0045 -0.0027 3.70 #2 0.0064 0.0027 3.70 #3 0.0064 0.00185 -0.32 Mean -0.00142 0.00059 1.87	IS r	atioed intensi	ities					
#2 0.009 0.130 58801.000 #3 0.017 0.140 58924.000 Mean 0.014 0.137 58901.333 *RSD 28.973 4.067 0.155 Final concentrations pum pum intensity #1 -0.0056 0.00218 3.72 #2 2 -0.00425 -0.00227 2.20 #3 0.0064 0.00185 -0.32 Mean -0.00142 0.00059 1.87		Reading	Reading	Reading				
#3 0.017 0.140 58924.000 Mean 0.014 0.137 58901.333 RRSD 28.973 4.067 0.155 Final concentrations ppm			0.140	58979.000				
Mean 0.014 0.137 58901.333 RSSD 28.973 4.067 0.155 Final concentrations ppm intensity #1 -0.00218 3.72 #2 -0.00425 -0.00218 3.72 #3 0.00064 0.00185 -0.32 Mean -0.0012 -0.32 Mean -0.0012 1.87								
**RSD 28.973	#3							
Final concentrations #1 -0.00 ppm								
ppm ppm intensity #1 -0.00066 0.00218 3.72 #2 -0.00425 -0.00227 2.20 #3 0.00064 0.00185 -0.32 Mean -0.00142 0.00059 1.87	%RSI	D 28.973	4.067	0.155				
#1 -0.00066 0.00218 3.72 #2 -0.00425 -0.00227 2.20 #3 0.00064 0.00185 -0.32 Mean -0.00142 0.00059 1.87	Fina	l concentratio	ons					
#2 -0.00425 -0.00227 2.20 #3 0.00064 0.00185 -0.32 Mean -0.00142 0.00059 1.87								
#3 0.00064 0.00185 -0.32 Mean -0.00142 0.00059 1.87								
Mean -0.00142 0.00059 1.87								
%RSD 178.28606 422.41280 109.22								
	%RSI	D 178.28606	422.41280	109.22				

							- 4
			m:1			. 10 /07 /0000	0.10.54
Method	: EPA3 Idl : CCB		File : 1t102	POAMT	Printed	[10/2//2009	8:12:54
Sampre.	is commenced	. 10/26/2001	Sampleidz			[LTEVÃC]	
Dilutio	on ratio : 1.	00000 to 1.0	00000	•			
DIIUCI							
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be31
IS rat:	ioed intensit	ies		n 1	n 11	D 11	p 1
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.067	-0.001	-0.001	0.001	0.000	0.000	0.0
#2	0.067	-0.001	0.000	0.001	0.000	0.000	0.0
#3	0.067	-0.001	0.000	0.001	0.001	0.000	0.0
Mean	0.067	-0.001	0.000	0.001	0.000	0.000	0.0
%RSD	Reading 0.067 0.067 0.067 0.067 0.067 0.409	9.669	11.056	20.163	11.053	19.454	2.0
Final o	concentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	1.19383	-0.00108	-0.00075	-0.00002	0.00033	-0.00009	0.00
#2	1.20290	-0.00085	-0.00052	0.00041	0.00133	-0.00017	0.000
#3	1.19983	-0.00060	-0.00028	0.00046	0.00324	0.00017	0.00
Mean	1.19886	-0.00084	-0.00051	0.00028	0.00163	-0.00003	0.000
#2 #3 Mean %RSD	0.38469	28.24268	ppm -0.00075 -0.00052 -0.00028 -0.00051 45.68352	93.53372	90.73719	682.41337	34.60
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd22
IS rat:	ioed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read:
#1	0.003	0.018	-0.001	-0.004	-0.022	0.009	0.0
#2	0.003	0.018	=0.001	-0.004	=0.022	0.009	0.0
#3	0.003	0.010	-0.001	-0.003	-0.022	0.003	0.1
Mean	0.003	0.010	-0.001	-0.003	-0.021	0.011	0.0
%RSD	ned intensit Reading 0.003 0.003 0.003 0.003 4.507	1.493	7.444	9.041	2.305	9.970	55.
m:1		_					
	ppm	ppm	mag	mqq	ppm	mqq	1
#1	-0.00006	0.69551	-0.00176	-0.00328	-0.00084	-0.00549	-0.00
#2	0.00016	0.76731	-0.00095	-0.00291	-0.00182	-0.00463	0.000
#3	0.00061	0.76969	-0.00109	-0.00240	-0.00041	-0.00044	0.000
Mean	0.00024	0.74417	-0.00126	-0.00286	-0.00102	-0.00352	0.000
%RSD	-0.00006 0.00016 0.00061 0.00024 143.62369	5.66474	34.42934	15.36212	70.53972	76.87648	162.15
			Ag3280				
TS rat	ioed intensit	iee					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	-0.001	0.001	-0.014	0.002	0.009	0.031	0 (
#2	-0.001	0.001	=0.014	0.002	0.000	0.031	0.1
# 2	-0.001	0.001	-0.014	0.002	0.009	0.031	0.1
Moor	-0.001	0.001	-0.014	0.002	0.009	0.031	0.1
%RSD	Reading -0.001 -0.001 -0.001 -0.001 11.738	9.038	0.834	2.245	0.735	1.195	34.1
Final (concentration ppm 0.00177 0.00124 0.00166 0.00156 17.95519	ıs					
	mag	maa	maa	maa	mara	maa	
#1	0.00177	0.00026	-0.00103	0.00950	-0.01887	-0.04162	0.00
#2	0.00124	0.00023	-0.00106	0.00957	-0.01631	-0.04258	0.00
#3	0.00166	0.00023	-0.00087	0.00856	-0.01956	-0.03916	0.01
Mean	0.00156	0.00013	_0.00007	0.00030	-0.01330	-0.03310	0.01
an on	17 05510	16 77747	10.00039	6 12052	0.01025	4 20140	74 25
aRSD							
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960
IS rat	ioed_intensit	ies		D 11	B	D 111	
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.000	0.006	-0.010	0.000	0.000	0.033	-0.0
#2	0.000	0.005	-0.010	0.000	0.000	0.030	-0.0
#3	0.000	0.005	-0.009	0.000	0.000	0.031	-0.0
Mean	0.000	0.005	-0.010	0.000	0.000	0.031	-0.0
	2.196	7.775	Reading -0.010 -0.010 -0.009 -0.010 7.248	0.155	0.155	5.960	2.6
#3 Mean %RSD							
	concentration	ıs	ppm				

Raw Data MA23347	page 170 of 235

							◀ Zo
	: EPA3 dl : ICSA s commenced n ratio : 1.			2609ml 2 : M	Printed	: 10/27/2009 [FLEXQC]	8:12:54 AM
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	oed intensit	ies					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#2	0.072	-0.001	-0.001	0.003	19.064	-0.013	0.002
#3	0.073	-0.001	-0.001	0.004	19.084	-0.014	0.00
Mean %RSD	0.073	-0.001 73.862	22.830	10.623	0.126	Reading -0.013 -0.014 -0.014 -0.013 1.123	2.90
	ppm	ppm	ppm	ppm	ppm	ppm	ppi
#1 #2	-0.05943	-0.00043	-0.00129	0.00401	544.85670	-0.00102	0.0000
#3	-0.06247	-0.00231	-0.00321	0.00282	544.06389	-0.00232	0.0000
Mean	-0.06426	-0.00151	-0.00245	0.00335	544.13761	ppm -0.00102 -0.00252 -0.00225 -0.00193 41.46050	0.0000
%RSD					0.12592	41.46050	85.8782
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed intensit	ies Peadira	Peading	Reading	Peading	Reading	Peadin
#1	0.004	0.019	-0.001	0.001	0.042	Reading 0.002 -0.003	0.03
#2	0.004	0.019 0.016	-0.002	-0.004	0.036	-0.003	0.03
#3 Moon	0.004	0.017 0.017	-0.002	-0.001	0.041	-0.003 -0.001 226.644	0.03
%RSD	0.004 0.004 2.754	6.289	-0.002 -0.002 28.550	-0.001 -0.001 179.994	0.041 0.040 8.718	226.644	4.48
Final c	oncentration	18					
#1	_n nnn4a	_0 11444	_n nn169	n nnese	_n n1336	_n n2792	0 0027
#2	-0.00103	-0.45305	-0.00536	0.00042	-0.02220	-0.04255	0.0029
#3	-0.00072	-0.33628	-0.00535	0.00466	-0.01422	-0.04228	0.0036
Mean %RSD	-0.00075 36.32114	-0.30126 57.09408	-0.00413 51.11817	0.00388 81.09224	29.37343	ppm -0.02782 -0.04255 -0.04228 -0.03755 22.43675	12.1434
	Ni2316						
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading 17.803	Reading	Readin
#1 #2	0.000 -0.001	0.018	-0.011 -0.013	28.167 28.053	17.803	0.035	3.56
#3	0.000	0.018	-0.013	28.086 28.102	17.906	0.033 0.034	2 56
Mean	0.000 0.000 81.393	0.018 0.018 0.018	-0.013 -0.012 6.806	28.102 0.210	17.879	0.034	3.56
		0.173	6.806	0.210	0.375	Reading 0.035 0.033 0.033 0.034 2.485	0.07
	oncentration ppm	ppm 0.00428 0.00427	ppm	ppm 390.98346 389.39198	ppm	ppm	pp
#1	0.00992	0.00428 0.00427	0.00247	390.98346	481.35013	-0.05213	200.0749
#2	0.00833	0.00427	0.00122	389.39198	484./5185	-0.05906	199 9144
Mean	0.00919	0.00428	0.00161	389.85133 390.07559 0.20999	483.41678	-0.05906 -0.05673 7.02771	199.9238
%RSD	8.74697	0.44104	46.82870	0.20999	0.37546	7.02771	0.0733
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS rati	oed intensit	ies Reading	Peading	Reading	Peading	Reading	Readin
#1	0 000	-0.008	-0.015	Reading 0.000 0.000	0.000	-0.008	-0.16
#2	0.000	-0.010	-0.019	0.000	0.000	-0.034	-0.18
#3 Mean	0.000	-0.009 -0.009	-0.017	0.000	0.000	Reading -0.008 -0.034 -0.037 -0.026	-0.18
%RSD	33.309	9.532	Reading -0.015 -0.019 -0.017 -0.017 11.705	0.000 0.000 0.452	0.452	61.686	
Final c	oncentration						
	ppm	ppm	ppm	ppm	ppm	ppm	pp

Raw Data MA23347 page 172 of 235

140 of 247
ACCUTEST.
JA30201 Laboratories

							◀ Zoom I Zoom O
42 13	27/2009 8: 0.00342 0.00313	-0.00295 -0.00440	User: Accute -0.01838 -0.02660	0.00920	0.01499 -0.01691	0.04656 0.00704	-0.04815 -0.06482
25	0.00320 0.00325 4.62936	-0.00401 -0.00378 19.78998	-0.02388 -0.02296 18.23161	-0.03630 -0.02034 125.89187	-0.02036 -0.00743 262.45437	0.00346 0.01902 125.73050	-0.06800 -0.06032 17.67579
/2	2203/2	2203/1	INT STD				
	d intensit						
	Reading	Reading	Reading				
	-0.066	0.494	52137.000				
	-0.161 -0.167	0.477	51717.000 51744.000				
	-0.167	0.477	51744.000				
	42.883	2.081	0.453				
tio	centration	3					
66 09 57	ppm 0.07266 0.01209 0.00857 0.03110 15.84017	ppm -0.11773 -0.12595 -0.12603 -0.12324 3.86952	intensity 25.68 37.15 33.36 32.07 18.23				

Raw Data MA23347 page 173 of 235

Raw Data MA23347 page 175 of 235

						■ Zoom I	nι
						Zoom O	ut
10/27/2009 8:	12:54 AM	User: Accute:	st				
0.48309	0.49039	-0.00765	1.06124	1.09215	1.11530	1.04585	
0.48907	0.49557	-0.00772	1.06679	1.09777	1.12866	1.03598	
0.48868	0.49728	-0.00386	1.05284	1.08195	1.09234	1.06118	
0.48695	0.49441	-0.00641	1.06029	1.09062	1.11210	1.04767	
0.68619	0.72515	34.46504	0.66215	0.73522	1.65216	1.21214	
2203/2	2203/1	INT STD					
1.537	0.728	0.348					
1.10682	0.96722	8.95					
1.37736	0.99095	34.47					
	0.48309 0.48967 0.48868 0.48695 0.68619 2203/2 ioed intensit Reading 1.550 1.522 1.542 1.547 1.537 concentration ppm 1.10769 1.12162 1.09117	0.48907 0.49557 0.48968 0.49728 0.48695 0.47515 2203/2 2203/1 ided intensities Reading Reading 1.570 2.910 1.570 2.911 1.522 2.933 1.547 2.911 1.527 2.933 1.547 2.911 0.910 2	0.48309 0.49039 -0.00765 0.48907 0.49557 -0.00772 0.48868 0.49728 -0.00386 0.48685 0.49441 -0.00861 0.68619 0.72515 34.46504 2203/2 2203/1 INT STD ioed intensities Reading Reading Reading 1.550 2.910 52703.000 1.550 2.910 52703.000 1.522 2.933 52703.000 1.547 2.911 52502.000 1.547 2.913 52502.000 1.547 2.913 52502.000 1.547 2.913 52502.000 1.547 2.913 52502.000 1.547 2.913 52502.000 1.547 2.913 10.788 1.1069 0.96563 intensity 1.1069 0.96563 10.65 1.12162 0.95712 10.78	0.48309 0.49039 -0.00765 1.06124 0.48307 0.49557 -0.00772 1.06679 0.48568 0.49728 -0.00386 1.05284 0.48689 0.72515 34.46504 0.66215 0.2203/2 2203/2 2203/1 INT STD 0.66215 0.2203/2 2203/2 2203/1 INT STD 0.66215 0.66	0.48309 0.49039 -0.00765 1.06124 1.09215 0.48307 0.49557 -0.00772 1.06679 1.09777 0.48868 0.49728 -0.00386 1.05284 1.08195 0.48695 0.49441 -0.00641 1.06029 1.09062 2.068619 0.72515 34.46504 0.66215 0.73522 2203/2 2203/2 10752 1.09062 2.0906 2.09062 2.0906 2.09062 2.0906 2.09062 2.0906 2.09062 2.0906 2.09062 2.0906 2.09062 2.0906 2.09062 2.0	0.48309 0.49039 -0.00765 1.06124 1.09215 1.11530 0.48307 0.49557 -0.00772 1.06679 1.09777 1.12866 0.48868 0.49728 -0.00386 1.05284 1.08195 1.09234 0.8695 0.49441 -0.00641 1.06029 1.09062 1.11210 0.68619 0.72515 34.46504 0.66215 0.73522 1.65216 0.2203/2 2203/1 INT STD ioed intensities Reading Reading Reading 1.550 2.910 52703.000 1.1520 0.1520	10/27/2009 8:12:54 AM User: Accutest 0.48309 0.49039 -0.00765 1.06124 1.09215 1.11530 1.04585 0.48907 0.49557 -0.00772 1.06579 1.09777 1.12866 1.03598 0.48968 0.494728 -0.00366 1.05284 1.08195 1.05223 1.06118 0.48665 0.49441 -0.00641 1.06229 1.08195 1.05223 1.06118 0.86619 0.72515 34.46504 0.66215 0.73522 1.65216 1.21214 2203/2 2203/1 INT STD ioed intensities Reading Reading Reading Reading 1.570 2.931 5.2732.00 1.520 2.931 5.2732.00 1.521 2.932 5.2732.00 1.522 2.933 5.2457.000 1.524 2.931 5.2732.00 1.527 0.728 0.348 roncentrations pum intensity 1.10769 0.9683 1.065 1.12162 0.95712 10.78 1.0651

							Zoom
Methor	1 : EPA3		File : itl0:	2609m1	Printed	: 10/27/2009	8:12:54 AM
Sample Analys	eId1 : ICSAB sis commenced : ion ratio : 1.0	10/27/2009	SampleId: 12:05:07 A	2 :	1111100	[FLEXQC]	0.12.01 10.
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rat	tioed intensiti	es					
		Reading	Reading	Reading	Reading	Reading	Reading
#1	0.074	0.500	0.105	0.333	19.123	0.089	1.078
#2	0.075	0.507	0.106 0.107	0.337	19.306 19.341	0.090	1.092
#3 Mean	0.075 0.075	0.509	0.107	0.337	19.341	0.090	1.094
%RSD	0.558	0.885	0.810	0.662	0.608	0.742	0.808
Final	concentrations						
	ppm	ppm	ppm	ppm	ppm		ppm
#1	-0.02034	1.00516	0.49233	0.49137	545.19970	0.51169	0.51549
#2	-0.03073 -0.01898	1.01826	0.49827	0.49659 0.49744	550.40979 551.42155	0.51723 0.51887	0.52208
Mean	-0.01898	1.02236	0.49586	0.49514	549.01035	0.51593	0.52333
%RSD	27.53030	0.88455	0.80745	0.66345	0.60812	0.72919	0.80990
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS rat	tioed intensiti						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.214	0.016	0.112	0.743	0.747	0.422	4.001
#2	0.217	0.015	0.114	0.755	0.760	0.426	4.030
#3 Mean	0.216 0.216	0.017 0.016	0.114	0.754 0.751	0.758 0.755	0.426 0.425	4.045 4.025
%RSD	0.560	4.648	0.780	0.919	0.755	0.554	0.554
Final	concentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.48157	-0.36370	0.50291	1.04921	1.00697	1.13139	1.05045
#2	0.48661	-0.44683	0.50936	1.06681	1.02372	1.14158	1.05801
#3	0.48603	-0.22105	0.51000	1.06507	1.02103	1.14341	1.06198
Mean %RSD	0.48474	-0.34386 33.20908	0.50742	1.06037	1.01724		1.05681
*RSD							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2714
IS rat	tioed intensiti						
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1 #2	0.440	0.651	1.115	28.364	17.858	0.037	3.546 3.581
#2	0.445 0.445	0.658	1.128	28.663 28.730	18.058 17.989		3.581
Mean	0.443	0.655	1.125	28.586	17.968	0.038	3.572
%RSD	0.654	0.570	0.607	0.683	0.566	1.381	0.635
Final	concentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.98079	0.47593	1.01819	393.67371	482.82746	-0.03816	198.77110
#2	0.99199 0.99190	0.48135 0.47926	1.02987	397.82897 398.76182	488.24410 486.38685	-0.03675 -0.03361	200.77218
Mean	0.98823	0.47885	1.02515	396.75483	485.81947	-0.03361	200.22700
%RSD		0.57086		0.68274	0.56658	6.44531	0.63629
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/1
IS rat	tioed intensiti						
	Reading		Reading	Reading	Reading		Reading
#1	0.286	0.546	-0.011	0.000	0.000	0.717	0.969
#2	0.289	0.552	-0.011	0.000	0.000	0.725	0.958
#3	0.289	0.554	-0.009	0.000	0.000	0.700	0.985 0.971
Mean %RSD	0.288 0.686	0.551 0.723	-0.010 10.618	0.000 10.498	0.000	0.714 1.771	1.356
Final	concentrations						
	ppm	ppm	ppm	ppm	ppm	ppm	ppm

Raw Data MA23347	page 174 of 235

							∢ Zo
Analysi	: EPA3 dl : CCV s commenced n ratio : 1.	: 10/27/2009	File : it102 SampleId2) 12:11:25 AM)0000	:	Printed :	10/27/2009 [FLEXQC]	8:12:54 A
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	oed intensit	ies	Reading 0.438				
#1	Reading 2.295	Reading 1.043	Reading	Reading 1.382	Reading 1.482	Reading 0.413	Readin 4.37
#2	2.303	1.029	0.436	1.375	1.474	0.412	4.33
#3	2.298	1.037	0.437	1.379	1.479	0.412	4.35
Mean %RSD	2.299 0.175	1.036	0.437	1.379	1.478	0.412 0.174	4.35
Final o	concentration						
	mqq	mag	ppm	ppm	ppm	ppm	pp
#1 #2	38.52189 38.65486	2.09653 2.06845	2.04734 2.03671	2.04694 2.03702	42.26002 42.04801	2.08563 2.07840	2.0939
#3	38.58135	2.08600	2.04152	2.04281	42.18415	2.08121	2.0849
Mean	38.58603	2.08366	2.04186	2.04226		2.08175	2.0848
%RSD	0.17263	0.68089	0.26080	0.24415	0.25477	0.17502	0.4333
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed intensit	ies	ndi-	Reading	D	Dandin.	Readin
#1	Reading	Reading	Reading 0.427	1.451	Reading 1.364	Reading 0.774	8.19
#2	0.841			1.436	1.360	0.772	8.13
#3	0.841	0.267	0.426	1.434	1.365	0.772	8.14
Mean %RSD	0.841	0.267 0.127	0.426 0.084	1.440	1.363	0.773 0.143	8.15 0.38
Final c	oncentration	-					
	mqq	mqq	ppm	ppm	ppm	ppm	pp
#1	1.92526	40.70252	1.90700	2.04698 2.02655	1.99114	2.11342	2.1613
#2 #3	1.92515	40.59383	1.90404	2.02655	1.98501	2.10894 2.10756	2.1452
Mean	1.92467	40.65027	1.90518			2.10997	2.1520
%RSD	1.92467 0.04848	0.13399	0.08365	0.63636	0.21497	0.14512	0.3882
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
IS rati	oed intensit						
#1	Reading 0.938	Reading 2.561	Reading 0.268	Reading 3.045	Reading 1.457	Reading 1.170	Readin 0.73
#2	0.938	2.561	0.267	2 022		1.170	0.73
#3	0.939	2.564	0.268	3.040	1.460	1.168	0.73
Mean	0.939	2.565	0.268	3.036		1.168	0.73
%RSD	0.052	0.170	0.220	0.388	0.107	0.194	0.30
Final c	oncentration ppm	ıs ppm	ppm	ppm	ppm	ppm	pp
#1	2.07784	1.90649	0.25410	42.10945	39.04007	5.42947	41.2830
#2	2.07921	1.91286	0.25311	41.79707	39.11075	5.40776	41.0366
#3 Mean	2.07993	1.90859	0.25395 0.25372	42.03504 41.98052	39.11332 39.08805	5.41858 5.41860	41.1390
%RSD	0.05114		0.21024		0.10635	0.20030	0.3007
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS rati	oed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1 #2	1.181	2.240 2.235	0.972 0.965	0.000	0.000	1.447	2.00
#2	1.178	2.235	0.969	0.000	0.000	1.453	1.99
Mean	1.178	2.238	0.968	0.000	0.000	1.449	2.00
%RSD	0.253	0.122	0.373	5.988	0.229	0.243	0.52
Final o	oncentration		n=-	-	nn-	-	gg
	ььш	ppm	ppm	ppm	ppm	ppm	pp

Raw Data MA23347 page 176 of 235

							₹ 200III I	
							Zoom O	ut
Printed:	10/27/2009 8:	12:54 AM	User: Accute	st				
#1	1.98074	1.98925	2.08102	2.14844	2.08907	2.12011	2.02698	
#2	1.97076	1.98481	2.06589	2.15387	2.09289	2.12084	2.03698	
#3	1.97652	1.98873	2.07547	2.14974	2.09186	2.12939	2.01680	
Mean	1.97601	1.98760	2.07413	2.15068	2.09127	2.12345	2.02692	
%RSD	0.25345	0.12218	0.36917	0.13176	0.09458	0.24304	0.49800	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit							
	Reading	Reading	Reading					
#1	3.429	4.793	57337.000					
#2	3.435	4.815	57217.000					
#3	3.438	4.777	57075.000					
Mean		4.795	57209.667					
%RSD	0.130	0.398	0.229					
Final	concentration	s						
	ppm	ppm	intensity					
#1	2.19506	2.05520	-2906.79					
#2	2.19846	2.06468	-2885.64					
#3	2.20077	2.04769	-2899.03					
Mean		2.05586	-2897.15					
%RSD	0.13060	0.41419	0.37					

Raw Data MA23347 page 177 of 235

Raw Data MA23347 page 179 of 235

							◀ Zoom I
							Zoom O
Drinted:	10/27/2009 8	.12.E4 AM	User: Accu	tost			
#1	0.00060	0.00142	-0.00242		0.00106	0.00398	-0.00480
#2	0.00054	0.00167		0.00342	0.00588	0.01095	
#3	0.00061	0.00201		-0.00356	-0.00255	0.00096	
Mean	0.00058	0.00170	-0.00213	-0.00001	0.00146		-0.00621
%RSD	5.96440	17.28872	105.57604	68558.10009	289.11248	96.62415	47.10575
	2203/2	2203/1	INT STD				
IS rat	tioed intensi	ties					
	Reading	Reading	Reading				
#1	0.019	0.127	57162.000				
#2	0.025	0.133					
#3	0.011	0.127					
Mean		0.129					
%RSD	39.029	2.694	0.146				
Final	concentratio						
	ppm	ppm	intensity				
#1	0.00204	-0.00370	3.38				
#2	0.00572	-0.00119	5.89				
#3	-0.00332	-0.00405	-0.35				
Mean	0.00148	-0.00298	2.97				
%RSD	307.07048	52.42158	105.58				

Method SampleId	: EPA3 il : CCB	. 10/27/200	File : it10	12609m1 12 : M	Printed	: 10/27/2009 [FLEXQC]	8:12:5
Dilution	n ratio : 1.	000000 to 1.	00000 00000	M			
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Ве
IS ratio	oed intensit	ies	D	n	D	n	
#1	Reading	keading	Reading	keading	Reading	Reading	Kea
#2	0.066	0.001	0.000	0.001	0.002	0.000	Č
#3	0.067	0.002	0.000	0.002	0.002	0.000	Č
Mean	0.067	0.001	0.000	0.002	0.002	0.000	C
%RSD	0.694	16.598	28.235	Reading 0.002 0.001 0.002 0.002 24.448	6.772	40.134	•
Final co	oncentration	IS DDM	nnm	p.p.m	nnm	nnm.	
#1	1 10604	n nn436	-u uuuse	n nniss	u usees	_0 00006	0.0
#2	1.17990	0.00397	-0.00020	0.00123	0.03062	-0.00003	0.0
#3	1.19567	0.00490	0.00048	0.00186	0.03273	0.00031	0.0
Mean	1.18750	0.00441	-0.00006	0.00127	0.03332	-0.00005	0.0
%RSD				ppm 0.00123 0.00073 0.00186 0.00127 44.16276			
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd
IS ratio	oed intensit	ies					
4.7	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.004	0.019	-0.001	-0.002	-0.022	0.009	,
#2	0.004	0.019	-0.001	0.000	-0.025	0.010	
Mean	0.004	0.019	-0.001	-0.002	-0.023	0.010	č
%RSD	3.520	5.372	38.929	Reading -0.002 -0.003 0.000 -0.002 90.779	7.624	9.581	18
Final co	oncentration	ıs		ppm -0.00065 -0.00182 0.00200 -0.00016 1249.27981			
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.00106	0.84582	-0.00142	-0.00065	-0.00171	-0.00527	0.0
#3	0.00003	1.10647	0.00185	0.00200	-0.00300	-0.00001	0.0
Mean	0.00112	0.92101	-0.00038	-0.00016	-0.00228	-0.00289	0.0
%RSD	26.69033	17.54245	510.70499	1249.27981	108.80538	92.30002	28.2
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe
IS ratio	oed_intensit	ies					_
#1	-0 001	keading	_n niz	keading	Reading	Reading	Kea
#2	-0.001	0.001	=0.013	0.000	0.010	0.031	,
#3	-0.001	0.001	-0.012	0.005	0.010	0.034	č
#2 #3 Mean %RSD	-0.001	0.001	-0.013	0.005	0.010	0.032	0
%RSD	35.315	12.529	6.848	Reading 0.006 0.005 0.005 0.005 5.469	1.029	4.200	23
Final co	oncentration	ıs		ppm 0.06391 0.05756 0.05625 0.05924 6.91955			
#1	n nn194	n nngq	=cono=	0 06391	0 01706	-U U380U	0.0
#2	0.00194	0.00035	-0.00025	0.05756	0.01165	-0.03856	0.0
#3	0.00278	0.00043	0.00089	0.05625	0.01378	-0.02746	0.0
Mean	0.00206	0.00043	0.00002	0.05924	0.01416	-0.03497	0.0
%RSD	32.14742	18.08892	5070.62714	6.91955	19.23808	18.61204	31.5
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS ratio	oed_intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.001	0.005	-0.010	0.000	0.000	0.032	- C
#2	0.001	0.005	-0.011	0.000	0.000	0.037	-0
Mean	0.001	0.005	-0.010	0.000	0.000	0.033	-0
%RSD	3.466	6.166	10.727	Reading 0.000 0.000 0.000 0.000 6.073	0.146	10.649	3
Final co	oncentration	ıs					
		nnm	nnm	nnm	nnm	ppm	

Raw Data MA23347 page 178 of 235

							◀ Zo
Analysis	EPA3 11 : ja30201- commenced : ratio : 1.0	: 10/27/200	File : it102 SampleId2 9 12:24:01 AM 00000	609ml ::	Printed	: 10/27/2009 [SAMPLE]	8:12:54 AM
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS ratio	ed intensit	ies					
	Reading	Reading	Reading 0.000 0.000 0.000 0.000 83.688	Reading	Reading	Reading	Readin
#1 #2	0.256	0.006	0.000	0.002	0.301	0.000	0.00
#3	0.255	0.006	0.000	0.002	0.301	0.000	0.00
Mean %RSD	0.256	0.006	0.000	0.002	0.301	0.000	0.00
%RSD	0.216	1.940	83.688	10.092	0.205	21.584	1.16
Final co	ncentrations	3					
	ppm	ppm	ppm	ppm	ppm	ppm	ppi
#1	4.34459	0.01382	0.00055	0.00140	8 60041	0.00022	0.0001.
#3	4.32650	0.01413	0.00112	0.00183	8.56714	0.00082	0.0001
Mean	4.33575	0.01409	0.00098	0.00172	8.58044	0.00059	0.0001
%RSD	0.20881	1.77757	ppm 0.00055 0.00128 0.00112 0.00098 39.13936		0.20523	55.17554	
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS ratio							
	Reading	Reading	Reading -0.001 -0.001 -0.001 -0.001 21.399	Reading	Reading	Reading	Readin
#1	0.004	0.153	-0.001	-0.004	-0.023	0.012	0.00
#2	0.005	0.153	-0.001	-0.004	-0.020	0.012	0.00
Mean	0.005	0.153	-0.001	-0.002	-0.023	0.011	0.00
%RSD	2.246	0.265	21.399	26.402	9.297	4.921	49.55
Final co	ncentrations	3					
	ppm	ppm	ppm	ppm	ppm	ppm	pp
#2	0.00283	21.09041	0.00042	-0.00301	0.00157	0.00186	0.0002
#3	0.00305	21.82623	0.00144	-0.00099	-0.00393	-0.00027	0.0001
Mean	0.00306	21.88983	0.00117	-0.00242	-0.00177	0.00146	0.0003
%RSD	7.67340	0.28921	0.00042 0.00167 0.00144 0.00117 56.72305	51.37336	165.59052	107.78440	70.8348
	Ni2316	Ba4934			A13082	Si2881	Fe271
	ed intensit	ies					
#1	Reading 0.000	Reading	Reading -0.013 -0.013 -0.013 -0.013 2.074	Reading	Reading	Reading 1.004	Readin
#1	0.000	0.044	-0.013	5.729	0.010	1.004	0.00
#3	0.000 0.000 0.000 176.004	0.044	-0.013	5.704 5.717	0.010 0.010 0.010 0.010	1.005	0.00
Mean	0.000	0.044	-0.013	5.717	0.010	1.005	0.00
*RSD	176.004	0.152	2.074	0.226	0.311	0.194	0.54
Final co	ncentrations	3					
#1	0.00373	0.03238	-0.00033 0.00013	ρρm 79.37708	-0.02173	ppm 4.65492 4.67363 4.66261	0.3867
#2	0.00439	0.03245	0.00013	79.54542	-0.02255	4.67363	0.3904
#3	0.00454	0.03235	-0.00022	79.18616	-0.02087	4.66261	0.3890
Mean %RSD	U.00422	0.03240	-0.00033 0.00013 -0.00022 -0.00014 171.18150	79.36955	-0.02171 3.88058	4.66372	0.3887
VI.OD	M-0576	M-2000	Sn1899	DE2222	0-1000	106070	10607
			SDI899	PD2203	261360	1960/2	1960/
IS ratio	ed intensit: Reading	ies Reading	Reading	Reading	Reading	Reading	Readin
#1	0.017	0.003	-0.010	0.000	0.000	0.036	-0.10
#2	0.017	0.004	-0.009	0.000	0.000	0.039	-0.10
#3 Mean	0.017	0.004 0.004 0.004	-0.010	0.000	0.000	0.038	-0.10
Mean %RSD	0.017 0.017 0.017 0.102	8.477	Reading -0.010 -0.009 -0.010 -0.010 2.565	10.717	0.303	3.981	3.89
Final co	ncentrations						
			ppm	ppm	ppm	ppm	ppı

Raw Data MA23347 page 180 of 235

								■ Zoom II	1 1
								Zoom O	ut
I	Printed:	10/27/2009 8	:12:54 AM	User: Accute	st				
	#1	0.02877	0.00004	-0.00145	-0.00585	0.00305	0.00813	-0.00710	
	#2	0.02881	0.00060	-0.00080	-0.00252	0.00646	0.01216	-0.00493	
	#3	0.02875	0.00032	-0.00184	-0.00499	0.00365	0.01170	-0.01246	
	Mean	0.02878	0.00032	-0.00136	-0.00445	0.00439	0.01066	-0.00817	
	%RSD	0.10388	86.98173	38.66153	38.84096	41.54077	20.70843	47.46899	
		2203/2	2203/1	INT STD					
	IS rat	ioed intensi							
		Reading	Reading	Reading					
	#1	0.023	0.117	57549.000					
	#2	0.029	0.121	57818.000					
	#3	0.029	0.105	57876.000					
	Mean	0.027	0.115	57747.667					
	%RSD	13.493	7.473	0.302					
	Final	concentration	ns						
		ppm	ppm	intensity					
	#1	0.00867	-0.03491	2.02					
	#2	0.01276	-0.03308	1.12					
	#3	0.01270	-0.04036	2.57					
	Mean	0.01138	-0.03611	1.90					
	%RSD	20.57951	10.48619	38.66					

Raw Data MA23347 page 181 of 235

Raw Data MA23347 page 183 of 235

							◀ Zoom In
							Zoom Out
Printe # # Me %R	2 0.0299 3 0.0302 an 0.0303	9 0.00657 3 -0.00199 2 0.00129 8 0.00196	-0.00474 -0.00011	-0.01165 0.00861	0.02140 0.02997 0.01680 0.02272 29.41583	0.04903 0.05090 0.06350 0.05447 14.44927	
-				200.10100	25.12505	11.11227	00.03310
	2203/	2 2203/1	INT STD				
IS	ratioed inten	sities					
# # # Me %R	2 0.02 3 0.02 an 0.02	9 0.120 4 0.132 2 0.102 2 0.118	Reading 58252.000 58352.000 58332.000 58312.000 0.091				
Fin	al concentrat	ions					
# # # Me	2 0.0308 3 0.0254	2 -0.06298 6 -0.03590 0 -0.10303 2 -0.06730	intensity -6.65 0.49 6.62 0.15 4387.30				

IS ratioed IS ratioed IS ratioed #1 #2 #3 Mean #2 #3 Mean #3 #3 #3 #4 #3 #3 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #	ommenced atio : 1. K 7664	-sd2 : 10/27/2009 00000 to 5.0 Zn2062	9 12:30:09 A	2609ml 2 : M	Printed	: 10/27/2009 [SAMPLE]	8:12:5
IS ratioed IS ratioed IS ratioed #1 #2 #3 Mean #2 #3 Mean #3 #3 #3 #4 #3 #3 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #	ommenced atio : 1. K 7664	000000 to 5.0	9 12:30:09 A	2 : M		[SAMPLE]	
Analysis of Dilution Testing and Testing Is ratioed F #1 #2 #3 Mean S #RSD CIS ratioed F #1 #1 #2 #3 Mean S #RSD CIS ratioed F #1 #3 Mean \$5 #RSD CIS ratioed F #1 #3 #3 Mean \$5 #RSD CIS ratioed F #1 #3 #3 Mean \$5 #RSD Final conce #1 CIS F #3 #3 Mean \$5 #RSD F #3 #3 Mean \$5 #RSD F #3 #3 Mean \$5 #RSD F #3 #3 #3 Mean \$5 #RSD F #3 #3 #3 Mean \$5 #RSD F #3 #3 #3 Mean \$5 #RSD F #3 #3 #3 Mean \$5 #RSD F #3 #3 #3 Mean \$5 #RSD F #3 #3 #3 Mean \$5 #RSD F #3 #3 #3 Mean \$5 #RSD F #3 #3 #3 #3 Mean \$5 #RSD F #3 #3 #3 #3 Mean \$5 #RSD F #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3	ommenced atio : 1. K 7664	000000 to 5.0	9 12:30:09 A	М			
Dilution re IS ratioed #1	atio : 1. K 7664	00000 to 5.0	00000				
IS ratioed F #1 #2 #3 #3 #6 #3 #8 #SD IS ratioed #1 #1 #5 #3 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5		752062					
#1 #2 #3 #3 Mean \$4 \$7 \$7 \$8 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7		2112002	Co2286	Cr2677	Mg2790	V 2924	Ве
#1 #2 #3 #3 #3 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5							
#1 #2 #3 #3 #3 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5 #5	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#3 Mean %RSD Final conce #1 5 %RSD 6 #2 5 %RSD 6 IS ratioed #1 #2 #3 Mean 5 %RSD 6 #1 #2 #3 Final conce #1 #2 #3 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4 #4	0.105	0.001	0.000	0.002	0.061	0.000	
Mean \$RSD Final conce #1 \$2 \$3 \$4 \$2 \$5 \$4 \$4 \$5 \$4 \$4 \$5 \$4 \$4 \$5 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4 \$4	0.104	0.001	0.000	0.001	0.061	0.000	0
%RSD Final conce #1 #2 5 #3 5 Mean 5 %RSD () IS ratioed #1 #2 #3 Mean %RSD Final conce #1 () #1 #2 ()	0.105	0.001	0.000	0.002	0.061	0.000	
Final conce #1 #2 5 #3 Seam 5 #4 Seam 5 #4 Seam 5 #5 Seam 6 #1 #2 #3 #3 Mean 8 #1 #2 #3 #1 Conce #1 #1 #2 #3 #3 Mean 8 #1 #1 #2 #3 #3 Mean 8 #1 #1 #2 #3	0.105	0.001	0.000	0.001	0.061	0.000	C
#1 5 4 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.308	5.228	149.983	16.767	0.061 0.061 0.061 0.430	48.201	4
#2 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	entration						
#2 S #3 S Mean S %RSD C IS ratioed #1 #2 #3 Mean %RSD Final conce	ppm		ppm	ppm	ppm	ppm	
#3 S Mean S %RSD S %RSD S #1 #2 #3 Mean %RSD Final conce	9.13242	0.02192	0.01191	0.00769	8.69190	0.00270	0.0
Mean 5 8 8 RSD C IS ratioed #1 #2 #3 Mean 8 RSD Final conce #1 (#2 #2 #2 C)	9.07760	0.02053	0.00709	0.00399	8.62557	-0.00079	0.0
Mean 5 8 8 RSD C IS ratioed #1 #2 #3 Mean 8 RSD Final conce #1 (#2 #2 #2 C)	9.10764	0.02105	0.00949	0.00615	8.62856	-0.00164	0.0
%RSD (IS ratioed #1 #2 #3 Mean %RSD Final conce	9.10589			0.00595	8.64868	0.00009	0.0
IS ratioed #1 #2 #3 Mean %RSD Final conce	0.30146	0.02117 3.33164	25.37623	0.00595 31.29213	0.43321	0.00009 2470.99637	62.1
#1 #2 #3 Mean %RSD Final conce							
#1 #2 #3 Mean %RSD Final conce	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd
#1 #2 #3 Mean %RSD Final conce							_
#2 #3 Mean %RSD Final conce #1 (#2 (Reading	Reading	Reading	Reading	Reading	Reading	
#3 Mean %RSD Final conce #1 (#2 (0.004	0.046	0.000	0.001	-0.022	0.013	C
Mean %RSD Final conce #1 (#2 (0.004	0.044	0.000	-0.002	-0.024	0.012	0
%RSD Final conce #1 0 #2 0	0.004	0.045	0.000	0.000	-0.023	0.013	0
Final conce	0.004	0.045	0.000	0.000 317.185	-0.023	0.013	0
#1 0 #2 0	2.406	1.772	884.528	317.185	3.585	4.859	14
#2 0		s					
#2 0	ppm	ppm 25.47825	ppm	ppm	ppm	ppm	
	0.01373	25.47825	0.03101	0.01412	-0.00731	0.03063	0.0
	0.01168	24.25199	0.01803	-0.00221	-0.01859	0.01353	
	0.01169	25.07785	0.02108	0.01075	-0.01595	0.02232	0.0
	0.01237	24.93603	0.02337	0.01075 0.00755	-0.01395	0.02216	0.0
%RSD 9	9.55357	2.50766	29.04350	0.00755 114.17834	42.27887	38.59157	19.8
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe
IS ratioed		ies					
F	Reading	Reading	Reading	Reading 1.150	Reading	Reading	Rea
#1	0.000	0.009	-0.010	1.150	0.009		
#2	0.000	0.009	-0.011	1.144	0 009	0.230	0
#3	0.000	0.009	-0.011	1.147	0.009	0.230	
Mean	0.000	0.009	-0.011	1.147	0.009	0.231	Ċ
%RSD	63.798	0.707	5.559	0.225			15
Final conce		s					
	ppm 0.01780	ppm 0.03413	ppm 0.01055 0.00637	ppm	ppm -0.03624	ppm 4.65725	0.5
#1 (U.UI/80	0.03413	0.01055	79.73843	-0.03624	4.65725	0.5
	0.01722				-0.05428		0.4
	0.01968	0.03364	0.00535	79.53986	-0.05382	4.59757	0.4
Mean (0.01823	0.03388	0.00742	79.55334	-0.04812	4.61624	0.4
%RSD 7	7.06608	0.03364 0.03388 0.72817	37.05059	0.22468	21.37477	0.77038	14.1
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS ratioed							
		Reading	Reading	Reading	Reading	Reading	
	0.004	0.005	-0.008	0.000	0.000	0.036	
#2		0.003	-0.009	0.000	0.000	0.036	-0
#3	0.004			0.000	0.000	0.038	-0
Mean	0.004	0.004	-0.009				
%RSD	0.004 0.004 0.004	0.004	-0.009	0.000	0.000	0.037	
Final conce	0.004	0.004 0.004 25.130				0.037 2.916	-0 6
	0.004 0.004 0.004 1.693	0.004 0.004 25.130	-0.009	0.000	0.000	2.916	

Raw Data MA23347	page 182 of 235

Analysis Dilution IS ratioe #1 #2 #3 Mean %RSD Final con #1 #2 #3 Mean %RSD	commenced ratio: 1.1 K 7664 ed intensit. Reading 0.419 0.419 0.419 0.087 coentration. ppm 6.98717 6.98480 6.99609 6.98935 0.08512 Cu3247 ed intensit:	: 10/27/2009 Zn2062 ies Reading 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.0108 S Dpm 0.01178 0.01162 0.01108 0.01149 3.16843	12:36:16 AI 0000 Co2286 Reading 0.000 0.000 0.000 0.000 114.694 ppm 0.00147 0.00138	Cr2677 Reading 0.026 0.026 0.026 0.026 0.606	Mg2790 Reading 0.471 0.471 0.471 0.471 0.019	V 2924 Reading 0.000 0.000 0.000 0.000 21.681	Be31: Readir 0.00 0.00 0.00 2.8:
#1 #2 #3 Mean %RSD Final con #1 #2 #3 Mean %RSD	ed intensit: Reading 0.419 0.418 0.419 0.419 0.087 ncentration: ppm 6.98717 6.98480 6.99609 6.98935 0.08512 Cu3247	Reading 0.005 0.005 0.005 0.005 3.486 s ppm 0.01178 0.01162 0.01108 0.01149 3.16843	Reading 0.000 0.000 0.000 0.000 114.694	Reading 0.026 0.026 0.026 0.026 0.026 0.606	Reading 0.471 0.471 0.471 0.471 0.471 0.019	Reading 0.000 0.000 0.000 0.000 21.681	Readir 0.00 0.00 0.00 0.00 2.83
#1 #2 #3 Mean %RSD Final con #1 #2 #3 Mean %RSD	Reading 0.419 0.418 0.419 0.419 0.087 coentration: ppm 6.98717 6.98480 6.99609 6.98935 0.08512 Cu3247	Reading 0.005 0.005 0.005 0.005 3.486 s ppm 0.01178 0.01162 0.01108 0.01149 3.16843	0.000 0.000 0.000 0.000 114.694	0.026 0.026 0.026 0.026 0.026 0.606	0.471 0.471 0.471 0.471 0.019	0.000 0.000 0.000 0.000 21.681	0.00 0.00 0.00 0.00 2.83
#1 #2 #3 Mean %RSD Final con #1 #2 #3 Mean %RSD	0.419 0.419 0.419 0.087 ncentrations ppm 6.98717 6.98480 6.99609 6.98935 0.08512 Cu3247	0.005 0.005 0.005 0.005 3.486 s ppm 0.01178 0.01162 0.01162 0.01149 3.16843	0.000 0.000 0.000 0.000 114.694	0.026 0.026 0.026 0.026 0.026 0.606	0.471 0.471 0.471 0.471 0.019	0.000 0.000 0.000 0.000 21.681	0.00 0.00 0.00 0.00 2.83
#2 #3 Mean %RSD Final con #1 #2 #3 Mean %RSD	0.418 0.419 0.419 0.087 ncentrations ppm 6.98717 6.98480 6.99609 6.98935 0.08512 Cu3247	0.005 0.005 0.005 3.486 s ppm 0.01178 0.01162 0.01162 0.01108 0.01149 3.16843	0.000 0.000 0.000 114.694	0.026 0.026 0.026 0.606	0.471 0.471 0.471 0.019	0.000 0.000 0.000 21.681	0.00 0.00 0.00 2.83
Mean %RSD Final con #1 #2 #3 Mean %RSD	0.419 0.087 ncentration ppm 6.98717 6.98480 6.99609 6.98935 0.08512 Cu3247	ppm 0.01178 0.01162 0.01108 0.01149 3.16843	ppm	0.026 0.606	0.471 0.019	21.681 ppm	0.00 2.83
%RSD Final con #1 #2 #3 Mean %RSD	0.087 ncentration: ppm 6.98717 6.98480 6.99609 6.98935 0.08512 Cu3247	ppm 0.01178 0.01162 0.01108 0.01149 3.16843	ppm	0.606	0.019 ppm	21.681 ppm	2.83
#1 #2 #3 Mean %RSD	6.98717 6.98480 6.99609 6.98935 0.08512 Cu3247	0.01178 0.01162 0.01108 0.01149 3.16843		0 02720	ppm 13.43047	ppm	DI
#2 #3 Mean %RSD	6.98717 6.98480 6.99609 6.98935 0.08512 Cu3247	0.01178 0.01162 0.01108 0.01149 3.16843		0 02720	ppm 13.43047	ppm	n
#2 #3 Mean %RSD	6.98480 6.99609 6.98935 0.08512 Cu3247	0.01162 0.01108 0.01149 3.16843	0.00147 0.00138 0.00121	0.03755		-0.00032	-0.0000
#3 Mean %RSD IS ratioe	6.99609 6.98935 0.08512 Cu3247	0.01108 0.01149 3.16843	0.00121		13.43269	-0.00032	-0.0000
IS ratioe	Cu3247	0.01149 3.16843	0 00125	0.03784	13.42752	-0.00005	-0.000
IS ratioe	Cu3247	3.16843 N-3300	0.00133	0.03759	13.43023	-0.00014	-0.0000
#1	ed intensit		9.47506	0.62267		112.52117	40.2776
#1	d intensit		Pd3404	As1890	T11908	Sb2068	Cd226
	Reading	ies Reading	Reading -0.001 -0.001	Reading	Reading	Reading	Readin
	0.005	0.464	-0.001	Reading -0.001	-0.026	0.011	0.0
#2	0.005					0.009	0.0
#3 Mean	0.005	0.465	-0.001 -0.001	-0.001 -0.001	-0.027 -0.026	0.009	0.0
%RSD	1.074	0.143	22.172	41.473	2.166	10.771	15.10
Final con	centration						
#1	ppm 0.00445	ppm 70.19524	ppm 0.00169	ppm 0.00126	-0.00825	-0.00121	0.000
#2	0.00423	70.30610	0.00201	0.00052	-0.00811	-0.00605	0.000
#3	0.00423		0.00081			-0.00616	0.000
Mean %RSD	0.00430	70.40191 70.30108 0.14712	0.00151	0.00186 0.00121 55.55654	-0.00864	-0.00447 63.23669	0.000
*RSD							
			Ag3280			Si2881	
	ed intensit: Reading	ies Reading	Reading	Reading 8.645 8.653	Reading	Reading	Readi
#1	0.000	0.079	-0.012	8.645	0.012	0.816	0.0
#2 #3	0.000	0.079	-0.012 -0.012	8.653 8.654	0.012 0.012	0.817 0.816	0.0
#3 Mean	0.000	0.079	-0.012	8.651	0.012	0.816	0.0
%RSD	264.721	0.095	0.442	0.057	0.292	0.091	3.9
Final con	centration	8				_	
#1	0.00493	ppm 0.05807	0.00082	ppm 120.03528 120.14453	ppm 0.03610	ppm 3.74663	0.315
#2	0.00395	0.05818 0.05816 0.05814 0.09561	0.00090	120.14453	0.03422	3.75374	0.318
#3	0.00473	0.05816				3.75025	0.299
Mean %RSD	11.46145	0.05814	5.59359	120.11389 0.05714	0.03506 2.72731	3.75021 0.09478	0.311 3.351
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960
	d intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1 #2	0.005	0.009	-0.009 -0.009	0.000	0.000	0.038	-0.1
#3	0.005	0.008	-0.010	0.000	0.000	0.035	-0.1
Mean	0.005	0.008	-0.009	0.000	0.000	0.037	-0.10
%RSD	0.536	3.667	6.682	0.179	0.179	3.967	6.42
Final con	ncentration: ppm	s ppm	ppm	ppm	ppm	ppm	pi

Raw Data MA23347 page 184 of 235

							■ Zoom I	n₽
							Zoom O	ut
Printed:	10/27/2009 8:	12:55 AM	User: Accute	est				
#1	0.00768	0.00490	-0.00082	-0.00375	0.00517	0.01031	-0.00511	
#2	0.00776	0.00460	0.00105	-0.00764	0.00000	0.00919	-0.01838	
#3	0.00770	0.00436	-0.00148	-0.00637	0.00063	0.00613	-0.01039	
Mean	0.00771	0.00462	-0.00042	-0.00592	0.00193	0.00855	-0.01129	
%RSD	0.54847	5.83864	315.11227	33.52653	145.81453	25.30881	59.14492	
	2203/2	2203/1	INT STD					
IS rat	ioed intensit	ies						
	Reading	Reading	Reading					
#1	0.022	0.121	55997.000					
#2	0.021	0.099	56062.000					
#3	0.021	0.108	55865.000					
Mean	0.021	0.109	55974.667					
%RSD	4.029	10.278	0.179					
Final	concentration	ıs						
	ppm	ppm	intensity					
#1	0.01111	-0.03347	1.15					
#2	0.01027	-0.04348	-1.47					
#3	0.01007	-0.03924	2.06					
Mean %RSD	0.01048	-0.03873	0.58					
	5.25268	12.97787	315.11					

Raw Data MA23347 page 185 of 235

Raw Data MA23347 page 187 of 235

#2 0.60393 0.00245 0.00194 -0.00483 0.00193 0. #3 0.60315 0.00322 0.00153 -0.00194 0.00554 0. Mean 0.60409 0.00301 0.00212 -0.00395 0.00331 0.	▼Zoom Zoom 1.00679 -0.00620 1.00509 -0.00438 1.00709 0.00242 1.00633 -0.00272 1.004374 167.04750
#1 0.60518 0.00336 0.00290 -0.00597 0.00246 0. #2 0.60393 0.00245 0.00194 -0.00483 0.00193 0. #3 0.60315 0.00322 0.00153 -0.00194 0.00554 0. Mean 0.60409 0.00301 0.00212 -0.00395 0.00331 0. #RRSD 0.16933 16.23016 33.12952 44.19624 58.73441 17. Z2203/2 2203/1 INT STD IS ratioed intensities Reading Reading Reading Reading 1016 0.132 55910.000 #3 0.020 0.124 555778.000	1.00679 -0.00620 1.00509 -0.00438 1.00709 0.00242 1.00633 -0.00272
#1 0.60518 0.00336 0.00290 -0.00597 0.00246 0. #2 0.60393 0.00245 0.00194 -0.00483 0.00193 0. #3 0.60315 0.00322 0.00153 -0.00194 0.00554 0. Mean 0.60409 0.00301 0.00212 -0.00395 0.00331 0. #RSD 0.16933 16.23016 33.12952 44.19624 58.73441 17. Z2203/2 2203/1 INT STD IS ratioed intensities Reading Reading Reading Reading Reading #1 0.015 0.0132 55910.000 #1 0.013 0.132 55910.000 #2 0.019 0.126 55578.000	.00509 -0.00438 .00709 0.00242 .00633 -0.00272
IS ratioed intensities #1 0.016 0.132 55910.000 #2 0.019 0.126 55962.000 #3 0.020 0.142 55778.000	
Reading Reading Reading	
Reading Reading Reading #1 0.016 0.132 55910.000 #2 0.019 0.126 55862.000 #3 0.020 0.142 55778.000	
#1 0.016 0.132 55910.000 #2 0.019 0.126 55862.000 #3 0.020 0.142 55778.000	
#2 0.019 0.126 55862.000 #3 0.020 0.142 55778.000	
#3 0.020 0.142 55778.000	
%RSD 11.158 6.190 0.120	
Final concentrations	
ppm ppm intensity	
#1 0.00570 -0.02661 -4.05	
#2 0.00753 -0.02955 -2.71	
#3 0.00821 -0.02223 -2.14	
Mean 0.00714 -0.02613 -2.97	
%RSD 18.19166 14.08997 33.13	

Method SampleI Analysi Dilutio	: EPA3 d1 : ja3020: s commenced n ratio : 1	1-2 : 10/27/2009 .00000 to 1.0	File : it102 SampleId2 0 12:42:24 AM 00000	609ml : :	Printed	: 10/27/2009 [SAMPLE]	8:12:55
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be:
IS rati	oed intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	1.943	0.002	0.000	0.021	0.416	0.000	0
#2	1.941	0.002	0.000	0.021	0.415	0.000	U
#3 Mann	1.936	0.001	0.000	0.021	0.415	0.000	U
%RSD	0.195	Reading 0.002 0.002 0.001 0.002 12.563	60.103	0.593	0.196	26.640	3
m1							
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	32.44255	0.00470	0.00130	0.03071	11.86141	0.00200	-0.0
#2	32.42118	0.00409	0.00072	0.03034	11.82207	0.00136	-0.0
#3	32.32448	0.00392	0.00089	0.03057	11.82046	0.00119	-0.00
Mean	32.39607	0.00424	0.00097	0.03054	11.83465	0.00152	-0.0
%RSD		ppm 0.00470 0.00409 0.00392 0.00424 9.67165					
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd:
IS rati	oed_intensi	ties					_
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.005	1.852	-0.001	0.000	-0.017	0.011	U
#2	0.005	1.851	-0.001	-0.002	-0.019	0.011	U
#3	0.005	1.040	-0.001	0.000	-0.017	0.011	
%RSD	1.591	Reading 1.852 1.851 1.848 1.850 0.111	13.477	109.664	5.512	3.109	48
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.00380	286.30601	0.00189	0.00202	0.00401	0.00038	0.0
#2	0.00357	286.20517	0.00133	0.00031	0.00141	-0.00093	0.0
#3	0.00346	285.70674	0.00117	0.00237	0.00363	-0.00142	0.0
Mean	0.00361	0 11216	0.00146	70.00157	0.00302	-0.00066	70.0
*KSD	4.07047	ppm 286.30601 286.20517 285.70674 286.07264 0.11216	23.91033	70.20077	40.55407	140.99704	70.1
		Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe
IS rati	oed_intensi	ties					_
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.000	0.123	-0.012	7.106	0.010	0.804	U
#2	-0.001	0.123	-0.012	7.059	0.010	0.802	U
#3 Mann	0.000	0.123	-0.012	7.071	0.010	0.802	U
%RSD	127.860	Reading 0.123 0.123 0.123 0.123 0.123 0.129	1.153	0.342	0.590	0.161	0
Final c	oncentration	ns					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.00419	0.09099	0.00057	98.65241	-0.00825	3.69052	3.1
#2	0.00343	0.09101	0.00046	98.00661	-0.00989	3.68135	3.1
#3	0.00478	0.09080	0.00031	98.16571	-0.01139	3.67863	3.1
Mean	0.00413	0.09093	0.00045	98.27491	-0.00984	3.68350	3.1
*RSD	16.28260	ppm 0.09099 0.09101 0.09080 0.09093 0.12910	28.35423	0.34237	15.99267	0.16915	0.5
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS rati	oed intensi	ties	Dandin.	D4:	D2:	D4:	D
4.7	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.361	0.007	-0.008	0.000	0.000	0.034	-0
#2	0.360	0.006	-0.008	0.000	0.000	0.033	-0
#3 Moan	0.360	0.007	-0.008	0.000	0.000	0.035	-0
vac or r	0.169	8.583	4.107	0.120	0.120	Reading 0.034 0.033 0.035 0.034 2.152	4
%RSD							
		ns ppm					

Raw Data MAZ334/ Dade 100 Of Z35	Raw	Data MA23347	page 186 of 235
----------------------------------	-----	--------------	-----------------

							◀ Zo
Analysis	EPA3 dl : ja30201 commenced ratio : 1.	: 10/27/200	File : it102 SampleId2 9 12:48:31 AM 00000	609m1 :	Printed	: 10/27/2009 [SAMPLE]	8:12:55 A
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS ratio	ed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1 #2	0.249	0.006	0.000	0.006	0.315	0.000	0.00
#3	0.248	0.006	0.000	0.006	0.313	0.000	0.00
Mean %RSD	0.248	0.006	0.000	0.006	0.314	0.000	0.002
%RSD	0.239	4.343	Reading 0.000 0.000 0.000 0.000 141.995	1.805	0.323	11.185	2.209
Final co	ncentration	s					
#1	ppm	ppm	ppm 0.00202 0.00153 0.00145 0.00166 18.63062	ppm	ppm	ppm	ppi
#1	4.21662	0.01348	0.00202	0.00813	8.96702	0.00050	0.0000
#3	4.20113	0.01249	0.00145	0.00792	8.92454	0.00024	-0.0000
Mean	4.20531	0.01291	0.00166	0.00795	8.93448	0.00038	0.0000
%RSD			18.63062	2.03878			250.4409
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS ratio							
	Reading	Reading	Reading 0.000 -0.001 0.000 0.000 33.650	Reading	Reading	Reading	Readin
#1	0.004	0.153	0.000	0.000	-0.021	0.011	0.00
#2 #3 Mean %RSD	0.004	0.152	-0.001	-0.001	-0.024	0.010	0.00
Mean	0.004	0.152	0.000	-0.002	-0.023	0.011	0.00
%RSD	2.473	0.372	33.650	76.538	9.188	4.160	18.82
Final co	ncentration	s					
41	ppm	ppm	ppm	ppm	mqq	ppm	ppi
#1	0.00279	21.79721	0.00303	0.00213	-0.00037	-0.00032	0.0003
#3	0.00283	21.64232	0.00266	0.00018	-0.00600	-0.00167	0.0003
Mean	0.00266	21.69487	0.00253	0.00102	-0.00391	-0.00109	0.0004
%RSD	9.33806	0.40859	ppm 0.00305 0.00188 0.00266 0.00253 23.49723	99.69204	78.78571	112.67581	25.1224
	Ni2316	Ba4934	Ag3280			Si2881	Fe271
	ed intensit	ies					
#1	Reading -0.001	Reading	Reading -0.011 -0.012 -0.011 -0.012 0.954	Reading 5.791	Reading	Reading 0.964 0.960 0.960 0.961 0.276	Readin
		0.045	-0.011	5.762	0.009	0.964	0.01
#3	-0.001 -0.001 -0.001 14.245	0.045	-0.012	5.762 5.772	0.009 0.009 0.009	0.960	0.01
Mean	-0.001	0.045	-0.012	5.772	0.009	0.961	0.01
%RSD	14.245	0.230	0.954	0.290	1.140	0.276	1.14
Final co	ncentration	s					
#1	ppm 0.00285	0.03294	0.00114	ppm 1080.3980	-0.02490	ppm 4.46457	0.6483
#2	0.00231	0.03296	ppm 0.00114 0.00094	79.99037	-0.03023	ppm 4.46457 4.44241	0.6356
#3	0.00250	0.03282	0.00106	80.00135	-0.02914	4.44239	0.6458
Mean %RSD	0.00256	0.03291	0.00114 0.00094 0.00106 0.00105 9.46942	80.12991	-0.02809	4.44979	0.6432
*RSD							
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS ratio	ed intensit	ies	D . 11	D 11	D	D 111	n
#1	Reading 0.017	Reading 0.004	Reading	Reading	Reading	Reading	Reading -0.10
#2	0.017	0.004	-0.010	0.000	0.000	0.032	-0.10
#3	0.017	0.003 0.004	-0.010	0.000	0.000	0.030 0.032 0.031	-0.10
Mean %RSD	0.017	0.004 16.574	Reading -0.009 -0.010 -0.010 -0.010 2.296	0.000	0.000	0.031 4.427	-0.10 6.49
			2.296	5.021	0.044	4.42/	0.49
Final co	oncentration ppm		ppm	ppm	ppm	ppm	ppi
	PPM	PPm	PPIII	PPm	PPIII	Ppm	PP

Raw Data MA23347 page 188 of 235

Zom O (10/27/2009 8:12:55 MM User: Accutest 0.0258 -0.0024 0.0255 -0.00582 0.02785 0.00097 -0.00082 -0.00588 -0.00024 0.02753 0.00014 -0.00143 -0.01004 -0.00683 -0.00112 -0.01823 0.02755 -0.00006 -0.00174 -0.00143 -0.01004 -0.00683 -0.00112 -0.01823 0.02755 -0.00006 -0.00174 -0.00303 -0.00120 -0.00221 -0.00801 0.0275 0.0021 -0.00801 0.0275 0.0021 -0.00801 0.0275 0.0021 -0.00801 0.0275 0.0021 -0.00801 0.0275 0.00221 -0.00801 0.0275 0.00221 -0.00801 0.0275 0.00221 -0.00801 0.0275 0.00221 -0.00801 0.
0.02785 0.00097 -0.00082 -0.00508 -0.00024 0.00255 -0.0058
0.02753
0.02755 -0.00006 -0.00174 -0.00303 -0.00120 0.00221 -0.00801
0.02764 0.00035 -0.00133 -0.00605 -0.00275 0.00121 -0.01069
0.64891 154.60593 35.38378 59.57398 129.13539 167.69279 61.96973 2203/2 2203/2 2203/2 1NT STD ioed intensities Reading Reading 0.021 0.127 57067.000
2203/2 2203/1 INT STD .ioed intensities Reading Reading Reading 0.021 0.127 57067.000
ioed intensities Reading Readi
Reading Reading Reading 0.021 0.127 57067.000
0.021 0.127 57067.000
0.015 0.111 57116.000
0.025 0.129 57083.000
0.020 0.122 57088.667
25.090 8.283 0.044
concentrations
ppm ppm intensity
0.00739 -0.03002 1.14
0.00350 -0.03712 2.00
0.00987 -0.02884 2.43 0.00692 -0.03199 1.86
0.00692 -0.03199 1.86 46.43753 14.00475 35.38
40.437 14.00473 33.30

Raw Data MA23347 page 189 of 235

Raw Data MA23347 page 191 of 235

							⋖ Zoom
							Zoom (
Printed	10/27/2009 8	R:12:55 AM	User: Accute	est			
#1	0.45914		0.00068	-0.00803	0.00108	0.00326	-0.00329
#2	0.45807		0.00068	-0.01084	0.00208	0.00322	-0.00020
#3	0.45487	0.00091	-0.00293	-0.00526	0.00744	0.01183	-0.00134
Mear	0.45736	0.00144	-0.00052	-0.00804	0.00353	0.00610	-0.00161
%RSI	0.48532	34.01798	398.23640	34.68740	96.88502	81.28074	97.39047
	2203/2	2203/1	INT STD				
IS ra	tioed intensi	ties					
	Reading	Reading	Reading				
#1	0.024	0.130	55284.000				
#2	0.017	0.131	55877.000				
#3	0.031	0.127					
Mear		0.129					
%RSI	29.419	1.476	0.600				
Final	concentratio	ons					
	ppm	ppm	intensity				
#1	0.00859	-0.04128	-0.95				
#2	0.00406	-0.04063	-0.96				
#3	0.01313	-0.04205	4.10				
Mear		-0.04132	0.73				
%RSI	52.81701	1.71862	398.24				

Analysi	: EPA3 [dl : ja30201 is commenced on ratio : 1.	: 10/27/200	9 12:54:39 AM	609ml ::	Printed	: 10/27/2009 [SAMPLE]	8:12:5
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be
IS rati	loed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	1.563	0.003	0.000	0.062	0.656	0.000	0
#3	1.559	0.003	0.000	0.061	0.650	0.000	0
Mean	1.560	0.003	0.000	0.061	0.653	0.000	ō
%RSD	Reading 1.563 1.560 1.559 1.560 0.133	9.387	157.314	1.019	0.512	34.987	4
#1	26.2008 26.15610 26.13137 26.16252 0.13302	ppm 0 00677	ppm n nnise	n nanan	10 70061	n noise	-0.0
#2	26.15610	0.00704	0.00133	0.09054	18.65565	0.00180	-0.0
#3	26.13137	0.00604	0.00030	0.08887	18.51740	0.00089	-0.0
Mean	26.16252	0.00661	0.00094	0.08994	18.62455	0.00141	-0.0
*RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd
IS rati	loed_intensit	ies					_
#1	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#12	0.005	1 702	-0.001	0.004	-0.019	0.011	0
#3	0.005	1.700	-0.002	0.004	-0.021	0.009	ä
Mean	0.005	1.703	-0.001	0.004	-0.020	0.010	0
*RSD	Reading 0.005 0.005 0.005 0.005 0.005 1.433	0.211	40.727	12.705	5.031	12.712	28
Final o	concentration ppm 0.00399 0.00399 0.00371 0.00390 4.13888	5	nnm	nnm.	nnm	nnm	
#1	0.00399	264.04608	0.00053	0.00818	0.00285	-0.00016	0.0
#2	0.00399	263.27501	0.00065	0.00940	0.00014	-0.00205	0.0
#3	0.00371	262.95741	-0.00261	0.00802	0.00054	-0.00692	0.0
%RSD	4.13888	0.21253	388.99913	8.86863	124.72055	114.51849	41.9
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe
TC wati	loed intensit	ion					
IU IAU	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.000	0.240	-0.013	4.078	0.012	1.618	0
#2	-0.001	0.239	-0.012	4.075	0.012	1.616	0
#3 Mean	-0.001	0.239	-0.014	4.037	0.011	1.606	0
%RSD	Reading 0.000 -0.001 -0.001 -0.001 55.474	0.113	4.712	0.561	1.354	0.413	ā
Final o	concentration ppm 0.00374 0.00296 0.00208 0.00293 28.35294	В					
#1	ppm 0.00274	ppm	_n nnnn	ppm ppm	ppm	ppm	2 0
#1	0.00374	0.17769	0.00003	56.55227	0.00459	7.62372	3.8
#3	0.00208	0.17764	-0.00090	56.02729	-0.00259	7.56279	3.7
Mean	0.00293	0.17778	-0.00028	56.39160	0.00208	7.59913	3.8
%RSD	28.35294	0.11227	197.19229	0.56078	194.34649	0.42268	0.7
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS rati	loed intensit	ies	D . 11	n 11	n	D	
#1	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#2	0.274	0.005	-0.009	0.000	0.000	0.031	-0
#3	0.271	0.004	-0.010	0.000	0.000	0.037	-0
Mean	0.273	0.005	-0.009	0.000	0.000	0.033	-0
	Reading 0.274 0.273 0.271 0.271 0.273 0.485		10.577	11.459	0.602	10.298	1
Final o	concentration	3	ppm				
	ppm	ppm	ppm	ppm	ppm	ppm	

	Raw	Data MA23347	page 190 of 235
--	-----	--------------	-----------------

Method :	EPA3 11 : ja30201- commenced :	6	File : it102	609ml	Printed :	10/27/2009 [SAMPLE]	8:12:55 #
Analysis Dilution	commenced : ratio : 1.0	10/27/2009 0000 to 1.0	1:00:48 AM 00000			, ,	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS ratio	ed_intensiti	es					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Readir 0.00
#2	0.291	0.026	0.000	1.060	0.028	0.002	0.00
#3	0.291	0.026	0.000	1.055	0.028	0.001	0.00
Mean %RSD	0.291	0.026	0.000	Reading 1.064 1.060 1.055 1.059 0.412	0.028	0.002	0.00
Final co	ncentrations	nnm	nom	nnm	nnm	nnm	pr
#1	4.98020	0.05743	0.00379	1.57491	0.79806	0.00893	-0.0000
#2	4.98987	0.05567	0.00277	1.56960	0.78832	0.00800	-0.000
#3	4.98761	0.05551	0.00242	1.56205	0.78508	0.00817	-0.0000
%RSD	4.98020 4.98987 4.98761 4.98589 0.10143	1.89682	23.87219	0.41185	0.79049	5.94257	53.4976
*****				As1890			

10 14010	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.009	0.474	0.000	-0.002	-0.027	0.022	0.00
#2	0.009	0.474	0.000	-0.005	-0.028	0.021	0.0
#3 Mean	0.009	0.474	0.000	-0.004	-0.028	0.020	0.0
%RSD	0.118	0.070	1024.998	Reading -0.002 -0.005 -0.004 -0.004 42.273	1.271	4.860	25.99
Final co							
#1	ppm 0.01310 0.01315 0.01312 0.01312 0.18672	ppm	ppm	ppm	ppm	ppm	PI
#2	0.01310	71.54110	0.00842	0.00930	-0.00884	0.02810	0.001
#3	0.01312	71.45938	0.00282	0.00711	-0.00939	0.02056	0.000
Mean	0.01312	71.48219	0.00418	0.00708	-0.00936	0.02315	0.000
%RSD							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe27
IS ratio	ed intensiti	es Danadina	D	D4:	D	D4:	D
#1	0.001	0.036	-0.010	1.305	0.081	0.616	0.0
#2	0.001	0.036	-0.011	1.296	0.081	0.614	0.0
#3	0.001	0.036	-0.011	1.294	0.081	0.613	0.0
Mean %RSD	29.569	0.036	5.801	Reading 1.305 1.296 1.294 1.298 0.444	0.055	0.268	1.6
	ppm	ppm	ppm	ppm	ppm	ppm	1.040
#1 #2	0.00701	0.02668	0.00262	18.10164	1.91971	2.80363	1.040
#3	0.00571	0.02674	0.00169	17.95109	1.91819	2.78783	1.009
Mean	0.00633	0.02673	0.00199	ppm 18.10164 17.97938 17.95109 18.01070 0.44426	1.91841	2.79515	1.021
%RSD			27.24859	0.44426	0.06320		1.635
	Mn2576	Mo2020	Sn1899		Se1960		
IS ratio	ed intensiti Reading	es Peading	Reading	Reading	Peading	Peadira	Readin
#1	0.010	0.005	-0.010	0.000	0.000	0.036	-0.1
#2	0.010	0.004	-0.011	0.000	0.000	0.033	-0.13
#3 Mean	0.010	0.003	Reading -0.010 -0.011 -0.012 -0.011	0.000	0.000	0.037	-0.1
Mean %RSD	0.010 1.022	0.004 22.361	10.397	0.000	0.000	5.099	-0.1 2.5
Final co	ncentrations				Reading 0.000 0.000 0.000 0.000 0.000		
	ppm	ppm	ppm	ppm	ppm	ppm	PI

Raw Data MA23347 page 192 of 235

							■ Zoom Ir	۱P
							Zoom O	Jt
Printed:	10/27/2009 8	:12:55 AM	User: Accute	est				
#1	0.01693	0.00125	-0.00140	0.00595	-0.00048	0.01068	-0.02278	
#2	0.01666	0.00086	-0.00464	0.00194	-0.00521	0.00632	-0.02826	
#3	0.01660	-0.00032	-0.00616	0.00444	-0.00052	0.01116	-0.02388	
Mean	0.01673	0.00060	-0.00406	0.00411	-0.00207	0.00939	-0.02497	
%RSD	1.04833	137.17054	59.83721	49.27384	131.57556	28.40463	11.60790	
	2203/2	2203/1	INT STD					
IS rat	ioed intensi	ties						
	Reading	Reading	Reading					
#1	0.041	0.131	54447.000					
#2	0.036	0.118	54432.000					
#3	0.036	0.134	54510.000					
Mean	0.038	0.128	54463.000					
%RSD	7.348	6.395	0.076					
Final	concentration	ns						
	mqq	mqq	intensity					
#1	0.01658	-0.01529	1.95					
#2	0.01335	-0.02088	6.47					
#3	0.01368	-0.01406	8.60					
Mean	0.01454	-0.01674	5.68					
%RSD	12.19944	21.70905	59.84					

Raw Data MA23347 page 193 of 235

Raw Data MA23347 page 195 of 235

							∢ Zoom
							Zoom C
Drinted:	10/27/2009 8	:12:56 AM	User: Accute	art			
#1	0.38675	-0.00223	-0.00983	-0.01154	0.00387	0.01793	-0.02424
#2	0.38794		-0.01140	-0.01261		0.01163	-0.01327
#3	0.38961			-0.01572		0.01257	
Mean		-0.00205		-0.01329		0.01404	-0.02154
%RSD		33.41542	28.19094	16.33291	113.18725	24.19120	33.91372
	2203/2	2203/1	INT STD				
IS ra	tioed intensi	ties					
	Reading	Reading	Reading				
#1	0.039	0.117	52396.000				
#2	0.031	0.134	52335.000				
#3	0.031	0.112	52519.000				
Mean	0.034	0.121	52416.667				
%RSD	13.829	9.389	0.179				
Final	concentratio	ns					
	mqq	ppm	intensity				
#1	0.02030	-0.07522	13.74				
#2	0.01504	-0.06792	15.93				
#3	0.01528	-0.07772	8.86				
Mean		-0.07362	12.84				
%RSD	17.59200	6.92012	28.19				

Method SampleI Analysi Dilutio	: EPA3 d1 : ja3020 s commenced on ratio : 1	1-7 : 10/27/200 .00000 to 1.	File : it10 SampleId 9 1:06:56 AM 00000	2609ml 2 :	Printed	: 10/27/2009 [SAMPLE]	8:12:56
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3
IS rati	oed intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	2.285	0.005	0.000	0.008	0.662	-0.001	0.
#2	2.293	0.005	0.000	0.008	0.664	-0.001	0.
Mean	2.201	0.006	0.000	0.009	0.665	-0.001	0.
%RSD	0.259	8.252	49.967	Reading 0.008 0.008 0.009 0.008 4.579	0.392	6.510	3.
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	38.32380	0.01082	-0.00051	0.01081	18.88353	-0.00100	-0.00
#2	38 25893	0.01033	0.00005	0.01040	19 02718	-0.00101	0.00
Mean	38.34524	0.01104	-0.00018	0.01094	18.94421	-0.00076	-0.00
%RSD				ppm 0.01081 0.01046 0.01154 0.01094 5.07293			338.91
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2
IS rati	oed intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.005	1.217	-0.001	0.013	-0.023	0.008	0.
#2	0.005	1 221	-0.001	0.014	-0.022	0.008	0.
Mean	0.005	1.220	-0.001	0.014	-0.022	0.009	0.
%RSD	2.916	0.204	43.908	Reading 0.013 0.014 0.016 0.014 9.356	6.999	15.756	21.
Final c	concentration	ns					
#1	n nnase	ppm ppm	_n nn227	n n1960	_n n1nge	_n nnear	0.00
#1	0.00320	188 74669	-0.00237	0.01300	-0.01030	-0.00032	0.00
#3	0.00369	188.56461	0.00137	0.02335	-0.00672	-0.00121	0.00
Mean	0.00335	188.43737	-0.00116	0.02146	-0.00903	-0.00559	0.00
%RSD	9.39365	0.20637	188.73069	ppm 0.01960 0.02144 0.02335 0.02146 8.72131	23.81862	69.50999	38.00
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2
IS rati	oed intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	-0.001	0.038	-0.013	7.720	0.010	2.665	0.
#2	-0.001	0.038	-0.013	7.776	0.010	2.676	n.
Mean	-0.001	0.038	-0.012	7.742	0.010	2.671	0.
%RSD	5.374	0.236	4.178	Reading 7.720 7.731 7.776 7.742 0.384	0.428	0.197	0.
Final c	concentration	ns					
#1	n nnaen	n n2789	_n nnnns	107 16782	_n nesna	12 68072	20.39
#2	0.00352	0.02798	0.00003	107.32590	-0.06601	12.71237	20.33
#3	0.00366	0.02802	0.00077	107.94839	-0.06391	12.73105	20.54
Mean	0.00359	0.02796	0.00024	107.48070	-0.06500	12.70805	20.44
%RSD				ppm 107.16782 107.32590 107.94839 107.48070 0.38395			
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	196
IS rati	oed intensi	ties	n	D . 11	n . 11	D	
#1	keading	keading	keading	keading	Reading	keading	kead
#1	0.231	0.001	-0.013	0.000	0.000	0.035	-0.
#3	0.232	0.002	-0.012	0.000	0.000	0.031	-0.
Mean	0.232	0.001	-0.013	0.000	0.000	0.033	-0.
				Reading 0.000 0.000 0.000 0.000 0.179			
Final c	concentration	ns				ppm	

	Raw	Data MA23347	page 194 of 235
--	-----	--------------	-----------------

							Zoo
							200
Method SampleI	: EPA3 dl : CCV		File : it102 SampleId2 9 1:13:05 AM	609ml	Printed	: 10/27/2009 [FLEXQC]	8:12:56 AM
Analysi: Dilutio	s commenced n ratio : 1.	: 10/27/2009 00000 to 1.0	9 1:13:05 AM 00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	oed_intensit	ies					
	Reading	Reading	Reading 0.453 0.452 0.450 0.450	Reading	Reading	Reading	Reading
#1 #2	2.295	1.084	0.453	1.414	1.51/	0.417	4.506
#3	2.297	1.077	0.452	1.407	1.511	0.416	4.484 4.460 4.484
Mean	2.296	1.077	0.452	1.407	1.511	0.416	4.484
%RSD	2.296 2.296 0.049	0.631	0.450 0.452 0.321	0.440	0.319	0.342	0.514
Final c	oncentration	ıs					
4.7	ppm	ppm	ppm	ppm	ppm	ppm	ppm
# 2	30.52444	2.1/8/8	2.11512	2.09402	43.25195	2.10671	2.15826
#3	38.54225	2.15144	2.10244	2.07566	42.97962	2.10034	2.13618
Mean	38.54255	2.16494	2.11014	2.08481	43.10537	2.09979	2.14740
%RSD	0.04739	0.63161	ppm 2.11512 2.11284 2.10244 2.11014 0.32034	0.44045	0.31865	0.34316	0.51431
	Cu3247						
IS rati	oed intensit	ies					
	Reading	Reading	Reading 0.431 0.430	Reading	Reading	Reading	Reading
#1	0.844 0.844 0.841	0.272	0.431	1.464	1.384	0.788	8.461
#2	0.844	0.271	0.430	1.461	1.383	0.787	8.416
#3	0.841	0.271	0.429		1.382	0.780 0.785	8.342
%RSD	0.843	0.271 0.209	0.430	0.284	0.085	0.554	0.714
Final c	oncentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.93008	41.38535	1.92354	2.06626	2.01989	2.15259	2.23271
#2	1.93018	41.23344	1.92071	2.05164	2.01856	2.15142	2.22078
Mean	1 02016	41.22320	1.91300	2.03400	2.01034	2.13120	2.20134
%RSD	0.15048	0.21840	ppm 1.92354 1.92071 1.91560 1.91995 0.20966	0.28499	0.08379	0.55891	0.71377
	Ni2316						
IS rati	oed intensit	ies					
	Reading	Reading	Reading 0.269	Reading 3.145	Reading	Reading	Reading
#1	0.968	2.570			1.473	1.188	0.751
#2 #3	0.966			3.134	1.475	1.187	0.747
#3 Mean	0.964	2.573 2.572	0.268	3.133	1.473	1.182	0.744
%RSD	0.964 0.966 0.208	0.073	0.126	3.121 3.133 0.385	1.471 1.473 0.129	0.280	0.417
Final c	oncentration						
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	2.14336	1.91274	0.25416	43.48506	39.47687	5.51828	42.19267
#2 #3	2.139/7	1.91540	0.253/5	43.33511	39.53388	5.51135	41.98817
#3 Mean	2.13449	1.914//	0.25357	43.15122	39.43122	5.48/91	41.84266
%RSD	0.20853	0.07264	ppm 0.25416 0.25375 0.25357 0.25383 0.12098	0.38596	0.13027	0.28905	0.41858
			Sn1899				
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	1.209	2.279	0.990	0.000	0.000	1.468	2.062
#2 #3	1.206	2.2/7	0.988	0.000	0.000	1.463	2.066
#3 Mean	1.201	2.275	0.986	0.000	0.000	1.470	2.049
%RSD	0.368	0.213	Reading 0.990 0.988 0.981 0.986 0.449	0.218	0.218	0.484	0.423
Final c	oncentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	ppm

Raw Data MA23347 page 196 of 235

Zoom O
11 2.02848 2.02446 2.12013 2.22566 2.12839 2.15224 2.08057 12 2.02343 2.02259 2.11490 2.20740 2.12501 2.16522 2.08457 132 2.01383 2.01622 2.10188 2.22279 2.13238 2.16568 2.06846 132 2.0191 2.02109 2.11231 2.21289 2.13289 2.15388 2.07790 150 0.36786 0.21377 0.44464 0.44255 0.19530 0.46258 0.40451 12 203/2 2203/1 INT STD **Tational intensities** 11 3.551 4.965 57816.000 12 3.505 4.974 57613.000 13 3.549 4.951 57585.000 13 3.549 4.951 57585.000 13 3.559 4.963 57671.333 150 0.733 0.230 0.219 141 concentrations**
2
32 2.01383 2.01622 2.10188 2.22279 2.13328 2.16568 2.06846 2.02191 2.02109 2.11231 2.21862 2.12889 2.15438 2.07790 ESD 0.36786 0.21377 0.44484 0.44255 0.19530 0.48258 0.40451 2203/2 2203/1 INT STD ratioed intensities Reading Reading Reading Reading 8 4.965 57816.000 12 3.551 4.967 57816.000 13 3.552 4.967 57613.000 13 3.554 4.963 57671.333 ESD 0.733 0.230 0.219
ham 2.02191 2.02109 2.11231 2.21862 2.12889 2.15438 2.07790 155D 0.36786 0.21377 0.44484 0.44255 0.19530 0.48258 0.40451 2203/2 2203/1 INT STD ratioed intensities Reading Reading Reading Reading 8.11 3.551 4.965 57816.000 123 3.505 4.974 57613.000 133 3.549 4.951 57585.000 133 3.553 4.963 57671.333 130 0.733 0.230 0.219 134 1 concentrations
ISD 0.36786 0.21377 0.44484 0.44255 0.19530 0.48258 0.40451 2203/2 2203/1 INT STD ratioed intensities Reading Reading Reading Reading 1 4.965 57815.000 12 3.550 4.961 57815.000 13 3.59 4.961 57615.000 13 3.59 4.961 57615.000 13 3.59 4.963 57671.333 12 3.73 0.230 0.219
2203/2 2203/1 INT STD ratioed intensities Reading 11 3.551 4.965 57816.000 12 3.505 4.974 57613.000 13 3.549 4.951 57585.000 13 3.534 4.963 57671.333 150 0.733 0.230 0.219
ratioed intensities Reading Reading 11 3.551 4.965 57816.000 12 3.505 4.974 57613.000 13 3.494 4.951 57585.000 1an 3.535 4.963 57671.333 1sp 0.733 0.230 0.219 and concentrations
Reading Reading Reading 11 3.551 4.965 57816.000 12 3.505 4.974 57613.000 13 3.549 4.951 57585.000 13 3.535 4.963 57671.333 1250 0.733 0.230 0.219 14a1 concentrations
11 3.551 4.965 57816.000 12 3.505 4.974 57613.000 13 3.549 4.951 57585.000 3.555 4.963 57671.333 50 0.733 0.230 0.219 ala concentrations
12 3.505 4.974 57613.000 13 3.549 4.951 57585.000 13 3.549 4.961 57585.000 13 3.535 4.963 57671.333 1550 0.733 0.230 0.219 14 10 10 10 10 10 10 10 10 10 10 10 10 10
33 3.549 4.961 57585.000 3.535 4.963 57671.333 SSD 0.733 0.230 0.219 aal concentrations
nan 3.535 4.963 57671.333 SSD 0.733 0.230 0.219 mal concentrations
usD 0.733 0.230 0.219
al concentrations
ppm ppm intensity
1 2.27278 2.13142 -2961.41
2 2.24340 2.13540 -2954.11
3 2.27152 2.12534 -2935.93
ean 2.26257 2.13072 -2950.48
SD 0.73403 0.23777 0.44

Raw Data MA23347 page 197 of 235

Raw Data MA23347 page 199 of 235

◀ Zoom In ▶							
Zoom Out							
1025 0.00093 0827 -0.00912 0808 -0.00384	0.00571 0.01025 0.00827 0.00808 28.20354	0.00270 0.00715 0.00247 0.00411 64.15934	-0.00073 0.00274 -0.00254	-0.00523 -0.00308	3:12:56 AM 0.00050 0.00095 -0.00085 0.00020 466.15151	10/27/2009 8 0.00042 0.00053 0.00045 0.00047 12.61486	Printed: #1 #2 #3 Mean %RSD
				INT STD	2203/1	2203/2	
				Reading 57813.000 57891.000 57533.000 57745.667 0.326	Reading 0.132 0.144 0.129 0.135 5.840	Reading 0.015 0.019 0.012 0.012 0.016 22.847	#1 #2 #3 Mean %RSD
				intensity 5.35 0.24 7.30 4.30 84.85	-0.00139 0.00371 -0.00300 -0.00023	concentration ppm -0.00040 0.00225 -0.00230 -0.00015 1509.22833	Final #1 #2 #3 Mean %RSD

Method SampleId Analysi	dl : CCB		File : it102 SampleId2 9 1:19:25 AM	2 :	Printed	: 10/27/2009 [FLEXQC]	8:12:5
Dilutio	n ratio : 1.	00000 to 1.0	20000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Ве
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.068	0.001	0.000	0.002	0.001	0.000	0
#2	0.069	0.002	0.000	0.002	0.001	0.000	0
#3 Mean	0.069	0.001	0.000	0.002	0.001	0.000	0
%RSD	0.409	23.604	87.148	17.370	29.528	113.245	6
Final c	oncentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	1.21804	0.00437	0.00041	0.00120	0.00846	-0.00085	0.0
#2	1.22737	0.00551	0.00162	0.00212	0.01928	0.00019	0.0
#3	1.22435	0.00417	0.00024	0.00157	0.00658	-0.00068	0.0
Mean	1.22325	0.00468	0.00075	0.00163	0.01144	-0.00044	0.0
%RSD	0.38926	15.41901	99.83207	28.30063	59.91377	125.72525	40.0
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd:
IS ratio	oed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.004	0.018	-0.001	-0.002	-0.024	0.008	0
#2	0.004	0.020	0.000	-0.001	-0.021	0.010	0
#3 Mean	0.004	0.018 0.019	-0.001 -0.001	-0.001 -0.001	-0.026 -0.024	0.008	0
%RSD	4.406	5.479	54.289	25.949	10.941	15.027	28
Final c	oncentration	18					
	ppm	mqq	ppm	mqq	ppm	mqq	
#1	0.00152	0.78591	0.00104	-0.00045	-0.00365	-0.00737	0.0
#2	0.00198	1.07580	0.00335	0.00043	-0.00020	-0.00223	0.0
#3	0.00120	0.80195	0.00009	0.00037	-0.00766	-0.00933	0.0
Mean	0.00157	0.88789	0.00149	0.00012	-0.00384	-0.00631	0.0
%RSD	24.99740	18.35108	112.15306	418.85108	97.38583	58.15091	41.2
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe
IS ratio	oed intensit						
	Reading		Reading	Reading	Reading	Reading	Rea
#1	-0.001	0.000	-0.012	0.004	0.009	0.032	0
#2	0.000	0.001	-0.011	0.004	0.009	0.033	0
#3	-0.001	0.001	-0.013	0.004	0.009	0.032	0
Mean	-0.001	0.001	-0.012	0.004	0.009	0.032	0
%RSD	58.115	24.711	6.703	2.177	0.533	2.477	82
Final c	oncentration ppm						
#1	0.00280	0.00016	0.00028	0.03781	-0.01774	-0.03565	-0.0
#2	0.00200	0.00010	0.00023	0.03701	-0.01774	-0.03300	0.0
#3	0.00161	0.00024	-0.00021	0.03688	-0.01662	-0.03730	-0.0
Mean	0.00253	0.00025	0.00043	0.03794	-0.01654	-0.03431	-0.0
%RSD	32.53576	43.30163	168.75347	2.97776	7.51589	11.14902	312.1
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	19
IS ratio	oed intensit						
	Reading	Reading	Reading	Reading	Reading	Reading	Rea
#1	0.001	0.004	-0.011	0.000	0.000	0.033	-0
	0.001	0.005	-0.009	0.000	0.000	0.036	-0
#2	0.001	0.003	-0.011	0.000	0.000	0.035	-0
#2				0.000	0.000	0.035	-0
#2 #3 Mean	0.001	0.004	-0.010				
#2	0.001 6.629	28.572	11.915	0.327	0.327	4.470	
#2 #3 Mean %RSD		28.572					5

	Raw	Data MA23347	page 198 of 235
--	-----	--------------	-----------------

Method SampleI	: EPA3 dl : ja30201- s commenced :	9	File : it10: SampleId:	2609ml 2 :	Printed	: 10/27/2009 [SAMPLE]	8:12:56 A
Analysi Dilutio	s commenced : n ratio : 1.0	10/27/200 0000 to 1.	9 1:25:42 AM 00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	oed intensiti	es					
#1	Reading	Reading	Reading 0.000 0.000 0.000 0.000 299.993	Reading	Reading	Reading	Readir 0.00
#2	0.071	0.003	0.000	0.002	0.001	0.000	0.00
#3	0.069	0.002	0.000	0.001	0.001	0.000	0.00
Mean	0.070	0.002	0.000	0.002	0.001	0.000	0.00
%RSD	1.305	19.839	299.993	36.548	31.885	63.430	4.92
Final c	oncentrations						
#1	ndd r	ppm 0.00699	n nnase	n noin	0 0107E	n nnnan	n nnnr
#2	1.24948	0.00641	0.00154	0.00134	0.02002	0.00030	0.0000 0.0000 0.0000
#3	1.22873	0.00521	-0.00023	0.00037	0.00489	-0.00059	0.0000
Mean	ppm 1.25903 1.24948 1.22873 1.24575 1.24377	0.00620	0.00119	0.00139	0.01455	0.00034	0.0000
%RSD	1.24377	14.64400	107.72601	63.50636	57.66886	237.79518	137.4732
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed intensiti	es					
	Reading	Reading	Reading 0.000 0.000 -0.001 0.000 201.751	Reading	Reading	Reading	Readir 0.00
#1 #2	0.004	0.021	0.000	-0.001	-0.019	0.011	0.00
#3	0.004	0.020	-0.000	-0.002	-0.024	0.011	0.00
Mean	0.004	0.020	0.000	-0.003	-0.023	0.009	0.00
%RSD	7.753	8.424	201.751	75.662	17.950	27.356	19.59
Final c	oncentrations						
4.7	ppm 0.00272 0.00231 0.00130 0.00211 34.72114	ppm	ppm	ppm	ppm 0 00364	ppm	pi o ooo
#1	0.00272	1.21506	0.00573	-0.00014	-0.00364	-0.00031	0.000
#3	0.00130	0.71243	-0.00192	-0.00464	-0.00809	-0.01294	0.0004
Mean	0.00211	1.00247	0.00259	-0.00155	-0.00268	-0.00473	0.000
%RSD	34.72114	25.94730	154.42405	173.62469	220.48611	150.15667	29.1279
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe27:
IS rati	oed intensiti	es					
#1	Reading	Reading	Reading -0.011 -0.011 -0.013 -0.012 10.793	Reading	Reading	Reading	Readin
#1	-0.001	0.001	-0.011	0.005	0.009	0.041	0.00
#3	-0.002	0.001	-0.013	0.005	0.008	0.038	0.00
Mean %RSD	-0.001	0.001	-0.012	0.005	0.009	0.040	0.00
%RSD	-0.001 -0.001 -0.002 -0.001 55.978	8.133	10.793	1.885	2.785	3.311	46.2
Final c							
#1	0.00231	0.00033 Ppm	0.00159	0.05717	-0.01158	0.00548	0.047
#2	0.00243	0.00034	0.00156	0.05842	-0.01536	0.00361	0.0476
#3	0.00012	0.00027	-0.00038	0.05576	-0.02424	-0.00624	0.0128
Mean %RSD	0.00162	0.00031	0.00159 0.00156 -0.00038 0.00092 122.29497	0.05712	-0.01706 38 10717	0.00095	0.036
311,020	Mn2576	Mo2020	Sn1899 Reading -0.009 -0.009 -0.012 -0.010 15.616	Pb2203			
***		MOZ020	3111099	202203	261300	1960/2 Reading 0.037 0.032 0.036 0.035 7.342	1900/
	oed intensiti Reading	es Reading	Reading	Reading 0.000 0.000	Reading	Reading	Readir
#1	0.001	0.005	-0.009	0.000	0.000	0.037	-0.10
#2	0.001	0.004	-0.009	0.000	0.000	0.032	-0.10
#3 Mean	0.001	0.002	-0.012	0.000	0.000	0.032 0.036 0.035	-0.10
%RSD	9.111	46.628	-0.010 15.616	11.144	0.314	7.342	4.10
Final c	oncentrations						
		ppm	ppm	ppm	ppm	ppm	PI

Raw Data MA23347 page 200 of 235

	_						■ Zoom I
							Zoom O
rinted:	10/27/2009 8	8:12:56 AM	User: Accute	est			
#1	0.00099	0.00139	-0.00062	0.00075	0.00170	0.01131	-0.01752
#2	0.00090	0.00043	0.00012	-0.00059	-0.00132	0.00439	-0.01275
#3	0.00076	-0.00151	-0.00588	0.00440	0.00387	0.01049	-0.00939
Mean	0.00088	0.00010	-0.00213	0.00152	0.00141	0.00873	-0.01322
%RSD	13.45207	1453.28707	153.80742	169.64921	184.09456	43.27931	30.92314
	2203/2	2203/1	INT STD				
IS rat	tioed intensi	ties					
	Reading	Reading	Reading				
#1	0.027	0.109	57986.000				
#2	0.018	0.127	58339.000				
#3	0.027	0.134	58241.000				
Mean	0.024	0.123	58188.667				
%RSD	22.464	10.241	0.313				
Final	concentratio	ons					
	ppm	ppm	intensity				
#1	0.00706	-0.01186	0.86				
#2	0.00112	-0.00401	-0.16				
#3	0.00705	-0.00091	8.21				
Mean	0.00508	-0.00559	2.97				
%RSD	67.48522	100.90331	153.81				

Raw Data MA23347 page 201 of 235

Raw Data MA23347 page 203 of 235

-									
								⋖ Zoom	In
								Zoom (Out
	Daries and a	10/27/2009 8	0.10.EC 3M	User: Accute					
	#1	0.00486		-0.00571	-0.00371	0.00372	0.00281	0.00552	
	#2	0.00490			-0.00843		0.00189	-0.01257	
	#3	0.00508	0.00680		-0.00664		-0.00296	0.00044	
	Mean	0.00495	0.00604	-0.00470	-0.00626	-0.00035	0.00058	-0.00221	
	%RSD	2.34945	11.80694	19.47690	38.03775	1025.52028	532.90002	423.15890	
		2203/2	2203/1	INT STD					
	IS ra	tioed intensi	ities						
		Reading	Reading	Reading					
	#1	0.015	0.143	56705.000					
	#2	0.015	0.110	56990.000					
	#3	0.013	0.129	56953.000					
	Mean		0.127	56882.667					
	%RSD	8.680	12.845	0.272					
	Final	concentratio	ons						
		ppm	ppm	intensity					
	#1	0.00624		7.98 6.25					
	#2 #3	0.00645	-0.03817 -0.03005	5.48					
	#3 Mean		-0.03062	6.57					
	%RSD		23.82396	19.48					
	*KSD	12.30143	23.02390	19.40					

Method SampleId Analysis Dilution	: EPA3 dl : ja30201 s commenced n ratio : 1.	-lf : 10/27/200	File : it10 SampleId 09 1:31:50 AM 00000	2609ml 2 :	Printed	: 10/27/2009 [SAMPLE]	8:12:56
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be 3
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.421	0.008	0.000	0.023	0.476	0.000	0.
#2	0.419	0.008	0.000	0.024	0.477	0.000	0.
#3 Maan	0.422	0.008	0.000	0.024	0.481	0.000	0.
%RSD	0.315	2.677	57.085	Reading 0.023 0.024 0.024 0.024 2.051	0.569	24.772	4.
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	7.02283	0.01695	0.00057	0.03346	13.56433	-0.00040	-0.00
#2	0.99462	0.01765	0.00106	0.03461	13.58/01	-0.00014	-0.00
Mean	7.03007	0.01776	0.00115	0.03479	12 61005	-0.00005	-0.00
%RSD	0.31411	2.50695	33.89251	ppm 0.03346 0.03461 0.03479 0.03429 2.11089	0.56917	93.92880	99.65
		Na3302			T11908		
ıs rati	oed intensit	les Peading	Peading	Peadira	Peading	Peading	Pen
#1	0.004	0.471	-0.001	-0.004	-0.027	0.000	Vear.
#2	0.001	0.171	=0.001	=0.001	-0.027	0.009	0.
#3	0.004	0.473	-0.001	-0.003	-0.027	0.010	0.
Mean	0.004	0.471	-0.001	-0.004	-0.027	0.009	Ö.
%RSD	4.174	0.348	30.314	Reading -0.004 -0.003 -0.003 -0.004 13.619	1.572	3.354	7.
Final c	oncentration	s					
#1	0 00100	71 21172	_0 00167	-u uusus bbiii	_0 01027	-u uueav	0.00
#2	0.00130	71 15830	0.00137	-0.00308	-0.01027	-0.00304	0.00
#3	0.00222	71.62476	0.00104	-0.00176	-0.00977	-0.00411	0.00
Mean	0.00228	71.33160	-0.00009	-0.00228	-0.00971	-0.00495	0.00
%RSD	17.82331	0.35789	1482.01991	ppm -0.00308 -0.00198 -0.00176 -0.00228 31.03912	6.11610	17.53056	8.35
				Ca3179			
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	-0.001	0.074	-0.013	8.859	0.009	0.802	0
#2	-0.001	0.073	-0.012	8.905	0.009	0.800	0.
#3	-0.001	0.074	-0.012	8.958	0.009	0.807	0.
%RSD	29.023	0.074	4.361	Reading 8.859 8.905 8.958 8.907 0.557	0.768	0.803	35
Final c	oncentration	s		ppm 123.00529 123.64719 124.38242 123.67830 0.55717			
	ppm	ppm	ppm	ppm	ppm	ppm	
#1	0.00195	0.05428	-0.00023	123.00529	-0.04008	3.67925	0.0
#2	0.00321	0.05415	0.00043	123.64719	-0.03790	3.66987	0.0
#3	0.00263	0.05447	0.00072	124.38242	-0.03655	3.70356	0.0
Mean	0.00260	0.05430	160 00644	123.67830	-0.03818	3.68423	11.00
*RSD	24.24318	0.29/44	160.98644	0.55/1/	4.65/24	0.4/200	11.95
			Sn1899	Pb2203	Se1960	1960/2	196
IS ratio	oed intensit	ies	n	D	D	D 11	
	keading	keading	keading	keading	keading	keading	Read
#1	0.003	0.009	-0.012	0.000	0.000	0.033	-0.
#2	0.003	0.010	-0.011	0.000	0.000	0.033	-0.
#3 Mean	0.003	0.011	-0.011	0.000	0.000	0.029	-0
	2.248	8.115	3.815	Reading 0.000 0.000 0.000 0.000 5.423	7.690	6.624	9.
%RSD							
				ppm			

	Raw Data MA23347	page 202 of 235
--	------------------	-----------------

							◀ Zo
							200
Analvsi	s commenced	1-2f : 10/27/200 .00000 to 1.	File : it102 SampleId2 9 1:37:57 AM 00000	609ml	Printed :	10/27/2009 [SAMPLE]	8:12:56 AM
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	oed intensi	ties					
#1 #2 #3	Reading 1.953 1.956	Reading 0.002 0.002	Reading 0.000 0.000 0.000 0.000 49.751	Reading 0.004 0.004	Reading 0.387 0.390	Reading 0.000 0.000	Reading 0.002 0.002
Mean %RSD	1.954	0.002 12.737	0.000 49.751	0.004 6.268	0.389 0.378	0.000 91.640	0.002 2.429
Final c							
#1 #2 #2	ppm 32.61120 32.64739	0.00436 0.00496	ppm 0.00011 0.00095 0.00070 0.00059 72.87330	ppm 0.00421 0.00481	ppm 11.03721 11.09977	-0.00107 -0.00053	-0.00005 -0.00003
Mean %RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS rati	oed intensi	ties					
#1 #2 #3 Mean	Reading 0.004 0.004 0.004 0.004 2.499	Reading 1.893 1.896 1.895 1.895	Reading -0.002 -0.001 -0.001 -0.001 13.530	Reading -0.005 -0.003 -0.003 -0.003	Reading -0.028 -0.028 -0.027 -0.028	Reading 0.008 0.010 0.008 0.009	Reading 0.001 0.002 0.002 0.002
Final c	oncentration ppm	ns ppm	mag	mqq	mag	mqq	ngq
#1 #2 #3 Mean %RSD	0.00193 0.00233 0.00237 0.00221 10.88266	292.76356 293.25569 293.03846 293.01924 0.08417	ppm -0.00336 -0.00216 -0.00160 -0.00238 37.88454	-0.00398 -0.00212 -0.00104 -0.00238 62.54664	-0.00969 -0.01061 -0.00901 -0.00977 8.24427	-0.00783 -0.00279 -0.00762 -0.00608 46.87825	0.00025 0.00052 0.00050 0.00042 35.15154
	Ni2316		Aq3280	Ca3179	A13082	Si2881	Fe2714
TS rati	oed intensi	ties					
#1	Reading -0.001	Reading 0.118	Reading -0.014 -0.013 -0.013 -0.013 3.007		Reading 0.009 0.009 0.009 0.009	Reading 0.794 0.797 0.799 0.797	Reading 0.001 0.001 0.001 0.001
%RSD	60.788	0.094	3.007	0.407	1.143	0.298	9.361
Final c	concentration	ns _					_
#1 #2 #3 Mean %RSD	0.00238 0.00400 0.00345 0.00328 25.17475	0.08775 0.08790 0.08788 0.08784 0.09350	ppm -0.00091 -0.00037 -0.00022 -0.00050 71.75101	97.40968 97.93585 98.19069 97.84541 0.40706	-0.04396 -0.03903 -0.04355 -0.04218 6.47670	3.64164 3.65499 3.66442 3.65368 0.31326	0.11666 0.12474 0.13093 0.12411 5.76426
		Mo2020	Sn1899	Pb2203			
TS rati	oed intensi	ties					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#2 #3 Mean	0.342 0.344 0.344 0.343 0.344	0.003 0.004 0.004 0.004	Reading -0.012 -0.011 -0.011 -0.011 2.929	Reading 0.000 0.000 0.000 0.000 0.092	0.000 0.000 0.000	0.035 0.035 0.038 0.036	-0.097 -0.098 -0.093 -0.096
%RSD	0.344	15.726	2.929	0.092	7.446	5.217	2.609
Final o	concentration ppm	ns ppm	ppm	ppm	ppm	ppm	ррп

Raw Data MA23347 page 204 of 235

#2 0.57636 0.00120 -0.00489 -0.00292 (#3 0.57606 0.00096 -0.00479 -0.00479 (Mean 0.57507 0.00077 -0.00479 -0.00267 (RRSD 0.34402 71.52442 14.80853 98.91444 5' 2203/2 2203/1 INT STD IS ratioed intensities Reading Reading Reading Reading Reading Reading 1 0.019 0.121 55893.000	0.00368 0.00262 0.00765 0.00465 57.07172	0.00656 0.00532 0.01061 0.00750 36.88187	-0.00207 -0.00280 0.00173 -0.00105 232.78085
#1 0.57279 0.00015 -0.00545 -0.00518 #2 0.57636 0.00120 -0.00489 -0.00292 #3 0.57636 0.00120 -0.00489 -0.00292 #3 0.57606 0.00096 -0.00404 0.00009 #8RSD 0.34402 71.52442 14.80853 98.91444 5 2203/2 2203/1 INT STD IS ratioed intensities Reading Reading Reading Reading 1 0.019 0.121 55893.000	0.00262 0.00765 0.00465	0.00532 0.01061 0.00750	-0.00280 0.00173 -0.00105
#2 0.57636 0.00120 -0.00489 -0.00292 (#3 0.57666 0.00096 -0.00479 -0.00479 (Mean 0.57507 0.00077 -0.00479 -0.00267 (RRSD 0.34402 71.52442 14.80853 98.91444 5' 2203/2 2203/1 INT STD IS ratioed intensities Reading Reading Reading Reading Reading Reading 1 0.019 0.121 55893.000	0.00262 0.00765 0.00465	0.00532 0.01061 0.00750	-0.00280 0.00173 -0.00105
#3 0.57506 0.00096 -0.00404 0.00009 Mean 0.57507 0.00077 -0.00479 -0.00267 6 RRSD 0.34402 71.52442 14.80853 98.91444 5 2203/2 2203/1 INT STD IS ratioed intensities Reading Reading Reading Reading 8 Reading 1 0.019 0.121 55893.000	0.00765 0.00465	0.01061 0.00750	0.00173 -0.00105
Mean 0.57507 0.00077 -0.00479 -0.00267 (\$RSD 0.34402 71.52442 14.80853 98.91444 5' 2203/2 2203/1 INT STD IS ratioed intensities Reading Reading Reading Reading (\$1 0.019 0.121 55893.000	0.00465	0.00750	-0.00105
\$RSD 0.34402 71.52442 14.80853 98.91444 5' 2203/2 2203/1 INT STD IS ratioed intensities Reading Reading Reading 8.1 0.019 0.121 55893.000			
2203/2 2203/1 INT STD IS ratioed intensities Reading Reading Reading #1 0.019 0.121 55893.000	57.07172	36.88187	232.78085
IS ratioed intensities Reading Reading Reading #1 0.019 0.121 55893.000			
Reading Reading Reading #1 0.019 0.121 55893.000			
#1 0.019 0.121 55893.000			
#2 0.022 0.128 55966.000			
#3 0.027 0.135 55993.000			
Mean 0.023 0.128 55950.667			
%RSD 16.686 5.482 0.092			
Final concentrations			
ppm ppm intensity			
#1 0.00751 -0.03057 7.62			
#2 0.00939 -0.02754 6.83			
#3 0.01237 -0.02447 5.65			
Mean 0.00976 -0.02753 6.70			
%RSD 25.07205 11.08031 14.81			
%RSD 25.07205 11.08031 14.81			

Raw Data MA23347 page 205 of 235

Raw Data MA23347 page 207 of 235

							◀ Zoom II
							Zoom O
Printed:	10/27/2009 8	:12:57 AM	User: Accut	est			
#1	0.04116	0.00051	-0.00125	-0.00432	0.00289	0.01342	-0.01816
#2	0.04100			0.00159	0.00750	0.01377	
#3	0.04059			-0.00484	0.00101		
Mean	0.04092	-0.00015		-0.00252	0.00380	0.01168	
%RSD	0.71833	377.17062	47.21522	141.73644	87.95373	28.47545	55.15849
	2203/2	2203/1	INT STD				
IS ra	tioed intensi	ties					
	Reading	Reading	Reading				
#1	0.034	0.094	58544.000				
#2	0.039	0.119	58684.000				
#3	0.028	0.107	58536.000				
Mean	0.034	0.107	58588.000				
%RSD	16.151	11.522	0.142				
Final	concentratio	ns					
	ppm	ppm	intensity				
#1	0.01624	-0.04545	1.75				
#2	0.01955	-0.03431	2.79				
#3	0.01249	-0.03949	4.59				
Mean	0.01609	-0.03975	3.04				
%RSD	21.96219	14.01795	47.22				

							4
			m: 1	0.500 1	n		0.10.55
SampleId	dl : ja30201	-4f	SampleId:	2609ml 2 :	Printed	[SAMPLE]	8:12:5/
Dilutio	n ratio : 1.	000000 to 1.0	00000 AM				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3
IS ratio	oed intensit	ies	D	D	D	n	Desi
#1	Reading	Reading	n nnn	Reading	Reading	Reading	Reac 0
#2	0.267	0.007	0.000	0.002	0.318	0.000	0.
#3	0.266	0.006	0.000	0.002	0.317	0.000	0.
Mean %RSD	0.267	0.006	0.000	0.002	0.319	0.000	0.
%RSD	0.240	4.922	141.101	Reading 0.002 0.002 0.002 0.002 6.839	0.598	102.406	4.
Final c	oncentration	s					
#1	4 52569	0.01428	U UU333	0.00248	9 13031	0 00062	0.00
#2	4.51634	0.01322	0.00168	0.00207	9.06476	-0.00051	-0.00
#3	4.50433	0.01322	0.00136	0.00213	9.02243	-0.00051	-0.00
Mean	4.51545	0.01357	0.00179	0.00222	9.07250	-0.00013	-0.00
%RSD	0.23709	4.49276	27.25604	ppm 0.00248 0.00207 0.00213 0.00222 10.03564	0.59912	492.24031	110.48
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2
IS ratio	oed intensit	ies		D . 11	n . 11		
#1	Reading	Reading	Reading	Reading	Reading	Reading	Read
#2	0.004	0.153	=0.000	-0.001	-0.021	0.013	0.
#3	0.004	0.153	-0.001	-0.003	-0.022	0.012	0.
Mean	0.004	0.154	0.000	-0.001	-0.021	0.013	0.
%RSD	3.176	0.938	125.838	Reading 0.001 -0.001 -0.003 -0.001 165.613	2.634	7.324	32.
Final c	oncentration	s		ppm 0.00322 0.00097 -0.00209 0.00070 381.25180			
#1	0.00265	22.22567	0.00497	0.00322	-0.00112	0.00627	0.00
#2	0.00219	21.87282	0.00156	0.00097	-0.00015	0.00463	0.00
#3	0.00206	21.80664	0.00178	-0.00209	-0.00175	0.00129	0.00
Mean	0.00230	21.96838	0.00277	0.00070	-0.00100	0.00407	0.00
WASD	13.30233	Ba4934	3 2000	301.23100	A13082	Si2881	Fe2
			-				
IS ratio	oed intensit	ies Reading	Reading	Reading	Reading	Reading	Read
#1	0.000	0.041	-0.011	6.043	0.009	0.997	0.
#2	0.000	0.041	-0.012	6.000	0.009	0.992	0.
#3	0.000	0.041	-0.012	5.970	0.009	0.984	0.
%RSD	14.162	0.470	5.955	Reading 6.043 6.000 5.970 6.004 0.614	1.880	0.641	2.
Final c	oncentration	s					
	ppm	ppm	ppm	ppm	ppm	ppm	0.00
#1	0.00427	0.03049	0.001/2	63.90606 03.90606	-0.03206	4.62292	0.87
#3	0.00419	0.03037	0.00052	82.88920	-0.03943	4.56183	0.8
Mean	0.00423	0.03036	0.00104	83.36416	-0.03716	4.59385	0.85
%RSD	0.95369	0.47213	59.67111	PPM 83.90606 83.29722 82.88920 83.36416 0.61385	11.91162	0.66721	2.18
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	196
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Read
#1	0.025	0.004	-0.010	0.000	0.000	0.039	-0. -0.
#2	0.025	0.003	-0.010	0.000	0.000	0.040	-0.
#2 #3 Mean	0.025	0.003	-0.011	0.000	0.000	0.038	-0.
%RSD	0.712	21.056	4.820	Reading 0.000 0.000 0.000 0.000 0.142	0.142	5.918	6.
Final c	oncentration	s					
	maa	maa	mag	maa	mag	ppm	

	Raw Data MA23347	page 206 of 235
--	------------------	-----------------

Method Sample	l : EPA3 :Idl : ja3020	1-5f	File : it102 SampleId2	609ml	Printed	: 10/27/2009 [SAMPLE]	8:12:57 AM
MIIGITAS	sis commenced ion ratio : 1	· 10/2//200	9 1.5U.12 AM				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rat	ioed_intensi	ties					
#1	Reading	Reading	Reading 0.000 0.000 0.000 0.000 144.948	Reading	Reading	Reading	Reading
#2	1.631	0.001	0.000	0.002	0.643	0.000	0.001
#3	1.615	0.001	0.000	0.003	0.639	0.000	0.002
Mean	1.621	0.001	0.000	0.002	0.638	0.000	0.003
%RSD	0.550	27.014	144.948	16.054	0.783	34.713	4.413
Final	concentration	ns					
#1	ppm 27 22207	ppm 0.00387 0.00272	0 00072	n noses	ppm 18.31488 18.03278	0 00047	-0.00009 -0.00010
#2	27.09023	0.00272	-0.00052	0.00188	18.03278	-0.00034	-0.00003
#3	27.04601	0.00389	0.00156	0.00303	18.20960	0.00047	-0.00004
Mean	27.04601 27.15310 0.54817	0.00349	0.00059	0.00248	18.18575	0.00020	-0.00008
%RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS rat	ioed_intensi	ties					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#2	0.004	1.704	=0.001	=0.001	-0.021	0.014	0.001
#3	0.004	1.690	Reading -0.001 -0.002 -0.001 -0.001 42.051	0.002	-0.020	0.015	0.002
Mean	0.004	1.693	-0.001	0.000	-0.022	0.013	0.002
%RSD	5.006	0.567	42.051	258.082	10.199	16.262	47.552
Final	concentration	ns					
#1	ppm 0 00181	263 53708	0.00029 -0.00285 0.00079 -0.00059 334.26985	n nn295	n nnane	n nn786	0.00029
#2	0.00120	260.67983	-0.00285	0.00113	-0.00277	-0.00074	0.00012
#3	0.00209	261.33797	0.00079	0.00429	0.00321	0.01052	0.00052
Mean %RSD	0.00170	261.85163	-0.00059	0.00279	0.00084	0.00588	0.00031
*RSD							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2714
IS rat	ioed_intensi	ties					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#2	-0.000	0.213	-0.013	3.865	0.009	1.495	0.002
#3	0.000	0.213	-0.012	3.910	0.009	1.500	0.002
Mean	-0.001	0.214 0.495	Reading -0.013 -0.014 -0.012 -0.013 7.483	3.903	0.009	1.502	0.002
*RSD	-0.000 -0.001 0.000 -0.001 77.258	0.495	7.483	0.894	1.461	0.569	15.592
Final	concentration	ns prm	ppm	ppm	ppm	ppm	nnr
#1	0.00347	0.15963	-0.00019	54.59224	-0.06426	7.10901	0.23153
#2	0.00201	0.15843	-0.00111	53.64046	-0.06818	7.02885	0.20664
#3 Mean	0.00386	0.15815	0.00062	54.27294	-0.06134	7.05241	0.23578
%RSD	31.31709	0.15873	-0.00019 -0.00111 0.00062 -0.00023 380.92570	0.89425	5.31916	0.58330	7.00819
	Mn2576			Pb2203			
IS rat	ioed intensi	ties					
	Reading	Reading	Reading -0.008	Reading	Reading	Reading	Reading
#1	0.254 0.250	0.007	-0.008	0.000	0.000	0.029	-0.086
#2	0.250	0.005	-0.009	0.000	0.000	0.032	-0.094 -0.104
Mean	0.252	0.007	-0.009	0.000	0.000	0.031	
%RSD	0.747	0.005 0.008 0.007 23.318	10.419	0.303	Reading 0.000 0.000 0.000 0.000 0.303	4.302	
Final	concentration						
	ppm	ppm	ppm	ppm	ppm	ppm	ppn

Raw Data MA23347 page 208 of 235

							₹ Z00m	In P
							Zoom	Out
Printed:	10/27/2009 8	:12:57 AM	User: Accute	est				
#1	0.42617	0.00328	0.00314	-0.01085	0.00196	-0.00100	0.00786	
#2	0.41984	0.00124	-0.00063	-0.01200	0.00170	0.00276	-0.00043	
#3	0.42322	0.00383	0.00124		-0.00188	0.00183	-0.00929	
Mean		0.00278	0.00125	-0.01225	0.00059	0.00120	-0.00062	
%RSD	0.74811	48.95085	151.23647	12.64881	362.40945	163.70201	1385.38851	
	2203/2	2203/1	INT STD					
IS ra	tioed intensi							
	Reading	Reading	Reading					
#1	0.007	0.153	56006.000					
#2	0.012	0.131	56262.000					
#3	0.013	0.116	56328.000					
Mean	0.011	0.133	56198.667					
%RSD	27.311	13.867	0.303					
Final	concentratio	ns						
	ppm	ppm	intensity					
#1	-0.00228	-0.02798	-4.39					
#2	0.00063	-0.03724	0.89					
#3	0.00117	-0.04409	-1.73					
Mean %RSD	-0.00016 1154.98550	-0.03644 22.18261	-1.74 151.24					
*RSD	1154.98550	22.18261	151.24					

Raw Data MA23347 page 209 of 235

Raw Data MA23347 page 211 of 235

Raw Data I	MA23347	page 209 of	235				
							◀ Zoom Ir
							Zoom O
Drinted:	10/27/2009	0 · 1 2 · E7 NM	User: Accute	art			
#1	0.00641		0.00247	0.00152	0.00361	0.01002	-0.00919
#2	0.00635		0.00153	0.00303	0.00592	0.01002	0.00041
#3	0.00625		-0.00133	0.00303	0.00392	0.00513	0.00138
Mean			0.00072	0.00320	0.00388	0.00794	-0.00247
%RSD			311.62412	35.78500	28.22535	31.77139	236.98425
	2203/2	2203/1	INT STD				
IS ra	tioed intens	sities					
	Reading	Reading	Reading				
#1	0.031		58574.000				
#2	0.029		58830.000				
#3	0.027	0.144	58723.000				
Mean	0.029	0.135	58709.000				
%RSD	6.084	8.160	0.219				
Final	concentrati	ons					
	ngg	n ppm	intensity				
#1	0.01029		-3.44				
#2	0.00918	-0.00927	-2.14				
#3	0.00803	-0.00645	2.55				
Mean	0.00917	-0.01058	-1.01				
%RSD	12.34204	46.48246	311.62				

							- 4;
							Z
Method	: EPA3 Idl : ja30201		File : it102	609ml	Printed	10/27/2009	8:12:57
Sample:	[dl : ja30201	-6f	SampleId2	: :		[SAMPLE]	
Dilutio	on ratio : 1.	00000 to 1.	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be31
IS rat:	ioed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.285	0.007	0.000	0.038	0.024	0.002	0.0
#2	0.285	0.006	0.000	0.038	0.024	0.002	0.0
#3	0.284	0.006	0.000	0.037	0.024	0.002	0.0
Mean	0.285	0.006	0.000	0.038	0.024	0.002	0.0
%RSD	Reading 0.285 0.285 0.285 0.284 0.285	3.723	42.776	1.516	1.026	6.999	4.0
Final o	concentration ppm 4.85237 4.84653 4.83242 4.84377 0.21173	В					
	ppm	ppm	ppm	ppm	ppm	ppm	p.
#1	4.85237	0.01488	0.00091	0.05579	0.67739	0.00851	-0.000
#2	4.84653	0.01445	0.00059	0.05529	0.66906	0.00787	-0.000
#3	4.83242	0.01392	0.00003	0.05414	0.66350	0.00728	-0.000
Mean	4.843//	0.01442	0.00051	0.05507	0.66998	0.00789	-0.000
*RSD	0.211/3	3.32519	86.56805	1.5446/	1.04380	7.76890	57.909
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd22
IS rat:	ioed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.006	0.437	-0.001	0.002	-0.023	0.020	0.0
#2	0.006	0.436	-0.001	0.000	-0.026	0.019	0.0
#3	0.006	0.434	-0.001	-0.001	-0.024	0.018	0.0
Mean	0.006	0.435	-0.001	0.001	-0.024	0.019	0.0
%RSD	Reading 0.006 0.006 0.006 0.006 2.545	0.307	37.948	212.620	6.873	5.689	40.2
Final o	concentration	В					
	ppm	ppm	ppm	ppm	ppm	ppm	p
#1	0.00611	65.96340	0.00187	0.00500	-0.00205	0.02479	0.000
#2	0.00570	65.80982	0.00105	0.00291	-0.00684	0.02023	0.000
#3	0.00545	65.55155	-0.00093	0.00160	-0.00473	0.01920	0.000
Mean	0.005/5	65.77492	0.00067	0.00317	-0.00454	0.02141	0.000
₹RSD	0.00611 0.00570 0.00545 0.00575 5.78815						
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe27
IS rat:	ioed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.000	0.025	-0.012	1.255	0.052	0.457	0.0
#2	0.000	0.025	-0.013	1.249	0.052	0.455	0.0
#3	0.000	0.025	-0.013	1.245	0.052	0.455	0.0
Mean	0.000	0.025	-0.012	1.250	0.052	0.456	0.0
*RSD	Reading 0.000 0.000 0.000 0.000 0.000 235.649	0.359	3.470	0.406	0.154	0.279	2.4
Final o	concentration ppm 0.00473 0.00413 0.00386 0.00424 10.48649	В					
4.7	ppm	ppm	ppm	ppm	1 14065	ppm	0 350
#1	0.004/3	0.01822	0.00069	17.41351	1.14865	2.01//2	0.352
#2	0.00413	0.01822	0.00001	17.32281	1.14530	2.00920	0.342
#3 Moor	0.00386	0.01811	0.00002	17 22702	1 14600	2.00586	0.33/
an or	10.00424	0.01018	161 16022	11.33/02	1.14020	2.01093	0.344
4KSD	10.48649	0.362/8	101.10838	0.40644	0.18/12	0.30422	2.270
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960
IS rat	ioed intensit	ies	D	D 11	D	D 111	
	keading	keading	keading	keading	keading	keading	Readi
#1	0.004	0.007	-0.008	0.000	0.000	0.036	-0.1
#2	0.004	0.005	-0.008	0.000	0.000	0.035	-0.0
#3	0.004	0.004	-0.010	0.000	0.000	0.033	-0.0
Mean %RSD	ioed intensit Reading 0.004 0.004 0.004 0.004 1.202	24.026	-0.009 12.387	11.036	7.554	4.930	-u.0 6.4
77.5 7							
Final o	concentration ppm	ppm	ppm	ppm	ppm	ppm	I

Raw Data MA23347	page 210 of 235

Method Sample Analys	: EPA3 Idl : ja3020 is commenced	1-7f : 10/27/200	File : it10: SampleId: 9 2:02:28 AM	2609ml 2 :	Printed	10/27/2009 [SAMPLE]	8:12:57 AM
Diluti	on ratio : 1	.00000 to 1.	00000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rat	ioed intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	2.206	0.002	0.000	0.002	0.661	0.000	0.002
#2	2.213	0.002	0.000	0.002	0.667	0.000	0.002
	2.200	0.002	0.000	0.002	0.665	0.000	0.002
Mean %RSD	0.283	14.904	3938.582	Reading 0.002 0.002 0.002 0.002 17.819	0.611	74.064	4.956
Final							
	ppm	ppm	ppm	ppm	ppm	ppm	ppn
#1	36.95006	0.00432	0.00016	0.00140	18.82940	-0.00123	-0.00005
#2	36 84812	0.00498	0.00141	0.00218	19.01291	0.00004	0.00000
Mean	36.95160	0.00495	0.00127	0.00203	18.96202	-0.00031	-0.00001
%RSD	0.28214	12.48438	82.58957	0.00140 0.00218 0.00250 0.00203 27.96741	0.61115	262.14154	287.29286
				As1890			
IS rat	ioed intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.004	1.144	-0.001	0.002	-0.024	0.008	0.002
#2	0.004	1.147	0.000	0.004	-0.022	0.008	0.00:
Mean	0.004	1.145	0.000	0.003	-0.021	0.010	0.00
%RSD	0.004 0.004 0.004 3.314	0.141	147.437	Reading 0.002 0.004 0.005 0.004 40.642	8.902	15.047	38.852
Final	concentration	ns					
#1	ppm	ppm	ppm	ppm	ppm	ppm	0.00028
#2	0.00188	176.44275	0.00020	0.00505	-0.00630	-0.00830	0.00028
#3	0.00249	176.75381	0.00475	0.00927	-0.00067	-0.00165	0.00082
Mean	0.00223	176.71285	0.00219	0.00720	-0.00329	-0.00584	0.00058
%RSD	14.26471	0.14268	113.11835	ppm 0.00505 0.00729 0.00927 0.00720 29.34897	86.30447	62.85090	48.09391
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe2714
IS rat	ioed intensi	ties					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1 #2	-0.001	0.026	-0.013	7.610	0.009	2.394	0.108
#3	-0.001	0.026	-0.012	7.695	0.009	2.405	0.110
Mean	-0.001	0.026	-0.012	7.664	0.009	2.402	0.109
%RSD	-0.001 -0.001 -0.001 -0.001 41.281	0.268	8.465	Reading 7.610 7.688 7.695 7.664 0.620	1.062	0.289	0.778
Final	concentration	ns _					
#1	0.00155	0.019nn	-0.00025	105.64239	-0.07071	11.36958	6.3156
#2	0.00258	0.01909	0.00070	106.72897	-0.06673	11.43089	6.39863
#3	0.00339	0.01901	0.00156	106.83403	-0.06624	11.42329	6.40048
Mean %RSD	0.00251 36.74197	0.01903 0.26922	0.00067 134.71264	ppm 105.64239 106.72897 106.83403 106.40180 0.62006	-0.06789 3.60886	11.40792 0.29298	6.37159 0.76020
	Mn2576			Pb2203			
TC :	ioed intensi						
	Reading		Reading -0.013	Reading	Reading	Reading	Reading
#1	0.218	Reading 0.001 0.002	-0.013	0.000	0.000	0.035	-0.11
#2	0.220	0.002	-0.011	0.000	0.000	0.035	-0.112 -0.119
#3 Mean	0.220 0.219	0.002	-0.010	0.000	0.000	0.033	-0.119
%RSD	0.547	0.002 0.002 0.002 46.927	11.236	Reading 0.000 0.000 0.000 0.000 5.226	0.400	3.380	3.557
Final	concentratio						
	ppm		ppm	ppm	ppm	ppm	ppn

Raw Data MA23347 page 212 of 235

							Zoom O	ut
Printed: #1 #2 #3 Mean %RSD		12:57 AM -0.00236 -0.00119 -0.00115 -0.00157 43.91116		-0.01502 -0.01505 -0.02006	0.00165 0.00207 -0.00236 0.00045 543.12516	0.00984 0.00993 0.00691 0.00889 19.34545	-0.01474 -0.01366 -0.02090 -0.01643 23.79467	
	2203/2	2203/1	INT STD					
#1 #2 #3 Mean %RSD		Reading 0.113 0.123 0.097 0.111 11.395	Reading 55700.000 55491.000 55937.000 55709.333 0.401					
Final	concentration	ıs						
#1 #2 #3 Mean %RSD		-0.06867 -0.06479 -0.07594 -0.06980 8.10302	intensity 10.53 6.50 3.01 6.68 56.31					

Raw Data MA23347 page 213 of 235

Raw Data MA23347 page 215 of 235

						∢ Zoom	In
						Zoom (Out
inted: 10/27/2009	0.10.57 34	User: Accute					
#1 0.00022		0.00064	-0.00327	0.00239	-0.00018	0.00754	
#2 0.00024		0.00125	-0.00327	0.00033	0.00315	-0.00531	
#3 0.00033		0.00125	-0.00661	-0.00292	0.00231	-0.01338	
Mean 0.00026	0.00037	0.00128	-0.00492	-0.00006	0.00176	-0.00372	
%RSD 22.58935	206.87522	51.62373	33.89818	4179.43221	98.25240	283.71691	
2203/2	2203/1	INT STD					
IS ratioed intens:	ities						
Reading	Reading	Reading					
#1 0.016	0.114	62102.000					
#2 0.020	0.091	61006.000					
#3 0.017		59800.000					
Mean 0.017		60969.333					
%RSD 12.804	14.322	1.889					
Final concentration	ons						
ppm		intensity					
#1 -0.00018 #2 0.00256	-0.00945	-0.89					
#2 0.00256 #3 0.00051	-0.01974 -0.02085	-1.74 -2.73					
Mean 0.00096		-1.79					
%RSD 148.27035	37.66331	51.62					
*K3D 140.27033	37.00331	31.02					

							Zooi
Mothod	· PD32		Filo : i+103	160 0m1	Drinted	. 10/27/2009	0:12:E7 NM
SampleId Analysi: Dilution	: EPA3 dl : ja30201- s commenced : n ratio : 1.0	-fbconf : 10/27/2009 00000 to 1.0	SampleId2 9 2:08:35 AM 00000	:	FIIIIced	[SAMPLE]	0.12.37 AM
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS ratio	oed intensiti	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.068	0.000	0.000	0.001	0.001	0.000	0.001
#2	0.069	0.000	0.000	0.001	0.001	0.000	0.001
#3	0.071	0.000	0.000	0.001	0.001	0.000	0.002
Mean	0.069	0.000	0.000	0.001	0.001	0.000	0.002
%RSD	1.983	17.132	59.255	15.369	4.823	Reading 0.000 0.000 0.000 0.000 32.712	5.922
Final c	oncentrations ppm	3					
#1		o ooooi	0 00101	o ooosa	o orear	0.00027	ppm
#1	1.21316 1.23588 1.25939 1.23615 1.86982	0.00201	0.00191	0.00057	0.01625	-0.00037	-0.00009
#3	1.23300	0.00204	0.00276	0.00094	0.01629	0.00014	0.00007
Moon	1 22616	0.00213	0.00254	0.00113	0.01400	-0.00010	-0.00000
spen	1 06000	2 70621	21 62205	22 12610	0.01331	1104 05006	04 22700
Mean %RSD						-0.00037 0.00014 0.00016 -0.00003 1184.95996	
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS rati	oed intensiti	ies	D			D	n
	Reading	keading	Reading	Reading	Reading	Reading	Reading
#1	0.003	0.020	0.000	-0.001	-0.021	0.008	0.003
#2	0.004	0.021	0.000	0.000	-0.020	0.008	0.004
#3	0.004	0.021	0.000 0.000 0.000 320.744	0.001	-0.019 -0.020 6.690	0.008 0.009 0.008	0.005
Mean		0.021	0.000	0.000	-0.020	0.008	0.004
%RSD			320.744	510.782	6.690	9.809	21.301
Final c	oncentrations	3					
4.7	o oooeo	1 00726	0.00204	ppm 0.00109 0.00257	o ooosa	o ooooo	o oooso
#1	0.00009	1.00726	0.00394	0.00109	-0.00034	0.00992	0.00030
#2	0.00113	1.14900	0.00456	0.00257	0.00196	-0.00751	0.00075
Mean	0.00120	1.24409	0.00461	0.00200	0.00340	-0.00556	0.00092
%RSD	ppm 0.00069 0.00113 0.00126 0.00103 29.47321	10 51670	10 16147	42 00210	112 74906	20.00760	20.00072
WASD							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2714
IS rati	oed_intensiti	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.000	0.000	-0.011	0.003	0.008	0.031	0.000
#2 #3	-0.001	0.001	-0.011	0.003	0.008	Reading 0.031 0.032 0.033 0.032 3.572	0.000
#3 Mean	0.000	0.001	-0.011	0.003	0.009	0.033	0.000
%RSD	0.000	0.001	-0.011	0.003	0.008	0.032	45.000
			1.078	10.779	2.689	3.5/2	45.003
Final c	oncentrations ppm	3					
#1	0 00355	0.00017	0 00179	n nagaa	_n n2212	-0 04226	n nnne i
#1	0.00333	0.00017	0.00179	0.02033	-0.03212	-0.04220	0.00004
#2	0.00203	0.00019	0.00166	0.02362	-0.02511	-0.03002	0.00726
#3 Moon	0.00336	0.00019	0.00100	0.02044	-0.02015	-0.03139	0.01526
Mean .	0.00283 0.00336 0.00325 11.59204	7.22021	0.00178	17 72414	22 21410	14 71010	0.00773
arsu						ppm -0.04226 -0.03802 -0.03139 -0.03723 14.71818	
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/1
IS rati	oed_intensiti	ies	n	D 11		D	D 11
	Reading	keading	keading	keading	keading	keading	keading
#1	0.000	0.003	-0.009	0.000	0.000	0.029	-0.082
#2	0.000	0.004	-0.008	0.000	0.000	0.031	-0.095
# 3	0.000	0.005	-0.008	0.000	0.000	0.031	-0.104
	0.000	0.004	-U.UU8	12.614	1.891	Reading 0.029 0.031 0.031 0.030 3.875	-U.094
Mean							
#3 Mean %RSD							
	oncentrations						

Raw Data MA2334/ page 214 of 235	Raw Data MA23347	page 214 of 235
----------------------------------	------------------	-----------------

Method	: EPA3 dl : CCV		File : it102	609ml	Printed :	10/27/2009	8:12:57 A
Analysi	s commenced : n ratio : 1.0	10/27/2009	2:14:44 AM			[FDEAQC]	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	oed intensiti	es					
#1	Reading	Reading	Reading	Reading	Reading 1.428 1.531 1.530 1.497 3.978	Reading	Readin
#2	2.403	1 086	0.428	1.356	1.428	0.410	4.25
# 2	2.287	1.087	0.454	1.416	1.530	0.428	4.48
Mean %RSD	2.328	1.051	0.446	1.396	1.497	0.422	4.42
%RSD	2.790	5.781	3.389	2.512	3.978	2.504	2.56
Final c	oncentrations ppm 40.32709 38.53108 38.39129 39.08315 2.76218	nnm	nnm	nnm	nnm	nnm	nr
#1	40.32709	1.97249	2.00165	2.00831	40.71933	2.06861	2.0554
#2	38.53108	2.18359	2.12582	2.09873	43.67543	2.16091	2.1490
#3	38.39129	2.18481	2.12169	2.09800	43.64494	2.16158	2.1499
Mean	39.08315	Z.11363	2.08305	2.06835	42.67990	2.13037	2.1181
4KSD							
			Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed intensiti	es Reading	Reading	Reading	Reading	Reading	Readir
#1	0.870	0.253	0.433	1.415	1.358	0.779	7.90
#2	0.845	0.268	0.434	1.480	1.422	0.806	8.5
#3 Mean	0.842	0.268	0.434	1.482	1.417	0.807	8.5
%RSD	1.761	3.227	0.434	2.631	Reading 1.358 1.422 1.417 1.399 2.544	1.955	4.26
Final c							
	ppm	ppm	ppm	ppm	ppm	ppm	PI
#1	1.99063	38.45587	1.93449	1.99587	1.98236	2.12873	2.085
#2	1.93445	40.83375	1.94043	2.08870	2.07381	2.20270	2.247
Mean	1.95086	40.00237	1.93838	2.05831	2.04111	2.17874	2.193
%RSD	1.99063 1.93445 1.92750 1.95086 1.77440	3.35123	0.17384	2.62741	2.49814	1.98839	4.2612
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe27:
IS rati	oed intensiti	es					
#1	Reading	Reading	Reading	Reading	Reading 1.499 1.480 1.476 1.485 0.817	Reading	Readin
#1	0.913	2.648	0.263	2.960	1.499	1.170	0.7
	0.970	2.576	0.277	3.152	1.476	1.197	0.7
#3 Mean %RSD	0.953	2.603	0.273	3.086	1.485	1.188	0.74
%RSD	3.616	1.514	3.286	3.547	0.817	1.360	3.24
Final c	oncentrations ppm 2.02351 2.16090 2.14927 2.11123 3.60875	nnm	nnm	DDM	nnm	nnm	pi
#1	2.02351	1.97086	0.24913	40.91890	40.16131	5.42911	40.3692
#2	2.16090	1.92278	0.26399	43.51248	39.67321	5.56661	42.778
#3 Mean	2.14927	1.91763	0.26223	43.57946	39.55615	5.55776	42.6762
%RSD	3.60875	1.51568	3.14106	3.55542	0.80655	1.39468	3.248
					Se1960		
IS rati	oed intensiti	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1 #2	1.173	2.202	0.943	0.000	0.000	1.463	1.99
#2	1.209	2.302	1.014	0.000	0.000	1.544 1.539 1.515	2.14
Mean	1.197	2.268	0.990	0.000	0.000	1.515	2.09
%RSD	1.754	2.532	4.113	5.819	Reading 0.000 0.000 0.000 0.000 10.913	2.999	4.11
Final c	oncentrations	nne.	-	-			
	ppm	ppm	ppm	ppm	ppm	ppm	PI

Raw Data MA23347 page 216 of 235

							■ Zoom II	1
							Zoom O	ut
	10/27/2009 8		User: Accute:					
#1	1.96756	1.95571	2.01935	2.10963	2.10010	2.14330	2.01372	
#2	2.02956	2.04493	2.16986	2.32473	2.22986	2.26431	2.16097	
#3	2.02751	2.04348				2.25751	2.15435	
Mean		2.01471					2.10968	
%RSD	1.75391	2.53632	4.07326	5.47187	3.34423	3.06034	3.94231	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit	ies						
	Reading	Reading	Reading					
#1	3.389	4.650	52829.000					
#2	3.706	5.185	57576.000					
#3	3.702	5.173						
Mean	3.599	5.003						
%RSD	5.055	6.113	5.037					
Final	concentration	18						
	ppm	ppm	intensity					
#1	2.16910	1.99068						
#2	2.37241	2.22937						
#3	2.36991	2.22420						
Mean	2.30381	2.14808						
%RSD	5.06391	6.34710	4.07					

Raw Data MA23347 page 217 of 235

Raw Data MA23347 page 219 of 235

							■ Zoom In
							Zoom Ou
Printed:	10/27/2009 8:	12:58 AM	Haer: Accute	st			
#1	0.00014	0.00014	-0.00406	-0.00156	0.00133	0.00451	-0.00502
#2	-0.00034	-0.00330	-0.01138	-0.02036	-0.01718	-0.00714	-0.03728
#3	-0.00031	-0.00379	-0.01157	-0.02767	-0.02422	-0.01387	-0.04491
Mean	-0.00017	-0.00232	-0.00900	-0.01653	-0.01336	-0.00550	-0.02907
%RSD	157.32178	92.34129	47.60055	81.51040	98.80153	169.05344	72.83036
	2203/2	2203/1	INT STD				
IS rat	tioed intensit	ies					
	Reading	Reading	Reading				
#1	0.019	0.116	59834.000				
#2	0.002	0.037	57319.000				
#3	-0.012	0.028	57726.000				
Mean	0.003	0.060	58293.000				
%RSD	471.008	79.672	2.316				
Final	concentration	18					
	ppm	ppm	intensity				
#1	0.00208	-0.00882	5.67				
#2	-0.00868	-0.04371	15.90				
#3	-0.01762	-0.04777	16.17				
Mean	-0.00807	-0.03344	12.58				
%RSD	122.15784	64.04083	47.60				
*KSD	122.15/84	64.04083	47.60				

							Z
Analys	d: EPA3 eld1: CCB sis commenced ion ratio: 1.	: 10/27/2009	2:21:04 AM	609ml	Printed	: 10/27/2009 [FLEXQC]	8:12:58
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be31
IS rat	ioed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1 #2	0.070	0.001	-0.001	0.001	0.000	0.000	0.0
	0.070	0.000	-0.002	-0.002	-0.001	-0.001	0.0
#3 Mean %RSD	0.070	0.000	-0.001	-0.001	-0.001	-0.001	0.0
%RSD	1.083	Reading 0.001 0.000 0.000 0.000 431.471	48.296	147.250	119.427	67.250	13.1
Final		_					
4.7	ppm	ppm	ppm	ppm	ppm	ppm	0 000
#1	1 23625	0.00360	-0.00103	-0.00014	-0.00461	-0.00169	-0.000
#3	1.22346	0.00089	-0.00606	-0.00354	-0.04587	-0.00574	-0.000
Mean	1.23636	0.00199	-0.00437	-0.00231	-0.03087	-0.00432	-0.000
%RSD							68.903
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd22
IS rat	ioed intensit	ies					
41	Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.004	0.018	-0.002	-0.005	-0.021	0.007	-0.0
#3	0.002	0.012	-0.005	-0.011	-0.032	0.003	-0.0
Mean	0.003	0.014	-0.004	-0.009	-0.028	0.004	-0.0
%RSD	Reading 0.004 0.002 0.002 0.002 0.003 33.303	21.423	47.746	38.651	20.797	51.366	124.9
Final	concentration	ıs					
#1	0 00084	n 71483	=0 00331	=0 00461	n nnnns	=0 01211	-0 000
#2	-0.00249	-0.14038	-0.01810	-0.01275	-0.01503	-0.02255	-0.001
#3	-0.00265	-0.09461	-0.01755	-0.01243	-0.01319	-0.02247	-0.001
Mean	0.00084 -0.00249 -0.00265 -0.00143 137.28468	0.15995	-0.01298	-0.00993	-0.00938	-0.01904	-0.000
*RSD							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe27
IS rat	ioed intensit	ies	D	D 11		D 11	D 1
#1	Reading	keading	Reading	Reading	Reading	keading	Read1
#2	-0.001	0.000	-0.014	0.003	0.003	0.036	-0.0
#3	Reading -0.001 -0.003 -0.003 -0.003 37.803	0.000	-0.020	0.003	0.007	0.026	-0.0
Mean	-0.003	0.000	-0.018	0.003	0.008	0.027	-0.0
%RSD	37.803	205.041	17.327	8.379	3.849	7.779	90.1
Final	concentration	ns nnm	nnm	nnm	nnm	nnm	
#1	0.00066	-0.00002	-0.00157	0.03143	-0.03550	-0.04711	-0.006
#2	-0.00349	-0.00048	-0.00650	0.02544	-0.04918	-0.06411	-0.079
#3	ppm 0.00066 -0.00349 -0.00234 -0.00172 124.37212	-0.00046	-0.00636	0.02540	-0.04919	-0.06534	-0.077
Mean	-0.00172	-0.00032	-0.00481	0.02742	-0.04462	-0.05885	-0.054
*KSD							
	Mn2576		Sn1899	Pb2203	Se1960	1960/2	1960
IS rat	ioed intensit	ies Peadira	Reading	Reading	Peadira	Peading	Pandi
#1	0.000	0.004	-0.011	0.000	0.000	0.032	-0.n
#2	0.000	0.000	-0.014	0.000	0.000	0.024	-0.1
#3	0.000	-0.001	-0.014	0.000	0.000	0.020	-0.1
Mean	Reading 0.000 0.000 0.000 0.000 0.000 104.038	0.001	-0.013	0.000	0.000	0.025	-0.1
			13.402	0.444	2.200	24.792	10.3
Final	concentration	ns nom	nnm	nnm	mag	nnm	

Raw Data MA23347 page 218 of 235	Raw Data	MA23347	page 218 of 2	35
----------------------------------	----------	---------	---------------	----

Method	: EPA3		File : it10	2609ml 2 :	Printed :	10/27/2009	8:12:58 A
SampleI	dl : ja3020	L-8	SampleId	2 :		[SAMPLE]	
		: 10/27/200 .00000 to 10					
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readir
#1 #2	0.144	-0.013	0.000	22.547	0.001	-0.005	0.00
#3	0.144	-0.013	-0.001	22.577	0.001	-0.005	0.00
Mean	0.144	-0.013	-0.001	22.524	0.001	-0.005	0.00
%RSD	0.314	2.879	22.937	Reading 22.547 22.577 22.446 22.524 0.304	22.193	1.956	5.99
Final c	oncentration	ns nnm	nnm	ppm 334.09620 334.54033 332.60377 333.74677 0.30396	nn.	nnm	-
#1	30 43590	0 14408	0 00765	334 09620	0 27392	n n3934	_n nn79
#2	30.44299	0.15236	0.00046	334.54033	0.24491	0.03613	-0.0075
#3	30.28036	0.13478	-0.00443	332.60377	0.15199	0.02818	-0.0083
Mean	30.38642	0.14374	0.00123	333.74677	0.22361	0.03455	-0.0079
%RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed intensit	ies		D	D	D	n 11
#1	keading	keading	keading	Reading -0.161 -0.163 -0.164 -0.163 0.947	keading	keading	keadir
#2	0.004	0.402	-0.000	-0.163	-0.019	0.039	0.00
#3	0.004	0.401	-0.001	-0.164	-0.023	0.037	0.00
Mean	0.004	0.402	-0.001	-0.163	-0.021	0.038	0.00
%RSD	2.488	0.403 0.401 0.402 0.265	53.082	0.947	8.765	2.239	283.79
Final c	oncentration	ns					
#1	0.00677	537.44816	0.01954	ppm -0.03485 -0.05809 -0.08757 -0.06017 43.91014	0.0969N	-0.08694	-0.012
#2	0.00484	539.95325	0.00733	-0.05809	0.06702	-0.09823	-0.010
#3	0.00224	537.25619	-0.01398	-0.08757	0.04440	-0.12805	-0.013
Mean %RSD	0.00462	538.21920	0.00429	-0.06017	0.06944	-0.10441	-0.0120
₹RSD							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe27:
IS rati	oed intensit	ies		D	D	D 11	n 111
#1	-0 001	keading	_0 012	Reading 0.246 0.247 0.244 0.245 0.497	Reading	keading	Readin
#2	-0.001	0.001	-0.012	0.247	0.014	0.473	0.00
	-0.001	0.001	-0.013	0.244	0.013	0.473	0.00
Mean	-0.001	0.001	-0.012	0.245	0.013	0.473 0.080	0.00
#3 Mean %RSD							
Final c	oncentration	1S prom	prom	ppm 33.81985 33.92576 33.59546	npm	DDm	707
#1	0.03714	0.00043	0.00144	33.81985	1.02823	24.67716	-0.805
#2	0.04052	0.00069	0.00213	33.92576	1.02650	24.64933	-0.8269
#3	0.03477	-0.00068	-0.00764	33.59546	0.99587	24.63197	-1.028
Mean %RSD	7.71625	0.00015	-0.00136	33./8036	1.01687	0.09247	13.847
	Mn2576	Mo2020	Reading -0.010 -0.012 -0.012 11.052	Pb2203	Se1960	1960/2	1960
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.001	0.006	-0.010	0.000	0.000	0.036	-0.10
#2 #3	0.001	0.005	-0.012	0.000	0.000	0.029	-0.10 -0.11
#3 Mean	0.001	0.004	-0.013	0.000	0.000	0.029 0.030 0.031	-0.11
%RSD	4.345	16.883	-0.013 -0.012 11.052	21.698	Reading 0.000 0.000 0.000 0.000 7.584	11.918	2.56
Final c	oncentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm	PE

Raw Data MA23347 page 220 of 235

152 of 247
ACCUTEST.

JA30201 Laboratories

							■ Zoom	In ▶
							Zoom	Out
	10/27/2009 8:	12:58 AM	User: Accute	est				
#1	-0.00189	0.02675	0.05188	-0.02451	0.05362	0.07808	0.00471	
#2	-0.00218	0.01920	0.01740	-0.07622	-0.01861	-0.02368	-0.00848	
#3	-0.00270	0.01218	-0.00282	-0.08836	-0.02207	-0.00910	-0.04802	
Mean	-0.00226	0.01938	0.02216	-0.06303	0.00431	0.01510	-0.01726	
%RSD	18.22411	37.61260	124.83992	53.78903	991.13901	364.42086	158.95654	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit							
	Reading	Reading	Reading					
#1	0.028	0.109	58471.000					
#2	0.019	0.100	58432.000					
#3	0.020	0.090	58397.000					
Mean	0.023	0.100	58433.333					
%RSD	22.174	9.732	0.063					
Final	concentration	ıs						
	ppm	ppm	intensity					
#1	0.02677	-0.12707	-72.47					
#2	-0.03177	-0.16513	-24.31					
#3	-0.02571	-0.21365	3.94					
Mean	-0.01024	-0.16862	-30.95					
%RSD	314.43290	25.73548	124.84					

Raw Data MA23347 page 221 of 235

Raw Data MA23347 page 223 of 235

							∢ Zoom	In P
							Zoom C)ut
Printed:	10/27/2009 8:	12:58 AM	User: Accute	st				
#1	0.19392	0.28433	0.04269	-0.03308	0.07574	0.07437	0.07850	
#2	0.19354	0.28630	0.05087	-0.07669	0.00723	0.02734	-0.03300	
#3	0.19390	0.29886	0.08108	-0.04608	0.09066	0.08706	0.09786	
Mean	0.19378	0.28983		-0.05195	0.05788	0.06292	0.04778	
%RSD	0.11083	2.71899	34.73230	43.09726	76.87843	50.00098	147.81452	
	2203/2	2203/1	INT STD					
IS ra	tioed intensit	ies						
	Reading	Reading	Reading					
#1	0.021	0.123	58389.000					
#2	0.018	0.101	58824.000					
#3	0.017	0.125						
Mean		0.117						
%RSD	10.187	11.319	0.458					
Final	concentration	ıs						
	ppm	ppm	intensity					
#1	-0.01926	-0.06072	-59.64					
#2	-0.03594	-0.15817	-71.06					
#3	-0.04289	-0.05245	-113.26					
Mean		-0.09045	-81.32					
%RSD	37.13701	65.00706	34.73					

							■ Zoom	1
							Zoom	
Analysı	: EPA3 dl : ja30201 s commenced n ratio : 1.	: 10/27/200	9 2:33:29 AM	2609ml 2 :	Printed	: 10/27/2009 [SAMPLE]	8:12:58 AM	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130	
IS rati	oed intensit	ies						
4.7	Reading	Reading	Reading	Reading	Reading	Reading	Reading	
#2	0.151	0.402	0.000	23.788	0.003	-0.005	0.001	
#3	0.151	0.404	0.000	23.818	0.003	-0.005	0.001	
Mean %RSD	0.151	0.402	0.000 178.312	Reading 23.800 23.788 23.818 23.802 0.063	0.003 6.083	-0.005 2.239	0.001 2.186	
Final c	oncentration	s		0.063 ppm 352.65763 352.48308 352.92371 352.68814 0.06291				
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	
#1	31.79837	8.50951	0.02276	352.65763	0.76939	0.05472	-0.00845	
#3	31.69843	8.55960	0.02918	352.92371	0.85946	0.06482	-0.00820	
Mean	31.72930	8.52036	0.02650	352.92371 352.68814 0.06291	0.79898	0.06482 0.05810 10.02054	-0.00835	
%RSD								
			Pd3404	As1890	T11908	Sb2068	Cd2265	
IS rati	oed intensit	ies	Ponding	Roading	Ponding	Ponding	Ponding	
#1	0.006	0.424	-0.001	-0.176	-0.018	0.040	0.001	
#2	0.005	0.423	-0.001	-0.173	-0.017	0.040	0.001	
#3	0.006	0.421	-0.001	-0.171	-0.015	0.042	0.002	
%RSD	3.418	0.422	28.906	Reading -0.176 -0.173 -0.171 -0.173 1.294	8.059	2.821	27.079	
#1	0 0270E	ppm E67 162E6	_n n1210	_0 11062	0 12124	_n ne44e	_n ninze	
#2	0.03705	566.31997	-0.01319	-0.11063	0.12124	-0.08475	-0.01028	
#3	0.04338	562.43459	0.00763	-0.04608	0.15855	-0.03028	-0.00845	
Mean	0.03845	565.30571	-0.00638	ppm -0.11063 -0.07934 -0.04608 -0.07868 41.02707	0.13696	-0.06650	-0.00969	
*RSD								
		Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe2714	
IS rati	oed intensit	ies	Ponding	Roading	Ponding	Ponding	Ponding	
#1	0.073	0.001	-0.012	0.257	0.236	0.488	0.020	
#2	0.073	0.001	-0.012	0.257	0.236	0.487	0.020	
#3	0.074	0.002	-0.011	0.258	0.235	0.488	0.021	
%RSD	0.073	4.909	-0.012 5.296	Reading 0.257 0.257 0.258 0.257 0.172	0.236	0.488	1.201	
#1	ppm	ppm	ppm	ppm	ppm	ppm ppm	ppm o czena	
#2	1.67181	0.00163	0.00326	35.26425	61.57291	25.59025	9.76472	
#3	1.68564	0.00243	0.01055	35.38510	61.35810	25.57880	9.94465	
Mean %RSD	1.67163	0.00183	0.00444	35.32882	61.52416	25.57060	9.79514	
%RSD		28.70625	126.24516	ppm 35.33711 35.26425 35.38510 35.32882 0.17224				
	Mn2576		Sn1899	Pb2203	Se1960	1960/2	1960/1	
IS rati	oed intensit	ies Reading	Peading	Peadira	Peading	Peading	Peading	
#1	0.012	0.034	-0.011	Reading 0.000 0.000 0.000 0.000 0.459	0.000	0.035	-0.100	
#2	0.012	0.035	-0.011	0.000	0.000	0.032	-0.112	
#3	0.012	0.036	-0.009	0.000	0.000	0.036	-0.098	
Mean	0.012	0.035	-0.010	0.000	0.000	0.034 6.276	-U.104	
	oncentration ppm	s						

	Raw	Data MA23347	page 222 of 235
--	-----	--------------	-----------------

							◀ Zo
							20
Method SampleI	: EPA3 dl : CCV s commenced	: 10/27/2009	File : it102 SampleId2 2:39:38 am	609ml	Printed :	10/27/2009 [FLEXQC]	8:12:58 A
Dilutio	n ratio : 1.	00000 to 1.0	0000				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	oed intensit	ies		D	D 11	D 11	D 111
#1	Reading	keading	Reading	keading	Reading	Reading	Reading
#2	2.343	1.047	0.445	1.398	1.484	0.414	4.42
#3	2.350	1.040	0.444	1.394	1.481	0.415	4.41
Mean %RSD	2.349	1.041	0.444	1.394	1.482	0.415	4.41
%RSD	0.233	0.552	0.292	0.210	Reading 1.480 1.484 1.481 1.482 0.147	0.189	0.34
Final c	oncentration	s					
	ppm	ppm	ppm	ppm	ppm	ppm	ppi
#1	39.49527	2.08212	2.06851	2.06207	42.20762	2.09191	2.1056
#2	39.31939	2.10513	2.00038	2.07042	42.24147	2.09930	2.1139
Mean	39.42125	2.09303	2.07513	2.06554	42.25910	2.09478	2.1132
%RSD	oncentration ppm 39.49527 39.31959 39.44889 39.42125 0.23095	0.55187	0.29159	0.21057	0.14719	0.18890	0.3490
	Cu3247	Na3302					
TO							
13 14[]	Reading 0.859 0.858 0.859 0.859 0.859	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.859	0.273	0.435	1.458	1.370	0.786	8,21
#2	0.858	0.274	0.435	1.461	1.375	0.791	8.25
#3	0.859	0.274	0.435	1.454	1.375	0.788	8.24
Mean	0.859	0.274	0.435	1.457	1.373	0.788	8.23
Final c	oncentration ppm 1.96616 1.96360 1.96580 1.96519 0.07040	s pp-		PF			
#1	1.96616	41.49796	1.94091	2.05654	1.99983	2.14835	2.1678
#2	1.96360	41.71916	1.94526	2.06147	2.00756	2.15969	2.1785
#3	1.96580	41.64399	1.94122	2.05084	2.00700	2.15352	2.1758
Mean	1.96519	41.62037	1.94246	2.05628	2.00480	2.15385	2.1741
4KSD		0.2/024			0.21502	0.26349	0.∠566
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
IS rati	oed intensit	ies					
#1	Reading 0.948 0.951	Reading	Reading	Reading	Reading	Reading	Readin
#1	0.948	2.621	0.271	3.063	1.493	1.186	0.73
#3	0.952	2.618	0.271	3.070	1.492	1.186	
#2 #3 Mean %RSD	0.950	2.618 2.615 0.264	0.271 0.271 0.271 0.271 0.163	3.070 3.071 0.254	1.492 1.491 0.154	1.186	0.73
%RSD	0.210	0.264	0.163	0.254	0.154	0.154	0.17
Final c	oncentration	s					
41	2.09916 2.10560 2.10762 2.10413 0.20998	ppm	ppm	ppm	ppm	ppm	41 0700
#1	2.10560	1.95062	0.25677	42.56812	39.89847	5.50703	41.2792
#3	2.10762	1.94860	0.25647	42.45481	39.97897	5.50661	41.3654
Mean	2.10413	1.94670	0.25641	42.45845	39.96546	5.51189	41.3567
%RSD	0.20998	0.26379	0.15584	0.25415	0.15353	0.15923	0.1778
	Mn2576	Mo2020	Sn1899	Pb2203	Se1960	1960/2	1960/
IS rati	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading	Readin
#1 #2	1.194	2.246	0.970	0.000	0.000	1.469	2.06
#2	1.198	2.258	0.975	0.000	0.000	1.472	2.05
Mean	1.196	2.254	0.972	0.000	0.000	1.469	2.05
%RSD	0.160	0.299	0.221	14.955	Reading 0.000 0.000 0.000 0.000 0.229	0.182	0.49
Final c	oncentration	s					
	ppm	ppm	ppm	ppm	ppm	ppm	pp

Raw Data MA23347 page 224 of 235

							■ Zoom Ir	1 "
							Zoom Ou	ıt
Printed:	10/27/2009 8:	12:58 AM	User: Accutes	st				
#1	2.00296	1.99517	2.07808	2.18471	2.13052	2.15336	2.08485	
#2	2.00936	2.00585	2.08716	2.17237	2.12553	2.14946	2.07767	
#3	2.00584	2.00524	2.08191	2.18354	2.12671			
Mean	2.00605	2.00209	2.08239	2.18021	2.12759	2.15336		
%RSD	0.15982	0.29957	0.21894	0.31239	0.12259	0.18137	0.46885	
	2203/2	2203/1	INT STD					
IS rat	ioed intensit	ies						
	Reading	Reading	Reading					
#1	3.486	4.874	55255.000					
#2	3.458	4.873	55508.000					
#3	3.490	4.857	55387.000					
Mean	3.478	4.868	55383.333					
%RSD	0.501	0.197	0.228					
Final	concentration	ıs						
	ppm	ppm	intensity					
#1	2.23170	2.09074	-2902.68					
#2	2.21343	2.09026	-2915.36					
#3	2.23372	2.08318	-2908.03					
Mean	2.22628	2.08806	-2908.69					
%RSD	0.50206	0.20287	0.22					

Raw Data MA23347 page 225 of 235

Raw Data MA23347 page 227 of 235

							■ Zoom	In
							Zoom	Эu
Printed:	10/27/2009 8	:12:58 AM	User: Accut	est				
#1	0.00039	-0.00067	-0.00607	0.00095	0.00261	0.00828	-0.00873	
#2	0.00047	0.00002	-0.00270	-0.00552	-0.00354	0.00004	-0.01070	
#3	0.00047	-0.00067	-0.00193	-0.01372	-0.01116	0.00165	-0.03677	
Mean	0.00045	-0.00044	-0.00357	-0.00610	-0.00403	0.00332	-0.01873	
%RSD	10.61188	90.05244	61.76878	120.58929	171.09307	131.54441	83.54494	
	2203/2	2203/1	INT STD					
IS rat	ioed intensi	ties						
	Reading	Reading	Reading					
#1	0.026	0.112	59740.000					
#2	0.017	0.095	59866.000					
#3	0.018	0.038	59918.000					
Mean	0.020	0.082	59841.333					
%RSD	25.462	47.274	0.153					
Final	concentration	ns						
	ppm	ppm	intensity					
#1	0.00658	-0.01031	8.49					
#2	0.00066	-0.01788	3.76					
#3	0.00109	-0.04333	2.70					
Mean	0.00278	-0.02384	4.98					
%RSD	118.77357	72.56339	61.77					

							Zoon
Method	: EPA3 dl : CCB		File : it102	609ml	Printed	: 10/27/2009	8:12:58 AM
SampleI	dl : CCB		SampleId2			[FLEXQC]	
Analysı	s commenced : n ratio : 1.0	10/27/2009	2:45:58 AM				
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	oed intensiti	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.071	0.002	0.000	0.003	0.001	0.000	0.002
#2	0.072	0.002	0.000	0.003	0.001	0.000	0.002
#3 Mean	0.071	0.002	0.000	0.003	0.001	0.000	0.002
%RSD	0.339	12.904	Reading 0.000 0.000 0.000 0.000 48.662	8.388	13.168	177.170	2.634
Final c							
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	1.26562	0.00486	0.00060	0.00344	0.00542	-0.00161	0.00006
#2	1.27389	0.00572	0.00115	0.00410	0.01015	-0.00102	0.00007
#3	1.26984	0.00568	0.00115	0.00340	0.00633	-0.00085	0.00003
Mean	1.26979	0.00542	0.00096	0.00364	0.00730	-0.00116	0.00005
%RSD	1.26562 1.27389 1.26984 1.26979	9.02690	32.75634	10.75229	34.39502	34.43363	41.17656
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2265
IS rati	oed_intensiti	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.004	0.018	-0.001	-0.003	-0.029	0.008	0.003
#2	0.004	0.019	0.000	-0.003	-0.026	0.008	0.004
Moon Moon	0.004	0.019	0.000	-0.003	-0.026	0.008	0.004
%RSD	Reading 0.004 0.004 0.004 0.004 3.043	3.343	52.015	4.885	5.512	3.288	13.686
	ppm	ppm	ppm	ppm	ppm	ppm	ppm
#1	0.00143	0.72613	0.00138	-0.00202	-0.01078	-0.00943	0.00050
#2	0.00168	0.91841	0.00302	-0.00182	-0.00767	-0.00800	0.00074
#3	0.00198	0.85110	0.00332	-0.00222	-0.00670	-0.00848	0.00067
Mean	0.00169	0.83188	0.00257	-0.00202	-0.00838	-0.00864	0.00064
%RSD	0.00143 0.00168 0.00198 0.00169 16.24234	11.72867	40.63725	9.87872	25.43317	8.42393	19.84807
			Ag3280				
IS rati	oed intensiti	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	-0.001	0.001	-0.013	0.003	0.008	0.031	0.000
#2	0.000	0.001	-0.011	0.004	0.008	0.032	0.000
#3	0.000	0.001	-0.012	0.003	0.008	0.032	0.000
%RSD	oed intensiti Reading -0.001 0.000 0.000 0.000 33.133	10.025	4.681	1.833	1.197	1.659	240.948
m 1							
	ppm	mqq	mag	mqq	mag	mqq	mag
#1	0.00262	0.00019	0.00010	0.03169	-0.02837	-0.03993	-0.01302
#2	0.00291	0.00028	0.00110	0.03341	-0.02342	-0.03563	-0.00355
#3	0.00328	0.00024	0.00067	0.03267	-0.02407	-0.03555	0.00022
Mean	0.00294	0.00024	0.00062	0.03259	-0.02529	-0.03704	-0.00545
%RSD	0.00262 0.00291 0.00328 0.00294 11.36881	18.02433	80.85451	2.65215	10.65254	6.76309	125.07587
		Mo2020					
IS rati	oed intensiti	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1	0.000	0.003	-0.012	0.000	0.000	0.035	-0.099
#2	0.001	0.003	-0.010	0.000	0.000	0.029	-0.101
#3 Mana	0.001	0.003	-0.010	0.000	0.000	0.030	-0.128
#3 Mean %RSD	oed intensiti Reading 0.000 0.001 0.001 0.001 5.446	15.130	9.843	0.153	0.000	9.473	-0.109 14.877
	oncentrations						
. IIIaI C			ppm	ppm	ppm	ppm	ppm

Raw Data MA23347 page 226 of 235

Method	: FDAR		File : itl0	2609m1	Drinted :	10/27/2009	8:12:58 A
MHAIYSI	dl : ICSA s commenced n ratio : 1.	· 10/2//200	File : it10 SampleId 9 2:52:16 AM 00000	2 :	Filliced .	[FLEXQC]	0.12.30 A
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be313
IS rati	oed intensit	ies					
	Reading	Reading	Reading -0.001 0.000 -0.001 -0.001 16.057	Reading	Reading	Reading	Readin
#1 #2	0.076	0.000	-0.001	0.006	19.578	-0.012	0.00
#3	0.076	0.000	-0.000	0.007	19.730	-0.012	
Mean	0.076	0.000	-0.001	0.006	19.647	-0.012	0.00
%RSD	0.279	140.722	16.057	6.565	0.390	0.500	3.96
Final c	oncentration	s					pp
#1	-0.03188	-0.00027	-0.00071	0.00718	558.17111	0.00908	0.0000 0.0001
#2	-0.03227	0.00045	-0.00026	0.00775	562.48528	0.00985	0.0001
#3	-0.03427	-0.00008	-0.00116	0.00651	559.72797	0.00890	0.0000
Mean	-0.03281	0.00003	ppm -0.00071 -0.00026 -0.00116 -0.00071 63.60401	0.00715	0.12812	0.00890 0.00928 5.43311	0.0000
arsu							
			Pd3404	As1890	T11908	Sb2068	Cd226
IS rati	oed intensit Reading	ies Reading	Reading	Reading	Reading	Reading	Readir
#1	0.005	0.018	-0.001	-0.003	0.056	0.012	0.03
#2	0.005	0.020	0.000	-0.002	0.056	0.013	0.03
#3 Mean	0.005	0.018	-0.001	-0.005	0.054	0.013	0.0:
%RSD	0.990	5.944	Reading -0.001 0.000 -0.001 -0.001 57.568	41.427	2.608	2.245	1.61
Final c	oncentration						
#1	ppm	ppm	ppm 0.00008 0.00186 -0.00180 0.00005 3776.76221	ppm	ppm	ppm	0.0038
#2	0.00027	0.07381	0.00008	0.00158	0.00472	0.00011	0.0041
#3	0.00005	-0.24117	-0.00180	-0.00121	0.00101	0.00130	0.0039
Mean	0.00017	-0.12234	0.00005	0.00098	0.00329	0.00099	0.0039
%RSD							
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe271
IS rati	oed intensit	ies	D	D4:	D	D	D41-
#1	0.000	0.018	-0.011	29.009	17.975	0.035	3.64
#2	0.000	0.018	-0.011	29.236	18.048	0.037	3.6
#3	0.000	0.018	-0.011	29.059	18.037	0.035	3.6
Mean %RSD	56.845	0.018	Reading -0.011 -0.011 -0.011 -0.011 3.318	29.236 29.059 29.101 0.410	0.218	2.014	0.43
Final c							
#1	ppm	ppm	mqq o.o.o.o.o	ppm	ppm	ppm	204.2329
#1 #2	0.01106	0.00415	0.00312	402.00910	487.97161	-0.050/0	204.2329
#3	0.01059	0.00418	0.00258	403.36682	487.67143	-0.05009	204.7656
Mean %RSD	0.01078	0.00417	0.00312 0.00316 0.00258 0.00295 10.97868	403.95306	487.21313	-0.04848 6.88964	204.9673
	Mn2576	Mo2020	Sn1899 Reading -0.007 -0.005 -0.008 -0.007 19.498		Se1960	1960/2	1960/
TC vati	oed intensit	ion					22 307
	Reading	Reading	Reading	Reading	Reading	Reading -0.034 -0.024	Readir
#1	0.000	0.003	-0.007	0.000	0.000	-0.034	-0.11
#2 #3	0.000	0.005	-0.005	0.000	0.000	-0.024 -0.027	-0.12 -0.11
#3 Mean	0.000	0.002	-0.008	0.000	0.000 0.000 7.406	-0.027	-0.11
%RSD	14.391	42.676	19.498	0.144	7.406	-0.028 19.294	4.52
Final c	oncentration	s _	_				
	ppm	ppm	ppm	ppm	ppm	ppm	PE

Raw Data MA23347 page 228 of 235

							■ Zoom I	1 1
							Zoom O	ut
Printed:	10/27/2009 8	:12:58 AM	User: Accut	est				
#1	0.00327	0.00688	-0.00152	-0.00507	0.00784	0.00948	0.00455	
#2	0.00342	0.00872	0.00167	0.00722	0.01548	0.02585	-0.00527	
#3	0.00331	0.00619	-0.00366	0.00430	0.01329	0.02107	-0.00228	
Mean	0.00334	0.00726	-0.00117	0.00215	0.01220	0.01880	-0.00100	
%RSD	2.35678	17.95537	229.42509	298.72286	32.24516	44.77682	503.09648	
	2203/2	2203/1	INT STD					
IS rat	ioed intensit	ties						
	Reading	Reading	Reading					
#1	-0.160	0.667	52201.000					
#2	-0.131	0.668	52052.000					
#3	-0.136	0.661	52140.000					
Mean	-0.142	0.665	52131.000					
%RSD	10.778	0.516	0.144					
Final	concentration	ns						
	mqq	mqq	intensity					
#1	0.01530	-0.04583	2.12					
#2	0.03438	-0.04710	-2.34					
#3	0.03098	-0.04904	5.12					
Mean	0.02689	-0.04732	1.64					
%RSD	37.84304	3.42323	229.43					

Raw Data MA23347 page 229 of 235

Raw Data MA23347 page 231 of 235

			9					
								◀ Zoom In I
								Zoom Out
Deci	ntod:	10/27/2009 8::	12.E0 NM	User: Accute	at			
FI.	#1	0.49101	0.49693		1.07838	1.09956	1.10863	1.08141
	#2	0.48764				1.09954	1.11109	1.07645
	#3			-0.00326	1.07127	1.09774	1.10409	1.08505
	Mean	0.48873	0.49521	-0.00369	1.07275	1.09895	1.10793	1.08097
	%RSD	0.40338	0.34320	44.24607	0.47113	0.09474	0.32024	0.39940
		2203/2	2203/1	INT STD				
	IS rat:	ioed intensit:	ies					
		Reading	Reading	Reading				
	#1	1.555	3.011	51028.000				
	#2	1.551	2.956	51163.000				
	#3	1.544	2.995					
	Mean	1.550	2.987	51145.000				
	%RSD	0.371	0.933	0.213				
	Final o	concentrations						
		ppm	ppm	intensity				
	#1	1.11301	1.00911	3.22				
	#2	1.10973	0.98634	7.66				
	#3	1.10492	1.00399	4.56				
	Mean %RSD	1.10922 0.36702	0.99981	5.15 44.25				
	anSD	0.36/02	1.194/1	44.25				

							■ Zoon
							Zoom
Analvsı	: EPA3 dl : ICSAB s commenced : n ratio : 1.0	10/27/2009	9 2:58:34 AM	2609ml 2 :	Printed	: 10/27/2009 [FLEXQC]	8:12:59 AM
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be3130
IS rati	oed intensiti	es					
#1	Reading	Reading	Reading	Reading	Reading	Reading	Reading 1.094
#2	0.074	0.495	0.105	0.334	19.099	0.089	1.086
#3 Mean	0.074	0.494	0.105	0.334	19.077	0.089	1.084
%RSD	0.907	0.840	Reading 0.107 0.105 0.105 0.106 0.778	0.478	0.474	0.487	0.485
Final c	ongontrations						
#1	-u usseu	1 00036	0 49946	ppm 0 49744	Evo evano	ppm 0 51601	ppm 0.52329
#2	-0.03500	0.99540	0.49423	0.49339	544.50864	0.51317	0.51939
#3	-0.04676	0.99266	0.49199	0.49325	543.88553	0.51220	0.51855
Mean %RSD	ppm -0.03380 -0.04514 -0.04676 -0.04190 16.85237	0.99881	0.49523	0.49469	0.47374	0.51409	0.52041 0.48622
			Pd3404				
IS rati	oed intensiti	es					
	Reading 0.218 0.218 0.218 0.218 0.218 0.098	Reading	Reading	Reading	Reading	Reading	Reading
#1 #2	0.218	0.015	0.114	0.747	0.752	0.429	4.042
#3	0.218	0.013	0.113	0.736	0.748	0.424	4.019
Mean	0.218	0.013	0.113	0.741	0.749	0.426	4.023
%RSD	0.098	8.576	0.659	0.730	0.316	0.596	0.435
Final c	oncentrations	ppm	maa	ppm	maa	mqq	ppm
#1	0.49108	-0.53759	0.50993	1.05462	1.01243	ppm 1.15093 1.13777	1.06135
#2 #3	0.49014	-0.83338	0.50486	1.04408	1.00701	1.13777	1.05236 1.05514
Mean	0.49056	-0.73915	0.50993 0.50486 0.50372 0.50617 0.65409	1.04619	1.00904	1.14300	1.05629
%RSD	0.09725	23.63253	0.65409	0.72591	0.29271	0.61060	0.43556
	Ni2316	Ba4934	Ag3280	Ca3179	Al3082	Si2881	Fe2714
IS rati	oed intensiti	es Peading	Peading	Peading	Peading	Reading	Peading
#1	0.445	0.666	1.134	28.754	18.278	0.035	3.577
#2	0.442	0.666	1.130	28.523	18.244	0.033	3.550
#3 Mean	0.441	0.665	1.129	28.468	18.215	0.034	3.547
%RSD	0.446	0.076	Reading 1.134 1.130 1.129 1.131 0.215	0.531	0.173	2.082	0.460
Final c	oncentrations						
#1	ppm 0.99141	0.48704	ppm 1.03494	ppm 399.08806	ppm 494.20609	-0.04927	ppm 200.50214
#2	0.98652	0.48702	1.03151	395.88551	493.28725	-0.05584	199.00394
#3	0.98265	0.48641	1.03083	395.11576	492.49595	-0.05308	200.50214 199.00394 198.82726 199.44445
Mean %RSD	0.98686	0.48683	1.03494 1.03151 1.03083 1.03242 0.21332	0.53105	0.17349	-0.05273 6.25462	0.46140
	Mn2576	Mo2020					1960/1
IS rati	oed intensiti	es					
	Reading	Reading	Reading	Reading	Reading	Reading	Reading
#1 #2	0.290	0.554	Reading -0.008 -0.010 -0.008 -0.009	0.000	0.000	0.712	1.005
	0.288	0.552 0.550 0.552	-0.008	0.000 0.000 0.000	0.000	0.714 0.709 0.712	1.009
Mean			-0.009	0.000 9.233	0.000 0.000 0.000 0.213	0.712	
%RSD	0.404	0.341	8.978	9.233	0.213	0.330	0.448
	oncentrations						
Final c	ppm		ppm		ppm		mqq

Raw Data	MΔ23347	nage 230	of 235

Method :	EPA3	1	File : it102	609ml	Printed :	10/27/2009	8:12:59
Analysis	commenced	: 10/27/2009 00000 to 1.0	3:04:53 AM			[FLEXQC]	
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be31
IS ratio	ed intensit	ies					
#1	Reading 2.287	Reading 1.073	Reading 0.449	Reading 1.405	Reading 1.511	Reading 0.414	Readin 4.4
#2	2.272	1 085	0.451	1.409	1.516	0.415	4.4
#3	2.289	1.091	0.455	1.419	1.525 1.517	0.418 0.416	4.5
Mean	2.283	1.083	0.455 0.452 0.584	1.419 1.411 0.486	1.517 0.476	0.416	4.4
%RSD	0.410		0.584	0.486	0.4/6	0.498	0.5
Final co	oncentration ppm		ppm	nnm	ppm	maga	p
#1	38.38412	2.15821	2.09958	ppm 2.08185 2.08692	43.07955		2.140
#2	38.14138	2.18174	2.10717	2.08692	43.23099	2.09648	2.144
#3 Mean	38.43331	2.19427	2.12367	2.08692 2.10142 2.09006	43.48705	2.11184 2.10006	2.163
Mean %RSD	0.40787	2.15821 2.18174 2.19427 2.17808 0.84052	0.58387	0.48611	43.48705 43.26586 0.47607	0.49814	0.582
		Na3302		As1890			
TO 1			rustut	NO1030	111900	302000	C422
TP LUCIO	ed intensit Reading	Reading	Reading	Reading	Reading	Reading	Readi
#1	0.838	0.268	0.427	Reading 1.451 1.465	1.376	0.780	8.4
#2	0.835	0.270	0.426	1.465	1.387	0.784	8.4
#3 Mean	0.841	0.269	0.429 0.427	1.476	1.389	0.791 0.785	8.5 8.4
%RSD	0.392	0.297	0.403	0.850	0.507	0.717	0.7
Final co	ncentration						
#1	ppm 1.91747	40 77126	ppm 1.90640	2.04806	ppm 2.00827	ppm 2.13185	2.216
#2	1.90992	41.00331	1.90397	2.06713	2.02460	2.14190	2.210
#3	1.92500	41.00331 40.97484 40.91647 0.30933	1.91834 1.90957 0.40270	2.08296	2.02665 2.01984 0.49879	2.16239	2.249
Mean	1.91746	40.91647	1.90957	2.06605	2.01984	2.14538	2.233
%RSD						0.72559	0.736
	Ni2316	Ba4934	Ag3280	Ca3179	A13082	Si2881	Fe27
IS ratio	ed intensit	ies	Ponding	Ponding	Ponding	Ponding	Pondi
#1	0.968	Reading 2.569 2.552	0.269	3.118	1.468	1.180	0.7
				3.134			
#3 Mean	0.975	2.575 2.566	0.270	3.153 3.135	1.474	1.190 1.183	0.7
%RSD	0.445	0.466	0.333		0.450	0.524	0.7
Final co	ncentration	s					
#1	2 14242	ppm 1.91244 1.89979 1.91695	0 25420	12 11246	20 2250E	ppm 5.47910	41.822
#2	2.14459	1.89979	0.25425	43.33329	39.14372	5.47375	
#3	2.16053	1.91695	0.25563	43.60231	39.49914	5.52787	42.279
Mean %RSD	2.14951		0.25469	43.34968	39.32623 0.45238	5.49357 0.54284	42.034
ucas.							
	Mn2576		Sn1899	Pb2203	Se1960	1960/2	1960
IS ratio	ed intensit		D	D4:	D	Reading	Readi
#1	Reading 1.202	Reading 2.269	Reading 0.986	Reading 0.000	Reading 0.000	Reading 1.481	Readi 2.0
#2	1.203	2.273	0.991	0.000	0.000	1.442	2.0
#3	1.211	2.290	0.998	0.000	0.000	1.476	2.0
Mean %RSD	1.206 0.415	2.277 0.496	0.992 0.615	0.000 11.258	0.000 0.479	1.466	2.0
Final co	ncentration	s					
	ppm	ppm	ppm	ppm	ppm	ppm	p

Raw Data MA23347 page 232 of 235

							¬ ∠oom ii	1 "
							Zoom O	ut
Printed: 1	0/27/2009 8:	12:59 AM	User: Accute	st				
#1	2.01671	2.01520	2.11052	2.23391	2.14012	2.17142	2.07750	
#2	2.01792	2.01868	2.12300	2.18070	2.09554	2.11310	2.06043	
#3	2.03182	2.03407	2.13640	2.21699	2.13434	2.16390	2.07523	
Mean	2.02215	2.02265	2.12331	2.21053	2.12333	2.14947	2.07106	
%RSD	0.41531	0.49652	0.60970	1.22979	1.14162	1.47599	0.44754	
	2203/2	2203/1	INT STD					
IS rati	oed intensit	ies						
	Reading	Reading	Reading					
#1	3.569	4.967	57468.000					
#2	3.467	4.902	57997.000					
#3	3.530	4.966	57592.000					
Mean	3.522	4.945	57685.667					
%RSD	1.463	0.749	0.480					
Final c	oncentration							
	ppm	ppm	intensity					
#1	2.28466	2.13239	-2947.98					
#2	2.21915	2.10380	-2965.42					
#3	2.25945	2.13208	-2984.14					
Mean %RSD	2.25442 1.46576	2.12276 0.77341	-2965.85 0.61					
*RSD	1.465/6	0.//341	0.61					

Raw Data MA23347 page 233 of 235

Raw Data MA23347 page 235 of 235

#3 0.00049 -0.00099 -0.00418 -0.00245 -0.00225 0.001 Mean 0.00065 0.00066 -0.00229 -0.00117 0.00053 0.006	#1	0.00080	0.00290	0.00003	0.00031	0.00437	0.01163	-0.010
Mean 0.00065 0.00066 -0.00229 -0.00117 0.00053 0.006 %RSD 24.09028 302.39509 93.32901 118.60489 645.01000 83.745 IS ratioed intensities Reading #1 0.024 0.114 59086.000 9.918	#2	0.00066	0.00009	-0.00273	-0.00139	-0.00052	0.00540	-0.012
#RSD 24.09028 302.39509 93.32901 118.60489 645.01000 83.745 2203/2 2203/1 INT STD IS ratioed intensities #1 0.024 0.114 59086.000 #2 0.021 0.111 58884.000 #2 0.021 0.111 58884.000 #8RSD 16.396 1.938 59045.000 #RRSD 16.396 1.938 59045.000 #RRSD 16.396 1.938 10.010 #RRSD 25045.000 0.181 Final concentrations #### 1 0.00037 0.0007 0.0007 #### 2 0.00146 -0.001109 0.818 #### 1 0.000346 -0.001109 0.818							0.00142	-0.009
2203/2 2203/1 INT STD							0.00615	-0.010
IS ratioed intensities Reading Reading Reading 1 0.024 0.114 59085.000 2 0.017 0.115 59085.000 3 0.021 0.115 59045.000 4 0.021 0.113 59045.000 4 0.021 0.113 59045.000 5 0.001 0.113 59045.000 6 0.001 0.113 59045.000 7 0.001 0.113 0.001 8 0.001 0.113 0.001 8 0.001 0.001 0.001 8 0.00034 0.00937 0.004 9 0.00034 0.00093 0.00930 0.84 9 0.00034 0.00093 0.00930 0.84 9 0.00034 0.00093 0.00930 0.84 9 0.00034 0.00093 0.00930 0.00930 0.00930 9 0.00034 0.00034 0.00930 0.00930 0.00930 9 0.00034 0.00034 0.00930 0.00930 0.00930 9 0.00034 0.00034 0.00930 0.00930 0.00930 9 0.00034 0.00034 0.00930 0.00930 0.00930 9 0.00034 0.00034 0.00930 0.00930 0.00930 9 0.00034 0.00034 0.00034 0.00034 0.00034 9 0.00034 0.00034 0.00034 0.00034 0.00034 9 0.00034 0.00034 0.00034 0.00034 0.00034 9 0.00034 0.00034 0.00034 0.00034 0.00034 9 0.00034 0.00034 0.00034 0.00034 0.00034 9 0.00034 0.00034 0.00034 0.00034 0.00034 9 0.00034 0.00034 0.00034 0.00034 0.00034 9 0.00034 0.00034 0.00034 0.00034 0.00034 9 0.00034 0.00034 0.00034 0.00034 0.00034 0.00034 9 0.00034 0.0	%RSD	24.09028	302.39509	93.32901	118.60489	645.01000	83.74573	13.610
Reading Readin		2203/2	2203/1	INT STD				
#1 0.024 0.114 59086.000 #2 0.021 0.111 58884.000 #3 0.017 0.115 59045.000 Wean 0.021 0.113 59005.000 WRSD 16.396 1.938 0.181 Final concentrations pmm intensity #1 0.00531 -0.00967 -0.04 #2 0.00346 -0.01109 3.81 #3 0.0093 -0.00920 5.84	IS ratio	ed intensi	ties					
#2 0.021 0.111 58884.000 #3 0.017 0.115 59045.000 Mean 0.021 0.113 59005.000 RSD 16.396 1.938 0.181 Final concentrations pm pm intensity #1 0.00531 -0.00967 -0.04 #2 0.00346 -0.01109 3.81 #3 0.00093 -0.00920 5.84		Reading	Reading	Reading				
#3 0.017 0.115 59045.000 Mean 0.021 0.113 59045.000 RRSD 16.396 1.938 0.181 Final concentrations pm								
Mean 0.021 0.113 59005.000 %RSD 16.396 1.938 0.181 Final concentrations pmm ppm pm pintensity #1 0.00531 -0.0967 -0.04 #2 0.0346 -0.01109 3.81 #3 0.0093 -0.0920 5.84								
#RSD 16.396 1.938 0.181 Final concentrations ppm intensity #1 0.00346 -0.09567 -0.04 #2 0.00346 -0.09109 3.81 #3 0.00939 -0.00920 5.84	#3							
Final concentrations ppm ppm intensity #1 0.00531 -0.00967 -0.04 #2 0.00346 -0.01109 3.81 #3 0.00093 -0.00920 5.84								
ppm ppm intensity #1 0.00531 -0.00967 -0.04 #2 0.00346 -0.01109 3.81 #3 0.00093 -0.00920 5.84	%RSD	16.396	1.938	0.181				
#1 0.00531 -0.00967 -0.0 ⁴ #2 0.00346 -0.01109 3.81 #3 0.00093 -0.00920 5.84	Final co	ncentration	ns					
#2 0.00346 -0.01109 3.81 #3 0.00093 -0.00920 5.84								
#3 0.00093 -0.00920 5.84								
Mean 0.00323 -0.00999 3.20								
%RSD 68.01268 9.83727 93.33	%RSD	68.01268	9.83727	93.33				

Analysis	: EPA3 dl : CCB s commenced n ratio : 1.	: 10/27/200	9 3:11:11 AM	2609ml 2 :	Printed	: 10/27/2009 [FLEXQC]	8:12:59
	K 7664	Zn2062	Co2286	Cr2677	Mg2790	V 2924	Be 3
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading	Reading	Reading 0.000	Read
#1	0.071	0.003	0.000	0.003	0.002	0.000	0.
#2							
#3	0.070	0.002	0.000	0.002	0.001	0.000	0. 0.
Mean %RSD	1.076	17.354	1137.826	22.843	22.058	0.000 0.000 144.134	5.
Final co	oncentration	ıs					
	ppm	ppm	ppm	ppm	ppm	ppm 0.00061 -0.00016 -0.00127 -0.00027 347.95488	
#1	1.26625	0.00700	0.00281	0.00366	0.04664	0.00061	0.00
#2	1.25907	0.00637	0.00193	0.00270	0.03715	-0.00016	0.00
#3	1.24131	0.00540	0.00043	0.00193	0.02542	-0.00127	0.00
Mean %RSD	1.25554	0.00625	0.00172	0.00276	0.03641	-0.00027	0.00
*RSD							
	Cu3247	Na3302	Pd3404	As1890	T11908	Sb2068	Cd2
IS ratio	oed intensit	ies					
	Reading	Reading	Reading	Reading 0.001	Reading	Reading	Read
#1	0.004	0.021	0.000	0.001	-0.020	0.013	0.
#2		0.020	0.000	-0.001	-0.023	0.011	0.
#3	0.004	0.018	-0.001	-0.002	-0.025	0.009	0.
Mean %RSD	0.004 0.004 6.252	8.821	0.000 -0.001 0.000 305.190	312.218	-0.025 -0.025 -0.022 11.773	0.011 0.009 0.011 18.993	0. 37.
Final co	oncentration	18					
	ppm	ppm	ppm	ppm	ppm	ppm 0.00480 -0.00071 -0.00657	0.00
#1	0.00226	1.26516	0.00631	0.00353	0.00218	0.00480	0.00
#2	0.00187	1.05374	0.00398	0.00117	-0.00211	-0.00071	0.00
#3	0.00114	0.72289	0.00066	-0.00072	-0.00534	-0.00657	0.00
Mean %RSD	32.36606	26.95613	77.82561	160.70527	214.36950	ppm 0.00480 -0.00071 -0.00657 -0.00083 687.83760	51.17
		Ba4934		Ca3179			
			3				
is ratio	oed intensit	.ies Peading	Peading	Peading	Peading	Peading	Pead
#1	0 000	0 001	=0.011	0 006	0.010	0.033	n n
#2	0.000	0.001	-0.012	0.006	0.010	0.033	0.
#3	-0.001	0.001	-0.013	0.005	0.009	0.031	ö.
Mean	-0.001 0.000 404.856	0.001	-0.012	0.005	0.009	0.032	Ö.
%RSD	404.856	22.346	-0.012 -0.013 -0.012 9.071	5.687	3.629	Reading 0.033 0.032 0.031 0.032 2.934	42.
Final co	oncentration	ıs					
#1	0 00477	o ooos4	n noise	0 06476	0 01254	-0 03136	0.05
#1	0.004//	0.00054	0.00185	0.06476	0.01254	-0.03136	0.05
#3	0.00376	0.00039	-0.00075	0.05622	-0.00559	-0.03495	0.02
Mean	0.00366	0.00040	0.00084	0.06068	0.00450	-0.03555	0.01
%RSD	31.77681	33.02250	113.43528	7.06005	205.22934	ppm -0.03136 -0.03495 -0.04034 -0.03555 12.71966	53.86
		Mo2020		Pb2203			
	oed intensit	ies					
IS ratio	Reading	Reading	Reading	Reading	Reading	Reading	Read
		0.007	-0.009	0.000	0.000	0.037	-0.
#1	0.001			0 000	0.000	0.033	-0.
#1 #2	0.001	0.004	-0.010	0.000			
#1 #2 #3	0.001 0.001 0.001	0.004	-0.010	0.000	0.000	0.030	-0.
#1 #2	0.001 0.001 0.001 0.001 14.583	0.004 0.002 0.004 53.848	-0.010 -0.011 -0.010 10.133	0.000 0.000 10.701	0.000 0.000 0.181	0.030 0.033 10.487	-0. -0. 1.
#1 #2 #3 Mean %RSD	0.001 0.001 0.001 0.001 14.583	Reading 0.007 0.004 0.002 0.004 53.848	-0.010 -0.011 -0.010 10.133	0.000 0.000 10.701	0.000 0.000 0.181	0.030 0.033 10.487	-0. -0. 1.

Raw Data MA23347 page 234 of 235

◀ Zoom In Zoom Out

	Date of last regression	5/13/2005 12:16:44 PM	5/13/2005 12:16:44 PM	5/13/2005 12:16:44 PM	5/13/2005 12:16:44 PM	9/9/2009 10:19:49 AM	9/9/2009 10:25:58 AM	9/9/2009 10:20:06 AM	9/9/2009 10:19:57 AM	9/9/2009 10:24:29 AM	9/9/2009 10:24:04 AM	9/9/2009 10:23:27 AM	9/9/2009 10:23:38 AM	9/9/2009 10:22:52 AM	9/9/2009 10:23:03 AM	9/9/2009 10:22:41 AM	9/9/2009 10:21:49 AM	9/9/2009 10:20:30 AM	9/9/2009 10:24:16 AM	9/9/2009 10:24:50 AM	9/9/2009 10:20:38 AM	9/9/2009 10:25:09 AM	9/9/2009 10:24:59 AM	9/9/2009 10:20:18 AM	9/9/2009 10:23:50 AM	9/9/2009 10:23:16 AM	9/9/2009 10:22:31 AM	9/9/2009 10:22:22 AM	9/9/2009 10:22:12 AM	9/9/2009 10:22:02 AM	9/9/2009 10:21:00 AM
	Correlation coefficient	0.990	0.990	0.990	0.990	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	ឌ	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
n information	٥	-0.66667	-0.33333	-0.66667	-0.33333	0.0000136	-0.0003754	0.0002289	-0.0004137	0.0215109	0.0000712	0.000064	-0.0517855	-0.0159611	-0.0000953	0.0002265	0.0018296	0.0011113	0.0000006	-0.0006408	-0.0000015	0.0000809	-0.0000039	0.0000191	-0.0000187	0.0000172	0.0000117	0.0000155	0.000067	-0.0000041	0.000001
Interference calibration inform	Interfering name	1960/2	1960/1	2203/2	2203/1	Sn1899																									
Interfere	Interfered name	Se1960	Se1960	Pb2203	Pb2203	1960/2	1960/1	2203/2	2203/1	Si2881	Pd3404	Mo2020	Na3302	K 7664	Mg2790	Fe2714	Ca3179	Al3082	Sb2068	TI1908	As1890	Zn2062	V 2924	Ag3280	Ni2316	Mn2576	Cu3247	Cr2677	Co2286	Cd2265	Be3130

Ba4934	Sn1899	0.0000143	0.0	0.0	1.000	9/9/2009 10:26:06 AM
INT STD	Sn1899	1396.8066667	0.0	0.0	1.000	5/20/2005 10:55:22 AM
1960/2	Si2881	0.0000311	0.0	0.0	1.000	9/9/2009 10:19:49 AM
1960/1	Si2881	-0.0002404	0.0	0.0	1.000	9/9/2009 10:25:58 AM
2203/2	Si2881	0.0001581	0.0	0.0	1.000	9/9/2009 10:20:06 AM
2203/1	Si2881	0.0040454	0.0	0.0	1.000	9/9/2009 10:19:57 AM
Sn1899	Si2881	-0.0000242	0.0	0.0	1.000	9/9/2009 10:24:39 AM
Pd3404	Si2881	0.0000554	0.0	0.0	1.000	9/9/2009 10:24:04 AM
Mo2020	Si2881	0.0000498	0.0	0.0	1.000	9/9/2009 10:23:27 AM
Na3302	Si2881	-0.0488485	0.0	0.0	1.000	9/9/2009 10:23:39 AM
K 7664	Si2881	-0.0164	0.0	0.0	1.000	9/9/2009 10:22:52 AM
Mg2790	Si2881	-0.0001295	0.0	0.0	1.000	9/9/2009 10:23:03 AM
Fe2714	Si2881	-0.020319	0.0	0.0	1.000	9/9/2009 10:22:41 AM
Ca3179	Si2881	0.0010626	0.0	0.0	1.000	9/9/2009 10:21:50 AM
Al3082	Si2881	0.0050222	0.0	0.0	1.000	9/9/2009 10:20:30 AM
Sb2068	Si2881	-0.0000579	0.0	0.0	1.000	9/9/2009 10:24:17 AM
П1908	Si2881	-0.0003056	0.0	0:0	1.000	9/9/2009 10:24:50 AM
As1890	Si2881	0.0000421	0.0	0.0	1.000	9/9/2009 10:20:39 AM
Zn2062	Si2881	0.0000325	0.0	0.0	1.000	9/9/2009 10:25:09 AM
V 2924	Si2881	0.0000312	0.0	0.0	1.000	9/9/2009 10:24:59 AM
Ag3280	Si2881	0.0000144	0.0	0.0	1.000	9/9/2009 10:20:18 AM
Ni2316	Si2881	0.000000	0.0	0.0	1.000	9/9/2009 10:23:50 AM
Mn2576	Si2881	0.0000145	0.0	0.0	1.000	9/9/2009 10:23:16 AM
Cu3247	Si2881	-0.0000101	0.0	0.0	1.000	9/9/2009 10:22:31 AM
Cr2677	Si2881	0.0000177	0.0	0.0	1.000	9/9/2009 10:22:22 AM
Co2286	Si2881	0.000033	0.0	0.0	1.000	9/9/2009 10:22:12 AM
Cd2265	Si2881	-0.0000175	0.0	0.0	1.000	9/9/2009 10:22:02 AM
Be3130	Si2881	0.0000001	0.0	0.0	1.000	9/9/2009 10:21:00 AM
Ba4934	Si2881	0.0000073	0.0	0.0	1.000	9/9/2009 10:26:06 AM
1960/2	Mo2020	-0.0007303	0.0	0.0	9666.0	9/9/2009 10:19:49 AM
1960/1	Mo2020	0.0010543	0.0	0.0	0.9998	9/9/2009 10:25:58 AM
2203/2	Mo2020	-0.0019132	0.0	0.0	1.000	9/9/2009 10:20:06 AM
2203/1	Mo2020	-0.0027964	0.0	00	9000	9/9/2009 10:19:58 AM
)	9	0.000	JI JI 7000 10.10.00 1 11.10

	i					
Si2881	Mo2020	-0.0015504	0.0	0.0	0.9915	9/9/2009 10:24:29 AM
Pd3404	Mo2020	-0.0002088	0.0	0.0	0.9981	9/9/2009 10:24:04 AM
Na3302	Mo2020	-0.0701081	0.0	0.0	1.000	9/9/2009 10:23:39 AM
K 7664	Mo2020	0.0094015	0.0	0.0	1.000	9/9/2009 10:22:53 AM
Mg2790	Mo2020	-0.0005835	0.0	0.0	0.9999	9/9/2009 10:23:03 AM
Fe2714	Mo2020	0.001607	0.0	0.0	1.000	9/9/2009 10:22:42 AM
Ca3179	Mo2020	0.0015941	0.0	0.0	9666.0	9/9/2009 10:21:50 AM
Al3082	Mo2020	0.001328	0.0	0.0	0.9678	9/9/2009 10:20:30 AM
Sb2068	Mo2020	-0.0072638	0.0	0.0	9666.0	9/9/2009 10:24:17 AM
П1908	Mo2020	-0.0005498	0.0	0.0	1.000	9/9/2009 10:24:51 AM
As1890	Mo2020	-0.0002733	0.0	0.0	0.9998	9/9/2009 10:20:39 AM
Zn2062	Mo2020	0.0004388	0.0	0.0	1.000	9/9/2009 10:25:10 AM
V 2924	Mo2020	0.0001397	0.0	0.0	0.9999	9/9/2009 10:24:59 AM
Ag3280	Mo2020	-0.0000211	0.0	0.0	1.000	9/9/2009 10:20:19 AM
Ni2316	Mo2020	-0.000124	0.0	0.0	0.9999	9/9/2009 10:23:50 AM
Mn2576	Mo2020	0.0001081	0.0	0.0	0.9955	9/9/2009 10:23:16 AM
Cu3247	Mo2020	0.0003033	0.0	0.0	0.9999	9/9/2009 10:22:32 AM
Cr2677	Mo2020	0.0000598	0.0	0.0	1.000	9/9/2009 10:22:22 AM
Co2286	Mo2020	-0.0030034	0.0	0.0	0.9976	9/9/2009 10:22:13 AM
Cd2265	Mo2020	-0.0000109	0.0	0.0	1.000	9/9/2009 10:22:03 AM
Be3130	Mo2020	-0.0002864	0.0	0.0	0.9967	9/9/2009 10:21:00 AM
Ba4934	Mo2020	-0.0000007	0.0	0.0	0.9999	9/9/2009 10:26:06 AM
1960/2	Mg2790	-0.0000087	0.0	0.0	1.000	9/9/2009 10:19:50 AM
1960/1	Mg2790	0.0000148	0.0	0.0	1.000	9/9/2009 10:25:58 AM
2203/2	Mg2790	-0.0000765	0.0	0.0	1.000	9/9/2009 10:20:07 AM
2203/1	Mg2790	0.0001392	0.0	0.0	1.000	9/9/2009 10:19:59 AM
Sn1899	Mg2790	-0.0000025	0.0	0.0	1.000	9/9/2009 10:24:39 AM
Si2881	Mg2790	0.0000232	0.0	0.0	1.000	9/9/2009 10:24:29 AM
Pd3404	Mg2790	0.0000011	0.0	0.0	1.000	9/9/2009 10:24:04 AM
Mo2020	Mg2790	-0.0000023	0.0	0.0	1.000	9/9/2009 10:23:28 AM
Na3302	Mg2790	0.0014899	0.0	0.0	1.000	9/9/2009 10:23:39 AM
K 7664	Mg2790	0.00148	0.0	0.0	1.000	9/9/2009 10:22:53 AM
Fe2714	Mg2790	0.0000679	0.0	0.0	1.000	9/9/2009 10:22:42 AM
Ca3179	Mg2790	0.0001412	0.0	0.0	1.000	9/9/2009 10:21:50 AM

9/9/2009 10:20:31 AM	9/9/2009 10:24:17 AM	9/9/2009 10:24:51 AM	9/9/2009 10:20:39 AM	9/9/2009 10:25:10 AM	9/9/2009 10:25:00 AM	9/9/2009 10:20:19 AM	9/9/2009 10:23:50 AM	9/9/2009 10:23:17 AM	9/9/2009 10:22:32 AM	9/9/2009 10:22:22 AM	9/9/2009 10:22:13 AM	9/9/2009 10:22:03 AM	9/9/2009 10:21:01 AM	9/9/2009 10:26:06 AM	9/9/2009 10:19:50 AM	9/9/2009 10:25:58 AM	9/9/2009 10:20:07 AM	9/9/2009 10:19:59 AM	9/9/2009 10:24:39 AM	9/9/2009 10:24:29 AM	9/9/2009 10:24:04 AM	9/9/2009 10:23:28 AM	9/9/2009 10:23:39 AM	9/9/2009 10:22:53 AM	9/9/2009 10:23:04 AM	9/9/2009 10:21:51 AM	9/9/2009 10:20:31 AM	9/9/2009 10:24:17 AM	9/9/2009 10:24:51 AM	9/9/2009 10:20:40 AM	9/9/2009 10:25:10 AM	9/9/2009 10:25:00 AM	9/9/2009 10:20:19 AM
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0000437	0.0000042	-0.0000053	-0.0000087	-0.0000023	0.0000006	-0.0000006	-0.000003	-0.0000021	0.0000018	-0.0000003	0.0000005	0.0000004	0.0000001	0.0000057	-0.0006	-0.0000228	-0.0000193	0.0002069	0.0000558	0.0000121	-0.000002	-0.0000112	-0.0051433	-0.0032141	-0.0000444	0.0000916	0.0001083	0.0000047	0.0005	0.0000393	-0.0000022	-0.0003265	-0.000004
Mg2790	Mg2790	Mg2790	Mg2790	Mg2790	Mg2790	Mg2790	Mg2790	Mg2790	Mg2790	Mg2790	Mg2790	Mg2790	Mg2790	Mg2790	Fe2714																		
Al3082	Sb2068	T11908	As1890	Zn2062	V 2924	Ag3280	Ni2316	Mn2576	Cu3247	Cr2677	Co2286	Cd2265	Be3130	Ba4934	1960/2	1960/1	2203/2	2203/1	Sn1899	Si2881	Pd3404	Mo2020	Na3302	K 7664	Mg2790	Ca3179	Al3082	Sb2068	T11908	As1890	Zn2062	V 2924	Ag3280

Ni2316	Fe2714	-0.0000068	0.0	0.0	1.000	9/9/2009 10:23:50 AM
Mn2576	Fe2714	-0.0000008	0.0	0.0	1.000	9/9/2009 10:23:17 AM
Cu3247	Fe2714	0.000005	0.0	0.0	1.000	9/9/2009 10:22:32 AM
Cr2677	Fe2714	0.0000001	0.0	0.0	1.000	9/9/2009 10:22:23 AM
Co2286	Fe2714	-0.0000052	0.0	0.0	1.000	9/9/2009 10:22:13 AM
Cd2265	Fe2714	0.0000256	0.0	0.0	1.000	9/9/2009 10:22:03 AM
Be3130	Fe2714	0.0000001	0.0	0.0	1.000	9/9/2009 10:21:01 AM
Ba4934	Fe2714	0.000003	0.0	0.0	1.000	9/9/2009 10:26:07 AM
1960/2	Ca3179	0.0000267	0.0	0.0	1.000	9/9/2009 10:19:50 AM
1960/1	Ca3179	-0.0000451	0.0	0.0	1.000	9/9/2009 10:25:59 AM
2203/2	Ca3179	-0.0000536	0.0	0.0	1.000	9/9/2009 10:20:07 AM
2203/1	Ca3179	0.0000821	0.0	0.0	1.000	9/9/2009 10:19:59 AM
Sn1899	Ca3179	-0.0000023	0.0	0.0	1.000	9/9/2009 10:24:40 AM
Si2881	Ca3179	0.0000162	0.0	0.0	1.000	9/9/2009 10:24:29 AM
Pd3404	Ca3179	0.0000003	0.0	0.0	1.000	9/9/2009 10:24:05 AM
Mo2020	Ca3179	-0.0000039	0.0	0.0	1.000	9/9/2009 10:23:28 AM
Na3302	Ca3179	0.0011452	0.0	0.0	1.000	9/9/2009 10:23:39 AM
K 7664	Ca3179	0.0009439	0.0	0.0	1.000	9/9/2009 10:22:54 AM
Mg2790	Ca3179	-0.0000086	0.0	0.0	1.000	9/9/2009 10:23:04 AM
Fe2714	Ca3179	0.0001743	0.0	0.0	1.000	9/9/2009 10:22:42 AM
Al3082	Ca3179	0.0000461	0.0	0.0	1.000	9/9/2009 10:20:31 AM
Sb2068	Ca3179	0.0000015	0.0	0.0	1.000	9/9/2009 10:24:17 AM
TI1908	Ca3179	0.0000229	0.0	0.0	1.000	9/9/2009 10:24:51 AM
As1890	Ca3179	-0.0000054	0.0	0.0	1.000	9/9/2009 10:20:40 AM
Zn2062	Ca3179	0.0000041	0.0	0.0	1.000	9/9/2009 10:25:10 AM
V 2924	Ca3179	-0.0000006	0.0	0.0	1.000	9/9/2009 10:25:00 AM
Ag3280	Ca3179	-0.0000014	0.0	0.0	1.000	9/9/2009 10:20:20 AM
Ni2316	Ca3179	-0.0000062	0.0	0.0	1.000	9/9/2009 10:23:51 AM
Mn2576	Ca3179	-0.0000023	0.0	0.0	1.000	9/9/2009 10:23:17 AM
Cu3247	Ca3179	0.000001	0.0	0.0	1.000	9/9/2009 10:22:33 AM
Cr2677	Ca3179	-0.0000000	0.0	0.0	1.000	9/9/2009 10:22:23 AM
Co2286	Ca3179	0.0000001	0.0	0.0	1.000	9/9/2009 10:22:13 AM
Cd2265	Ca3179	-0.0000011	0.0	0.0	1.000	9/9/2009 10:22:03 AM
Be3130	Ca3179	0.0000000	0.0	0.0	1.000	9/9/2009 10:21:01 AM

9/9/2009 10:26:07 AM	9/9/2009 10:19:50 AM	9/9/2009 10:25:59 AM	9/9/2009 10:20:07 AM	9/9/2009 10:19:59 AM	9/9/2009 10:24:40 AM	9/9/2009 10:24:29 AM	9/9/2009 10:24:05 AM	9/9/2009 10:23:28 AM	9/9/2009 10:23:39 AM	9/9/2009 10:22:54 AM	9/9/2009 10:23:04 AM	9/9/2009 10:22:43 AM	9/9/2009 10:21:51 AM	9/9/2009 10:24:17 AM	9/9/2009 10:24:51 AM	9/9/2009 10:20:40 AM	9/9/2009 10:25:10 AM	9/9/2009 10:25:00 AM	9/9/2009 10:20:20 AM	9/9/2009 10:23:51 AM	9/9/2009 10:23:17 AM	9/9/2009 10:22:33 AM	9/9/2009 10:22:23 AM	9/9/2009 10:22:13 AM	9/9/2009 10:22:03 AM	9/9/2009 10:21:01 AM	9/9/2009 10:26:07 AM	5/13/2005 12:16:44 PM	9/9/2009 10:19:51 AM	9/9/2009 10:25:59 AM	9/9/2009 10:20:07 AM	9/9/2009 10:19:59 AM	9/9/2009 10:24:40 AM
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.990	1.000	1.000	1.000	1.000	1.000
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0000014	0.0000286	-0.0000221	-0.0001225	0.0002665	-0.0000062	0.0000175	0.0000021	-0.0000044	0.0014403	0.001705	0.0001048	0.0025948	0.0001567	-0.0000014	-0.0000049	-0.0000096	0.0000041	-0.000003	-0.0000007	-0.0000017	-0.000004	0.0000018	0.0000037	0.0000007	0.0000014	0.0000003	0.0000091	0.0	0.0000262	-0.0004672	0.0001317	-0.000499	0.0000504
Ca3179	Al3082	Se1960	П1908	T11908	П1908	T11908	П1908																										
Ba4934	1960/2	1960/1	2203/2	2203/1	Sn1899	Si2881	Pd3404	Mo2020	Na3302	K 7664	Mg2790	Fe2714	Ca3179	Sb2068	TI1908	As1890	Zn2062	V 2924	Ag3280	Ni2316	Mn2576	Cu3247	Cr2677	Co2286	Cd2265	Be3130	Ba4934	As1890	1960/2	1960/1	2203/2	2203/1	Sn1899

- 11908	0.0001513	0.0	0.0	1.000	9/9/2009 10:24:30 AM
11908	0.0000324	0.0	0.0	1.000	9/9/2009 10:24:05 AM
- 1908	0.0000145	0.0	0.0	1.000	9/9/2009 10:23:28 AM
•	0.0488692	0.0	0.0	1.000	9/9/2009 10:23:40 AM
-	0.0160386	0.0	0.0	1.000	9/9/2009 10:22:54 AM
•	0.0003151	0.0	0.0	1.000	9/9/2009 10:23:04 AM
11908	0.0000286	0.0	0.0	1.000	9/9/2009 10:22:43 AM
11908	-0.000003	0.0	0.0	1.000	9/9/2009 10:21:51 AM
- 1908	0.0003262	0.0	0.0	1.000	9/9/2009 10:20:31 AM
•	0.0001378	0.0	0.0	1.000	9/9/2009 10:24:18 AM
•	0.0000268	0.0	0.0	1.000	9/9/2009 10:20:40 AM
11908	0.0002029	0.0	0.0	1.000	9/9/2009 10:25:10 AM
11908	-0.000016	0.0	0.0	1.000	9/9/2009 10:25:00 AM
11908	0.0000005	0.0	0.0	1.000	9/9/2009 10:20:20 AM
11908	0.0001565	0.0	0.0	1.000	9/9/2009 10:23:51 AM
1908	0.0000092	0.0	0.0	1.000	9/9/2009 10:23:17 AM
1908	0.0	0.0	0.0	1.000	9/9/2009 10:22:33 AM
·	0.0000068	0.0	0.0	1.000	9/9/2009 10:22:23 AM
11908	0.0000496	0.0	0.0	1.000	9/9/2009 10:22:13 AM
- 1908	0.0000005	0.0	0.0	1.000	9/9/2009 10:22:03 AM
- 1908	0.0000012	0.0	0.0	1.000	9/9/2009 10:21:01 AM
11908	0.0000046	0.0	0.0	1.000	9/9/2009 10:26:07 AM
Zn2062	0.0005382	0.0	0.0	.9999	9/9/2009 10:19:51 AM
Zn2062	0.0002152	0.0	0.0	1.000	9/9/2009 10:25:59 AM
Zn2062	0.0002705	0.0	0.0	1.000	9/9/2009 10:20:08 AM
Zn2062	0.0020272	0.0	0.0	.9998	9/9/2009 10:19:59 AM
Zn2062	0.0002782	0.0	0.0	1.000	9/9/2009 10:24:40 AM
Zn2062	-0.000488	0.0	0.0	.9986	9/9/2009 10:24:30 AM
Zn2062	0.0000347	0.0	0.0	8666.	9/9/2009 10:24:05 AM
Zn2062	0.0002173	0.0	0.0	6666.	9/9/2009 10:23:28 AM
Zn2062	0.066	0.0	0.0	1.000	9/9/2009 10:23:40 AM
Zn2062	0.0089189	0.0	0.0	1.000	9/9/2009 10:22:54 AM
Zn2062	0.0002562	0.0	0.0	1.000	9/9/2009 10:23:04 AM
Zn2062	0.0074531	0.0	0.0	1.000	9/9/2009 10:22:43 AM
			0.0000324 -0.0488692 -0.0488692 -0.0160386 -0.000286 -0.0003262 -0.0001378 -0.0002029 -0.000016 -0.0000068 -0.0000068 -0.00000496 -0.00000496 -0.00000496 -0.00002162 -0.0002705 -0.0002705 -0.0002705 -0.0002782	0.0000324 0.0 0.0 0.0 -0.048862 0.0 0.0 0.0 -0.048862 0.0 0.0 0.0 -0.048862 0.0 0.0 0.0 -0.0003151 0.0 0.0 0.0 -0.000028 0.0 0.0 0.0 -0.0003282 0.0 0.0 0.0 -0.0000262 0.0 0.0 0.0 -0.00001565 0.0 0.0 0.0 -0.0000065 0.0 0.0 0.0 -0.0000066 0.0 0.0 0.0 -0.0000066 0.0 0.0 0.0 -0.0000762 0.0 0.0 0.0 -0.0002762 0.0 0.0 -0.00002762 0.0 0.0 -0.0002762 0.0 0.0 -0.0002762 0.0 0.0 -0.0002762 0.0 0.0 -0.0002762 0.0 0.0 -0.0002762 0.0 0.0 -0.0002762 0.0 0.0 -0.0002762 0.0 0.0 -0.0002762 0.0 0.0 -0.0002762 0.0 0.0 -0.0002762 0.0 0.0 -0.0002762 0.0 0.0 -0.0002762 0.0 0.0 -0.0002762 0.0 0.0 -0.0002762 0.0 0.0 -0.00002762 0.0 0.0 -0.00002762 0.0 0.0	0.0000324 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.

5						
Ca3179	Zn2062	0.0054268	0.0	0.0	0.9591	9/9/2009 10:21:51 AM
Al3082	Zn2062	-0.0372845	0.0	0.0	0.5581	9/9/2009 10:20:32 AM
Sb2068	Zn2062	-0.0005926	0.0	0.0	0.9978	9/9/2009 10:24:18 AM
TI1908	Zn2062	-0.0008809	0.0	0.0	1.000	9/9/2009 10:24:52 AM
As1890	Zn2062	-0.0001145	0.0	0.0	0.9999	9/9/2009 10:20:40 AM
V 2924	Zn2062	-0.0000975	0.0	0.0	1.000	9/9/2009 10:25:01 AM
Ag3280	Zn2062	0.0000198	0.0	0.0	1.000	9/9/2009 10:20:20 AM
Ni2316	Zn2062	-0.0000517	0.0	0.0	0.9998	9/9/2009 10:23:51 AM
Mn2576	Zn2062	-0.0000059	0.0	0.0	1.000	9/9/2009 10:23:17 AM
Cu3247	Zn2062	0.0001051	0.0	0.0	0.9978	9/9/2009 10:22:33 AM
Cr2677	Zn2062	0.0001211	0.0	0.0	0.9999	9/9/2009 10:22:23 AM
Co2286	Zn2062	0.0000439	0.0	0.0	0.9989	9/9/2009 10:22:14 AM
Cd2265	Zn2062	0.0000281	0.0	0.0	1.000	9/9/2009 10:22:04 AM
Be3130	Zn2062	-0.0000038	0.0	0.0	0.9986	9/9/2009 10:21:02 AM
Ba4934	Zn2062	0.0000058	0.0	0.0	1.000	9/9/2009 10:26:07 AM
1960/2	V 2924	-0.0000714	0.0	0.0	1.000	9/9/2009 10:19:51 AM
1960/1	V 2924	-0.0003192	0.0	0.0	1.000	9/9/2009 10:25:59 AM
2203/2	V 2924	0.0003272	0.0	0.0	1.000	9/9/2009 10:20:08 AM
2203/1	V 2924	-0.0002743	0.0	0.0	1.000	9/9/2009 10:19:59 AM
Sn1899	V 2924	-0.0001231	0.0	0.0	1.000	9/9/2009 10:24:40 AM
Si2881	V 2924	0.0019125	0.0	0.0	1.000	9/9/2009 10:24:30 AM
Pd3404	V 2924	0.0000659	0.0	0.0	1.000	9/9/2009 10:24:05 AM
Mo2020	V 2924	-0.0000552	0.0	0.0	1.000	9/9/2009 10:23:28 AM
Na3302	V 2924	-0.0512874	0.0	0.0	1.000	9/9/2009 10:23:40 AM
K 7664	V 2924	-0.0148467	0.0	0.0	1.000	9/9/2009 10:22:54 AM
Mg2790	V 2924	0.0002175	0.0	0.0	1.000	9/9/2009 10:23:04 AM
Fe2714	V 2924	0.0087829	0.0	0.0	1.000	9/9/2009 10:22:43 AM
Ca3179	V 2924	0.0058141	0.0	0.0	1.000	9/9/2009 10:21:52 AM
Al3082	V 2924	0.0037966	0.0	0.0	1.000	9/9/2009 10:20:32 AM
Sb2068	V 2924	0.0000091	0.0	0.0	1.000	9/9/2009 10:24:18 AM
TI1908	V 2924	-0.0017942	0.0	0.0	1.000	9/9/2009 10:24:52 AM
As1890	V 2924	-0.0000598	0.0	0.0	1.000	9/9/2009 10:20:41 AM
Zn2062	V 2924	0.0003848	0.0	0.0	1.000	9/9/2009 10:25:11 AM
Ag3280	V 2924	-0.0002808	0.0	0.0	1.000	9/9/2009 10:20:21 AM

7000					
	0.0005897	0.0	0.0	1.000	9/9/2009 10:23:51 AM
	-0.0000752	0.0	0.0	1.000	9/9/2009 10:23:18 AM
	0.0001534	0.0	0.0	1.000	9/9/2009 10:22:33 AM
2924	-0.000396	0.0	0.0	1.000	9/9/2009 10:22:23 AM
2924	0.0000188	0.0	0.0	1.000	9/9/2009 10:22:14 AM
	0.0000029	0.0	0.0	1.000	9/9/2009 10:22:04 AM
2924	0.001483	0.0	0.0	1.000	9/9/2009 10:21:02 AM
2924 (0.0000116	0.0	0.0	1.000	9/9/2009 10:26:07 AM
Ji2316 -(0.0001126	0.0	0.0	1.000	9/9/2009 10:19:51 AM
Ji2316 -(0.0002951	0.0	0.0	1.000	9/9/2009 10:25:59 AM
Ni2316 (0.0020305	0.0	0.0	1.000	9/9/2009 10:20:08 AM
Ji2316 -(0.0013263	0.0	0.0	3.9998	9/9/2009 10:20:00 AM
	0.0003902	0.0	0.0	1.000	9/9/2009 10:24:40 AM
Ji2316 -(0.0003955	0.0	0.0	0.9934	9/9/2009 10:24:30 AM
Ji2316 -(0.0000895	0.0	0.0	0.9959	9/9/2009 10:24:05 AM
J (12316	0.0002376	0.0	0.0	0.9999	9/9/2009 10:23:29 AM
Ni2316	-0.050723	0.0	0.0	1.000	9/9/2009 10:23:40 AM
Ni2316 (0.0090389	0.0	0.0	1.000	9/9/2009 10:22:55 AM
J. – (1	0.0006118	0.0	0.0	0.9999	9/9/2009 10:23:05 AM
Ni2316).0003556	0.0	0.0	1.000	9/9/2009 10:22:44 AM
Ni2316 (0.0060451	0.0	0.0	0.9538	9/9/2009 10:21:52 AM
J (1	0.0031011	0.0	0.0	0.5678	9/9/2009 10:20:32 AM
Ji2316 -(0.0004229	0.0	0.0	7.9977	9/9/2009 10:24:18 AM
Ji2316 -(0.0008274	0.0	0.0	1.000	9/9/2009 10:24:52 AM
J i2316	-0.00013	0.0	0.0	3.9998	9/9/2009 10:20:41 AM
Wi2316	-0.000113	0.0	0.0	3.9908	9/9/2009 10:25:11 AM
Ji2316 -(0.0000237	0.0	0.0	1.000	9/9/2009 10:25:01 AM
Ji2316 -(0.0000449	0.0	0.0	9666.	9/9/2009 10:20:21 AM
Ji2316 -(0.0000089	0.0	0.0	0.9999	9/9/2009 10:23:18 AM
4 i2316	0.00012	0.0	0.0	.9991	9/9/2009 10:22:33 AM
Ji2316).0001711	0.0	0.0	1.000	9/9/2009 10:22:23 AM
Ji2316	0.000179	0.0	0.0	9666.0	9/9/2009 10:22:14 AM
Ji2316	0.0000311	0.0	0.0	1.000	9/9/2009 10:22:04 AM
Ni2316	0.000003	0.0	0.0	0.9988	9/9/2009 10:21:02 AM
		ợ ợ Ÿ ở ợ ¨ ở ợ ợ ợ ợ ợ ở ở ở ở ợ ợ [†]	-0.0000752 -0.0001534 -0.0000396 -0.0000029 -0.0001126 -0.0001126 -0.0002951 -0.0003902 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.0003905 -0.000499 -0.000013 -0.000013 -0.000013 -0.000013 -0.000013 -0.000013	-0.0000752 0.0 -0.0001534 0.0 -0.0000368 0.0 -0.0000298 0.0 -0.0001483 0.0 -0.0001483 0.0 -0.0001483 0.0 -0.0001261 0.0 -0.0002961 0.0 -0.0002961 0.0 -0.0003902 0.0 -0.0003902 0.0 -0.0003902 0.0 -0.0003902 0.0 -0.0003902 0.0 -0.0003902 0.0 -0.0003902 0.0 -0.0003902 0.0 -0.0003902 0.0 -0.0003902 0.0 -0.0003902 0.0 -0.0003902 0.0 -0.0000390 0.0 -0.0000390 0.0 -0.0000451 0.0 -0.000471 0.0 -0.0000471 0.0 -0.0000311 0.0 -0.0000311 0.0 -0.0000311 0.0 -0.0000311 0.0 -0.0000311 0.0 -0.0000311 0.0 -0.0000331 0.0 -0.0000331 0.0 -0.0000331 0.0 -0.0000331 0.0 -0.0000331 0.0 -0.0000033 0.0 -0.0000033 0.0 -0.0000033 0.0 -0.0000033 0.0 -0.00000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0.0 -0.000003 0	0.0000752 0.0 1.000 0.00001534 0.0 1.000 0.0000188 0.0 1.000 0.0000189 0.0 1.000 0.0000189 0.0 1.000 0.0000129 0.0 1.000 0.00001296 0.0 1.000 0.0000296 0.0 0.0 0.0000396 0.0 0.0 0.0003976 0.0 0.0 0.0003977 0.0 0.0 0.0003985 0.0 0.0 0.0003976 0.0 0.0 0.0003977 0.0 0.0 0.0003987 0.0 0.0 0.0003986 0.0 0.0 0.0003987 0.0 0.0 0.0004238 0.0 0.0 0.0004239 0.0 0.0 0.0004239 0.0 0.0 0.0004231 0.0 0.0 0.0004239 0.0 0.0 0.0004239 0.0 0.0

Ba4934	Ni2316	0.0000048	0.0	0.0	1.000	9/9/2009 10:26:08 AM
1960/2	Mn2576	0.0004859	0.0	0.0	1.000	9/9/2009 10:19:51 AM
1960/1	Mn2576	-0.0001814	0.0	0.0	1.000	9/9/2009 10:26:00 AM
2203/2	Mn2576	0.0003095	0.0	0.0	1.000	9/9/2009 10:20:08 AM
2203/1	Mn2576	-0.0003363	0.0	0.0	1.000	9/9/2009 10:20:00 AM
Sn1899	Mn2576	-0.0003603	0.0	0.0	1.000	9/9/2009 10:24:40 AM
Si2881	Mn2576	0.0029052	0.0	0.0	1.000	9/9/2009 10:24:30 AM
Pd3404	Mn2576	0.0000889	0.0	0.0	1.000	9/9/2009 10:24:05 AM
Mo2020	Mn2576	-0.0001967	0.0	0.0	1.000	9/9/2009 10:23:29 AM
Na3302	Mn2576	-0.0710726	0.0	0.0	1.000	9/9/2009 10:23:40 AM
K 7664	Mn2576	-0.0266335	0.0	0.0	1.000	9/9/2009 10:22:55 AM
Mg2790	Mn2576	-0.0070594	0.0	0.0	1.000	9/9/2009 10:23:05 AM
Fe2714	Mn2576	0.0002833	0.0	0.0	1.000	9/9/2009 10:22:44 AM
Ca3179	Mn2576	0.0094245	0.0	0.0	1.000	9/9/2009 10:21:52 AM
Al3082	Mn2576	0.0004932	0.0	0.0	1.000	9/9/2009 10:20:32 AM
Sb2068	Mn2576	-0.0002021	0.0	0.0	1.000	9/9/2009 10:24:18 AM
П1908	Mn2576	-0.0014767	0.0	0.0	1.000	9/9/2009 10:24:52 AM
As1890	Mn2576	-0.0000192	0.0	0.0	1.000	9/9/2009 10:20:41 AM
Zn2062	Mn2576	0.0002327	0.0	0.0	1.000	9/9/2009 10:25:11 AM
V 2924	Mn2576	0.0001987	0.0	0.0	1.000	9/9/2009 10:25:01 AM
Ag3280	Mn2576	0.0000761	0.0	0.0	1.000	9/9/2009 10:20:21 AM
Ni2316	Mn2576	-0.0000869	0.0	0.0	1.000	9/9/2009 10:23:51 AM
Cu3247	Mn2576	0.0000217	0.0	0.0	1.000	9/9/2009 10:22:34 AM
Cr2677	Mn2576	0.0000616	0.0	0.0	1.000	9/9/2009 10:22:24 AM
Co2286	Mn2576	-0.0000126	0.0	0.0	1.000	9/9/2009 10:22:14 AM
Cd2265	Mn2576	-0.0000071	0.0	0.0	1.000	9/9/2009 10:22:04 AM
Be3130	Mn2576	-0.00001	0.0	0.0	1.000	9/9/2009 10:21:02 AM
Ba4934	Mn2576	0.0000243	0.0	0.0	1.000	9/9/2009 10:26:08 AM
1960/2	Cu3247	0.000115	0.0	0.0	1.000	9/9/2009 10:19:52 AM
1960/1	Cu3247	-0.0004007	0.0	0.0	1.000	9/9/2009 10:26:00 AM
2203/2	Cu3247	0.0002166	0.0	0.0	1.000	9/9/2009 10:20:09 AM
2203/1	Cu3247	-0.0002388	0.0	0.0	1.000	9/9/2009 10:20:00 AM
Sn1899	Cu3247	-0.0001602	0.0	0.0	1.000	9/9/2009 10:24:41 AM

9/9/2009 10:24:06 AM	9/9/2009 10:23:29 AM	9/9/2009 10:23:40 AM	9/9/2009 10:22:55 AM	9/9/2009 10:23:05 AM	9/9/2009 10:22:44 AM	9/9/2009 10:21:52 AM	9/9/2009 10:20:33 AM	9/9/2009 10:24:18 AM	9/9/2009 10:24:52 AM	9/9/2009 10:20:41 AM	9/9/2009 10:25:11 AM	9/9/2009 10:25:01 AM	9/9/2009 10:20:21 AM	9/9/2009 10:23:51 AM	9/9/2009 10:23:18 AM	9/9/2009 10:22:24 AM	9/9/2009 10:22:14 AM	9/9/2009 10:22:04 AM	9/9/2009 10:21:03 AM	9/9/2009 10:26:08 AM	9/9/2009 10:19:52 AM	9/9/2009 10:26:00 AM	9/9/2009 10:20:09 AM	9/9/2009 10:20:00 AM	9/9/2009 10:24:41 AM	9/9/2009 10:24:30 AM	9/9/2009 10:24:06 AM	9/9/2009 10:23:29 AM	9/9/2009 10:23:40 AM	9/9/2009 10:22:55 AM	9/9/2009 10:23:05 AM	9/9/2009 10:22:44 AM	9/9/2009 10:21:52 AM
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0001114	-0.000066	-0.0419048	-0.0161697	0.0003571	0.0005751	0.0093646	0.0002566	-0.0000767	-0.0004538	0.0000098	0.0000311	-0.0000236	0.0000064	-0.0000076	0.0000044	0.0000256	0.000008	-0.0000021	0.0000015	0.0000183	0.0000472	-0.0004815	0.0001552	-0.0002852	-0.0002459	-0.0111303	0.0000242	-0.0000243	0.204737	-0.0157343	-0.0001545	0.005655	0.0003892
Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cu3247	Cr2677												
Pd3404	Mo2020	Na3302	K 7664	Mg2790	Fe2714	Ca3179	Al3082	Sb2068	TI1908	As1890	Zn2062	V 2924	Ag3280	Ni2316	Mn2576	Cr2677	Co2286	Cd2265	Be3130	Ba4934	1960/2	1960/1	2203/2	2203/1	Sn1899	Si2881	Pd3404	Mo2020	Na3302	K 7664	Mg2790	Fe2714	Ca3179

Cr2677	0.0000000	ò	9	200	9/9/2009 10:20:35 / MM
//0/:			0	200	
Cr2677	0.0025415	0:0	0.0	000.1	9/9/2009 10:24:15 AM
Cr2677	-0.0065986	0:0	0.0	1000	9/9/2009 10:24:32 AIM
Cr2677	-0.0011817	0.0	0.0	1.000	9/9/2009 10:25:11 AM
Cr2677	-0.0008906	0.0	0.0	1.000	9/9/2009 10:25:01 AM
Cr2677	0.0000084	0.0	0.0	1.000	9/9/2009 10:20:21 AM
Cr2677	-0.0000379	0.0	0.0	1.000	9/9/2009 10:23:52 AM
Cr2677	0.000023	0.0	0.0	1.000	9/9/2009 10:23:18 AM
Cr2677	0.0000453	0.0	0.0	1.000	9/9/2009 10:22:34 AM
Cr2677	-0.0000365	0.0	0.0	1.000	9/9/2009 10:22:14 AM
Cr2677	0.0000304	0.0	0.0	1.000	9/9/2009 10:22:04 AM
Cr2677	0.0000207	0.0	0.0	1.000	9/9/2009 10:21:03 AM
Cr2677	0.0000174	0.0	0.0	1.000	9/9/2009 10:26:08 AM
Co2286	-0.0014939	0.0	0.0	0.9998	9/9/2009 10:19:52 AM
Co2286	-0.0001829	0.0	0.0	1.000	9/9/2009 10:26:00 AM
Co2286	0.000193	0.0	0.0	1.000	9/9/2009 10:20:09 AM
Co2286	-0.001297	0.0	0.0	0.9998	9/9/2009 10:20:00 AM
Co2286	-0.0002413	0.0	0.0	1.000	9/9/2009 10:24:41 AM
Co2286	-0.0010317	0.0	0.0	0.9913	9/9/2009 10:24:31 AM
Co2286	-0.0015873	0.0	0.0	0.9998	9/9/2009 10:24:06 AM
Co2286	0.0001542	0.0	0.0	0.9997	9/9/2009 10:23:29 AM
Co2286	-0.0514608	0.0	0.0	1.000	9/9/2009 10:23:41 AM
Co2286	0.0094343	0.0	0.0	1.000	9/9/2009 10:22:55 AM
Co2286	-0.0015001	0.0	0.0	0.9999	9/9/2009 10:23:05 AM
Co2286	0.0727683	0.0	0.0	0.9984	9/9/2009 10:22:44 AM
Co2286	0.0073472	0.0	0.0	0.930	9/9/2009 10:21:53 AM
Co2286	-0.0040493	0.0	0.0	0.5443	9/9/2009 10:20:33 AM
Co2286	-0.00042	0.0	0.0	0.9982	9/9/2009 10:24:18 AM
Co2286	-0.0006392	0.0	0.0	1.000	9/9/2009 10:24:52 AM
Co2286	-0.0001334	0.0	0.0	0.9998	9/9/2009 10:20:42 AM
Co2286	0.0000825	0.0	0.0	0.9995	9/9/2009 10:25:11 AM
Co2286	0.0001121	0.0	0.0	1.000	9/9/2009 10:25:01 AM
Co2286	-0.0000092	0.0	0.0	0.9999	9/9/2009 10:20:21 AM

9/9/2009 10:19:52 AM	9/9/2009 10:26:00 AM	9/9/2009 10:20:09 AM	9/9/2009 10:20:00 AM	9/9/2009 10:24:41 AM	9/9/2009 10:24:31 AM	9/9/2009 10:24:06 AM	9/9/2009 10:23:29 AM	9/9/2009 10:23:41 AM	9/9/2009 10:22:55 AM	9/9/2009 10:23:05 AM	9/9/2009 10:22:45 AM	9/9/2009 10:21:53 AM	9/9/2009 10:20:33 AM	9/9/2009 10:24:19 AM	9/9/2009 10:24:53 AM	9/9/2009 10:20:42 AM	9/9/2009 10:25:11 AM	9/9/2009 10:25:01 AM	9/9/2009 10:20:22 AM	9/9/2009 10:23:52 AM	9/9/2009 10:23:18 AM	9/9/2009 10:22:34 AM	9/9/2009 10:22:24 AM	9/9/2009 10:22:14 AM	9/9/2009 10:22:04 AM	9/9/2009 10:26:08 AM	9/9/2009 10:19:52 AM	9/9/2009 10:26:00 AM	9/9/2009 10:20:09 AM	9/9/2009 10:20:00 AM	9/9/2009 10:24:41 AM	9/9/2009 10:24:31 AM	9/9/2009 10:24:06 AM
0.9997	1.000	1.000	0.9999	1.000	1.000	0.9967	0.9999	1.000	1.000	1.000	1.000	0.8658	0.7138	0.9987	1.000	0.9998	0.9976	1.000	0.9998	0.9999	0.9999	0.9988	1.000	0.9999	1.000	0.9996	1.000	1.000	0.9999	0.9998	1.000	0.9988	0 9988
0:0	0:0	0.0	0.0	0.0	0.0	0.0	0:0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0 0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-0.0006117	-0.0000361	0.0008301	-0.0017443	-0.0003691	-0.000503	-0.0000775	-0.0002387	-0.0747611	0.0000246	-0.000178	0.0012613	0.0095359	-0.002699	-0.0005803	-0.0008148	-0.000189	-0.0000099	-0.0000895	-0.0000189	-0.0002459	-0.0000104	0.0002196	-0.000034	-0.0000192	-0.0000092	0.0000079	-0.0012301	0.0000371	-0.0007126	-0.0012106	-0.0001706	0.0013202	0 000399
Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Be3130	Ba4934						
1960/2	1960/1	2203/2	2203/1	Sn1899	Si2881	Pd3404	Mo2020	Na3302	K 7664	Mg2790	Fe2714	Ca3179	Al3082	Sb2068	TI1908	As1890	Zn2062	V 2924	Ag3280	Ni2316	Mn2576	Cu3247	Cr2677	Co2286	Cd2265	Ba4934	1960/2	1960/1	2203/2	2203/1	Sn1899	Si2881	Pd3404

9/9/2009 10:23:29 AM	9/9/2009 10:23:41 AM	9/9/2009 10:22:55 AM	9/9/2009 10:23:05 AM	9/9/2009 10:22:45 AM	9/9/2009 10:21:53 AM	9/9/2009 10:20:33 AM	9/9/2009 10:24:19 AM	9/9/2009 10:24:53 AM	9/9/2009 10:20:42 AM	9/9/2009 10:25:12 AM	9/9/2009 10:25:01 AM	9/9/2009 10:20:22 AM	9/9/2009 10:23:52 AM	9/9/2009 10:23:18 AM	9/9/2009 10:22:34 AM	9/9/2009 10:22:24 AM	9/9/2009 10:22:14 AM	9/9/2009 10:22:04 AM	9/9/2009 10:21:03 AM
1.000	1.000	1.000	0.9998	0.9998	0.9717	1.5101	0.9988	1.000	1.000	0.9116	1.000	1.000	0.9998	0.9999	0.9999	0.9999	0.9988	1.000	0.9982
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-0.0001981	-0.0757918	0.0021077	-0.000389	-0.0035	0.0124507	0.0973182	-0.0005049	-0.0007812	-0.0001487	0.0007094	-0.0000459	0.0000012	-0.0000276	0.0000299	0.0000694	-0.0000169	0.0004886	-0.0000212	-0.000016
Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934	Ba4934
Mo2020	Na3302	K 7664	Mg2790	Fe2714	Ca3179	Al3082	Sb2068	TI1908	As1890	Zn2062	V 2924	Ag3280	Ni2316	Mn2576	Cu3247	Cr2677	Co2286	Cd2265	Be3130

Aqueous Digestion Log MP Batch ID: MP50217

ICP DIGESTION METHOD: SW846 3010A

eating Method (circle one): Digestion Block / I	Hot Plates
---	------------

Method Blank ID:	MPSOZIF		rep Date: 0 76	109
Lab Control/Spike Blank ID:	Start Time	e: <u>0:00</u> Star	t Temp: <u>♀५t⊘≂∮</u> JThermo	meter ID #:
Lab Control Source:			,	
	End Time	: <u> 4:00</u> End	1 Temp: <u>93+0<i>=</i></u> 9り	
			,	
DUP 1 Sample ID:	Acceptab	le temperature Rang	es:	
DUP 2 Sample ID:	. EPA	200.7	90 to 95 deg. C	
MS 1 Sample ID: JA3020)1-13 (S, S2) SW84	46 3010A, 3020A, 305	i0B 90 to 95 deg. C	•
MC ACI- ID. TO A 626	1 68 5 6		•	

Note: Serial dilution shown for OC tracking only. Not a separate directati

	Initial Final		inal	Δ	cids Use	d	Spikes Used	1				
	Pr	es		nple	Vo	lume	Amount and		Added -	Added -		
Sample ID	Y /	N	Vol	ume		ML.	Name		Y or N	Amount and Name	Y or N	Comments
MP50217 -MB_	ĺ	J	50	ml	<u> </u>	omb	3.0 ml conc. HNO3		٦			•
MP50217 -LC_	,	7		1		1	5.0 ml	1:1 HCL	7			
MPS0717 -S.S.		ì		1		T -		١	,	0.50 ml SP, 0.50 ml MIN1	Ÿ	
MP 50217-5, S.										0.50 ml SP, 0.50 ml MIN1	4	
1P 50217-SD, 3D	~					Į					′	
JA30201-1												
JA30201-2												
JA30201-3												
JA30201-4												
JA30701-5												-
JA30201-6												
JA30201-7			·									
JA30201-8												
JA30201-9												
0_TA30701-1F												
1JA30201- 2F												
2.TA30201-3F												
3 JA30201-4F												
4 TA30201-5F	·					•						
5_TA30201-6F		.,										
6 JA30201-7F												
7 JA30201-8F							1					
8 JA30372-1												
9 TA 30372 - 2		/			7.	/						
20 ————————————————————————————————————	= h)P.	0	1			1	1					
JA30701-FR		N			,	U	1					
						·						
			 						<u> </u>			
Analyst: R A R.I	<u> </u>		'							1	 RP 	0/26/00

QC Reviewer:

Form AA-018A (3010A) Rev. Date: 01/12/09

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC

Login Number: JA30201

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chromium, Hexavalent	GN31097	0.010	0.0	mg/l				
Chromium, Hexavalent	GN31097	0.010	0.0	mg/l	.15	0.15	100.0	90-110%
Chromium, Hexavalent	GN31097			mg/l	.15	0.15	100.0	90-110%
Total Organic Carbon	GP51160/GN31309	1.0	0.0	mg/l	10	10.4	104.0	90-110%

Associated Samples:

Batch GN31097: JA30201-1, JA30201-1F, JA30201-2, JA30201-2F, JA30201-3, JA30201-3F, JA30201-4F, JA30201-4F, JA30201-5, JA30201-5F, JA30201-6, JA30201-6F, JA30201-6F, JA30201-7F, JA30201-8F, JA30201-8F, JA30201-9
Batch GP51160: JA30201-1, JA30201-2, JA30201-3, JA30201-4, JA30201-5, JA30201-6, JA30201-7, JA30201-8, JA30201-9
(*) Outside of QC limits

i

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JA30201

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Chromium, Hexavalent	GN31097	JA30201-3	mg/l	0.0	0.0	0.0	0-20%
Chromium, Hexavalent	GN31097	JA30201-3F	mg/l	0.0	0.0	0.0	0-20%
Total Organic Carbon	GP51160/GN31309	JA30201-3	mg/l	2.0	2.2	9.5	0-33%

Associated Samples:

Batch GN31097: JA30201-1, JA30201-1F, JA30201-2, JA30201-2F, JA30201-3, JA30201-3F, JA30201-4F, JA30201-4F, JA30201-5, JA30201-5F, JA30201-6, JA30201-6F, JA30201-6F, JA30201-7F, JA30201-8F, JA30201-8F, JA30201-9
Batch GP51160: JA30201-1, JA30201-2, JA30201-3, JA30201-4, JA30201-5, JA30201-6, JA30201-7, JA30201-8, JA30201-9
(*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JA30201

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chromium, Hexavalent	GN31097	JA30201-3	mg/l	0.0	.15	0.063	42.0N(a)	85-115%
Chromium, Hexavalent	GN31097	JA30201-3F	mg/l	0.0	.15	0.049	32.7N(b)	85-115%
Total Organic Carbon	GP51160/GN31309	JA30201-3	mg/l	2.0	10	11.9	99.0	77-122%

Associated Samples:

Batch GN31097: JA30201-1, JA30201-1F, JA30201-2, JA30201-2F, JA30201-3, JA30201-3F, JA30201-4F, JA30201-4F, JA30201-5, JA30201-5F, JA30201-6, JA30201-6F, JA30201-7F, JA30201-7F, JA30201-8F, JA30201-8F, JA30201-9
Batch GP51160: JA30201-1, JA30201-2, JA30201-3, JA30201-4, JA30201-5, JA30201-6, JA30201-7, JA30201-8, JA30201-9

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits $\,$
- (a) Spike recovery indicates possible matrix interference. Good pH adjusted post spike recovery (101%). Good agreement between the sample and 1:5 dilution.
- (b) Spike recovery indicates possible matrix interference. Good pH adjusted post spike recovery (98 %). Good agreement between the sample and 1:5 dilution.

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA30201

Methods: SM20 5310B, 9060 M

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: C91017W1.TXT

Date Analyzed: 10/17/09 Run ID: GN31309

Analyst: SJG
Parameters: Total Organic Carbon

14:46 GN31309-STD1 1 STDA 15:13 CN31309-STD2 1 STDB 15:32 CN31309-STD2 1 STDC 15:52 GN31309-STD5 1 STDC 16:12 GN31309-STD5 1 STDC 16:12 GN31309-STD5 1 STDC 16:13 GN31309-STD7 1 STDC 16:13 GN31309-STD7 1 STDC 16:23 GN31309-STD7 1 STDC 16:24 GN31309-STD7 1 STDC 16:25 GN31309-STD7 1 Average of three passing injections 08:45 GN31309-STD1 1 09:39 GN31309-CCV1 1 11:43 GN31309-CCV1 1 11:43 GN31309-CCV1 1 12:30 GN31309-CCV1 1 12:41 GP51139-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51139-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51110-B2 1 14:02 GP51110-B2 1 14:02 GP51113-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51110-B2 1 14:02 GP51113-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:18 ZZZZZZ 1 14:36 ZZZZZZ 1 15:07 ZZZZZZ 1 15:07 ZZZZZZ 1 15:07 ZZZZZZ 2 16:27 ZZZZZZ 1 15:08 GN31309-CCV2 1 15:56 GN31309-CCV2 1 15:56 GN31309-CCV2 1 15:57 ZZZZZZ 5 16:27 ZZZZZZ 5 16:27 ZZZZZZ 5 17:09 ZZZZZZ 5 16:27 ZZZZZZ 5 17:01 ZZZZZZ 5 17:01 ZZZZZZ 5 18:01 ZZZZZZ 5 19:01 ZZZZZZ 5 19:01 ZZZZZZ 5 19:01 ZZZZZZ 5 19:01 ZZZZZZ 5 10:01 ZZZ 5 10 ZZZZZZ 5 10 ZZZZZZ 5 10 ZZZZZZ 5 10 ZZZZZZZZ 5 10 ZZZZZZ 5 10 ZZZZZZZZ 5 10 ZZZZZZZZZ 5 10 ZZZZZZZ 5 10 ZZZZZZZZ 5 10 ZZZZZZZZZ 5 10	Time	Sample Description	Dilution I Factor I	PS Recov	Comments
15:32 GN31309-STD3 1 STDC 16:12 GN31309-STD5 1 STDE 16:22 GN31309-STD6 1 STDE 16:23 GN31309-STD7 1 STDE 16:25 GN31309-STD7 1 STDE 16:27 GN31309-STD7 1 Average of three passing injections 18:48 GN31309-ESTD1 1 Average of three passing injections 18:48 GN31309-CCV1 1 STDE 11:43 GN31309-CCV1 1 STDE 12:18 GN31309-CCV1 1 STDE 13:47 GP51110-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51111-MB2 1 Sample shown for QC tracking purposes only. 14:02 GP51110-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51112-B2 1 Sample shown for QC tracking purposes only. 14:03 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:04 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:05 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:06 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:07 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:08 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:09 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:18 ZZZZZZ 1 SAMPLE SHOWN for QC tracking purposes only. 14:18 ZZZZZZ 1 SAMPLE SHOWN for QC tracking purposes only. 14:18 ZZZZZZ 1 SAMPLE SHOWN for QC tracking purposes only. 14:18 ZZZZZZ 1 SAMPLE SHOWN for QC tracking purposes only. 14:18 ZZZZZZ 1 SAMPLE SHOWN for QC tracking purposes only. 14:18 ZZZZZZ 1 SAMPLE SHOWN for QC tracking purposes only. 15:56 GN31309-CCV2 1 SAMPLE SHOWN for QC tracking purposes only. 15:56 GN31309-CCV2 1 SAMPLE SHOWN for QC tracking purposes only.	14:46	GN31309-STD1	1		STDA
15:52	15:13	GN31309-STD2	1		STDB
16:12 CN31309-STD5 1 STDF 16:32 CN31309-STD7 1 STDF 16:53 CN31309-STD7 1 STDG 08:27 CN31309-HSTD1 1 Average of three passing injections 08:45 CN31309-HSTD1 1 CALL 11:43 CN31309-CCV1 1 CALL 12:14 CN31309-CCV1 1 CALL 12:14 CN31309-CCV1 1 CALL 12:14 CN31309-CCV1 1 CALL 12:14 CN31309-CCV1 1 CALL 13:47 CMP51110-MB2 1 CALL 13:47 CMP51111-MB2 1 Sample shown for QC tracking purposes only. 14:02 CMP51110-MB2 1 Sample shown for QC tracking purposes only. 14:02 CMP51110-MB2 1 Sample shown for QC tracking purposes only. 14:02 CMP51110-MB2 1 Sample shown for QC tracking purposes only. 14:02 CZZZZZZ 1 Sample shown for QC tracking purposes only.	15:32	GN31309-STD3	1		STDC
16:32 CM31309-STD6 1 STDF 16:53 CM31309-STD7 1 STDG 08:17 CM31309-CRII 1 Average of three passing injections 08:45 CM31309-HSTD1 1 10:33 CM31309-ICW1 1 11:43 CM31309-CCW1 1 12:41 CM31309-CCW1 1 12:32 ZZZZZZ 1 13:47 CM51110-MB2 1 13:47 CM51111-MB2 1 14:40 CM51111-MB2 1 14:41 ZZZZZZZ 1 14:41 ZZZZZZZ 1 15:43 ZZZZZZZ	15:52	GN31309-STD4	1		STDD
16:53 CM31309-STD7 1 Average of three passing injections 08:45 CM31309-HSTD1 1 Average of three passing injections 08:46 CM31309-HSTD1 1 CM31309-HSTD1 1 11:43 CM31309-LCV1 1 CM31309-LCV1 1 12:41 CM31309-CCV1 1 CM31309-CCV1 1 12:42 CZZZZZZ 1 CM31309-CCV1 1 13:47 CM51110-MB2 1 CM31309-CCV1 1 13:47 CM51111-MB2 1 Sample shown for QC tracking purposes only. 14:47 CM51111-MB2 1 Sample shown for QC tracking purposes only. 14:40 CM51111-MB2 1 Sample shown for QC tracking purposes only. 14:40 CM51111-MB2 1 Sample shown for QC tracking purposes only. 14:40 CM51111-MB2 1 Sample shown for QC tracking purposes only. 14:41 ZZZZZZZ 1 Sample shown for QC tracking purposes only. 14:41 ZZZZZZZZ 1 Sample shown for QC tracking purposes only.	16:12	GN31309-STD5	1		STDE
08:27 CN31309-CRII 1 Average of three passing injections 08:48 CN31309-HSTD1 1 19:39 GN31309-ICV1 1 11:43 GN31309-ICB1 1 12:20 GN31309-CCV1 1 12:218 GN31309-CCB1 1 12:22 ZZZZZZ 1 13:47 GP51110-MB2 1 3:47 GP51112-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51111-MB2 1 Sample shown for QC tracking purposes only. 4:02 GP51110-B2 1 Sample shown for QC tracking purposes only. 4:02 GP51112-B2 1 Sample shown for QC tracking purposes only. 4:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 4:10 GP51111-B2 1 Sample shown for QC tracking purposes only. 4:10 ZZZZZZZ 1 15:20 ZZZZZZZ 1 15:30 ZZZZZZZ 1 15:31 GN31309-CCV2 1 16:11 ZZZZZZZ 5 16:27 ZZZZZZ	16:32	GN31309-STD6	1		STDF
08:45 GN31309-HSTD1 1 09:39 GN31309-TCV1 1 11:43 GN31309-TCV1 1 12:21 GN31309-CCV1 1 12:28 GN31309-CCV1 1 12:32 ZZZZZZ 1 13:47 GP51110-MB2 1 13:47 GP51112-MB2 1 3:47 GP51112-MB2 1 3:47 GP51111-MB2 1 4:02 GP51111-MB2 1 4:02 GP51110-B2 1 4:02 GP51113-B2 1 4:02 GP51111-B2 1 4:136 ZZZZZZ 1 4:4:6 ZZZZZZ 1 15:23 ZZZZZZ 1 15:23 ZZZZZZ 1 15:36 GN31309-CCV2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ	16:53	GN31309-STD7	1		STDG
11:43 GN31309-ICV1 1 1 1 1 1 1 1 1 1	08:27	GN31309-CRI1	1		Average of three passing injections
11:43 GN31309-ICB1 1 12:01 GN31309-CCV1 1 12:18 GN31309-CCV1 1 12:32 ZZZZZ 1 13:47 GP51110-MB2 1 13:47 GP51112-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51112-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51112-MB2 1 Sample shown for QC tracking purposes only. 14:02 GP51110-B2 1 14:02 GP51112-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51112-B2 1 Sample shown for QC tracking purposes only. 14:03 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:04 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:05 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:18 ZZZZZZ 1 14:18 ZZZZZZ 1 14:19 ZZZZZZ 1 15:23 ZZZZZZ 1 15:23 ZZZZZZ 1 15:23 ZZZZZZ 5 16:27 ZZZZZZ 5 16:27 ZZZZZZ 5 16:27 ZZZZZZ 1 16:45 ZZZZZZ 5 16:45 ZZZZZZ 5	08:45	GN31309-HSTD1	1		
12:18 GN31309-CCV1 1 12:18 GN31309-CCB1 2 12:32 ZZZZZ 1 13:47 GP51110-MB2 1 13:47 GP51112-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51111-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51111-MB2 1 Sample shown for QC tracking purposes only. 14:02 GP51110-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:03 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:04 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:05 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:06 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:07 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:08 ZZZZZZ 1 14:36 ZZZZZZ 1 15:38 GN31309-CCV2 1 15:56 GN31309-CCV2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 1 16:27 ZZZZZZ 1 16:28 ZZZZZZ 5 16:27 ZZZZZZ 5 16:27 ZZZZZZ 1 16:30 SN31309-CCW2 5 16:31 ZZZZZZ 5 16:41 ZZZZZZ 5 16:42 ZZZZZZ 5 16:42 ZZZZZZ 5 16:43 ZZZZZZ 5 16:44 ZZZZZZZ 1 16:45 ZZZZZZ 5 16:47 ZZZZZZ 1 16:48 ZZZZZZ 5 16:49 ZZZZZZ 1 16:40 ZZZZZZZ 1 16:40 ZZZZZZZ 1 16:40 ZZZZZZZ 1 16:40 ZZZZZZZ 1 16:40 ZZZZZZZZZZ 1 16:40 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	09:39	GN31309-ICV1	1		
12:18 GN31309-CCB1 1 12:32 ZZZZZZ 1 13:47 GP51110-MB2 1 13:47 GP51119-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51111-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51111-MB2 1 Sample shown for QC tracking purposes only. 14:02 GP51110-B2 1 14:02 GP51110-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:03 GZZZZZ 1 14:36 ZZZZZZ 1 14:36 ZZZZZZ 1 15:07 ZZZZZZ 1 15:38 GN31309-CCV2 1 15:56 GN31309-CCV2 1 15:56 GN31309-CCV2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 1 16:27 ZZZZZZ 5 16:27 ZZZZZZ 5 16:27 ZZZZZZ 5 16:27 ZZZZZZ 5 16:27 ZZZZZZ 5 16:27 ZZZZZZ 5 16:27 ZZZZZZ 5 16:27 ZZZZZZ 5 16:27 ZZZZZZ 5 16:28 ZZZZZZ 5 16:29 ZZZZZZ 5 16:20 ZZZZZZ 5 16:20 ZZZZZZ 5 16:21 ZZZZZZ 5 16:22 ZZZZZZ 5 16:22 ZZZZZZ 5 16:22 ZZZZZZ 5 17 ZZZZZZZ 5 18 ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	11:43	GN31309-ICB1	1		
12:32 ZZZZZZ 1 13:47 GP51110-MB2 1 13:47 GP511139-MB2 1 13:47 GP51112-MB2 1 13:47 GP51111-MB2 1 13:47 GP51111-MB2 1 13:47 GP51111-MB2 1 14:02 GP51110-B2 1 14:02 GP511139-B2 1 14:02 GP51111-B2 1 15:07 ZZZZZZ 1 14:52 ZZZZZZ 1 15:07 ZZZZZZ 1 15:07 ZZZZZZ 1 15:08 GN31309-CCV2 1 15:56 GN31309-CCV2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 1 16:27 ZZZZZZ 5 16:27 ZZZZZZ 5 16:27 ZZZZZZ 1	12:01	GN31309-CCV1	1		
13:47 GP51110-MB2 1 13:47 GP51139-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51112-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51111-MB2 1 Sample shown for QC tracking purposes only. 14:02 GP51110-B2 1 14:02 GP51112-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51112-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:18 ZZZZZZ 1 14:36 ZZZZZZ 1 14:52 ZZZZZZ 1 15:07 ZZZZZZ 1 15:08 GN31309-CCV2 1 15:56 GN31309-CCV2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 5 17 ZZZZZZ 5 17 ZZZZZZ 5 18 ZZZZZZ 5 18 ZZZZZZ 5 18 ZZZZZZ 5 18 ZZZZZZZ 5 18 ZZZZZZ 5 18 ZZZZZZ 5 18 ZZZZZZ 5 18 ZZZZZZZ 5 18 ZZZZZZ 5 1	12:18	GN31309-CCB1	1		
13:47 GP51139-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51112-MB2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-MB2 1 Sample shown for QC tracking purposes only. 14:02 GP51139-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:18 ZZZZZZ 1 14:36 ZZZZZZ 1 15:07 ZZZZZZ 1 15:23 ZZZZZZ 1 15:38 GN31309-CCB2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 5	12:32	ZZZZZZ	1		
13:47 GP51112-MB2 1 Sample shown for QC tracking purposes only. 13:47 GP51111-MB2 1 Sample shown for QC tracking purposes only. 14:02 GP51110-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51112-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:18 ZZZZZZ 1 14:18 ZZZZZZ 1 14:52 ZZZZZZ 1 15:07 ZZZZZZ 1 15:23 ZZZZZZ 1 15:38 GN31309-CCV2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 1 16:45 ZZZZZZ 1	13:47	GP51110-MB2	1		
13:47 GP51111-MB2 1 Sample shown for QC tracking purposes only. 14:02 GP51139-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51112-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:18 ZZZZZZ 1 14:36 ZZZZZZ 1 14:36 ZZZZZZ 1 15:07 ZZZZZZ 1 15:23 ZZZZZZ 1 15:38 GN31309-CCV2 1 15:56 GN31309-CCV2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 1 16:45 ZZZZZZ 1	13:47	GP51139-MB2	1		Sample shown for QC tracking purposes only.
14:02 GP51110-B2 1 14:02 GP51139-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51112-B2 1 Sample shown for QC tracking purposes only. 14:18 ZZZZZZZ 1 14:36 ZZZZZZZ 1 15:07 ZZZZZZZ 1 15:23 ZZZZZZ 1 15:38 GN31309-CCV2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 1 16:45 ZZZZZZ 5	13:47	GP51112-MB2	1		Sample shown for QC tracking purposes only.
14:02 GP51139-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51112-B2 1 Sample shown for QC tracking purposes only. 14:18 ZZZZZZZ 1 14:36 ZZZZZZZ 1 15:07 ZZZZZZZ 1 15:23 ZZZZZZZ 1 15:38 GN31309-CCV2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 1 16:45 ZZZZZZ 5	13:47	GP51111-MB2	1		Sample shown for QC tracking purposes only.
14:02 GP51112-B2 1 Sample shown for QC tracking purposes only. 14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:18 ZZZZZZZ 1 14:36 ZZZZZZZ 1 15:07 ZZZZZZZ 1 15:38 GN31309-CCV2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZZ 1 16:45 ZZZZZZ 5	14:02	GP51110-B2	1		
14:02 GP51111-B2 1 Sample shown for QC tracking purposes only. 14:18 ZZZZZZZ 1 14:36 ZZZZZZZ 1 15:07 ZZZZZZZ 1 15:23 ZZZZZZZ 1 15:38 GN31309-CCV2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 1 16:45 ZZZZZZ 5	14:02	GP51139-B2	1		Sample shown for QC tracking purposes only.
14:18 ZZZZZZZ 1 14:36 ZZZZZZZ 1 15:07 ZZZZZZ 1 15:23 ZZZZZZ 1 15:38 GN31309-CCV2 1 15:56 GN31309-CCB2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 5 16:45 ZZZZZZ 5	14:02	GP51112-B2	1		Sample shown for QC tracking purposes only.
14:36 ZZZZZZZ 1 14:52 ZZZZZZZ 1 15:07 ZZZZZZZ 1 15:38 GN31309-CCV2 1 15:56 GN31309-CCB2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 5 16:45 ZZZZZZ 5	14:02	GP51111-B2	1		Sample shown for QC tracking purposes only.
14:52 ZZZZZZZ 1 15:07 ZZZZZZZ 1 15:23 ZZZZZZZ 1 15:38 GN31309-CCV2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 1 16:45 ZZZZZZ 5	14:18	ZZZZZZ	1		
15:07 ZZZZZZZ 1 15:23 ZZZZZZZ 1 15:38 GN31309-CCV2 1 15:56 GN31309-CCB2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 1 16:45 ZZZZZZ 5	14:36	ZZZZZZ	1		
15:23 ZZZZZZZ 1 15:38 GN31309-CCV2 1 15:56 GN31309-CCB2 1 16:11 ZZZZZZZ 5 16:27 ZZZZZZZ 1 16:45 ZZZZZZZ 5	14:52	ZZZZZZ	1		
15:38 GN31309-CCV2 1 15:56 GN31309-CCB2 1 16:11 ZZZZZZ 5 16:27 ZZZZZZ 1 16:45 ZZZZZZ 5	15:07	ZZZZZZ	1		
15:56 GN31309-CCB2 1 16:11 ZZZZZZZ 5 16:27 ZZZZZZZ 1 16:45 ZZZZZZZ 5	15:23	ZZZZZZ	1		
16:11 zzzzzz 5 16:27 zzzzzz 1 16:45 zzzzzz 5					
16:27 ZZZZZZ 1 16:45 ZZZZZZ 5					
16:45 ZZZZZZ 5					
17:01 ZZZZZZ 10					
	17:01	ZZZZZZ	10		

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: C91017W1.TXT Date Analyzed: 10/17/09 Methods: SM20 5310B, 9060 M Run ID: GN31309

Analyst: SJG
Parameters: Total Organic Carbon

Time	_	Dilutior Factor	Comments
17:19	ZZZZZZ	3	
17:34	ZZZZZZ	10	
17:50	ZZZZZZ	1	
18:06	GN31309-CCV3	1	
18:21	GN31309-CCB3	1	
18:35	GP51159-MB1	1	
18:50	GP51159-B1	1	
19:06	GP51159-D1	1	
19:21	GP51159-S1	1	
19:36	JA29860-1	1	(sample used for QC only; not part of login JA30201)
19:54	ZZZZZZ	1	
20:11	ZZZZZZ	1	
20:26	ZZZZZZ	1	
20:42	ZZZZZZ	1	
20:58	ZZZZZZ	1	
21:14	GN31309-CCV4	1	
21:30	GN31309-CCB4	1	
21:45	ZZZZZZ	1	
22:04	ZZZZZZ	1	
22:20	ZZZZZZ	1	
22:35	ZZZZZZ	1	
22:50	ZZZZZZ	1	
23:05	ZZZZZZ	1	
23:22	ZZZZZZ	1	
23:37	ZZZZZZ	1	
23:55	ZZZZZZ	1	
00:11	ZZZZZZ	5	
00:26	GN31309-CCV5	1	
00:44	GN31309-CCB5	1	
01:00	GP51160-MB1	1	
01:15	GP51160-B1	1	
01:30	GP51160-D1	1	
01:46	GP51160-S1	1	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: C91017W1.TXT Date Analyzed: 10/17/09 Methods: SM20 5310B, 9060 M Run ID: GN31309

Analyst: SJG

Parameters: Total Organic Carbon

Time	Sample Description	Dilution Factor	PS Recov	Comments
02:01	JA30201-3	1		
02:16	JA30201-1	1		
02:32	JA30201-2	1		
02:47	JA30201-4	1		
03:02	JA30201-5	1		
03:19	JA30201-6	1		
03:35	GN31309-CCV6	1		
03:50	GN31309-CCB6	1		
04:07	JA30201-7	1		
04:22	JA30201-8	1		
04:39	JA30201-9	1		
04:56	ZZZZZZ	1		
05:11	ZZZZZZ	1		
05:26	ZZZZZZ	1		
05:44	ZZZZZZ	5		
06:00	ZZZZZZ	5		
06:15	ZZZZZZ	1		
06:31	ZZZZZZ	1		
06:47	GN31309-CCV7	1		Average of three passing injections
07:05	GN31309-CCB7	1		
07:24	ZZZZZZ	1		
07:42	ZZZZZZ	20		
07:57	ZZZZZZ	1		
08:16	ZZZZZZ	1		
08:31	GN31309-CCV8	1		
08:46	GN31309-CCB8	1		

Refer to raw data for calibration curve and standards.

Instrument QC Summary Inorganics Analyses

Login Number: JA30201 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: C91017W1.TXT Date Analyzed: 10/17/09 Methods: SM20 5310B, 9060 M Units: mg/l

Run ID: GN31309

Sample Number	Parameter	Result	RL	IDL/MDL	True Value	% Recov.	QC Limits
GN31309-CRI1	Total Organic Carbon	0.86	1.0	0.33	1	86.0	70-130
GN31309-HSTD1	Total Organic Carbon	28.8	1.0	0.33	30	96.0	90-110
GN31309-ICV1	Total Organic Carbon	18.7	1.0	0.33	20	93.5	90-110
GN31309-ICB1	Total Organic Carbon	0.33 U	1.0	0.33			
GN31309-CCV1	Total Organic Carbon	14.3	1.0	0.33	15	95.3	90-110
GN31309-CCB1	Total Organic Carbon	0.33 U	1.0	0.33			
GN31309-CCV2	Total Organic Carbon	14.6	1.0	0.33	15	97.3	90-110
GN31309-CCB2	Total Organic Carbon	0.33 U	1.0	0.33			
GN31309-CCV3	Total Organic Carbon	14.7	1.0	0.33	15	98.0	90-110
GN31309-CCB3	Total Organic Carbon	0.33 U	1.0	0.33			
GN31309-CCV4	Total Organic Carbon	14.8	1.0	0.33	15	98.7	90-110
GN31309-CCB4	Total Organic Carbon	0.33 U	1.0	0.33			
GN31309-CCV5	Total Organic Carbon	14.6	1.0	0.33	15	97.3	90-110
GN31309-CCB5	Total Organic Carbon	0.33 U	1.0	0.33			
GN31309-CCV6	Total Organic Carbon	14.5	1.0	0.33	15	96.7	90-110
GN31309-CCB6	Total Organic Carbon	0.33 U	1.0	0.33			
GN31309-CCV7	Total Organic Carbon	14.8	1.0	0.33	15	98.7	90-110
GN31309-CCB7	Total Organic Carbon	0.33	1.0	0.33			
GN31309-CCV8	Total Organic Carbon	14.6	1.0	0.33	15	97.3	90-110
GN31309-CCB8	Total Organic Carbon	0.33 U	1.0	0.33			

(!) Outside of QC limits

General Chemistry

Raw Data

Y Values Corr BKGRD X Values Final Vol. Sam Vol. Analyzed Sample ottle Sample MDL RDL (ml) (ml) Dilution Final Conc. Units Conc(mg/l) Times Absorbance ID Sample # Absorbance Abs Method: SW846 7196A **Test Title:** XCr GN31097 GN Batch: Analyst: RICKY

Note: Use 4 for CLP list pointer, 1 for reg. List pointer.

<u> </u>	J				Corr. Coef:	0.99992
0.000	NA	19:50	0.000	0.0000		
0.009	NA	NA	0.009	0.0100	Slope:	0.8661

•	nstrument ib. [Corr. Coef:	0.99992		
Т	Cal. Blk.	0.000	NA	19:50	0.000	0.0000							
	STD1	0.009	NA	NA	0.009	0.0100				Slope:	0.8661		
\neg	STD2	0.045	NA	NA	0.045	0.0500							
	STD3	0.089	NA	NA	0.089	0.1000				Y intercept:	0.0024		
	STD4	0.268	NA	NA	0.268	0.3000							
	STD5	0.441	NA	NA	0.441	0.5000	l						
	STD6	0.688	NA	NA	0.688	0.8000	Final Vol.	Sam. Vol.					
	STD7	0.870	NA	19:56	0.870	1.0000	<u>(ml)</u>	<u>(ml)</u>	<u>Dilution</u>	Final Conc.	Units	MDL	RDL
	CCV	0.436	NA	19:57	0.436	0.5006	NA	NA	NA	NA NA	mg/l	0.002	0.010
	ССВ	0.000	NA	19:58	0.000	-0.0028	NA	NA	NA	NA	mg/l	0.002	0.010
	GN31097-MB1	0.000	0.000	20:09	0.000	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
	GN31097-B1	0.133	0.000	20:09	0.133	0.1507	50.0	50.0	1	0.151	mg/l	0.002	0.010
	GN31097-S1	0.112	0.025	20:09	0.087	0.0976	50.0	50.0	1	0.098	mg/l	0.002	0.010
	GN31097-D1	0.025	0.025	20:09	0.000	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
	JA30214-1	0.036	0.035	20:09	0.001	-0.0017	50.0	50.0	1	-0.002	mg/l	0.002	0.010
	JA30214-2	0.024	0.024	20:09	0.000	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
	GN31097-S2	0.033	0.000	20:09	0.033	0.0353	50.0	50.0	1	0.035	mg/l	0.002	0.010
\Box	GN31097-D2	0.001	0.000	20:09	0.001	-0.0017	50.0	50.0	1	-0.002	mg/l	0.002	0.010
	JA30216-4	0.001	0.000	20:09	0.001	-0.0017	50.0	50.0	1	-0.002	mg/l	0.002	0.010
	JA30216-5	0.035	0.035	20:09	0.000	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
	CCV	0.435	NA	20:09	0.435	0.4994	NA	NA	NA NA	NA	mg/l	0.002	0.010
	ССВ	0.000	NA	20:10	0.000	-0.0028	NA	NA NA	NA NA	NA	mg/l	0.002	0.010
	JA30216-6	0.000	0.000	20:14	0.000	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
	JA30216-7	0.004	0.003	20:14	0.001	-0.0017	50.0	50.0	1	-0.002	mg/l	0.002	0.010
	JA30216-9	0.001	0.000	20:14	0.001	-0.0017	50.0	50.0	1	-0.002	mg/l	0.002	0.010
				ļ <u>.</u>	FALSE	-0.0028	50.0	50.0	1 1	-0.003	mg/l	0.002	0.010
_			ļ		FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
_					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
_			 		FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
				<u> </u>	FALSE	-0.0028	50.0	50.0	1 1	-0.003	mg/l	0.002	0.010
_				ļ	FALSE	-0.0028	50.0	50.0	11	-0.003	mg/l	0.002	0.010
_				ļ <u>.</u>	FALSE	-0.0028	50.0	50.0	1	-0.003 NA	mg/l	0.002	0.010
-	CCV	0.435	NA	20:14	0.435	0.4994	NA NA	NA NA	NA NA	NA NA	mg/l mg/l	0.002	0.010
	ССВ	0.000	NA.	20:15	0.000	-0.0028	NA FO.0	50.0	1	-0.003	mg/l	0.002	0.010
			<u> </u>	 	FALSE	-0.0028	50.0 50.0	50.0	1	-0.003	mg/l	0.002	0.010
\dashv				<u> </u>	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
\dashv			ļ		FALSE FALSE	-0.0028 -0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
-			ļ	 	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
\dashv				 	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
				-	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
	-,				FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
			+	 	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
			+	+	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
-	ccv	0.436	NA NA	20:39	0.436	0.5006	NA NA	NA.	NA.	NA NA	mg/l	0.002	0.010
	CCB	0.000	NA NA	20:40	0.000	-0.0028	NA	NA	NA	NA NA	mg/l	0.002	0.010
	JA30214-2PSCONF	0.154	0.021		0.133	0.1507	50.0	50.0	1	0.151	mg/l	0.002	0.010
	JA30214-2F3CONF	0.005	0.005	20:45	0.000	-0.0028	50.0	50.0	5	-0.014	mg/l	0.010	0.050
	JA30216-4PSCONF	0.124	0.001	20:45	0.123	0.1392	50.0	50.0	1	0.139	mg/l	0.002	0.010
	JA30216-4	0.001	0.000	20:45	0.001	-0.0017	50.0	50.0	5	-0.008	mg/l	0.010	0.050
_	J. 1552 19 7		1	1	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
_			1		FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
			1		FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
			1	1	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.01
			1		FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.01
				1	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
	CCV	0.436	NA	20:45	0.436	0.5006	NA	NA	NA	NA	mg/l	0.002	0.01
	ССВ	0.000	NA	20:46	0.000	-0.0028	NA	NA	NA	NA	mg/l	0.002	0.01
				1	FALSE	-0.0028	50.0	50.0	1 1	-0.003	mg/l	0.002	0.01
					FALSE	0.0028	50.0	50.0	1 1	-0.0/3	/ mg/l	0.002	0.01
			T		FALSE	-0.0028	150.00	50.0	V) 1/	7, -0/01/L	mg/l	0.002	0.010
				_			50.0	50.0		197 - 1 .003 /	mg/l	0.002	0.010

Prep Date:

Analysis Date:

Instrument ID:

NA

10/12/2009

CCV CCB GN31097-N GN31097-I GN31097-I GN31097-I GN31097-I 3 JA30201- 3 JA30201- 3 JA30201- CCV CCB 3 JA30201- 2 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- CCV CCB 4 JA30201- 4 JA30201- CCV CCB 4 JA30201- 6 CCV CCB CCB CCB CCB CCB AJA30201- CCV CCB AJA30201- CCV CCB AJA30201- CCV CCB AJA30201- CCV CCB AJA30201- CCV CCB AJA30201- CCV CCB AJA30201- CCV CCB AJA30201- CCV CCB AJA30201- CCV CCB AJA30201- CCV CCB AJA30201- CCV CCB AJA30201- CCV CCB AJA30201-			T		FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB GN31097-N GN31097-I GN31097-I GN31097-I GN31097-I GN31097-I GN31097-I 3 JA30201- 7 JA30201- 3 JA30201- 3 JA30201- CCV CCB 3 JA30201- 4 JA30201- 4 JA30201- GN31097-I GN31097-I GN31097-I 12 JA30201-2 4 JA30201-2 4 JA30201-2 CCV CCB 4 JA30201-2 CCV CCB 4 JA30201-2 CCV CCB CCB CCCV CCB JA30201-2 GN31097-I CCV CCB CCCV CCB CCCC CCCC CCCC CCCC C					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB GN31097-N GN31097-I GN31097-I GN31097-I GN31097-I GN31097-I GN31097-I 3 JA30201- 7 JA30201- 3 JA30201- 3 JA30201- CCV CCB 3 JA30201- 4 JA30201- 4 JA30201- GN31097-I GN31097-I GN31097-I 12 JA30201-2 4 JA30201-2 4 JA30201-2 CCV CCB 4 JA30201-2 CCV CCB 4 JA30201-2 CCV CCB CCB CCCV CCB JA30201-2 GN31097-I CCV CCB CCCV CCB CCCC CCCC CCCC CCCC C					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB GN31097-N GN31097-I GN31097-I GN31097-I GN31097-I GN31097-I GN31097-I 3 JA30201- 7 JA30201- 3 JA30201- 3 JA30201- CCV CCB 3 JA30201- 4 JA30201- 4 JA30201- GN31097-I GN31097-I GN31097-I 12 JA30201-2 4 JA30201-2 4 JA30201-2 CCV CCB 4 JA30201-2 CCV CCB 4 JA30201-2 CCV CCB CCB CCCV CCB JA30201-2 GN31097-I CCV CCB CCCV CCB CCCC CCCC CCCC CCCC C					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB GN31097-N GN31097-I GN31097-I GN31097-I GN31097-I GN31097-I GN31097-I 3 JA30201- 7 JA30201- 3 JA30201- 3 JA30201- CCV CCB 3 JA30201- 4 JA30201- 4 JA30201- GN31097-I GN31097-I GN31097-I 12 JA30201-2 4 JA30201-2 4 JA30201-2 CCV CCB 4 JA30201-2 CCV CCB 4 JA30201-2 CCV CCB CCB CCCV CCB JA30201-2 GN31097-I CCV CCB CCCV CCB CCCC CCCC CCCC CCCC C					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB GN31097-N GN31097-I GN31097-I GN31097-I GN31097-I GN31097-I GN31097-I 3 JA30201- 7 JA30201- 3 JA30201- 3 JA30201- CCV CCB 3 JA30201- 4 JA30201- 4 JA30201- GN31097-I GN31097-I GN31097-I 12 JA30201-2 4 JA30201-2 4 JA30201-2 CCV CCB 4 JA30201-2 CCV CCB 4 JA30201-2 CCV CCB CCB CCCV CCB JA30201-2 GN31097-I CCV CCB CCCV CCB CCCC CCCC CCCC CCCC C					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB GN31097-N GN31097-I GN31097-I GN31097-I GN31097-I GN31097-I GN31097-I 3 JA30201- 7 JA30201- 3 JA30201- 3 JA30201- CCV CCB 3 JA30201- 4 JA30201- 4 JA30201- GN31097-I GN31097-I GN31097-I 12 JA30201-2 4 JA30201-2 4 JA30201-2 CCV CCB 4 JA30201-2 CCV CCB 4 JA30201-2 CCV CCB CCB CCCV CCB JA30201-2 GN31097-I CCV CCB CCCV CCB CCCC CCCC CCCC CCCC C	:v	0.435	NA	21:33	0.435	0.4994	NA.	NA	NA NA	NA NA	mg/l	0.002	0.010
GN31097-M GN31097-I GN31097-I GN31097-I GN31097-I GN31097-I 3 JA30201- 3 JA30201- 3 JA30201- 3 JA30201- CCV CCB 3 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 5 CCV CCB 4 JA30201- 4 JA30201- 6 CCV CCB CCB CCB CCB JA30201- CCV CCB JA30201- GN31097-I CCV CCB CCB JA30201-E CCV CCB JA30201-E CCV CCB JA30201-E JA30201-E JA30201-E JA30201-E JA30201-E JA30201-E JA30201-E JA30201-E CCV CCB		0.001	NA NA	21:34	0.001	-0.0017	NA	NA	NA	NA	mg/l	0.002	0.010
GN31097-I GN31097-I GN31097-I GN31097-I 3 JA30201- 3 JA30201- 3 JA30201- 3 JA30201- 3 JA30201- 3 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 5 CCV CCB 4 JA30201- 4 JA30201- 6 CCV CCB 4 JA30201- 7 CCV CCB CCB CCB CCCB CCB JA30201- JA30201- GN31097-I CCV CCB CCB JA30201- GN31097-I CCV CCB CCB JA30201-E CCV CCB JA30201-E JA30201-E JA30201-E CCV CCB CCB JA30201-E CCV CCB JA30201-E CCV		0.000	0.000		0.000	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
GN31097-5 GN31097-1 GN31097-1 3 JA30201- 3 JA30201- 7 JA30201- 3 JA30201- 3 JA30201- 3 JA30201- 3 JA30201- 2 JA30201- 4 JA30201- 4 JA30201- 5 GN31097-1 12 JA30201-2 4 JA30201-2 4 JA30201-2 4 JA30201-2 CCV CCB 4 JA30201-2 CCV CCB CCB CCB CCB JA30201-8 CCV CCB JA30201-8 CCV CCB JA30201-8		0.132	0.000	21:43	0.132	0.1496	50.0	50.0	1	0.150	mg/l	0.002	0.010
3 JA30201- 3 JA30201- 7 JA30201- 3 JA30201- 3 JA30201- 3 JA30201- CCV CCB 3 JA30201- 2 JA30201- 4 JA30201- 4 JA30201- 5 GN31097- 6 GN31097- 6 GN3097- 7 JA30201- 4 JA30201- 7 CCV CCB 7 CCB 7 CCV CCB 7 CCB 7 CCV CCB 7 CCB 7 CCV CCB 7 CCB 7 CCV CCB 7 CCB 7 CCV CCB 7 CCB 7 CCV CCB 7 CCCV CCCB 7 CCCV CCCB 7 JA30201- 7 JA30201- 8 CCCV CCCB 7 CCCV CCCB 7 CCCV CCCB 7 CCCV CCCB 7 CCCV CCCB		0.057	0.000	21:43	0.057	0.0630	50.0	50.0	1	0.063	mg/l	0.002	0.010
3 JA30201- 7 JA30201- 3 JA30201- 3 JA30201- 3 JA30201- 3 JA30201- 3 JA30201- 2 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 5 GN31097- 6 GN31097- 4 JA30201- 4 JA30201- 5 CCV CCB 4 JA30201- 5 CCV CCB CCB CCCV CCB CCB CCCV CCB JA30201- 5 JA30201- 6 CCV CCB CCCV CCB JA30201- 6 CCV CCB JA30201- 7 JA30201- 8 CCV CCB CCCV CCB JA30201- 8 CCV CCB CCCV CCB JA30201- 8 CCV	97-D3	0.001	0.000	21:43	0.001	-0.0017	50.0	50.0	1	-0.002	mg/l	0.002	0.010
7 JA30201- 3 JA30201- 3 JA30201- 3 JA30201- CCV CCB 3 JA30201- 2 JA30201- 4 JA30201- 4 JA30201- 6 GN31097- GN31097- 12 JA30201- 4 JA30201- 4 JA30201- 5 CCV CCB 4 JA30201- JA30201- CCV CCB CCB CCC CCB CCC CCB JA30201-	201-1	0.029	0.002	21:43	0.027	0.0284	50.0	50.0	1	0.028	mg/l	0.002	0.010
3 JA30201- 3 JA30201- 3 JA30201- CCV CCB 3 JA30201- 2 JA30201- 4 JA30201- 4 JA30201- 5 GN31097- 6 GN31097- 12 JA30201- 4 JA30201- 4 JA30201- 5 CCB 4 JA30201- 5 JA30201- CCB CCB CCB CCB CCCB CCB JA30201- CCCV CCB CCB	201-2	0.002	0.000	21:43	0.002	-0.0005	50.0	50.0	1	-0.001	mg/l	0.002	0.010
3 JA30201- 3 JA30201- CCV CCB 3 JA30201- 2 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 5 CCV CCB 4 JA30201- JA30201- CCV CCB CCB CCB JA30201- JA30201- JA30201- JA30201- CCV CCB	201-3	0.001	0.000	21:43	0.001	-0.0017	50.0	50.0	1	-0.002	mg/l	0.002	0.010
3 JA30201- CCV CCB 3 JA30201- 3 JA30201- 2 JA30201- 4 JA30201- 4 JA30201- 5 GN31097- GN31097- 12 JA30201- 4 JA30201- 4 JA30201- 5 CCV CCB 4 JA30201- JA30201- 5 JA30201- CCV CCB CCB CCV CCB JA30201- JA30201- JA30201- JA30201- JA30201- JA30201- JA30201- JA30201- JA30201- JA30201- JA30201- JA30201- JA30201- JA30201- JA30201- JA30201- CCV	201-4	0.002	0.001	21:43	0.001	-0.0017	50.0	50.0	1	-0.002	mg/l	0.002	0.010
CCV CCB 3 JA30201- 3 JA30201- 2 JA30201- 4 JA30201- 4 JA30201- 5 GN31097- 12 JA30201- 4 JA30201- 4 JA30201- 5 CCV CCB 4 JA30201- JA30201- 5 CCV CCB CCB CCV CCB CCB CCV CCB CCB CCV CCB CCB	201-5	0.010	0.008	21:43	0.002	-0.0005	50.0	50.0	1	-0.001	mg/l	0.002	0.010
CCB 3 JA30201- 3 JA30201- 2 JA30201- 4 JA30201- 4 JA30201- 5 GN31097- GN31097- 12 JA30201- 4 JA30201- 4 JA30201- 5 CCV CCB 4 JA30201- 5 JA30201- CCV CCB CCB CCV CCB CCV CCB CCV CCB	201-6	0.029	0.027	21:43	0.002	-0.0005	50.0	50.0	1	-0.001	mg/l	0.002	0.010
3 JA30201- 3 JA30201- 2 JA30201- 4 JA30201- 4 JA30201- 4 JA30201- 5 GN31097- GN31097- GN31097- 4 JA30201- 4 JA30201- 4 JA30201- 5 CCV CCB CCB CCV CCB CCV CCB CCV CCB CCV CCB		0.435	NA	21:43	0.435	0.4994	NA	NA	NA	NA	mg/l	0.002	0.010
3 JA30201- 2 JA30201- 4 JA30201- 4 JA30201- 5 GN31097- 12 JA30201- 4 JA30201- 4 JA30201- 5 CCV CCB 4 JA30201- JA30201- JA30201- CCV CCB CCV CCB JA30201-		0.000	NA	21:44	0.000	-0.0028	NA	NA	NA	NA	mg/l	0.002	0.010
2 JA30201- 4 JA30201-1 4 JA30201-2 GN31097-3 GN31097-1 12 JA30201-2 4 JA30201-2 4 JA30201-3 4 JA30201-3 JA30201-3 JA30201-3 GN31097-1 CCV CCB CCB CCB CCB JA30201-8 CCV CCB CCV CCB JA30201-8 CCV CCB CCB JA30201-8 CCV		0.012	0.010		0.002	-0.0005	50.0	50.0	1	-0.001	mg/l	0.002	0.010
4 JA30201-1 4 JA30201-2 GN31097-3 GN31097-1 12 JA30201-2 4 JA30201-4 4 JA30201-6 CCV CCB 4 JA30201-6 JA30201-6 CCV CCB CCB CCV CCB JA30201-8 CCV CCB CCB CCV CCB JA30201-8 CCV CCB CCB CCV CCB		2.036	OVR	21:55	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
4 JA30201-2 GN31097-4 GN31097-1 12 JA30201-2 4 JA30201-2 4 JA30201-2 4 JA30201-2 4 JA30201-2 JA30201-2 GCV CCB 4 JA30201-2 GCV CCB CCB CCV CCB JA30201-8 GCV CCB CCV CCB JA30201-8 GCV CCB JA30201-8 GCV CCB JA30201-8 GCV		0.000	0.000	21:55	0.000	-0.0028	50.0	50.0	1	-0.003	mg/i	0.002	0.010
GN31097-1 GN31097-1 12 JA30201-2 4 JA30201-2 4 JA30201-2 CCV CCB JA30201-2 GCV CCB CCB CCV CCB CCB CCV CCB CCB CCV CCB CCB		0.026	0.000	21:55	0.026	0.0272	50.0	50.0	1	0.027	mg/l	0.002	0.010
GN31097-I 12 JA30201-2 4 JA30201-2 4 JA30201-3 CCV CCB 4 JA30201-2 JA30201-2 CCV CCB CCV CCB CCV CCB JA30201-2 JA30201-3 CCV CCB JA30201-3 CCV CCB		0.000	0.000	21:55	0.000	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
12 JA30201-5 4 JA30201-6 CCV CCB 4 JA30201-6 4 JA30201-6 4 JA30201-6 5 JA30201-6 CCV CCB CCB CCV CCB CCB JA30201-8 CCV CCB CCB JA30201-3PSi		0.045	0.000	21:55	0.045	0.0491	50.0 50.0	50.0	1	-0.003	mg/l	0.002	0.010
4 JA30201-4 4 JA30201-5 CCV CCB 4 JA30201-6 4 JA30201-7 JA30201-8 JA30201-8 CCV CCB CCB CCV CCB JA30201-8 JA30201-8 CCV CCB JA30201-8 JA30201-8 CCV CCB JA30201-8 JA30201-8 JA30201-8 JA30201-8 JA30201-8 JA30201-9 JA30		0.000	0.000	21:55 21:55	0.000	-0.0028 -0.0028	50.0	50.0 50.0	1	-0.003	mg/l mg/l	0.002	0.010
4 JA30201-E		0.000	0.000	21:55	0.000	-0.0028	50.0	50.0	1	-0.003		0.002	0.010
CCV CCB 4 JA30201-6 4 JA30201-7 JA30201-8 JA30201-8 CCV CCB CCV CCB CCV CCB JA30201-3PSi JA30201-3PSi		0.000	0.000	21:55	0.000	-0.0028	50.0	50.0	1	-0.003	mg/l mg/l	0.002	0.010
CCB 4		0.434	NA NA	21:55	0.434	0.4983	NA NA	NA	NA NA	NA NA	mg/l	0.002	0.010
4 JA30201-6 4 JA30201-7 JA30201-8 JA30201-8 CCV CCB CCV CCB JA30201-8 JA30201-9 CCV JCCB JA30201-9 JA30201-9 JA30201-9 JA30201-3PSI JA30201-3PSI		0.000	NA NA	21:56	0.000	-0.0028	NA NA	NA NA	NA NA	NA NA	mg/l	0.002	0.010
4 JA30201-7 JA30201-8 JA30201-8 CCV CCB CCV CCB JA30201-3 JA30201-3 CCV JCDB JA30201-3PSi JA30201-JA30201-3PSi		0.008	0.008	21.00	0.000	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCV CCB JA30201-8 CCV CCB JA30201-9 CCV JCDB JA30201-9 JA30201-3PSi JA30201-3PSi		0.004	0.000		0.004	0.0018	50.0	50.0	1	0.002	mg/l	0.002	0.010
CCV CCB CCV CCB JA30201-3PSi JA30201-3PSi		1.380	OVR		FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCV CCB CCB CCV CCB JA30201-3PSi JA30201-	201-8	0.572	0.002		0.570	0.6553	50.0	50.0	500	327.650	mg/l	1.000	5.000
CCB CCV CCB JA30201-3PSi JA30201-	01-8F	0.566	0.000		0.566	0.6507	50.0	50.0	500	325.340	mg/l	1.000	5.000
CCB CCV CCB JA30201-3PSi JA30201-					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB CCV CCB JA30201-3PSi JA30201-					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB CCV CCB JA30201-3PSi JA30201-					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB CCV CCB JA30201-3PSi JA30201-					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB CCV CCB JA30201-3PSi JA30201-					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCV CCB JA30201-3PSi JA30201-		0.434	NA	22:02	0.434	0.4983	NA	NA	NA	NA NA	mg/l	0.002	0.010
JA30201-3PSi JA30201-	В	0.001	NA	22:03	0.001	-0.0017	NA	NA	NA	NA	mg/l	0.002	0.010
JA30201-3PSi JA30201-			 	 	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
JA30201-3PSi JA30201-					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
JA30201-3PSi JA30201-			ļ	ļ	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB JA30201-3PS JA30201-			 		FALSE FALSE	-0.0028 -0.0028	50.0 50.0	50.0 50.0	1	-0.003 -0.003	mg/l mg/l	0.002	0.010
CCB JA30201-3PS JA30201-			 	 	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
JA30201-3PSi JA30201-			 		FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
JA30201-3PSi JA30201-					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB JA30201-3PS JA30201-					FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB JA30201-3PS JA30201-				·	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCB JA30201-3PS JA30201-		0.435	NA NA	22:30	0 435	0.4994	NA	NA	NA	NA NA	mg/l	0.002	0.010
JA30201-	:v	0.000	NA	22:31	0 000	-0.0028	NA	NA	NΑ	NA	mg/l	0.002	0.010
		0.136	0.003	22:36	0.133	0.1507	50.0	50.0	1	0.151	mg/l	0.002	0.010
1400004 0500	СВ	0.000	0.002	22:36	C- 200	-0.0028	50.0	50.0	5	-0.014	mg/l	0.010	0.050
JA30201-3FPS	BPSCONF	0.130	0.000	22:36	(°.130	0.1473	50.0	50.0	1	0.147	mg/l	0.002	0.010
JA30201-3	BPSCONF	0.000	0.000	22:36	C: 000	-0.0028	50.0	50.0	5	-0.014	mg/l	0.010	0.050
	B BPSCONF 201-3 FPSCONF		ļ	ļ	FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
	B BPSCONF 201-3 FPSCONF				F.ALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
-	B BPSCONF 201-3 FPSCONF		1		FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
ļ	B BPSCONF 201-3 FPSCONF				FALSE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
	B BPSCONF 201-3 FPSCONF			ļ		· · · · · · · · · · · · · · · · · · ·							
	B BPSCONF 201-3 FPSCONF				F._SE	-0.0028	50.0	50.0	1	-0.003	mg/l	0.002	0.010
CCV	CB BPSCONF 201-3 FPSCONF 201-3F	0.435	NA	22:36		· · · · · · · · · · · · · · · · · · ·	50.0 50.0 NA	50.0 50.0 NA	1 1 NA	-0.003 -0.003 NA	mg/l mg/l mg/l	0.002 0.002 0.002	0.010 0.010 0.010

Comments:

Test: Hexavalent Chromium	MDL = 0.002 mg/l GNBatch ID: (4 / 3 / 6 / 7)
Product: XCr	RDL = 0.010 mg/l Date: 10 12/09
Method: SW846 7196A (NJDEP mod)	
Digestion Batch QC Summary	Units = mg/l
	12/09 Result: <0.010 RDL: 0.010 <rdl: th="" yes<=""></rdl:>
Spike Blank ID: BI Date:	Result: 0-157 Spike: 0-150 %Rec.: 100. 7 1/-
Duplicate ID DA 302 14 - 2 Samp. Resul	t: <u> </u>
MS ID: (S) Samp. Result: <	MS Result: 0 .098 Spike: 0 .150 %Rec: 65.3/
	Result: <0.010 Dil. Result: <0.010 %RPD:
pH adj. PS ID: Samp. Resul	t: 20-010 MS Result: 0.157 Spike: 0.150 %Rec: 100.7
Analysis Batch QC Summary Units	s = mg/l
f i	,/
1 /	:
CCV: Result: 0.499 TV	
CCV : Result: 0. 499 TV	
CCV: Result: O. SDI TV	•
CCV : Result: 0.50 TV	
CCV: Result: 0. 499 TV	:
CCB: 16/12/69 Result: 6.010 RDI	A 610 VE (
Noodi.	
	-: <rdl:< th=""></rdl:<>
CCB: Result: RDI	
CCB: Result: RDI	
CCB: Result: RDI	
CCB: V RDI	_: <rdl:< th=""></rdl:<>
Reagent Reference Numbers:	SEE ATTACHED
Initial Calibration Source:	
Continuing Calibration Source:	
outling outlined to delive.	
DA - rola	log.
Analyst: PA Date: 10/12	<u> </u>
Comments:	

Test: Hexavalent Chromium	MDL = 0.002 mg/l GNBatch ID: GH_{2709}
Product: XCr Method: SW846 7196A (NJDEP mod)	RDL = 0.010 mg/l Date: 1৬ /2 /০প
Digestion Batch QC Summary	Units = mg/l
Method Blank ID: Date:	
	Result: Spike: %Rec.:
Duplicate ID: 62 JA 30216-4 Samp. Result:	
	MS Result: 0.035 Spike: 0.10 %Rec: 23.3 %
Diluted Sample ID: Samp. Re	esult: <0.010 Dil. Result: <0.610 %RPD:
pH adj. PS ID:Samp. Result:_	Co.610 MS Result: 0.139 Spike: 0.150 %Rec: 92.7/
Analysis Batch QC Summary Units =	= mg/l
CCV: \0 12/09 Result: 0.499 TV:	n the As sil
CCV: Result: 0. 498 TV:	0.500 %Rec.: 99.8/.
CCV: Result: 0. 498 TV:	
CCV: Result: 0. 499 TV:	
CCV: Result:0, 49.9 TV:	%Rec.: 99 8 /·
CCV: Result: TV:	· · · · · · · · · · · · · · · · · · ·
CCB: 10/12/09 Result: <0-610 RDL:	0-01° <rdl: th="" yes<=""></rdl:>
CCB: Result: RDL:	<u> </u>
CCB: Result: RDL:	<pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><p< th=""></p<></pre>
CCB: Result: RDL:	<rdl:< th=""></rdl:<>
CCB: Result: W RDL:	
CCB: Result: RDL:_	<rdl:< th=""></rdl:<>
Reagent Reference Numbers:	EE ATTACHED.
India to the control of	
Initial Calibration Source: Continuing Calibration Source:	
Continuing Calibration Source:	- All Andrews
n s	
Analyst: 2A Date: 10 12/3	"
Comments:	•
*1	A

PAGE 2

Test: Hexavalent Ch	romium	M	IDL = 0.002 mg/l	GNBatch ID:_	GN 31097
Product: XCr		R	DL = 0.010 mg/l		
Method: SW846 7196	·	od)			
Digestion Batch QC	Summary	U	Inits = mg/l		
Method Blank ID: M	132 Da	ate: 6 /12/0	9_ Result: < 0-01	RDL: 0.0/0	<rdl: th="" y₽1<=""></rdl:>
Spike Blank ID:	<u>В2.</u> Da	ite:	Result: O I w	Spike: 6. 150 %	Rec. 100 %
Duplicate ID: 13 JA	30201-3 Sam	np. Result: <	Dup. Res	ult: <0.010 %F	RPD. 0
MS ID: 🕄	Samp. Res	ult: 20.010	MS Result 0.06	3 Spike 0.150 %	Rec: 42 1/.
Diluted Sample ID:					
					150 %Rec: 100.7 /
, , , , , , , , , , , , , , , , , , ,	Jan	ip. ivesuit	WS Result:_	Spike: U.	%Rec: 100.7
Analysis Batch QC Sun	nmary	Units = m	g/l		
ccv :	Result:	T\/·	9/ Pag :		
ccv:	Result:		%Rec:		
CCV:	Result:	TV:	%Rec.:		
CCV:	Result:	TV:	%Red:		
CCV:					
CCV:		TV:			
			N		
CCB:	_ Result:	RDL	<rdl:< th=""><th><u> </u></th><th></th></rdl:<>	<u> </u>	
CCB:	_ Result:	RDL:	<rdl:< th=""><th></th><th></th></rdl:<>		
CCB:	_ Result:	RDL:	<rdl:< th=""><th></th><th></th></rdl:<>		
CCB:	_ Result:	RDL:	<rdl:< th=""><th></th><th></th></rdl:<>		
CCB:			<rdl:< th=""><th></th><th></th></rdl:<>		
CCB:	_ Result:		<rdl:< th=""><th></th><th></th></rdl:<>		
Reagent Reference N			Service Dec		
Reagent Reference N	umbers:	S F-1	ATTACHER) '	
V					
V 201 14 10 10 10 10 10 10 10 10 10 10 10 10 10	· · · · · · · · · · · · · · · · · · ·			Tanah	
<u> </u>			78.V81		· · · · · · · · · · · · · · · · · · ·
Initial Calibration Sou	rce:	148		<u>.</u>	
Continuing Calibratio	n Source:			· · · · · · · · · · · · · · · · · · ·	
		. <u>-</u> w			
Analyst: 2A	Date	10/12/09			
,			•		
Comments:	 ,	· · · · · · · · · · · · · · · · · · ·			

PAGE 3

Test: Hexavalent (Chromium	N	IDL = 0.002 mg/l	GNBatch ID:	GH 37094
Product: XCr		R	DL = 0.010 mg/l		
Method: SW846 71		od)			
Digestion Batch Q	C Summary	U	nits = mg/l		
Method Blank ID:	D	ate:/	/ Result:/	RDL: /	<rdl: <="" th=""></rdl:>
Duplicate ID: 1	A36201-3F San	np. Result: 🧳	0.010 Dup. Res	ult: <0.0)0 %	RPD: -0-
MS ID: (\$\infty\$)	Samp. Res	ult: 20.010	MS Result. O.04	9 Snike 0.150	4Pos: 32.77
Diluted Sample ID:		Samp, Result	(0.010 Dil	Result: <0.010	WRDD.
pH adj. PS ID:	San	np. Result: <c< th=""><th>O-0 O MS Result:</th><th>0-147 Spike:0</th><th>150 %Rec: 98 /</th></c<>	O-0 O MS Result:	0-147 Spike:0	150 %Rec: 98 /
Analysis Batch QC S		Units = mg	·		
CCV:	Result:	TV:	%Rec.:		
CCV:	Result:	TV:			
CCV :	Result:	TV:			_
CCV:	Result:	TV:	/ %Flec.:		
CCV:			/		
	Result:	TV:	/ %Rec		
CCB:	Result:	RDL:	<rdl: <="" th=""><th><u> </u></th><th></th></rdl:>	<u> </u>	
CCB:	Result:	DDV	<rdl: <="" th=""><th>T</th><th></th></rdl:>	T	
CCB:	Result:			 } -	
CCB:	Result:		<rdl:< th=""><th></th><th></th></rdl:<>		
CCB:	Result:		<rdl:< th=""><th></th><th></th></rdl:<>		
CCB:	Result:		<rdl:< th=""><th></th><th></th></rdl:<>		
Reagent Reference	Numbers:	(EE	ATTACHER) ·	
			11/2 O () F		W. 2.11
-	744				· · · · · · · · · · · · · · · · · · ·
					
Initial Calibration S	Office.				
Continuing Calibrat					
					*
Analyst: 2	A	10/12/09			
maryst.	Date:	1 112/			
Comments:			•		
		-			
					<u> </u>

PAGE 4

MACCUTEST

Hexavalent Chromium pH Adjustment Log Method: SW846 7196A (NJDEP mod)

pH adj. start time: pH adj. end time:	1916	° 2021 e 2029	pH Adjust. Date:_	10/12/09 6N31097
productions.	1210		GN Batch ID:	4K01074

Sample ID ccv ccv	Initial Sample Volume (ml)	Final Volume (ml)	pH after H2SO4 J. 84	bkg pH after H2SO4	Spike Info	Comments S PPM ULTRA
CCB CCB	45	50	2.06			
CCB MS TA 30214-2 DUP SB B 1. D3 9214-1 2. J - 2 3. DA 30216-4 4. J 5. DA 30216-4 65 7 C 87 9. J-9 10. 11.	45		1.87 1.82 1.80 1.06 2.01 1.92 1.96 2.02 1.88 1.81 1.95 2.07	1.77 1.87 1.87 1.89 1.97 1.90 1.74 1.89 1.89 1.91 1.89	ML	7.5 ppm ABSOUTE 7.5 ppm ABSOUTE
12. 13. 14. 15. (PS) JA 302 14 - 2- 16. (NL) JA 17. 18. (RS) JA 302 16 - 4 9. (OLL) 19. (OLL) 19. (OLL) 19. (OLL) 19. (OLL) 19. (OLL) 19. (OLL)	45 45	50	1.84 1.91 1.90 1.88	7 1.80 (pH = 8. 1.76 2 1.77 pH = 80 (.79	1: 5	7.5 ppm ABSOUTE DIL. J.5 ppm ABSOUTE DIL.

Reagent Information:	SEE ATTAC	HED.	
Analyst: 2A	Date: 10/12/09	QC Reviewer:	Date:

Form: GN-077 Rev. Date: 2/11/99

PMEI

Hexavalent Chromium pH Adjustment Log Method: SW846 7196A (NJDEP mod)

pН	adj.	start time:
рΗ	adj.	end time:

2055

pH Adjust. Date: 16 12 49
GN Batch ID: 5N 31097

Sample I	iD	Initial Sample Volume (ml)	Final Volume (ml)	pH after H2SO4	bkg pH after H2SO4	0-31-1-6-	
	<u> </u>		(1111)			Spike Info	Comments
CCV		45	<u> </u>	2.0	-	2 1012	5 ppm utira
ccv							
CCV							
ccv		7 +-	B-97	2 .5			
CCB		45	50	2.07			
CCB				****			
CCB CCB							
	30201-3	45	50	100	1 05	1 1 1 1 1 1 1	
DUP		43	30	1.92	1.75	1 ML	7.5 PPM ABSOUTE
	7	 	- 1 -	1.97	1.75	1	
SB				1,84	1.85	ML	7.5 PPM ABSOUTE
PB	302-01-1	-		2.07	1.83		
	-2			1,95	1.80		
2.	-3		-	1, 90	1.76		
3.	-4	-		1.85	1.77		
4.	-5		-	1.87	1.82		
5.	-6			1.95	1,50		
6.				1.87	1. 76		****
7.	1			1.85	1.85		
8.	-8		<u> </u>	1.88	1,82		
9.	-9			2.11	1. 95		
10.	- IF			1.94	1.81		
11.	-2F) 98	1.72		
12.	- 3F			1.94). Bo	ML	7.5 ppm ABSOMTE
13.	- 3 +			90, (1.80		'
14.	-3F			1.88	रिष्ठप		
15.	-45			185	1. 82		
16.	-2=			181	1.95		
17.	-GF			1-79	1.97		
18.	-7F			1.92	トタチ		
19.	-8F		<u>J</u>	1.94	2.04		
20.	<u>_8</u>	45	20	1.91	1.95		1: 500 DIL.
	<u> </u>	45	20	1.82	1-87		1: 500 DIT-
DIL							
DIL							

Reagent Information: CEE ATTACHED

Analyst: K-A

Date: 1-/12/09

QC Reviewer:

Date:___

Form: GN-077 Rev. Date: 2/11/99 中栖生ン

Hexavalent Chromium pH Adjustment Log Method: SW846 7196A (NJDEP mod)

	,		, ,
pH adj. start time:	2712	pH Adjust. Date:_	10/12/09
pH adj. end time:	2226	 GN Batch ID:	GN31-97

	Initial					T T	I
	Sample	Final		bkg pH			
	Volume	Volume	pH after	after			
Sample ID	(ml)	(ml)	H2SO4	H2SO4	Spike Info	Comments	
ccv							
ccv							
ccv							
ccv							
CCB							
CCB							
CCB							
CCB							
MS			·				
DUP							
SB	•						
PB_						7. 7.0 0	
1. PS) JA36201-3	45	ţv	1.84	1.81	(PH = 8.	32) IML 7. 5 ppm AB	STUTE
2. (TL) 1			1.82	1.90	14		
3.							
4. (PS) JA30201-3F			1.76	1.84	(pH = 8.	09) ML 7. 5 ppm A	8 SOWTE
5. (IL) J	1	V	1.80	1.85			
6.							
7.							
8.							
9.							
10.			~~~				
11.					1		
12.							
13.			· *****				
			-				
14. 15.							
16.					1		
17.					-		
18.							
16. 17. 18. 19.				· · · ·		. , , , , , , , , , , , , , , , , , , ,	
20.	····						
PS							
DIL		<u> </u>					
DIL							

Reagent Inform	ation:	SEE ATTACH	EO	
Analyst:	PA	Date: 10 12 09	QC Reviewer:	Date:
Form: GN-077				

Form: GN-077 Rev. Date: 2/11/99

PAGE 3

Method: SW	846 7196	SA (NJDI	EP mod)		1 (
pH adj. start time:		1916		pH Adjust. Date: ၂၆ GN Batch ID: ဂြၢ	12/09
pH adj. end time:		194	· >	GN Batch ID: G1	131097
	Initial				
	Sample	Final			
	Volume	Volume	pH after		
Sample ID	(ml)	(ml)	H2SO4	Comments	Spike Info.
Calibration Blank	45	€0	1.86		
0.010 mg/l standard	\	\	1-92	S BOM MOSOWITE	0.10 ml of 5 mg/l to 50 ml FV
0.050 mg/l standard			1.95		0.50 ml of 5 mg/l to 50 mL FV
0,100 mg/l standard			1.97	1	1.00 ml of 5 mg/l to 50 mL FV
0.300 mg/l standard			1. B9		3.00 ml of 5 mg/l to 50 mt. FV
0.500 mg/l standard			1.80		5.00 ml of 5 mg/l to 50 mL FV
0.800 mg/l standard			2-01	W.	8.00 ml of 5 mg/l to 50 mL FV
1.00 mg/l standard	W	2	2.06		10.0 ml of 5 mg/l to 50 mL FV
2.00 mg/l standard		,			20.0 ml of 5 mg/l to 50 mL FV
	1				- State of Stringing Source
					4
	ļ				
					,
	ļ	ļ		-	
				-	
		<u> </u>			
	.		ļ		
	 		ļ		
		 	+		
	<u> </u>		<u> </u>		
		 			
	 		 		
		<u> </u>			1
		 			
		 			
	-		 		
Reagent Information	1:	SEE	ATTA	CHED.	
		~			
Analyst: 2-A	τ.	Date:	10/12/0	9	
		Date:	· /-/-		

Reagent Information Log - XCR - Water (7196a)

Reagent		Reagent # or Manufacturer/Lot
Calibration Source: Hexavalent Chromium, 1000 mg/L Stock	8/20/12	ABSOUTE GRAPE 08 2000
Calibration Checks: Hexavalent Chromium, 1000 mg/L Stock	7/31/15	UCTRA SCI 500509
External Check	4/4	N/A
Spiking Solution Source	8/20/12_	ABI. GRAPE 082009
Diphenylcarbazide Solution	11/6/09_	GNE10- 23162-XQL
Sulfuric Acid, 10%	3/29/10	GNE9- 23111- XCIL
	_	
	_	
	_	
	-	

All standards and stocks were made as described in the SOP for this method (circle one): If no (N), see attached page for standards prep.

Ν

Form: GN-087 1-23 Rev. Date: 2/16/99

	Туре	Analysis	Sample Name	Sample ID	Origin	Dilution	Result	Status	Date / Time	Ave. of 3
1	Unknown	NPOC	CRI	0.896	C:\TOC3201	1.000	NPOC:0.8308mg/	Completed	10/17/2009	Passing ung.
2	Unknown	NPOC	HSTD		C:\TOC3201	1.000	NPOC:28.78mg/L	Completed	10/17/2009	
3	Unknown	NPOC	ICV		C:\TOC3201	1.000	NPOC:18.68mg/L NPOC:0.1597mg/	Completed	10/17/2009	
4	Unknown	NPOC	ICB	***************************************	C:\TOC3201		NPOC:0.1397119/ NPOC:14.26mg/L			
5	Unknown	NPOC	CCV		C:\TOC3201 C:\TOC3201	1.000	NPOC:0.1787mg/	Completed	10/17/2009	
7	Unknown Unknown	NPOC NPOC	SPARGECHK		C:\TOC3201		NPOC:0.3423mg/		10/17/2009	
8	Unknown	NPOC	GP51154-MB2	GP51139-MB		1.000	NPOC:0.1585mg/	Completed	10/17/2009	
9	Unknown	NPOC	GP51154-B2	GP51139-B2/	C:\TOC3201	1.000	NPOC:10.57mg/L	Completed	10/17/2009	
10	Unknown	NPOC	JA28484-2A		C:\TOC3201	1.000	NPOC:7.771mg/L	Completed	10/17/2009	out of 3 ma
11	Unknown	NPOC	JA28484-4A	7.69	C:\TOC3201		NPQC:7.893mg/L	Completed	10/17/2009	446.00.2.0
12	Unknown	NPOC	JA28484-5A		C:\TOC3201		NPOC 8.234mg/L			
13	Unknown	NPOC	JA28484-7A	N	C:\TOC3201		NPOC:6,468mg/L	Completed	10/17/2009	
14	Unknown	NPOC	JA28484-8A	Y	C:\TOC3201		NPOC:6.891mg/L NPOC:14.56mg/L			
15	Unknown	NPOC	CCV	! !	C:\TOC3201 C:\TOC3201	1.000	NPOC:14.56/1g/L	Completed	10/17/2009	
16	Unknown	NPOC	CCB JA29776-3	(A)	C:\TOC3201	5,000	NPOC:28.23mg/L	Completed	10/17/2009	
17	Unknown Unknown	NPOC	JA29776-6	Y	C:\TOC3201	1 000	NDOC:12 /2mg/l	Completed	10/17/2009	1
19	Unknown	NPOC	JA29776-10	<u>(5)</u>	C:\TOC3201	5.000	NPOC:24.66mg/L	Completed	10/17/2009	Bag uff ic.a.
20	Unknown	NPOC		7	C:\TOC3201	10.00	NPOC:85.32mg/L	Completed	10/1//2009	
21	Unknown	NPOC		(A)	C:\TOC3201	3.000	NPOC:18.85mg/L	Completed	10/17/2009	
22	Unknown	NPOC	JA29180-7	Ţ	C:\TOC3201		NPOC:30.88mg/L			
23	Unknown	NPOC	JA29756-2	Υ	C:\TOC3201	1.000	NPOC:23.49mg/L	Completed	10/17/2009	
24	Unknown	NPOC	CCV		C:\TOC3201		NPOC:14.68mg/L NPOC:0.2085mg/			
25_	Unknown	NPOC	CCB		C:\TOC3201 C:\TOC3201		NPOC:0.2085mg/ NPOC:0.1474mg/			
26	Unknown		GP51159-MB		C:\TOC3201		NPOC:10.62mg/L			
27	Unknown Unknown	NPOC NPOC	GP51159-B1 GP51159-D1	JA29860-1	C:\TOC3201		NPOC;2.131mg/L	Completed	10/17/2009	
29	Unknown	NPOC	GP51159-S1	JA29860-1	C:\TOC3201		NPOC:11.86mg/L			
30	Unknown		JA29860-1		C:\TOC3201	1.000	NPOC:2.105mg/L	Completed	10/17/2009	
31	Unknown		JA30616-1	1.39	C:\TOC3201	1.000	NPQC;4:512mg/L	Completed	10/17/2009	
32	Unknown	NPOC	JA29805-1		C:\TOC3201	1.000	NPOC: 1.536mg/L		10/17/2009	
33	Unknown	NPOC	JA29805-2		C:\TOC3201	1.000	NPOC:2.427mg/L	Completed	10/17/2009	
34	Unknown		JA29805-3	¥	C:\TOC3201	1.000	NPOC:5.449mg/L	Completed	10/17/2008	overrounge_
35	Unknown			(5)	C:\TOC3201	1.000	NPOC:39.76mg/L NPOC:14.78mg/L	Completed	10/17/2009	Ferun 1:00
36	Unknown	•••	CCV		C:\TOC 3201	,,:,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NPOC: 0.1525mg/			
37	Unknown	***;*-***************	CCB JA29805-5	Ø	C:\TOC3201	1.000	NPOC:17 25mg/l	Completed	10/17/2009	1
38	Unknown	****	JA29805-6		C:\TOC3201	1.000	NPOC:10.76mg/L	Completed	10/17/2009	recun iido
40	Unknown		JA29805-7	(a)	C:\TOC3201	1; 1.000	/: NEOC, 10.70mg/L	.: Completed	10/1//2000	<u> </u>
41	Unknown		JA29805-9	Ī	C:\TOC320	1.000	NPOC:1.732mg/L	Completed	10/17/2009)
42	Unknown		JA29805-10		C:\TOC3201	1.000	NPOC:1.427mg/L	Completed	10/17/2009	
43	Unknown		JA29805-11		C:\TOC3201	1.000	NPOC:1.875mg/L	Completed	10/17/2009	9
44	Unknown	NPOC	JA29830-1		C:\TOC320	1.000	NPOC:0.7642mg/	Completed	1 10/17/2005	ave. of 3 mg
45	Unknown		JA29835-2	7.24	C:\TOC320	1.000	NPOC:0.7042111g/ NPOC:7 .090 mg/L NPOC:0.5293mg/	Completed	10/17/200	a cheloe
46	Unknown		JA29959-2	2.31	C:\TOC320	1: 1.000 1: 5.000) NPOC: 2-437m g/L	Completed	10/18/2009	
47	Unknown	;	JA30469-2 CCV	2,31	C:\TOC320	1 1.000	NPOC:14.57mg/L	Completed	10/18/200	A
48	Unknown		CCB		C:\TOC326	1 1.000	NPOC:0.2033mg	/ Completed	10/18/2009)
50	Unknown			3	C:\TOC320	1 1.000	NPOC:0.2347mg	/ Completed	1 10/18/200	2
51	Unknown	*****	GP51160-B1		C:\TOC320	1.000	NPOC:10.42mg/L	Completed	1 10/18/200	9
52	Unknown	NPOC	GP51160-D1			***: *** *** *** *** *** *** *** ***	NPOC:2.235mg/L	Completed	1 10/18/200	
53	Unknowr					-4-3	NPOC:11.89mg/L			
54	Unknowr		JA30201-3	(B)	C:\TOC320	1.000	NPOC:1.996mg/L NPOC:2.943mg/L	Completed	1 10/18/200	2
55_	Unknowr		JA30201-1	1	C:\TOC320 C:\TOC320	1.000	NPOC:2.943mg/L	Completed	1 10/18/200	
56	Unknown		JA30201-2 JA30201-4		C:\TOC320	1 1 000	NPOC:3.108mg/L	Completed	10/18/200	9
57 58	Unknowr		JA30201-4 JA30201-5		C:\TOC320	1 1.000	NPOC:9.552mg/L	Completed	10/18/200	9
59	Unknowr		*****************************	V	C:\TOC320	1 1.00	NPOC:13.63mg/l	Completed	10/18/200	9
60	Unknowr		CCV		C:\TOC320	1 1.00	0 NPOC:14.45mg/l	Completed	10/18/200	9
61	Unknowr		CCB	_	C:\TOC320		0 NPOC:0.1955mg	/ Completed	1 10/18/200	9
62	Unknowr			(A)	C:\TOC320		0 NPOC:6.770mg/l	Completed	10/18/200	9
63	Unknowr	.,.,-;		T	C:\TOC320	****, ***************	0 NPOC:6.062mg/l 0 NPOC:0.2986mg	L Complete	1 10/18/200 1 10/19/200	9
64	Unknow				C:\TOC320	1.00	U:NPOC.U.2980MQ	Complete	1 10/18/200	Av of 3 mg
65	Unknow			3.4	C:\TOC320 C:\TOC320	1.00	0 NPOC:3-568mg/ 0 NPOC:1.847mg/	L. Complete	10/18/200	9
66	Unknow	*****]***********		1 L	C:\TOC320		0 NPOC:0.3373mg	/ Complete	1 10/18/200	9
67	Unknow	I INFOC	JA23701-Z		J.11 00020					

10/19/2009 10:42:10 AM

C91017W1.TDC

GN 31309

1/2

	Туре	Analysis	Sample Name	Sampl	le ID	Origin	Dilution	Result	Status	Date / Time	l
68	Unknown	NPOC	JA29961-3	W/		C:\TOC3201	5.000	NPOC:21.26mg/L	Completed	10/18/2009	
69	Unknown	NPOC	JA29961-4	1		C:\TOC3201	5.000	NPOC:43.01mg/L	Completed	10/18/2009	
70	Unknown	NPOC	JA29961-5			C:\TOC3201	1.000	NPOC:9.024mg/L	Completed	10/18/2009	
71	Unknown	NPOC	JA29961-9	Ψ		C:\TOC3201	1.000	NPOC:3.865mg/L	Completed	10/18/2009	0 m of 3 000mm
72	Unknown	NPOC	CCV	۱۲	4.84	C:\TOC3201	1.000	NPQ6:14-43/jg/L	Completed	10/18/2009	eve of 3 passing
73	Unknown	NPOC	CCB	_		C:\TOC3201	1.000	NPOC:0.3288mg/			4
74	Unknown	NPQC	JA29961-10	(A) 2	2. 4기	C:\TOC3201	1.000	NPOC: 2.522m g/L			Are of 3 mg
75	Unknown	NPOC	JA29961-11	(5)		C:\TOC3201		NPOC:53.12mg/L			overdilidelderin
76	Unknown	NPOC	JA29961-12	(A)		C:\TOC3201		NPOC:9.796mg/L			1
77	Unknown	NPOC	JA29961-13	4 9	1.83	C:\TOC3201	1.000	NPQC:10:08mg/L	Completed	10/18/2009	Have of 3 m
78	Unknown	NPOC	CCV			C:\TOC3201		NPOC: 14.63mg/L			
79	Unknown	NPOC	CCB			C:\TOC3201	1.000	NPOC:0.2494mg/	Completed	10/18/2009	

091019W1. TOC

GN 31309

, 6

JA30201 Laboratorie

GN Batch ID: 31309 Date: 1011709

C91017W1.TOC

Test: Total Organic Carbon

Product: TOC

Method: SM20 5310B 9060M

Note: Refer to	raw data and LIMS for info	ormation	not shown belo	<u>w</u>		
Autosampler Position #	Sample ID	pН	Diluton Factor	Bottle #	Comments	
1	WASHCONF	42				
2.	CRI					
3	HSTD					
Ч	±cV					
5	ICB		·			
6	CCV					
7	CCB					
. r	SPARGERCHK					•
. 9	GP51110 -MBZ				GP51139-MB2/GP5	1112-MB2 6P5114-MB
, lo	GP51110 -BZ				GP51139-B2 GP511	
. 11	JA28484-2A			79	•	
. (ک	JA28484-4A			18		
. 13	JA28484-5A			18		
14	JA28484-7A			18		
. 15	JA28484-8A			18		
. 16	œv					
. 17	CEB]
18	JA29776-3		1:5	8		_
19	JA29776-6			7		
20	JA29776-10		1:5	8		
21	JA29776-11		1:10	8		_
2-2	JA29677-5	$\perp \perp$	1:3	7		
23	JA29180-7		1: 10	7		
24 25	JA 29756-2 CCV	$\perp \perp \downarrow$		4		
26	CCB	$\downarrow \downarrow \downarrow$				
27	GP51159- MB	4				_
28	GP51159- BI	4				_]

Analyst:	<u> </u>	Date:	10/17	109	QCRevie	wer:		Date:	
Comments:	58://		of 10	00 00	n KHP-	→ 50 A	A DE Has		10 ma 1L
	MS!	50 ul	of 10	200 001	~ KHP-	> 5ml	sample		10ma 1L
Form: GN-054	Ich;				rcore -			1V= :	20~9TL

Rev. Date: 8/6/08

GN Batch ID: 31309 Date: 101709

Test: Total Organic Carbon

Product: TOC

Method: SM20 5310B 9060M

Note: Refer to raw data and LIMS for information not shown below.

Note	: Refer to r	aw data and LIMS for info	rmatic	ח חכ	ot shown belo	w.		
	tosampler osition#	Sample ID	рH		Diluton Factor	Bottle #	Comments	
	29	GP51159 -D1	1.7	2		4	JA29860-1	
	30	GAS1159 - S1				Ч	1 Clear Wodor	
•	31	JA29860-1				Ý		
•	32	JA 30616-1				4		
٠	33	JA29805-1				(
	34	JA29805 -2				1		
	35	JA29805-3				(
	36	JA29805-4				ı		
	37	ccv						
	38	CCB						
	39	JA29805-5				(
	40	JA29895 - 6				ι		
•	41	JA29805 -7				l		
•	42	JA29805 - 9				3		
•	43	JA29825-10				3		-
•	५५	11- 288PSAT				3		-
٠	45	JA29830-1				7		
	46	JA29835-2				1		
	47	JA29959-2				5		
•	48	5-9940 EAL			1:5	1	Hason Aeserved	
	49	ccv						
	\$0	CCB						
	51	GP51160-MB1						
	52	GP51160-B1						
	S3	E621100-D1				13	JA30201-3	
<u></u>	٤٧	GR51160-S1		,		13	+ clean No odo	e
	58	JA 80201-3	V	/		13		

Analyst:	2	Date: /0/	17/09	QCReviewer:	: · · · · · · · · · · · · · · · · · · ·	Date:
Comments:		· · · · · · · · · · · · · · · · · · ·				

Form: GN-054 Rev. Date: 8/6/08

GN Batch	ID:	3	30	9
Date:		10	17	59

Test: Total Organic Carbon

Product: TOC

Method: SM20 5310B 9060M

Note: Refer to raw data and LIMS for information not shown below.

	Autosampler Position #	Sample ID	рН	Diluton Factor	Bottle #	Comments
	. 56	JA 30201-1	۷ 2		5	
	. 51	JA30201-2			5	
	· 58	JA30201 -4			5	
	. 59	JA30201 -5			<u> </u>	
	` Ģ ö	JA30201-6				
	61	ccv				
	62	CCB				
Canta Biolina	. 63	JA 30201 JA20130 - 7			_5	
	. 64	JA30201 -8			5	
	. 65	JA30201-9			_5	
	. 66	JA30144-2			1	
	. 67	JA30064-1A			Ψ	
	. 68	JA29961-2			9	
	1 69	JA29961-3		1:5	8	brown w Sadmant
	. 70	JA29961 -4		1:5	હ	yellow when od
	. 71	JA29961 -5			9	
	, 72	JA29961 -9			8	·
	73	ccv				
	74	CCB				
	75	JA29961-10			18	
	76	JA29961-11		1:20	8	clear of change
	77	JA29961 -12			9	
	78	JA29961 -13			9	
	79	CCV				
	80	CCB	4			
			<u> </u>			

Analyst:Comments:	Date/0/17/09	QCReviewer:	Date:	
		····		

Form: GN-054 Rev. Date: 8/6/08

GENERAL CHEMISTRY STANDARD PREPARATION LOG

Product: 72c

Glass pripets Class A

GN or GP Number: GN31309

			Т	٥		Ţ		_	_	*			j	9										
		Ç	Date	12/09	-	_	_	۲				Date		60/11/01	-	-		_	-		_		7	
			_	0	-								_	101	-									
		0	Anaiyst	00)		_	}				Analyst		W)				→		б)-	→	
		Expiration	Date	12/29/09		10 29 399		12/29/09		•	Expiration	Date		१० घट ।				-	ð		10 स्थि		7	
Final Conc.	of	Intermediate	(mg/I)	mad coci	-	سمو مما	-	100 ppm	•	Final Conc.	of Standard	(mg/l)		0.	o.i	5.0	0.01	20.0	30.0		loo ppm	-	15 ppm	
		Final	voiume	1000 ml		200 ml		200 -1			Final	Volume) 2 8				-	- }		200ml		boml	
			Ulluent	DI Hio	1		_	+				Diluent		Dr H10					ð		JE H20	_	→	
	Stock	volume used	lm m	2.1259	7	20 ml		D.04749	Intermediafe	or Stock	volume used	in ml		1.0	2.0	5,0	٥. ٥	20.02	30.0		0.0425a	2	15ml	
		Stock	concentration	KHP		1000 ppm		Sucrose		Intermediate	or Stock	concentration		louppm	•			•	→		ST N		100 ppm	
		Stock used to	prepare standard	Fisher 984345A		GNE9-23098-TOC		EMD 4533627		Intermediate or Stock	used to prepare	standard		GNE 9-23099-TUC					>		Natalai Tesque	lot Maka Mi	GNE9-23107-TOC	
		Intermediate	Standard Description	GNE9-23098-70C		GNE9- 23099- TOC		GNE9-23106-TDC				Standard Description	KHP Stds	T∂C	GNE9-23101-TOC	GNE9-23102-TOC	GNE9-23103-TOC	GNE9-23104-TOC	GNE9-23105-TDC	KHP SHS	ړ		GNE9-23108-TOC	

Form: GN121 Rev. Date:2/26/03

Bal B-10

GN 31309

Reagent Information Log - TOC/DOC - Water

Reagent		Reagent # or Manufacture	er/Lot
Potassium Hydrogen Phthlate (KHP), Stock Solution 1000 mg/L	·	GNE9-23093-TOC	XP 12/29/09
Carbonate/Bicarbonate Stock Solution	_	GNE 8 - 22535 - TOC	11/3/09
Sparger Check Solution	-	GNE9 - 23109- TOC	10/29/09
CCV Solution		GNE9-23108-TOC	10/29/09
Sucrase 467 Solution	-	GNE9-23106-TOC	12/29/09
Spiking Solution	-	GNE9-23093-TOC	12/29/09
CRI Check ·	_		
	-		o o o o de de districto de la compansión de de la compansión de de la compansión de la comp
	- م ين ي د		
		-2 1	
	- . •		

All standards and stocks were made as described in the SOP for this method (circle one): Y or N If no (N), see attached page for standards prep.

Form: GN-087 1-67 Rev. Date:3/18/2005

Instr.Information

System Detector Catalyst Cell Length TOC-V with ASI Combustion Regular Sensitivity

long

Sample

Sample Name: Sample ID:

WASHCONF

Origin: Status

TOCWASH.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:0.000mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ėx.	Cal. Curve	Date / Time
1	2.592	0.000mg/L	c91012w1.cal		10/12/2009 2:32:26 PM
2	2.675	0.000mg/L	c91012w1.cal		10/12/2009 2:34:32 PM

Mean Area Mean Conc. CV Area

2.634 0.000mg/L 2.23%

Cal. Curve

Status

Sample Name: Sample ID: Cal. Curve:

Untitled Untitled

c91012w1.2009_10_12_14_34_33.cal

Completed

Type	Anal.
Standard	NPOC

Conc: 0.000mg/L

No.	Area	Inj. Vol.	Aut.	Rem.	Ex.	Date / Time
1			Dil.			
1	1.302	100uL	1	******		10/12/2009 2:46:41 PM
2	0.9907	100uL	1	*****		10/12/2009 2:54:15 PM
3	0.6028	100uL	1	******	E	10/12/2009 3:00:45 PM

Acid Add. Sp. Time Mean Area CV Area

0.000% 360.0sec 1.146 19.20%

Signal[mV] 10

Time[min]

Time[min]

Conc: 1.000mg/L

200 of 247 JA30201

1/27

Time[min]

Time[min]

ĺ	No.	Area	Inj. Vol.	Aut.	Rem.	Ex.	Date / Time
ļ			·	Dil.			
1	1	7.680	100uL	1	*****		10/12/2009 3:13:02 PM
	2	7.684	10001	1	******		10/12/2009 3:20:04 PM

Acid Add. Sp. Time Mean Area CV Area 0.000% 360.0sec 7.682 0.04%

Signal[mV] 10

Conc: 2.000mg/L

No.	Area	inj. Vol.	Aut.	Rem.	Ex.	Date / Time	
i	15.34	100uL	1	******		10/12/2009 3:32:47 PM	_
2	1/1/39	100ul	1	*****		10/12/2009 3:39:51 PM	

Acid Add. Sp. Time Mean Area CV Area 0.000% 360.0sec 14.87 4.52%

Signal[mV] 10

Conc: 5.000mg/L

No.	Area	Inj. Vol.	Aut.	Rem.	Ex.	Date / Time
1			Dil.			
1	34.01	100uL	1	******		10/12/2009 3:52:47 PM
2	34.56	100uL	1	******		10/12/2009 3:59:47 PM

Acid Add. Sp. Time Mean Area CV Area 0.000% 360.0sec 34.29 1,13% Signal[mV] 20

Conc: 10.00mg/L

No.	Area	Inj, Vol.	Aut. Dil.	Rem.	Ëx.	Date / Time
1	70.85	100uL	1	******		10/12/2009 4:12:51 PM
2	69.18	100uL	1	*****		10/12/2009 4:19:50 PM

Acid Add. Sp. Time Mean Area CV Area 0.000% 360.0sec 70.02 1.69% Signal[mV] 40

Conc: 20.00mg/L

No.	Area	inj. Vol.	Aut.	Rem.	Ex.	Date / Time
			Dil.			
1	144.3	100uL	1	******		10/12/2009 4:32:55 PM
2	145.2	100uL	1	******		10/12/2009 4:40:07 PM

201 of 247

ACCUTEST.

JA30201 Laboratories

Conc[mg/L]

Time[min]

0.000% 360.0sec 144.8 0.44%

Conc: 30.00mg/L

No.	Area	Inj. Vol.	Aut.	Rem.	Ex.	Date / Time
		,	Dil.			
1	221.8	100uL	1	*****		10/12/2009 4:53:16 PM
2	224.7	100uL	1	*****		10/12/2009 5:00:28 PM

Acid Add. Sp. Time Mean Area CV Area 0.000% 360.0sec 223.3 0.92%

Signal[mV]

 Slope:
 7.386

 Intercept r^2
 -0.8969

 r
 0.9993

 Zero Shift
 No

Sample

Sample Name: Sample ID: ICV

Origin: Status Chk. Result TOCAQ.met Completed

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:19.17mg/L

1. Det

Anal.: NPOC

No. Area Conc.	Ex.	Cal. Curve	Date / Time
1 140.9 19.20m	ng/L c91012w	1.2009 10 12 14 34 33.cal	
2 140.5 19.14m	ng/L c91012w	1.2009 10 12 14 34 33.cal	

Mean Area Mean Conc. CV Area 140.7 19.17mg/L 0.20%

Sample

3/27

 ∞

Instr.Information

System Detector Catalyst Cell Length TOC-V with ASI Combustion Regular Sensitivity

long

Sample

Sample Name: Sample ID: Origin:

CRI

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result	0.856 @310/19/05
Unknown	NPOC	1.000		NPOC:0.8308mg/L
1. Det			•	Ave. of three Passing injections

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	5.191	0.8242mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 8:27:46 AM
2	5.800	0.9067mg/L	Ë	c91012w1.2009_10_12_14_34_33.cal	10/17/2009 8:30:00 AM
3	5.288	0.8373mg/L			10/17/2009 8:32:11 AM

Mean Area Mean Conc. CV Area 5.239 0.8308mg/L 1.31%

10

12

16

18

20

Time[min]

Sample

Sample Name: Sample ID: Origin: Status

HSTD

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:28.78mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	205.8	27.98mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 8:45:30 AM
2	217.5	29.57mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 8:48:32 AM

Mean Area Mean Conc. CV Area

211.7 28.78mg/L 3.91%

1/40

Time[min]

Sample

Sample Name: Sample ID:

ICV

Origin: Status

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	 Result	
Unknown	NPOC	1.000	 	 IPOC:18.68mg/L

1. Det

Anal.: NPOC

No. Area Conc.		Ex.	Cal. Curve	Date / Time	
1	137.4 136.7	18.72mg/L 18.63ma/L			10/17/2009 9:39:23 AM 10/17/2009 9:42:12 AM

Mean Area Mean Conc. CV Area

137.1 18.68mg/L 0.36%

Signal[mV] 60

Time[min]

Sample

Sample Name: Sample ID:

ICB

Origin: Status Chk. Result

TOCAQ.met Completed

[Туре	Anal.	Dil.	Result
ü		NPOC	1.000	NPOC:0.1597mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	 Date / Time
1	0.2634	0,1571mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 11:43:36 AM
2	0.7840	0.2276mg/L	E	c91012w1,2009_10_12_14_34_33.cal	 10/17/2009 11:46:02 AM
3	0.3016	0.1623mg/L		c91012w1.2009_10_12_14_34_33.cal	 10/17/2009 11:48:08 AM

Mean Area Mean Conc. CV Area

0.2825 0.1597mg/L 9.56%

Signal[mV]

Sample

2/40

Time[min]

Time[min]

 ∞

Sample Name: Sample ID: Origin: Status Chk. Result

CCV

TOCAQ.met Completed

Турө	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:14.26mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	103.7	14.16mg/L			10/17/2009 12:01:00 PM
2	105.1	14.35mg/L		c91012w1,2009_10_12_14_34_33.cal	10/17/2009 12:03:52 PM

Mean Area Mean Conc. CV Area

104.4 14.26mg/L 0.95%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status

CCB

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result	
Unknown	NPOC	1.000	NPOC:0.1787mg/L	

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	0.2182	0.1510mg/L	E		10/17/2009 12:15:58 PM
2	0.4907	0.1879mg/L		C3 10 12 11 12 11 20 1 20 1 20 1	10/17/2009 12:18:03 PM
3	0.3549	0.1695mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 12:20:08 PM

Mean Area Mean Conc. CV Area

0.4228 0.1787mg/L 22.71%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status

SPARGECHK

TOCAQ.met Completed

Chk. Result

3/40

Time[min]

1	Туре	Anal.	Dil.	Result
Unkno	wn	NPOC	1.000	NPOC:0.3423mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Éx.	Cal. Curve	Date / Time
1	1.480	0.3218mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 12:32:09 PM
2	1.783	0.3628mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 12:34:15 PM
3	2.167	0.4148mg/L	E	c91012w1.2009_10_12_14_34_33.cal	10/17/2009 12:36:21 PM

Mean Area Mean Conc. CV Area 1.632 0.3423mg/L 13.13%

Signal[mV] 10

Sample

Sample Name: Sample ID: Origin: Status

GP51184-MB2 GP51139-MP011-

GP51139-MB2/GP51112-MB2/GP51111-MB2

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1,000	NPOC:0.1585mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	0.2549	0.1559mg/L		00 10 1211 112000 _ 10 _ 10 _ 11 _ 1	10/17/2009 1:47:23 PM
2	0.2929	0.1611mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 1:49:29 PM

Mean Area Mean Conc. CV Area

0.2739 0.1585mg/L 9.81%

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

GP51154BL GP51139-P210-GP51139-B2/GP51112-B2/GP51111-B2

TOCAQ.met Completed

Туре	Anal.	Dil.	Result
	NPOC	1.000	NPOC:10.57mg/L

1. Det

4/40

206 of 247 JA30201 Laborat

Time[min]

Anal.: NPOC

No.	Area	Conc.	Ēx.	Cal. Curve	Date / Time
1 2	76.76 77.54	10.51mg/L 10.62mg/L		c91012w1.2009 10 12 14 34 33.cal c91012w1.2009 10 12 14 34 33.cal	10/17/2009 2:02:42 PM 10/17/2009 2:05:38 PM

Mean Area Mean Conc. CV Area

77.15 10.57mg/L 0.71%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JA28484-2A

TOCAQ.met Completed

Туре	Anal.	Dil.	Result
	NPOC	1.000	NPOC:7.771mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	55.49 57.52	7.634mg/L 7.909mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 2:18:36 PM 10/17/2009 2:21:21 PM

Mean Area Mean Conc. CV Area

56.51 7.771mg/L 2.54% Signal[mV]

Result

Sample

Sample Name: Sample ID: Origin:

JA28484-4A

TOCAQ.met Completed Status

Chk. Result				
Туре	Anal.	Dil.		
Unknown	NPOC	1.000	 	

Unknown 1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	52.87	7.279mg/L	Ē	c91012w1.2009_10_12_14_34_33.cal	10/17/2009 2:34:16 PM
2	57.83	7.951mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 2:36:54 PM
3	56.98	7.836mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 2:39:41 PM

5/40

Mean Area Mean Conc. CV Area 57.41 7.893mg/L 1.05%

Signal[mV]

Sample

Sample Name: Sample ID: JA28484-5A

Origin: Status TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dìl.	Result
Unknown	NPOC	1.000	NPOC:8.234mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	58.52 61.33	8.044mg/L 8.425mg/L		c91012w1.2009_10_12_14_34_33.cal c91012w1.2009_10_12_14_34_33.cal	10/17/2009 2:52:14 PM 10/17/2009 2:54:58 PM

Mean Area Mean Conc. CV Area 59.93 8.234mg/L 3.32% Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status JA28484-7A

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:6.468mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	46.89	6.470mg/L		CS TO TENT TECOS TO TE TE TE TE TE TE TE TE TE TE TE TE TE	10/17/2009 3:07:46 PM
2	46.86	6.466mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 3:10:32 PM

208 of 247
ACCUTEST.

JA30201 Laboratories

Mean Area Mean Conc. CV Area

46.88 6.468mg/L 0.05%

Signal[mV] 20

Sample

Sample Name: Sample ID:

JA28484-8A

Origin:

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:6.891mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	48.87	6.738mg/L		c91012w1.2009 10 12 14_34_33.cal	10/17/2009 3:23:11 PM
2		7.044mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 3:25:50 PM

Mean Area Mean Conc. CV Area

50.00 6.891mg/L 3.20%

Signal[mV]

Sample

Sample Name: Sample ID: Origin:

CCV

TOCAQ.met Completed

Status Chk. Result

į	Туре	Anal.	Dil.	Result
	Unknown	NPOC	1.000	

1. Det

Anal.: NPOC

No.	No. Area Conc.		Ėx.	Cal. Curve	Date / Time
1	105.6	14.42mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 3:38:44 PM
2	107.7	14.70mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 3:41:42 PM

209 of 247 JA30201 Laborat

Time[min]

Mean Area Mean Conc. CV Area

106.7 14.56mg/L 1.39%

Sample

Sample Name: Sample ID: Origin: Status

CCB

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:0.1509mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	0.5947	0.2019mg/L	E	c91012w1.2009_10_12_14_34_33.cal	10/17/2009 3:53:59 PM
2	0.2225	0.1515mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 3:56:05 PM
3	0.2134	0.1503mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 3:58:11 PM

Mean Area Mean Conc. CV Area

0.2180 0.1509mg/L 2.95%

Signal[mV] 10

Sample

Sample Name: Sample ID: Origin: Status

JA29776-3

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	5.000	NPOC:28.23mg/L

1. Det

Anal.: NPOC

	No.	Area	Conc.	Ēx.	Cal. Curve	Date / Time
- 1	1	40.88	28.28mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 4:11:06 PM
	2	40.74	28.19mg/L		c91012w1.2009 10 12 14 34 33.cal	10/17/2009 4:13:43 PM

210 of 247 JA30201 Laborat

Mean Area Mean Conc. CV Area

40.81 28.23mg/L 0.24%

Sample

Sample Name: Sample ID: Origin: Status

JA29776-6

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:12.43mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	90.39	12.36mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 4:27:22 PM
2	91.37	12.49mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 4:30:31 PM

Mean Area Mean Conc. CV Area

90.88 12.43mg/L 0.76%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status

JA29776-10

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	5.000	NPOC:24.66mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	32.69	22.74mg/L	E	C3 10 12W 1.2003_10_12_11_01_00.001	10/17/2009 4:43:07 PM
2	35.43	24.59mg/L		C3 10 124 1:2000_10_12	10/17/2009 4:45:45 PM
3	35.64	24.73mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 4:48:21 PM

Mean Area Mean Conc. CV Area 35.53 24.66mg/L 0.42%

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JA29776-11

TOCAQ.met Completed

Туре	Anal.	Dil.	Result
Unknown	NPOC	10.00	NPOC:85.32mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	61.27	84.16mg/L		C3 10 12 W 1.2000 10 12 1.2000	10/17/2009 5:01:07 PM
2	67.56	92.68mg/L	<u> </u>	C3 10 12W1.2005_10_12_11_01_00.00.	10/17/2009 5:03:57 PM
3	62.97	86.47mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 5:06:53 PM

Mean Area Mean Conc. CV Area

62.12 85.32mg/L 1.94%

Signal[mV]

Sample

Sample Name:

JA29677-5

Sample ID: Origin:

TOCAQ.met Completed

Status Chk. Result

Type Ana	. Dil.	Result
Unknown NPOC	3.000	NPOC:18.85mg/L

1. Det

Anal.: NPOC

No. Area		Conc.	Ex.	Cal. Curve	Date / Time
1	44.52 46.49	18.45mg/L 19.25mg/L			10/17/2009 5:19:34 PM 10/17/2009 5:22:29 PM

212 of 247 JA30201 Laborat

Mean Area Mean Conc. CV Area 45.51 18.85mg/L 3.06%

Signal[mV] 20

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JA29180-7

TOCAQ.met Completed

1	Туре	Anal.	Dił.	Result
	Unknown	NPOC	10.00	

1. Det

Anat.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1 2	22.00 21.83	31.00mg/L 30.77mg/L		c91012w1.2009_10_12_14_34_33.cal c91012w1.2009_10_12_14_34_33.cal	10/17/2009 5:34:55 PM 10/17/2009 5:37:18 PM

Mean Area Mean Conc. CV Area

21.91 30.88mg/L 0.55% Signal[mV] 10

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JA29756-2

TOCAQ.met Completed

ĺ	Туре	Anal.	Dil.	Result
	Unknown	NPOC	1,000	NPOC:23.49mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1 2	168.0 177.2	22.87mg/L 24.11mg/L		c91012w1.2009_10_12_14_34_33.cal c91012w1.2009_10_12_14_34_33.cal	10/17/2009 5:50:12 PM 10/17/2009 5:53:01 PM

213 of 247

JA30201 Labora

Time[min]

Mean Area Mean Conc. CV Area 172.6 23.49mg/L 3.77%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

CCV

TOCAQ.met Completed

1	Туре	Anal.	Dil.	Result
	Unknown	NPOC	1.000	NPOC:14.68mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ēx.	Cal. Curve	Date / Time
1	106.1	14.49mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 6:06:02 PM
2	108.9	14.86mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 6:09:01 PM

Mean Area Mean Conc. CV Area

107.5 14.68mg/L 1.84%

Signal[mV] 60

Time[min]

Sample

Sample Name: Sample ID:

CCB

Origin:

TOCAQ.met Completed

Status Chk. Result

1	Туре	Anal.	Dil.	Result
	Unknown	NPOC	1.000	NPOC:0.2085mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	0.6855	0.2142mg/L		DO 10 12W 1:2003 10 12	10/17/2009 6:21:11 PM
2	0.6013	0.2028mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 6:23:17 PM

12/40

Mean Area Mean Conc. CV Area 0.6434 0.2085mg/L 9.25%

Signal[mV] 10

Sample

Sample Name: Sample ID: Origin: Status

GP51159-MB1

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:0.1474mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ēx.	Cal. Curve	Date / Time
1	0.1769	0.1454mg/L		C5 16 12 11 11 20 00	10/17/2009 6:35:24 PM
2	0.2075	0.1495mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 6:37:30 PM

Mean Area Mean Conc. CV Area

0.1922 0.1474mg/L 11.26%

Signal[mV] 10 6 3

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

GP51159-B1

TOCAQ.met Completed

Туре	Anal.	Dil.	Result
Unknown NF	OC	1.000	NPOC:10.62mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	76.90 78.16	10.53mg/L 10.70mg/l		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 6:50:47 PM 10/17/2009 6:53:41 PM

215 of 247 JA30201 Laborat

Mean Area Mean Conc. CV Area 77.53 10.62mg/L 1.15% Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status GP51159-D1 JA29860-1 TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:2.131mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	14.56 15.13	2.093mg/L 2.170mg/L		c91012w1.2009_10_12_14_34_33.cal c91012w1.2009_10_12_14_34_33.cal	10/17/2009 7:06:06 PM 10/17/2009 7:08:25 PM

Mean Area Mean Conc. CV Area 14.85 2.131mg/L 2.72%

Time[min]

Sample

Sample Name: Sample ID: Origin: Status GP51159-S1 JA29860-1 TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:11.86mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	85.44	11.69mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 7:21:25 PM
2	87.99	12.03mg/L	i	c91012w1.2009_10_12_14_34_33.cal	10/17/2009 7:24:17 PM

216 of 247
ACCUTEST.

JA30201 Laboratories

Mean Area Mean Conc. CV Area

86.72 11.86mg/L 2.08%

Sample

Sample Name: Sample ID: Origin: Status

JA29860-1

TOCAQ.met Completed

Chk. Result

ſ	Туре	Anal.	Dil.	Result
į		NPOC	1.000	NPOC:2.105mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	7.0	Date / Time
1	14.68	2.109mg/L		c91012w1.2009_10_12_14_34_33.cal		10/17/2009 7:36:47 PM
2	14.63	2.102mg/L		c91012w1.2009_10_12_14_34_33.cal		10/17/2009 7:39:10 PM

Mean Area Mean Conc. CV Area

14.66 2.105mg/L 0.24%

Sample

Sample Name: Sample ID: Origin: Status

JA30616-1

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result	y 29
Unknown	NPOC	1.000		NPOC 4512mg/L Ave. of 3 mg

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	29.73	4.146mg/L	Ē	c91012w1.2009_10_12_14_34_33.cal	10/17/2009 7:51:55 PM
3	32.11 32.75	4.469mg/L 4.555mg/L		c91012w1.2009_10_12_14_34_33.cal c91012w1.2009_10_12_14_34_33.cal	10/17/2009 7:54:44 PM 10/17/2009 7:57:23 PM

217 of 247 JA30201 Laborat

32.43 4.512mg/L 1.40%

Signal[mV] 20

Sample

Sample Name: Sample ID: Origin: JA29805-1

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result	1.50 000010109
Unknown	NPOC	1.000		NPOC: 1:536mg/L Ase. of 3 mg

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	9.658	1,429mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 8:09:35 PM
2	10.66	1.565mg/L		C31012W1.2003_10_12_11_01_00.00.	10/17/2009 8:11: <u>57 PM</u>
3	10.23	1.506mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 8:14:10 PM

Mean Area Mean Conc. CV Area 10.45 1.536mg/L 2.91% Signal[mV]

Sample

Sample Name: Sample ID: Origin: JA29805-2 TOCAQ.met

Completed

Sample ID: Origin: Status

Status Chk. Result

Туре	Anal.	Dil.	Result
	NPOC	1.000	NPOC:2.427mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	16.97 17.09	2.419mg/L 2.435mg/L			10/17/2009 8:26:43 PM 10/17/2009 8:29:12 PM

17.03 2.427mg/L 0.50%

Signal[mV] 10

Sample

Sample Name: Sample ID: Origin: JA29805-3

TOCAQ.met Completed

Status Chk. Result

Туре	Anal. Dil.	Result
Unknown NPOC	1.000	0 NPOC:5.449mg/L

1. Det

Anal.: NPOC

No.	Area	Conc. Ex.	Cal. Curve	Date / Time
1	38.53	5.338mg/L	c91012w1.2009_10_12_14_34_33.cal	10/17/2009 8:42:10 PM
2	40.17		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 8:44:52 PM

Mean Area Mean Conc. CV Area 39.35 5.449mg/L 2.95% Signal[mV] 20

Time[min]

Sample

Sample Name: Sample ID: Origin:

JA29805-4

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:39.76mg/L

1. Det

Anal.: NPOC

ľ	No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1		286.3	38.88mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 8:58:28 PM
b	,	299.2	40.63ma/L		c91012w1.2009_10_12_14_34_33.cal	10/1//2003 3.01.331 181

Mean Area Mean Conc. CV Area

292.8 39.76mg/L 3.12%

Sample

Sample Name: Sample ID: Origin: Status

CCV

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:14.78mg/L

1. Det

Anal.: NPOC

No.	Area	Conc. Ex.	Cal. Curve	Date / Time
1	107.7	14.7011g/L	c91012w1.2009_10_12_14_34_33.cal	10/17/2009 9:14:56 PM
12	108.9	14.86mg/L	c91012w1.2009_10_12_14_34_33.cal	[]0/17/2009 9.17.59 FW

Mean Area Mean Conc. CV Area

108.3 14.78mg/L 0.78%

Signal[mV] 60

Sample

Sample Name: Sample ID: Origin:

CCB

Status

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Inknown	NPOC	1.000	NPOC:0.1525mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	0.2286	0.1524mg/L 0.1526mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 9:30:06 PM 10/17/2009 9:32:12 PM

0.2295 0.1525mg/L 0.55%

Sample

Sample Name: Sample ID: Origin:

JA29805-5

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:17.25mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	122.8	16.75mg/L			10/17/2009 9:45:06 PM
2	130.3	17.76mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 9:48:08 PM

Mean Area Mean Conc. CV Area

126.6 17.25mg/L 4.19%

Signal[mV] 60

Time[min]

Sample

Sample Name: Sample ID: Origin: Status

JA29805-6

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPQC:62:55mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	412.4	55.95mg/L		C3 (0) 2W 1.2000_10_12_11_01_00.00.	10/17/2009 10:01:18 PM
2	466.5	63.28mg/L	/m -y-	c91012w1.2009_10_12_14_34_33.cal	10/17/2009 10:04:24 PM
3	455.7	61.82mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 10:07:23 PM

Mean Area Mean Conc. CV Area

461.1 62.55mg/L 1.66%

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JA29805-7

TOCAQ.met Completed

Туре	Anal.	Dil.	Result
Unknown	NPOC	1,000	NPOC:10.76mg/L

1. Det

Anal.: NPOC

No.	Area	Conc. E	x. Cal. Curve	Date / Time
1	76.45	10.47mg/L	c91012w1.2009_10_12_14_34_33.cal	10/17/2009 10:20:29 PM
2	80.67	11.04mg/L	c91012w1.2009_10_12_14_34_33.cat	10/17/2009 10:23:27 PM

Mean Area Mean Conc. CV Area

78.56 10.76mg/L 3.80%

Signal[mV] 40

Sample

Sample Name: Sample ID: Origin: Status

JA29805-9

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
	NPOC	1.000	NPOC:1.732mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	11.77	1.715mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 10:35:49 PM
2	12.02	1.749mg/l			10/17/2009 10:38:08 PM

Mean Area Mean Conc. CV Area

11.90 1.732mg/L 1.49%

Sample

Sample Name: Sample ID: Origin: Status

JA29805-10

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:1.427mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
i ii	9.754	1.442mg/L		00 10 1211 112000 10 10 10 10 10 10 10 10 10 10 10 10	10/17/2009 10:50:26 PM
2	9.534	1.412mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 10:52:45 PM

Mean Area Mean Conc. CV Area

9.644 1.427mg/L 1.61%

Signal[mV] 10

Sample

Sample Name: Sample ID: Origin:

JA29805-11

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:1.875mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	12.60 13.30	1.827mg/L 1.922mg/L		c91012w1.2009_10_12_14_34_33.cal c91012w1.2009_10_12_14_34_33.cal	10/17/2009 11:05:19 PM 10/17/2009 11:07:46 PM

12.95 1.875mg/L 3.82%

Sample

Sample Name: Sample ID: Origin:

JA29830-1

TOCAO me

Origin: Status Chk. Result TOCAQ.met Completed

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:0.7642mg/L

1. Det

Anal.: NPOC

N	o. Area	Conc.	Ex.	Cal. Curve	Date / Time
1	4.381	0.7145mg/L		C3 10 12 11 12 00 0 10 12 1 1 1 1 1 1 1 1	10/17/2009 11:19:53 PM
2	4.867	0.7803mg/L		DO TO TEN TIEGOS TO THE TOTAL THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO T	10/17/2009 11:22:08 PM
3	4.628	0.7480mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 11:24:17 PM

Mean Area Mean Conc. CV Area 4.748 0.7642mg/L 3.56%

Sample

Sample Name: Sample ID: JA29835-2

Sample ID:
Origin: TOCAQ.met
Status Completed

Status Chk. Result

Туре	Anal.	Dil.	 Result	7.24
Unknown	NPOC	1,000	 	NPOC-7-090mg/L 251014105
1, Det				AUR of 3 mg

.

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	50.62	6.975mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 11:37:39 PM
2	54.78 52.32	7.538mg/L 7.205mg/L		c91012w1.2009 10 12 14 34 33 cal c91012w1.2009 10 12 14 34 33 cal	10/17/2009 11:40:28 PM 10/17/2009 11:43:13 PM

51.47 7.090mg/L 2.34%

Sample

Sample Name: Sample ID: Origin:

JA29959-2

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result
Unknown	INPOC	1.000	NPOC:0.5293mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	2.912	0.5157mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 11:55:15 PM
2	3.113	0.5429mg/L		c91012w1.2009_10_12_14_34_33.cal	10/17/2009 11:57:21 PM

Mean Area Mean Conc. CV Area

3.013 0.5293mg/L 4.72%

Time[min]

Sample

Sample Name: Sample ID: Origin: Status

JA30469-2

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result	331
Unknown	NPOC	5.000		NPOC:2437mg/L
1. Det				Ave. of 3 mg

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	2.123	2.044mg/L	E	c91012w1.2009_10_12_14_34_33.cal	10/18/2009 12:09:28 AM
2	2.693	2.430mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 12:11:34 AM
3	2.712	2.443mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 12:13:40 AM

Mean Area Mean Conc. CV Area 2.703 2.437mg/L 0.50%

Signal[mV] 10

Sample

Sample Name: Sample ID: Origin: Status

CCV

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:14.57mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	105.8	14.45mg/L	c91012w1.2009	10_12_14_34_33.cal	10/18/2009 12:26:56 AM
2	107.7	14.70mg/L	c91012w1.2009	0_10_12_14_34_33.cal	10/18/2009 12:29:51 AM

Mean Area Mean Conc. CV Area 106.8 14.57mg/L 1.26%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status

CCB

TOCAQ.met Completed

Chk. Result

Type	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:0.2033mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	0.2856	0.1601mg/L		c91012w1.2009 10 12 14 34 33.cal	10/18/2009 12:41:58 AM
2	0.6059	0.2035mg/L		c91012w1.2009 10 12 14 34 33.cal	10/18/2009 12:44:04 AM
3	0.6042	0.2032mg/L		c91012w1.2009 10 12 14 34 33.cal	10/18/2009 12:46:10 AM

226 of 247

ACCUTEST.

JA30201 Laboratories

0.6051 0.2033mg/L 0.20%

Signal[mV] 10

Sample

Sample Name: Sample ID:

GP51160-MB1

Origin:

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:0.2347mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	1.780	0.3624mg/L	E	c91012w1.2009 10 12 14 34_33.cal	10/18/2009 12:58:12 AM
2	0.6630	0.2112mg/L		C310121112000_10_12_11_0	10/18/2009 1:00:18 AM
3	1.011	0.2583mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 1:02:24 AM

Mean Area Mean Conc. CV Area

0.8370 0.2347mg/L 29.40%

Sample

Sample Name: Sample ID:

GP51160-B1

TOCAQ.met Origin: Completed

Status Chk. Result

Туре	Anal.	Dil.	Result
	NPOC	1.000	NPOC:10.42mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	74.96	10.27mg/L 10.57mg/L		c91012w1.2009 10 12 14 34 33.cal	10/18/2009 1:15:14 AM 10/18/2009 1:18:09 AM

Mean Area Mean Conc. CV Area 76.08 10.42mg/L 2.07%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

GP51160-D1 JA30201-3 TOCAQ.met Completed

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:2.235mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	15.64 15.59	2.239mg/L 2.232mg/L		c91012w1.2009_10_12_14_34_33.cal c91012w1.2009_10_12_14_34_33.cal	10/18/2009 1:30:40 AM 10/18/2009 1:33:05 AM

Mean Area Mean Conc. CV Area 15.62 2.235mg/L 0.23%

Signal[mV] 10

Sample

Sample Name: Sample ID: Origin: Status GP51160-S1 JA30201-3 TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	86.35	11.81mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 1:46:12 AM
2	87.54	11.97mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 1:49:08 AM

228 of 247
ACCUTEST.
JA30201 Laboratories

Mean Area Mean Conc. CV Area

86.95 11.89mg/L 0.97%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JA30201-3

TOCAQ.met Completed

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC: 1.996mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	13.61	1.964mg/L			10/18/2009 2:01:34 AM
2	14.08	2.028mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 2:04:04 AM

Mean Area Mean Conc. CV Area 13.85 1.996mg/L 2.40%

Sample

Sample Name: Sample ID: Origin: Status

JA30201-1

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:2.943mg/L

1. Det

Anal.: NPOC

N	o. Area	Conc.	Ex.	Cal. Curve	Date / Time
1	20.20	2.856mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 2:16:35 AM
2	21.48	3.029mg/L		c91012w1,2009 10 12 14 34 33.cai	10/18/2009 2:19:09 AM

20.84 2.943mg/L 4.34%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JA30201-2

TOCAQ.met Completed

Туре	Anal.	Dìl.	Result
Unknown	NPOC	1.000	NPOC:9.168mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	66.40	9.111mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 2:32:13 AM
2	67.24	9.225mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 2:35:04 AM

Mean Area Mean Conc. CV Area

66.82 9.168mg/L 0.89%

Signal[mV]

Time[min]

Sample

Sample Name: Sample ID: Origin: Status

JA30201-4

TOCAQ.met Completed

Chk. Result

Type	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:1.779mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ēx.	Cal. Curve	Date / Time
1	12.52	1.816mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 2:47:28 AM
2	11.96	1.741mg/L		c91012w1.2009 10 12 14 34 33.cal	10/18/2009 2:49:56 AM

12.24 1.779mg/L 3.24%

Signal[mV] 10

Sample

Sample Name: Sample ID: Origin:

JA30201-5

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result
	NPOC	1.000	NPOC:9.552mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	69.91	9.586mg/L		c91012w1.2009 10 12 14 34 33.cal	10/18/2009 3:02:56 AM
2	69.40	9.517mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 3:05:42 AM

Mean Area Mean Conc. CV Area

69.66 9.552mg/L 0.52%

Signal[mV]

Time[min]

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JA30201-6

TOCAQ.met Completed

Туре	Anal.	Dil.	Result	
Unknown	NPOC	1.000		

1. Det

Anal.: NPOC

	۷o.	Area Conc.		Ex.	Cal. Curve	Date / Time
-		07.60	12 24		c91012w1,2009 10 12 14 34 33.cal	10/18/2009 3:19:03 AM
1		97.62	13.34mg/L			
2		102.0	13.93mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 3:22:10 AM

99.81 13.63mg/L 3.10%

Sample

Sample Name: Sample ID: Origin:

CCV

TOCAQ.met Completed

Status Chk. Result

Туре	Anal,	Dil.	Result
Unknown	NPOC	1.000	NPOC:14.45mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	103.0 108.6	14.07mg/L 14.82mg/L		c91012w1.2009_10_12_14_34_33.cal c91012w1.2009_10_12_14_34_33.cal	10/18/2009 3:35:08 AM 10/18/2009 3:38:19 AM

Mean Area Mean Conc. CV Area 105.8 14.45mg/L 3.74%

Time[min]

Sample

Sample Name: Sample ID: Origin: Status

CCB

TOCAQ.met Completed

Chk. Result

Г	Туре	Anal.	Dil.	Result	
Ür	nknown	NPOC	1.000	NPOC:0.1955mg/L	

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	 Date / Time
2	0.4846 0.9299 0.6092	0.1870mg/L 0.2473mg/L 0.2039mg/L		c91012w1.2009 10 12 14 34 33.cal c91012w1.2009 10 12 14 34 33.cal c91012w1.2009 10 12 14 34 33.cal	 10/18/2009 3:50:37 AM 10/18/2009 3:52:46 AM 10/18/2009 3:54:52 AM

0.5469 0.1955mg/L 16.11%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status

JA30201-7

TOCAQ.met Completed

Chk. Result

ſ	Туре	Anal.	Dil.	Result]
į	Jnknown	NPOC	1.000		NPOC:6.770mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	47.57	6.562mg/L		c91012w1.2009 10 12 14 34 33.cal	10/18/2009 4:07:26 AM
2	50.65	6.979mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 4:10:07 AM

Mean Area Mean Conc. CV Area

49.11 6.770mg/L 4.43%

Signal[mV] 20 14 7 -2

8

10

12

Time[min]

18

16

20

Sample

Sample Name: Sample ID: Origin: Status

JA30201-8

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:6.062mg/L

0

1. Det

Anal.: NPOC

No.	Агеа	Conc.	Ex.	Cal. Curve	Date / Time
1	42.84	5.921mg/L			10/18/2009 4:22:56 AM
2	44.92	6.203mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 4:25:36 AM

Mean Area Mean Conc. CV Area

43.88 6.062mg/L 3.35% Signal[mV] 20

Sample

Sample Name: Sample ID: Origin: JA30201-9

TOCAQ.met Completed

Origin: Status Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:0.2986mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	1.702	0.3518mg/L	E	c91012w1.2009_10_12_14_34_33.cal	10/18/2009 4:37:44 AM
2	1.251	0.2908mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 4:39:50 AM
3	1.366	0.3064mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 4:41:56 AM

Mean Area Mean Conc. CV Area 1.309 0.2986mg/L 6.21%

Sample

Sample Name: Sample ID: Origin: Status JA30144-5

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result	2 4 7
Unknown	NPOC	1.000	NE	OC:3-568mg/L
				Ave of 3 mg
1 Det				,,,, a

Anal.: NPOC

	No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	1	23.33	3.280mg/L	E		10/18/2009 4:54:22 AM
1	2	25.35	3.553mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 4:56:58 AM
	3	25.57	3.583mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 4:59:35 AM

234 of 247

ACCUTEST.

JA30201 Laboratories

Mean Area Mean Conc. CV Area

25.46 3.568mg/L 0.61%

Signal[mV] 20

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JA30064-1A

TOCAQ.met Completed

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:1.847mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	12.82	1.857mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 5:11:54 AM
2	12 67	1.837mg/L		c91012w1.2009 10 12 14 34 33.cal	10/18/2009 5:14:12 AM

Mean Area Mean Conc. CV Area 12.75 1.847mg/L 0.83%

Signal[mV] 10

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JA29961-2

TOCAQ.met Completed

Туре	Anal.	Dil.	Result
	NPOC	1.000	NPOC:0.3373mg/L

1. Det

Anal.: NPOC

No	Area	Conc.	Ex.	Cal, Curve	Date / Time
1	1.570	0.3340mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 5:26:20 AM
2	2.790	0.4991mg/L	E	c91012w1.2009_10_12_14_34_33.cal	10/18/2009 5:30:01 AM
3	1.619	0.3406mg/L		c91012w1.2009 10 12 14 34 33.cal	10/18/2009 5:32:07 AM

1.595 0.3373mg/L 2.17%

Signal[mV] 10

Sample

Sample Name: Sample ID: Origin: Status

JA29961-3

TOCAQ.met Completed

Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	5.000	NPOC:21.26mg/L

1. Det

Anal.: NPOC

No.	Area	Conc. Ex.	Cal. Curve	Date / Time
1	29.47	20.56mg/L	c91012w1.2009_10_12_14_34_33.cal	10/18/2009 5:44:47 AM
2	31.55	21.96mg/L	c91012w1.2009_10_12_14_34_33.cal	10/18/2009 5:47:27 AM

Mean Area Mean Conc. CV Area

30.51 21.26mg/L 4.82% Signal[mV] 20

Time[min]

Sample

Sample Name: Sample ID: Origin: Status

JA29961-4

TOCAQ.met Completed

Chk. Result

Туре		Dil.	Result
Unknown	NPOC	5.000	NPOC:43.01mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Çal. Curve	Date / Time
1	60.50	41.56mg/l		c91012w1.2009 10 12 14 34 33.cal	10/18/2009 6:00:05 AM
2	64.77	44.45mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 6:02:51 AM

236 of 247 ACCUTEST. JA30201 Laborat

Mean Area Mean Conc. CV Area

62.63 43.01mg/L 4.82%

Signal[mV]

Sample

Sample Name: Sample ID:

JA29961-5

Origin: Status Chk. Result TOCAQ.met Completed

Туре	Anal.	Dil.	Result
	NPOC	1.000	NPOC:9.024mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	64.08	8.797mg/L		c91012w1.2009 10 12 14 34 33.cal	10/18/2009 6:15:39 AM
2	67.44	9.252mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 6:18:27 AM

Mean Area Mean Conc. CV Area

65.76 9.024mg/L 3.61% Signal[mV] 40

Sample

Sample Name: Sample ID:

JA29961-9

Origin:

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:3.865mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal, Curve	Date / Time
1	26.84 28.46	3.755mg/L 3.974mg/L		c91012w1.2009_10_12_14_34_33.cal c91012w1.2009_10_12_14_34_33.cal	10/18/2009 6:31:36 AM 10/18/2009 6:34:12 AM

Mean Area Mean Conc. CV Area

27.65 3.865mg/L 4.14%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

CCV

TOCAQ.met Completed

Туре	Anal.	Dil.	Result (Y.&Y	10 19 09
Unknown	NPOC	1.000	NPOC: 14.43mg/L	
1. Det			Ave	of 3 passing

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	104.7	14.30mg/L			10/18/2009 6:47:15 AM
2	114.8	15.66mg/L	Е		10/18/2009 6:50:23 AM
3	106.7	14.57mg/L	-21	c91012w1.2009_10_12_14_34_33.cal	10/18/2009 6:53:16 AM

Mean Area Mean Conc. CV Area

105.7 14.43mg/L 1.34%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

ССВ

TOCAQ.met Completed

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	

1. Det

Anal.: NPOC

N	o. Area	Conc.	Ex.	Cal. Curve	Date / Time
1	1.722	0.3546mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 7:05:52 AM
2	1.341	0.3030mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 7:07:58 AM
ব	0.8811	0.2407mg/I	F	c91012w1.2009 10 12 14 34 33.cal	10/18/2009 7:10:04 AM

Mean Area Mean Conc. CV Area 1.531 0.3288mg/L 17.59% Signal[mV] 10

Sample

Sample Name: Sample ID: Origin: Status Chk. Result JA29961-10

TOCAQ.met Completed

Type

Туре	Anal.	Dil.	 Result	 2.47
Ünknown	NPOC	1.000	 . ,————————————————————————————————————	 NPOC:2.522mg/L
4.5.	<u>, ,</u>			Ave of 3 mg

1. Det

Anal.: NPOC

П	No.	Area	Conc. E	Ex.	Cal. Curve	Date / Time
1		16.61	2.370mg/L		00 10 1217 112000 10 12	10/18/2009 7:22:29 AM
2		17.83	2.535mg/L		CO 10 12 W 1.2000 10 12 11 0 1 0 1 0 1	10/18/2009 7:24:59 AM
3		17.63	2.508mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 7:27:23 AM

Mean Area Mean Conc. CV Area 17.73 2.522mg/L 0.80%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: JA29961-11

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result	
Unknown	NPOC	20.00	NPOC:53.12mg/L	

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	16.61	47.40mg/L		C5 10 12 W 1:2005 TO 12 11 0 1 0 0 1 0 1	10/18/2009 7:39:42 AM
2	18.66	52.95mg/L		C3 10 12W 1.2003_10_12_11_01_00.00	10/18/2009 7:42:17 AM
3	18.78	53.28mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 7:44:37 AM

239 of 247
ACCUTEST.

JA30201 Laboratories

Mean Area Mean Conc. CV Area

18.72 53.12mg/L 0.45%

Signal[mV] 10

Sample

Sample Name: Sample ID: Origin:

JA29961-12

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result
Unknown	NPOC	1.000	NPOC:9.796mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1 2	69.73 73.19	9.562mg/L 10.03mg/L		c91012w1.2009_10_12_14_34_33.cal c91012w1.2009_10_12_14_34_33.cal	10/18/2009 7:57:28 AM 10/18/2009 8:00:17 AM

Mean Area Mean Conc. CV Area

71.46 9.796mg/L 3.42%

Signal[mV]

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JA29961-13

TOCAQ.met Completed

Туре	Anal.	Dil.	Result	9.83
Unknown	NPOC	1.000		NPOC:10:08mg/L 3/01/19/09 Ave . of 3 mg

1. Det

Anal.: NPOC

No.	o. Area Conc.		Ēx.	Cal. Curve	Date / Time
1	67.96	9.322mg/L	Е	c91012w1.2009_10_12_14_34_33.cal	10/18/2009 8:13:10 AM
2	74.26	10.18mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 8:16:06 AM
3	72.80	9.977mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 8:18:53 AM

Mean Area Mean Conc. CV Area 73.53 10.08mg/L 1.40%

Signal[mV]

Sample

Sample Name: Sample ID: Origin:

CCV

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result
	NPOC	1.000	NPOC:14.63mg/L

1. Det

Anal.: NPOC

No.	Area	Conc.	Ex.	Cal. Curve	Date / Time
1	106.9	14.59mg/L		C5 10 12 W 1:2000_10_1E_11_0 00:00:	10/18/2009 8:31:42 AM
2	107.5	14.68mg/L		c91012w1.2009_10_12_14_34_33.cal	10/18/2009 8:34:28 AM

Mean Area Mean Conc. CV Area 107.2 14.63mg/L 0.40% Signal[mV] 60

Sample

Sample Name: Sample ID: Origin:

CCB

TOCAQ.met Completed

Status Chk. Result

Туре	Anal.	Dil.	Result	
Unknown	NPOC	1.000	NPOC:0.2494mg	ı/L

1. Det

Anal.: NPOC

No. Area	Conc. Ex	Cal, Curve	Date / Time
1 0.9934	0.2559mg/L	BOTO IENTIEUUS III III III III III III III III III	10/18/2009 8:46:37 AM
2 0.7800 3 0.8973	0.2270mg/L E 0.2429mg/L	c91012w1.2009_10_12_14_34_33.cal c91012w1.2009_10_12_14_34_33.cal	10/18/2009 8:48:43 AM 10/18/2009 8:50:49 AM

241 of 247
ACCUTEST.

JA30201 Laboratories

0.9454 0.2494mg/L 7.19%

Misc. Raw Data

Raw Data

Aqueous Digestion Log MP Batch ICP DIGESTION METHOD: SW846 Heating Method (circle one): Di	3010A					
Method Blank ID:	gestion Block / Hot Plates	Prep Date: 10	111/09			
Lab Control/Spike Blank ID:	Start Time:	Start Temp:	Thermometer ID #:			
Lab Control Source:						
	End Time:	End Temp:				
DUP 1 Sample ID:	Acceptable tempe	rature Ranges:				
DUP 2 Sample ID:	EPA 200.7	-	90 to 95 deg. C			
MS 1 Sample ID:	SW846 3010A	SW846 3010A, 3020A, 3050B 90 to 95 deg. C				
MS 2 Sample ID:		, ,				
Note: Serial dilution shows for OC	Associate and Alasta					

Note: Serial	allution	snown for	QC trackir		t a separate dige				
		1	Initial	Final	Acids Use	d	Spikes Used	t t	
		Pres	Sample	Volume	Amount and	Added -		Added -	
Sample ID		Y/N	Volume	in ML	Name	YorN	Amount and Name	YorN	Comments
MP	-MB	N			3.0 ml conc. HNO3				
	-LC	1			5.0 ml 1:1 HCL				
	-S						0.50 ml SP, 0.50 ml MlN1		
	-S						0.50 ml SP, 0.50 ml MlN1		
MP .	-SD								
						i			
JA 30031-	8F					7.0	me of Conc. H	₩0,	
	96						**************************************		
	lif						Int itt	1029	- -
	12F						*CO1 * 1-7	·	
	-13F						EXP=10/12 3	1 Kal	I.Y
	-144				, , , ,		9 10/11	, 0.0	
	- 16F					! !			
1	-158					t. 01	Dian E	CUI	
	- FB	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				FILH	r lot no Fo	111	8596
0								118he	
1								11010	//
2							EX 10.31	2011	
3								-,,	
4									
5									
6									
7						_			<u> </u>
8							BH,		
9							10/15		
0							~~//3	109	
					· · · · · · · · · · · · · · · · · · ·	-			
					_				
		//	 _	10/12	60 9				
nalyst:	fai	Mi	ch.	QC Review	<i>y</i> — <i>j</i>				

Aqueous Digestion Log MP Batch ID:
ICP DIGESTION METHOD: SW846 3010A

Heating Method	(circle one):	Digestion	Block / I	Hot Plates

Method Blank ID:		Prep Date: \mathcal{K}	1/3/09
Lab Control/Spike Blank ID:	Start Time:	Start Temp:	Thermometer ID #:
Lab Control Source:			
	End Time:	End Temp:	
DUP 1 Sample ID:	Acceptable temper	ature Ranges:	
DUP 2 Sample ID:	EPA 200.7	90 to	95 deg. C
MS 1 Sample ID:	SW846 3010A	3020A, 3050B 90 t	o 95 deg. C
MS 2 Sample ID:			

Note: Serial dilution shown for QC tracking only. Not a separate digestate.

	Initial		Initial Final Acids Used		Spikes Used			
	Pres	Sample	Volume	Amount and	Added -		Added -	
ample ID	Y/N	Volume	in ML	Name	YorN	Amount and Name	Y or N	Comment
MP -MB	2			3.0 ml conc. HNO3				
MP -LC_				5.0 ml 1:1 HCL				
MP -S						0.50 ml SP, 0.50 ml MIN1		
MP -S						0.50 ml SP, 0.50 ml MIN1		
MP -SD						-		
						0 /		
JA30201-1F					2.0	mlor Conc. H	100 2	
2 ~2F						0		
3 - 3F						lot it	1029	
1 -4#						_		
5 -SF						EXP: 10/12 J	1 Bal	er
- GF						V = / //	<u> </u>	
7 V -AF								
3 JA 30089-2F					Filt	e Pol no Fo	TCAL C	\$ <i>5</i> 96
31-EF10KAL 6					17701			~~ (()
10 JA 30031-IF						((1she	
11 - ZF						A. 0	/	/
12 -JF						exp. 3/	2011	
13 -4F								
14 -JF								
5 -6F								
6 J -7F	1							
17JA30201-FB								
87A 300K9-FB								
9JA 30173-FB								
20 JA 30031 - FB								
						1301/10/1-1		
					-	130 60/136	D 9'	
	1.	1	10/17					

ion Block / Hot Plates		
	Prep Date: 10	0/19/09
Start Time:	Start Temp:	Thermometer ID #:
		
End Time:	End Temp:	
Acceptable temper	rature Ranges:	
EPA 200.7	_	95 deg. C
SW846 3010A	, 3020A, 3050B 90 t	to 95 deg. C
	•	
	Start Time: End Time: Acceptable temper EPA 200.7 SW846 3010A	Start Time: Start Temp: End Time: End Temp: Acceptable temperature Ranges: EPA 200.7 90 to

		Initial	Initial Final	Acids Use	ed	Spikes Used	į į	
	Pres	Sample	Volume	Amount and	Added -		Added -	
Sample ID	Y/N	Volume	in ML	Name	Y or N	Amount and Name	Y or N	Comments
1P -MB	N			3.0 ml conc. HNO3		, , , , , , , , , , , , , , , , , , , ,		
/IP -LC				5.0 ml 1:1 HCL				
/IP -S_						0.50 ml SP, 0.50 ml MIN1		
ЛР -S					Ì	0.50 ml SP, 0.50 ml MIN1		
MP -SD_								
JA 30629-1F	 							
J430430 - 2F						0	,	
JA 30201-8F					1	2.0 ml Conc	HNO	3
JA 30353-2F	1					1	. , , , , ,	
JA 301029 - FB						Paths	41110	27/
JA 30430 - FB					İ	101100	1177C	< 7
JA 30201-FB					1	PYD. IN	2-	
TA 30353-FB					<u> </u>	+ + + + + + + + + + + + + + + + + + +	1 1	, Baker
					 			
0						, .		
1	+				 	Filter par	ut	
2					 	1 1		
					 	// ,		
4					 	Lot no.	F9C1	158596
5							,	<u> </u>
6					Ba	10/ O/P = 3	1///	
7						0/17/0	/ · · /	
8						105	<u> </u>	
9					<u> </u>			
0 .					†			
					 			
					 			
					 		 	
, /.		///	10/19/	-00	<u> </u>		1	<u> </u>

9

FILTRATION

MM ACCUTEST.

ICP DIGESTION METHOD: SW846 Heating Method (circle one): Di	3010A gestion Block / Hot Plates		,	,	
Method Blank D:		Prep Date: 10/19/94			
Lab Control/Spike Blank ID:	Start Time:	Start Tem	p:	Thermometer ID #:	
Lab Control Source:					
	End Time:	End Tem	p:		
DUP 1 Sample ID:	Acceptable tempe	rature Ranges:			
DUP 2 Sample ID:	EPA 200.7		90 to 95 d	dea. C	
MS 1 Sample ib:	SW846 3010A	, 3020A, 3050B	90 to 95 deg. C		
MS 2 Sample ID:		,, , 5000	00 10 01	ucg. U	

		Initi		tial Final	ot a separate digestate. Acids Used		Spikes Used		
·		res	Sample	Volume	Amount and	Added -		Added -	
Sample ID	Y	/ N	Volume	in ML	Name	YorN	Amount and Name	YorN	Comments
MP -MB		7			3.0 ml conc. HNO3				
MP -LC_		L			5.0 ml 1:1 HCL				
MP -S							0.50 ml SP, 0.50 ml MIN1		
ИР -S_							0.50 ml SP, 0.50 ml MIN1		
MP -SD									
JA 30630 - 2F									
JA 30629-14									
JA 30701-8F							2.0 ml Conc	HNO	3
TA 30353 - 2F							7.07/12	1.700	
JA30576-18		\mathcal{T}^{-}					Pal. h =	1114	
JA30630- FB							-COTAD.	/7/4 4	74
JA30629-FB						***************************************	exp. 101		
JA 30201- RB								7 	Baker
JA 30353-FB									· ····································
07A 30574-FB									
							Filterpas	11	
2 3							11210 1-1	7	
4				-			Lot no.	Faci	158596
5								, 0.,	7 00 - 70
6							exp. 3	111	
7						_	<i>F T T</i>	/ · /	
3							BU		
9							6/19/		· · · · · · · · · · · · · · · · · · ·
								09 	
							H 48	~	-
									$\overline{}$
nalyst: But	7,0	11	2	10//7/0 C Review	9				

12/20/10

Technical Report for

Honeywell International Inc.

HLANJPR: SA-5 Site 153, Langer

Accutest Job Number: JA59191B

Sampling Date: 10/19/10

Report to:

Mactec

vhlieu@mactec.com

ATTN: Vanthuy Lieu

Total number of pages in report: 214

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

David N. Speis^{\(\)} VP, Laboratory Director

Client Service contact: Marty Vitanza 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: JA59191-6: 117-MW-A14-101910	5
2.2: JA59191-6F: 117-MW-A14-101910	7
2.3: JA59191-7: 117-FB-101910	9
Section 3: Misc. Forms	11
3.1: Chain of Custody	12
3.2: Sample Tracking Chronicle	18
3.3: Internal Chain of Custody	19
Section 4: Metals Analysis - QC Data Summaries	21
4.1: Inst QC MA25287: Cr	22
4.2: Prep QC MP55425: Cr	36
4.3: IDL and Linear Range Summaries	40
Section 5: Metals Analysis - Raw Data	42
5.1: Raw Data MA25287	43
5.2: Prep Logs	128
Section 6: General Chemistry - QC Data Summaries	129
6.1: Method Blank and Spike Results Summary	130
6.2: Duplicate Results Summary	
6.3: Matrix Spike Results Summary	132
6.4: Inst QC GN43587: Chromium, Hexavalent	133
Section 7: General Chemistry - Raw Data	136
7.1: Raw Data GN43587: Chromium, Hexavalent	137

w

. .

ത

Sample Summary

Job No:

JA59191B

Honeywell International Inc.

HLANJPR: SA-5 Site 153, Langer

Sample	Collected			Matrix		Client	
Number	Date	Time By	Received	Code	Type	Sample ID	
JA59191-6	10/19/10	15:08 BS	10/19/10	AQ	Ground Water	117-MW-A14-101910	
JA59191-6F	10/19/10	15:08 BS	10/19/10	AQ	Groundwater Filtered	117-MW-A14-101910	
JA59191-7	10/19/10	15:30 BS	10/19/10	AO	Field Blank Water	117-FB-101910	

Sample Results	
Report of Analysis	

Page 1 of 1

Client Sample ID: 117-MW-A14-101910

Lab Sample ID:JA59191-6Date Sampled:10/19/10Matrix:AQ - Ground WaterDate Received:10/19/10Percent Solids:n/a

Project: HLANJPR: SA-5 Site 153, Langer

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	40.7	4.0	ug/l	1	11/01/10	11/02/10 ND	EPA 200.8 ¹	EPA 200.8 ²

(1) Instrument QC Batch: MA25287(2) Prep QC Batch: MP55425

Page 1 of 1

Client Sample ID: 117-MW-A14-101910

Lab Sample ID:JA59191-6Date Sampled:10/19/10Matrix:AQ - Ground WaterDate Received:10/19/10Percent Solids:n/a

Project: HLANJPR: SA-5 Site 153, Langer

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	0.031	0.0055	mg/l	1	10/20/10 13:43	BD	SW846 7199

JA59191B

ACCUTEST

Page 1 of 1

Client Sample ID: 117-MW-A14-101910

Lab Sample ID:JA59191-6FDate Sampled:10/19/10Matrix:AQ - Groundwater FilteredDate Received:10/19/10Percent Solids:n/a

Project: HLANJPR: SA-5 Site 153, Langer

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	38.9	4.0	ug/l	1	11/01/10	11/02/10 ND	EPA 200.8 ¹	EPA 200.8 ²

(1) Instrument QC Batch: MA25287(2) Prep QC Batch: MP55425

Page 1 of 1

Client Sample ID: 117-MW-A14-101910

Lab Sample ID:JA59191-6FDate Sampled:10/19/10Matrix:AQ - Groundwater FilteredDate Received:10/19/10Percent Solids:n/a

Project: HLANJPR: SA-5 Site 153, Langer

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	0.021	0.0055	mg/l	1	10/20/10 13:58	BD	SW846 7199

Page 1 of 1

Client Sample ID: 117-FB-101910

Lab Sample ID:JA59191-7Date Sampled:10/19/10Matrix:AQ - Field Blank WaterDate Received:10/19/10Percent Solids:n/a

Project: HLANJPR: SA-5 Site 153, Langer

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 4.0	4.0	ug/l	1	11/01/10	11/02/10 ND	EPA 200.8 ¹	EPA 200.8 ²

(1) Instrument QC Batch: MA25287(2) Prep QC Batch: MP55425

Page 1 of 1

Client Sample ID: 117-FB-101910

Lab Sample ID:JA59191-7Date Sampled:10/19/10Matrix:AQ - Field Blank WaterDate Received:10/19/10Percent Solids:n/a

Project: HLANJPR: SA-5 Site 153, Langer

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.0055	0.0055	mg/l	1	10/20/10 14:30	BD	SW846 7199

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

	6	٦
L		ĸ

ACCUTEST				Honeywell Chain Of Custody / Analysis Request																			
Fresh Ponds Corporate 2235 Route 130,Dayte					HUI	acy w		Cn	ain O	i Cus	toay	/ Ana	nysis	Kec	luest								COC#: 37460-101910 Lab Use Only
732-329-0200 Phone.				Privileged &	Confiden	tial A	Ιv			Site N	ame:	HUDS	ONCO										Lab Proj#
/ JE JEJ JEJO I HOME,	<u> </u>	7 1 44		EDD To:	Communica	Agshust (N	AACTEC	``		1													Lab ID ACTD
Client Contact: (nam	e co. addr	apel		Sampler:	R Sanna	Aganust (- IACIDO	,		Locat	on of S	Site: ervative		Site 15	3, Lang	er							PAGE 1 of 3
Andrew Shust - MAC			nd Consulting Inc	PO#	Distina						0	0	0	2	П		Т	T	T	T	T	$\overline{}$	THE NAME OF THE PARTY OF THE PA
200 American Met				Analysis Turn	around Time:						_						\top	+			1	\top	JA59/91
Hamilton, NJ 0861				Standard -							661	8.	Ę										
agshust@mactec.co	m			Rush Charges A	Authorized for	-					VI (7199)	n 200.	- E	E			- 1						
Hardcopy Report To	See abov	:		2 weeks -				Y			1	maimo	Hexavalent Chromium	гошіл									What is in the Text File?
				1 week -						<u>a</u> 5	O.	Chromi	avalc	일								-	Mouse over here.
Invoice To:			Ioneywell PM 101 rristown, NJ 07962	Next Day -						Snd w	CHR	Total	Э Нех	8 Tot									Written and maintained
	Sampl	e Identifi	cation	Sample Date	Sample Time	Sample Type	Sample Matrix	Sample Purpose	# of Cont.	Grath/Co	Dissolved CHROMIUM	Dissolved	EPA 7199 I	EPA 2008 Total Chromium									by AESI (Ver 3.7) 02.01.05 renesurgi@aol o
	Start	End		100 miles					War.					_	\vdash	\vdash	1	+	+		\top	\top	10.00
Location ID	Depth (ft)	Depth (ft)	Field Sample ID							Units	ug/I.	ng/L	ng/L	J/gn			Ŀ						Lab Sample Numbers
1 153-MW-5			153-MW-5-101910	10/19/2010	1147	GW	Water	REG	2	grab	1		X	X								1	AMETIS.
2 153-MW-5	,	16 (153-MW-5-101910	10/19/2010	1147	GW	Water	REG	2	grab	x	x											MEY7
3 153-MW-5			153-MW-5-101910DP	10/19/2010	1158	GW	Water	FD	2	grab	1		x	х						T	П	Т	
4 153-MW-5	-	24 (153-MW-5-101910DPF	10/19/2010	1158	GW	Water	FD	2	grab	X	x									1	$\sqrt{}$	
5 153-MW-5			153-MW-5-101910MS	10/19/2010	1147	GW	Water	MS	2	grab	1		x	x								Ť	The state of the s
6 153-MW-5			153-MW-5-101910MSF	10/19/2010	1147	GW	Water	MS	2	grab	x	x		1						†	T		
7 153-MW-5		1F	153-MW-5-101910MD	10/19/2010	1147	GW	Water	MSD	2	grab	1	<u> </u>	x	х				\top	<u> </u>	_	T	+	
8 153-MW-5	-		153-MW-5-101910MDF	10/19/2010		GW	Water	MSD	2	grap A	x	x	^					+	 	†	+	+	
9			(133-WW-3-101910MDF	10/19/2010		<u> </u>				-6	Ŷ	_ <u>^</u>				+		+	+	+	+	+	1
		3F/		10/19/2010	1307	GW	Water	REG	2	grab g		 				-	+	+	 	+	+	+	
10 153-MW-2		1	153-MW-2-101910	10/19/2010	,,,,,	GW	Water	REG	2	grab gr	_		X	X		+	+	+-	+	+	+	+	+
11 153-MW-2		-	153-MW-2-101910	10/13/2010	130 1		17 atci	I I		50	X	X	-		\vdash	+		+-	╫	+	₩	+-	
12 TOTAL CHRON	IE ANAI	VZED	BY METHOD 200.8, HE	Y CHROM	F DV 710	10			L										1			<u></u>	
TOTAL CINO	IL ALVAL	I ZED	D1 METHOD 200.8, 111.	A CHROM	E D1 /1/	,		,	$\overline{}$														
Relinquished by			Compa	ıy MAC	TEC	Received K	6/1	$\overline{}$	/-		10/0	בממן	mpany			Co	ndition		Т		Custo	ody Se	als Intact
4		_	Date/Time	HORTE TOO			_	10/	Date	/Time		3/	6/2009 1	2:30 Co	oler Te	mp.	+		-				
Relinquished by	Company Received by					Сс	mpany			Co	ndition		T		Custo	ody Se	als Intact						
			Date/Time			1		_)			Date	/Time				Co	oler Te	mp.	T		\top		
reservatives: 0 = N	one; [1 = H	CL ; [2 =	HNO3]; [3 = H2SO4]; [4 = N	(aOH]; [5 ≈ Zr	ı. Acetatel:	16 = MeOI	II: [7 = N	aHSO41:	8 = Oth	er (spe	ify):			L					+				1.2 0,20
										A 9 4	* >	MD!	EC	RFC	EIV	ABLE	<u> </u>		-				1.2, 0.20 Kl~
									_	AL	20	いせつ	AS.	AP	FIC	ABLE	Q						$K l_{\sim}$
									ρ	KES	د از ساره	٠											t 'V -

JA59191B: Chain of Custody Page 1 of 6

Fresl	CUTEST Ponds Corporate Route 130, Daytor						Honeywell Chain Of Custody / Analysis Request															\$500 CONT. (\$500)	38439.43925 37394-101910			
	329-0200 Phone, 7			-		Privileged &	Confiden	ial	Y			Site N	ame:	HUDS	ONCO										Lab Proj#	386 700 380 10000 70
						EDD To:		Agshust (N	IACTEC)		Locat	ion of S	iita:	SA6S,	Site 1	24								Lab ID	ACTD
Clie	at Contact: (лате	, co., addr	ess)			Sampler:	B.Senna					78		ervative	D110D,	DIE 1									PAGE 2 of 3	
					Consulting, Inc	P O #							0	0	0	2							\top	\top	Job No.	
_	American Meti		Suite 1	13		Analysis Turna	around Time:																		- T	1918AT
	ulton, NJ 0861					Standard -			•				6617	200.8	inn							1				
agsi	ust@mactec.cor	<u> </u>				Rush Charges A 2 weeks -	Authorized for			Y				m 26	l on	Ę										
Har	lcopy Report To:	See above	,			2 WCCRS-				•		-	3	i me	i i	imo.									What is it	the Text File?
	SA GARAGA					1 week -							Mo	Chromi	vale	흔								-		e over here.
Invo	ice To:				neywell PM 101							E 5	Ħ	otal	lexa	Tota				-					Written and	
(EE:	(1.5 (1.6 (1.6 (1.6 (1.6 (1.6 (1.6 (1.6 (1.6	Columbia	Rd, M	lorr	istown, NJ 07962	Next Day -		· · · · · · · · · · · · · · · · · · ·	1	1			ğ	l ed	1661	8.0								ŀ	maintained by AESI	
		Sampl			tion	Sample Date	Sample Time	Sample Type	Sample Matrix		# of Cont.	Grab/Com	Dissolved CHROMIUM VI (7199)	Dissolved Total	EPA 7199 Hexavalent Caromium	EPA 200.8 Total Chromium									(Ver 3_7)	renesurgi@aol.com
	Location ID	Start Depth (ft)	Enc Dep	th	Field Sample ID				J			Units	ug/L	1/8n	ıg/L	ug/L									Lab Sample N	
h	124-MW-10	(,	(**)	<u>, </u>	124-MW-10-101910	10/19/2010	1448	GW	Water	REG	2	grab		=	X	X		+	\dagger	\top	+	+-	\dagger	+	Lab Sample A	nimbers
1	124-MW-10	,	4F	t	124-MW-10-101910	10/19/2010	-	GW	Water	REG	2	grab	x	x	A	Α_		\top	\top	+	\dagger		╁	+		
3	124-MW-11		5F	7	124-MW-11-101910	10/19/2010	-	GW	Water	REG	2		ı ^	1	x	х		\top	_		1		+	+	<u> </u>	
4	124-MW-11		<i>'</i>	\vdash	124-MW-11-101910	10/19/2010	1335	GW	Water	REG	2		x	x		Α.		\top	_	1	1		+	1	 	
5	124-101-11			_	124-1814-11-101710		<u> </u>		-			-	Α.	<u> </u>				+	+	+	+	+	+	+		
ľ												\vdash		-				+		-	+		+-	+-	 	,
6			<u>. </u>	_					-			\sqcup	-	<u> </u>						\perp	_	4		┷		
7												!														
8												П						П						1		
9												\vdash	1					_	+	+-	+		\top	1		
			<u> </u>						-			\vdash	 		$\vdash \vdash$			+	+-	+	+		+	+	 	
10												++	\vdash	-	-			+	+	+	+		+-	+	 	
11							ļ					\vdash	\vdash					+		+			-	+	 	
12		L				<u> </u>	Ļ		L					<u> </u>										Ш_		
		E ANAL	YZEI	DВ	Y METHOD 200.8, HE?				/,																	·
Kehi	quished by	1			Company Date/Time	101910 1700					Cus	tody Se	als Intact													
D.E.							1700		un	1	-	L	Date	/Time		3/6	72009 12				1		1			
Kelu	цизаса ву				Company	<u> </u>		Received by				L			mpany			\rightarrow	ndition		1		Cus	tody Se	als Intact	
					Date/Time			<u> </u>	٠				Date	/Time				Co	oler Te	mp.						
Pres	ervatives: 0 = No	ne: [l = H	CL1: /2	? = F	INO3]; [3 = H2SO4]; [4 = Na	OH): 15 = Zn	A cetatel	16 = MaOH	D: !7 = N:	aHSO41:	8 = Oth	er (sne	ifv).								T					

JA59191B: Chain of Custody Page 2 of 6

AN.
V 49.

Fres	CCUTEST th Ponds Corporate Route 130, Daytor				Honeywell Chain Of Custody / Analysis Request													AESI Ref. 38439.43925 COC #: 37287-101910 Lab Use Only							
732-	329-0200 Phone, 7	32-329-349	9 Fax		Privileged d	c Confiden	tial	Y			Site N	lame:	HUDS	ONCO										Lab Proj#	
					EDD To:		Agshust (N	1ACTEC)		Loca	tion of S	Site:	SA5, 8	Site 11	7								Lab ID /	CTD
Clie	nt Contact: (name	, co., addre	ess)		Sampler:	B.Senna							ervative											PAGE 3 of 3	
	irew Shust - MAC			d Consulting, Inc	PO#		,				F	0	0	0	2			丄		┸				Job No. Tas	79191
-	American Metr		Suite 113		Analysis Turn	around Time:						_													1/12/1
	milton, NJ 0861				Standard -							7136	200.8	ig.		i								N.S. J. J. PROPRIESTO.	AMERICAN TABLE THE
ags	hust@mactec.cor	<u>n</u>	-		Rush Charges : 2 weeks -	Authorized for	-		Y			×	E 2	Chromium	E				1						an if
Har	dcopy Report To:	See above			1							theid Futered Sample : Dissolved CHROMIUM VI (7199)	- III		200.8 Total Chromium									What is in	the Text File?
-33					1 week -						4 .	MS NO	ļ	Hexavalent	a) C)									1111 11 11	over here
Inve	nice To:			neywell PM 101	Next Day -						MON.	E H	ed Total	Hex	Tot									Written and maintained	
2265.E	S. ASMERIO	Columbia	Ra, Mor	ristown, NJ 07962				1]	Grab/Com	ved		7199	900.8			1						by AESI	
l		C1	. Idausica	-4:	Sample Date	Sample Time	Sample Type	Sample Matrix		# of Cont.	2	lissol	Dissolv	EPA 7	EFA 2							ì		(Ver 3 7)	
\vdash		Start	e Identific End	anoa	Date	i di di di di	a spe	4	- or pose		5	- 13	 "	ш	34	-+	+	+	+	+	+	+	\vdash	02-01-05	renesurg @aol.co
l		Depth	Depth									نے ا	نے ا	اہے ا	بے										
	Location ID	(ft)	(ft)	Field Sample ID		300		4		8 5 (8	Units	l/an	1/3n	ug/L	ng/L	_	_	\perp	\bot	\perp	1			Lab Sample Nu	imbers
1	117-MW-A14			117-MW-A14-101910	10/19/2010	1508	GW	Water	REG	2	00	N		x	х			_		1	ļ	ļ			
2	117-MW-A14		-bF	117-MW-A14-101910	10/19/2010	1508	GW	Water	REG	2	56	YX	x						\perp						
3	117-QC		-7	117-FB-101910	10/11/10	1530	64	water	FB	2		N		X	×		İ								
4					1 1						П														
5											П								\top						
\Box					-				·		11				-		\top		\dagger	+	T				
6		 	 			-						_	 			+	_		+	+	+	<u> </u>			
7					<u> </u>	ļ	ļ				\vdash	-		-		-	+	-	+	-	+	+			
8								-				1					_		+		_				
9							ļ	1			\sqcup			L_					\perp						
10															İ								ļ		
11																									
12											11														
	TAL CHROM	E ANAL	YZED I	BY METHOD 200.8, HE	X BY 7199	I		1.					1											1	
L																									
Reli	finquished by Compa			y MAC	CTEC	Received b	ıy			10/	15/10/	760	mpany	ı		- 1	ndition				Custo	dy Sea	ds Intact		
L	Date/Time				1700					$oxed{oxed}$	Dat	e/Time		3/	/2009 12	1009 12:30 Cooler Temp.									
Reli	Retinquished by Compa				ıy '		Received t	ıy						ompany	<u> </u>		Condition Custody				dy Sea	ils Intact			
l	Date/Time											Dat	e/Time				Co	oler Te	mp.						
Pre	servatives: 0 = No	ne; [1 = H	(CL): 2 =	HNO3 ; [3 = H2SO4 ; [4 = N	aOH1: 15 = Z	n. Acetatel:	[6 = MeO]	HI: 17 = N	aHSO41:	8 = Oth	er (sp	ecify):								1-					

JA59191B: Chain of Custody

Page 3 of 6

Accutest Laboratories V:732.329.0200

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: JA59191 Client: MACTEC-NJ						Immediate Client Services Action Require						: No
Date / Time Received: 10/19/2	2010 17	00	Deliver	ry Metho	od:		Client	Client Service A	ction Require	d at	Login	: Yes
Project: HONEYWELL			No. Co	olers:		2	Airbill #	f's:				
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: ✓	or N		OC Present:	Y or ✓ □	N 		1. Sample labels present 2. Container labeling c	ent on bottles:	Y V	or	<u>N</u>	
Cooler Temperature	Y or	N					Sample container la	•			<u>✓</u>	
Temp criteria achieved: Cooler temp verification: Cooler media:	Infare	-					Sample Integrity - 0 1. Sample recvd within 2. All containers accounts	n HT:	<u>Y</u>	or	N	
Quality Control Preservatio	<u>Y</u>	<u>N</u>	N/A			-	3. Condition of sample	e:		Intact		
Trip Blank present / cooler: Trip Blank listed on COC: Samples preserved properly:			✓				Sample Integrity - I 1. Analysis requested 2. Bottles received fo	d is clear:				_N/A_
4. VOCs headspace free:			✓				Sufficient volume re Compositing instru	•	✓			✓
Comments -4 LABEL TIME 1439 NOT 1448, ID AND	D DATE O	К					5. Filtering instruction	s clear:				V

2235 US Highway 130 F: 732.329.3499

JA59191B: Chain of Custody

Dayton, New Jersey www/accutest.com

Page 4 of 6

Sample Receipt Summary - Problem Resolution

Accutest Job Number: JA59191

CSR: Marie Meidhof Response Date 10/20/2010

Response: Please follow the sample time as per the coc for -4.

 Accutest Laboratories
 2235 US Highway 130
 Dayton, New Jersey

 V:732.329.0200
 F: 732.329.3499
 www/accutest.com

JA59191B: Chain of Custody Page 5 of 6 Job Change Order:

JA59191_11/12/2010

Requested Date: **Account Name:**

11/12/2010

Honeywell International Inc.

HLANJPR: SA-5 Site 153, Langer

Project Description: CSR:

ΜV

Received Date:

10/19/2010

Due Date:

11/2/2010

Deliverable: TAT (Days):

FULT1 1

Sample #:

JA59191-4, 5

Change:

Move these two samples to an "A" job

Sample #:

JA59191-6, 7

Change:

Move these two samples to a "B" job

Above Changes

VanThuy Lieu

Date: 11/12/2010 JA59191B: Chain of Custody

Page 6 of 6

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service Representative.

Page 1 of 1

Internal Sample Tracking Chronicle

Honeywell International Inc.

Job No: JA59191B

HLANJPR: SA-5 Site 153, Langer

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JA59191-6 117-MW-A	Collected: 19-OCT-10 14-101910	15:08 By: BS	Receiv	/ed: 19-OCT	-10 By	: MPC
	SW846 7199 EPA 200.8	20-OCT-10 13:43 02-NOV-10 17:09		20-OCT-10 01-NOV-10		XCR7199 CRMS
JA59191-7 117-FB-101	Collected: 19-OCT-10 910	15:30 By: BS	Receiv	ved: 19-OCT	-10 By	: MPC
	SW846 7199 EPA 200.8	20-OCT-10 14:30 02-NOV-10 17:13	BD ND			XCR7199 CRMS
JA59191-6F 117-MW-A	Collected: 19-OCT-10 14-101910	15:08 By: BS	Receiv	ved: 19-OCT	-10 By	: MPC
	SSW846 7199 SEPA 200.8	20-OCT-10 13:58 02-NOV-10 17:05		20-OCT-10 01-NOV-10		XCR7199 CRMS

Accutest Internal Chain of Custody Job Number: JA59191B

HWINJM Honeywell International Inc. Account: **Project:** HLANJPR: SA-5 Site 153, Langer

Received: 10/19/10

Sample. Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA59191-6.1	Secured Storage	Todd Shoemaker	10/29/10 08:42	Retrieve from Storage
JA59191-6.1	Todd Shoemaker	Vidya Krishnan	10/29/10 08:44	Custody Transfer
JA59191-6.1	Vidya Krishnan	Secured Storage	10/29/10 16:56	Return to Storage
JA59191-6.1	Secured Storage	Adam Scott	11/01/10 07:16	Retrieve from Storage
JA59191-6.1	Adam Scott	Rinku Patel	11/01/10 08:02	Custody Transfer
JA59191-6.1	Rinku Patel	Secured Storage	11/01/10 16:35	Return to Storage
JA59191-6.1	Dave Hunkele	-	11/29/10 05:43	Disposed
JA59191-6.1.1	Rinku Patel	Metals Digestion	11/01/10 13:45	Digestate from JA59191-6.1
JA59191-6.1.1	Metals Digestion	Rinku Patel	11/01/10 13:45	Digestate from JA59191-6.1
JA59191-6.1.1	Rinku Patel	Metals Digestate Storage	11/01/10 13:45	Return to Storage
JA59191-6.3	Secured Storage	Adam Scott	10/20/10 07:06	Retrieve from Storage
JA59191-6.3	Adam Scott	Barbara Dula	10/20/10 07:08	Custody Transfer
JA59191-6.3	Barbara Dula	Secured Storage	10/20/10 14:09	Return to Storage
JA59191-6.3	Dave Hunkele		11/29/10 05:43	Disposed
JA59191-6F.2	Secured Storage	Todd Shoemaker	10/29/10 08:42	Retrieve from Storage
JA59191-6F.2	Todd Shoemaker	Vidya Krishnan	10/29/10 08:44	Custody Transfer
JA59191-6F.2	Vidya Krishnan	Secured Storage	10/29/10 16:56	Return to Storage
JA59191-6F.2	Secured Storage	Adam Scott	11/01/10 07:16	Retrieve from Storage
JA59191-6F.2	Adam Scott	Rinku Patel	11/01/10 08:02	Custody Transfer
JA59191-6F.2	Rinku Patel	Secured Storage	11/01/10 16:35	Return to Storage
JA59191-6F.2	Dave Hunkele		11/29/10 05:43	Disposed
JA59191-6F.2.1	Rinku Patel	Metals Digestion		Digestate from JA59191-6F.
JA59191-6F.2.1	Metals Digestion	Rinku Patel		Digestate from JA59191-6F.
JA59191-6F.2.1	Rinku Patel	Metals Digestate Storage	11/01/10 13:45	Return to Storage
JA59191-6F.4	Secured Storage	Zethan Reyes		Retrieve from Storage
JA59191-6F.4	Zethan Reyes	Barbara Dula		Custody Transfer
JA59191-6F.4	Barbara Dula	Secured Storage		Return to Storage
JA59191-6F.4	Dave Hunkele		11/29/10 05:43	Disposed
JA59191-7.1	Secured Storage	Adam Scott	11/01/10 07:16	Retrieve from Storage
JA59191-7.1	Adam Scott	Rinku Patel	11/01/10 08:02	Custody Transfer
JA59191-7.1	Rinku Patel	Secured Storage	11/01/10 16:35	Return to Storage
JA59191-7.1	Dave Hunkele		11/29/10 05:43	Disposed
JA59191-7.1.1	Rinku Patel	Metals Digestion		Digestate from JA59191-7.1
JA59191-7.1.1	Metals Digestion	Rinku Patel	11/01/10 13:45	Digestate from JA59191-7.1
JA59191-7.1.1	Rinku Patel	Metals Digestate Storage	11/01/10 13:45	Return to Storage
JA59191-7.4	Secured Storage	Adam Scott	10/20/10 07:06	Retrieve from Storage

Page 2 of 2

Accutest Internal Chain of Custody Job Number: JA59191B

HWINJM Honeywell International Inc. Account: **Project:** HLANJPR: SA-5 Site 153, Langer

Received: 10/19/10

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA59191-7.4	Adam Scott	Barbara Dula	10/20/10 07:08	Custody Transfer
JA59191-7.4	Barbara Dula	Secured Storage	10/20/10 14:09	Return to Storage
JA59191-7.4	Dave Hunkele	_	11/29/10 05:43	Disposed

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Instrument Runlogs
- Initial and Continuing Calibration Blanks
- Initial and Continuing Calibration Checks
- · High and Low Check Standards
- Interfering Element Check Standards
- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries
- IDL and Linear Range Summaries

Parameters: Cr

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: X110210W1.CSV Analyst: ND Date Analyzed: 11/02/10

Methods: EPA 200.8

Run ID: MA25287

Time		Dilution PS Factor Recov	Comments
13:26	MA25287-STD1	1	STD1
13:30	MA25287-STD2	1	STD2
13:33	MA25287-STD3	1	STD3
13:37	MA25287-STD4	1	STD4
13:41	MA25287-STD5	1	STD5
13:45	MA25287-STD6	1	STD6
13:48	MA25287-STD7	1	STD7
13:52	MA25287-ICV1	1	
13:56	MA25287-ICB1	1	
13:59	ZZZZZZ	1	
14:03	MA25287-CRI1	1	
14:07	MA25287-CRIA1	1	
14:10	MA25287-CCV1	1	
14:14	MA25287-CCB1	1	
14:18	MP55424-MB1	1	
14:22	MP55424-LC1	1	
14:25	MP55424-S1	1	
14:29	MP55424-S2	1	
14:33	JA59191-1	1	(sample used for QC only; not part of login JA59191B)
14:36	MP55424-S3	1	
14:40	MP55424-S4	1	
14:44	JA59191-1F	1	(sample used for QC only; not part of login JA59191B)
14:47	ZZZZZZ	1	
14:51	MA25287-CCV2	1	
14:55	MA25287-CCB2	1	
14:59	ZZZZZZ	1	
15:02	ZZZZZZ	1	
15:06	ZZZZZZ	1	
15:10	ZZZZZZ	1	
15:13	ZZZZZZ	1	
	ZZZZZZ	1	
		1	
15:24	MA25287-CCV3	1	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: X110210W1.CSV Date Analyzed: 11/02/10 Methods: EPA 200.8 Analyst: ND Run ID: MA25287

Parameters: Cr

---->

---->

Time	Sample Description	Dilution PS Factor Recov	Comments
15:28	MA25287-CCB3	1	
15:48	MP55464-MB1	1	
15:51	MP55464-B1	1	
15:55	JA58929-1	1	(sample used for QC only; not part of login JA59191B)
15:59	ZZZZZZ	1	
16:03	ZZZZZZ	1	
16:06	ZZZZZZ	1	
16:10	ZZZZZZ	1	
16:14	ZZZZZZ	1	
16:17	ZZZZZZ	1	
16:21	MA25287-CCV4	1	
16:25	MA25287-CCB4	1	
16:28	ZZZZZZ	1	
16:32	ZZZZZZ	1	
16:36	MP55464-S1	1	
16:40	MP55464-S2	1	
16:43	MA25287-CCV5	1	
16:47	MA25287-CCB5	1	
16:51	MP55425-MB1	1	
16:54	MP55425-LC1	1	
16:58	MP55425-S1	1	
17:02	MP55425-S2	1	
17:05	JA59191-6F	1	
17:09	JA59191-6	1	
Last r		1 e/prep for job JA59 1	191B
17:37	MA25287-CCV6	1	
Last r	MA25287-CCB6 eportable CCB fo ZZZZZZ	1 or job JA59191B 1	
17:52	MP55294-S1	50	To reanalysis, internal stds out on CCV.
17:55	MP55294-S2	50	To reanalysis, internal stds out on CCV.
17:59	T62089-1	50	(sample used for QC only; not part of login JA59191B)
18:03	MP55294-S1	25	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: X110210W1.CSV Analyst: ND Date Analyzed: 11/02/10 Methods: EPA 200.8 Run ID: MA25287

Parameters: Cr

Time		Dilution PS Factor Recov	Comments
18:07	MP55294-S2	25	
18:10	T62089-1	25	(sample used for QC only; not part of login JA59191B)
18:14	ZZZZZZ	1	
18:18	ZZZZZZ	1	
18:21	ZZZZZZ	1	
18:25	MA25287-CCV7	1	
18:29	MA25287-CCB7	1	
18:32	ZZZZZZ	50	
18:36	ZZZZZZ	50	
18:40	ZZZZZZ	50	
18:44	ZZZZZZ	50	
18:47	ZZZZZZ	50	
18:51	ZZZZZZ	1	
18:55	ZZZZZZ	1	
18:58	ZZZZZZ	1	
19:02	MA25287-CCV8	1	
19:06	MA25287-CCB8	1	
19:09	ZZZZZZ	25	
19:13	ZZZZZZ	25	
19:17	ZZZZZZ	25	
19:21	ZZZZZZ	25	
19:24	ZZZZZZ	25	
19:28	ZZZZZZ	1	
19:32	ZZZZZZ	1	
19:35	ZZZZZZ	1	
19:39	MA25287-CCV9	1	
19:43	MA25287-CCB9	1	
20:00	ZZZZZZ	50	
20:04	ZZZZZZ	50	
20:07	ZZZZZZ	50	
20:11	ZZZZZZ	50	
20:15	ZZZZZZ	50	
20:36	ZZZZZZ	50	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: X110210W1.CSV Analyst: ND

Parameters: Cr

Date Analyzed: 11/02/10

Run ID: MA25287

Methods: EPA 200.8

	Cample	Dilution	DC	
Time	Sample Description		Recov	Comments
20:40	ZZZZZZ	50		•
20:44	ZZZZZZ	50		
20:55	ZZZZZZ	1		
20:58	ZZZZZZ	1		
21:02	MA25287-CCV10	1		
21:06	MA25287-CCB10	1		

Refer to raw data for calibration curve and standards.

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: X110210W1.CSV Analyst: ND Parameters: Cr

Date Analyzed: 11/02/10 Run ID: MA25287 Methods: EPA 200.8

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4	Istd#5	Istd#6	Istd#7	Istd#8
13:26	MA25287-STD1	100	100	100	100	100	100	100	100
13:30	MA25287-STD2	104.37	105.2	103.62	103.39	103.17	101.95	102.62	102.64
13:33	MA25287-STD3	101.95	100.14	99.44	99.45	100.64	99.22	100.92	100.74
13:37	MA25287-STD4	100.57	99.19	99.1	99.04	99.48	100.31	100.24	100.01
13:41	MA25287-STD5	96.91	98.72	98.11	97.8	98.34	99.29	97.43	100.34
13:45	MA25287-STD6	95.7	98.36	97.82	98.48	98.06	99.56	98.15	100.69
13:48	MA25287-STD7	100.51	101.2	101.35	100.19	101.51	103	101.19	101.61
13:52	MA25287-ICV1	100.48	100.43	100.83	99.65	101.55	102.76	102.32	103.19
13:56	MA25287-ICB1	99.71	101.58	99.54	100.48	100.09	100.1	99.9	101.5
13:59	ZZZZZZ	103.2	101.85	101.45	101.4	100.86	101.25	100.4	102.58
14:03	MA25287-CRI1	107.79	108.24	105.68	106.75	105.1	106.37	105.2	106.09
14:07	MA25287-CRIA1	105.85	104.51	103.56	104.54	103.73	103.65	103.86	105.25
14:10	MA25287-CCV1	98.74	102.7	100.93	101.08	101.07	102.08	102.73	103.93
14:14	MA25287-CCB1	100.21	99.9	101.62	100.38	100.6	99.66	100.13	102.92
14:18	MP55424-MB1	104.56	102.65	102.8	101.53	101.98	101.06	101.63	102.94
14:22	MP55424-LC1	104.13	103.2	103.61	101.33	101.93	103.8	104.31	105.37
14:25	MP55424-S1	94.34	103.44	116.63	93.59	97.79	100.51	100.8	96.93
14:29	MP55424-S2	88.32	102.05	114.95	91.31	95.94	100.36	102.07	98.23
14:33	JA59191-1	87.91	100.03	114.13	91.1	96.41	101.72	102.39	99.53
14:36	MP55424-S3	83.59	92.6	104.91	86.88	92.19	98.46	99.4	97.44
14:40	MP55424-S4	85.94	93.89	105.87	88.7	93.43	100.51	101.39	99.13
14:44	JA59191-1F	90.52	97.83	109.33	90.69	95.06	102	102.98	100.15
14:47	ZZZZZZ	84.53	94.48	108.54	88.37	93.11	99.8	100.55	98.77
14:51	MA25287-CCV2	90.99	93.17	98.28	97.78	100	104.17	104.63	108.51
14:55	MA25287-CCB2	90.48	92.94	95.96	96.4	98.52	101.68	101.1	105.28
14:59	ZZZZZZ	83.2	90.57	91.14	87	91.17	96.88	98.08	95.11
15:02	ZZZZZZ	79.34	96.22	95.5	83.47	89.99	99.38	100.21	87.73
15:06	ZZZZZZ	83.6	100.55	104.74	90.49	96.98	105.69	106.95	99.75
15:10	ZZZZZZ	85.29	96.83	109.41	90.43	95.75	103.83	104.41	101.68
15:13	ZZZZZZ	88.46	97.3	98.58	93.39	98.42	104.73	105.25	102.31
15:17	ZZZZZZ	86.97	110.09	106.9	92.69	101.03	109.94	110.73	95.16
15:21	ZZZZZZ	87.41	107.68	107.39	96.43	103.29	111.39	112.05	104.29
15:24	MA25287-CCV3	98.41	104.61	107.96	106.14	108.65	113.48	114.22	118.08

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: X110210W1.CSV Analyst: ND Parameters: Cr Date Analyzed: 11/02/10 Run ID: MA25287

Methods: EPA 200.8

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4	Istd#5	Istd#6	Istd#7	Istd#8
15:28	MA25287-CCB3	96.4	99.65	105.23	103.9	106.45	109.5	109.2	112.63
15:48	MP55464-MB1	97.57	99.28	102.33	101.47	103.55	104.26	104.16	106.94
15:51	MP55464-B1	98.27	97.94	101.53	100.89	102.87	105.88	106.71	108.88
15:55	JA58929-1	91.02	99.51	100.06	97.52	101.44	107.09	107.58	106.22
15:59	ZZZZZZ	96.33	100.92	103.59	100.64	104.2	109.05	109.25	109.62
16:03	ZZZZZZ	92.9	99.82	103.64	101.08	104.26	110.5	110.96	111.49
16:06	ZZZZZZ	93.71	99.21	103.54	99.83	105.31	111.13	111.87	111.39
16:10	ZZZZZZ	84.56	95.68	98.62	93.07	99.68	107.61	108.03	106.19
16:14	ZZZZZZ	81.7	91.63	93.59	90.16	95.56	101.82	102.33	104.27
16:17	ZZZZZZ	84.56	93.79	94.98	91.63	96.45	102.99	103.42	105.53
16:21	MA25287-CCV4	89.52	91.14	99.08	96.51	100.83	105.77	105.02	109.75
16:25	MA25287-CCB4	90.69	91.86	97.89	96.61	99.12	102.88	103.99	107.07
16:28	ZZZZZZ	87.84	92.61	94.9	93.1	97.38	101.61	102.25	105.39
16:32	ZZZZZZ	84.55	93.07	94.92	92.1	96.96	102.77	103.13	104.98
16:36	MP55464-S1	82.37	90.59	93.36	90.17	95.35	101.52	102.33	103.45
16:40	MP55464-S2	82.99	94.39	96.31	93.1	99.28	104.43	105.04	106.35
16:43	MA25287-CCV5	88.73	91.17	96.9	96.57	99.84	103.83	103.96	109.06
16:47	MA25287-CCB5	93.46	95.14	98.64	97.52	99.99	103.87	104.54	108.07
16:51	MP55425-MB1	98.5	98.53	103.48	103.46	104.7	106.57	106.45	110.77
16:54	MP55425-LC1	97.6	97.53	102.28	102.07	103.81	107.23	108.36	110.25
16:58	MP55425-S1	94.66	98.83	102.11	93.26	98.69	106.24	107.19	100.83
17:02	MP55425-S2	91.6	96.9	103.08	93.03	98.96	107.24	108.4	102.33
17:05	JA59191-6F	91.45	100.11	104.84	94.7	100.19	108.59	109.64	103.34
17:09	JA59191-6	90.78	96.97	103.08	91.89	98.53	107.08	107.76	101.88
17:13	JA59191-7	92.13	93.66	98.9	98.15	100.63	105.58	105.98	109.21
17:33	ZZZZZZ	93.29	92.04	96.14	94.46	96.61	100.29	100.75	104.11
17:37	MA25287-CCV6	91.18	91.88	95.83	93.51	97.21	101.27	100.26	105.12
17:41	MA25287-CCB6	96.89	96.04	98.47	97.88	100.16	103.05	103.41	106.48
17:48	ZZZZZZ	92.15	92.44	94.72	93.31	95.94	98.04	98.67	101.82
17:52	MP55294-S1	97.85	0 !	0 !	96.42	105.14	112.11	112.15	96.28
17:55	MP55294-S2	106.35	0 !	0 !	109.45	119.31	125.28 !	125.16 !	106.52
17:59	T62089-1	109.12	0 !	0 !	113.35	123.26	128.54 !	130.16 !	108.71
18:03	MP55294-S1	104.12	130.2 !	129.11 !	107.2	120.22	125.89 !	126.53 !	99.42

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: X110210W1.CSV Analyst: ND Date Analyzed: 11/02/10 Run ID: MA25287 Methods: EPA 200.8

Parameters: Cr

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4	Istd#5	Istd#6	Istd#7	Istd#8
18:07	MP55294-S2	108.02	136.64 !	147.99 !	112.83	126.47 !	132.3 !	131.79 !	103.88
18:10	T62089-1	106.79	136.6 !	139.12 !	114.23	129.4 !	134.64 !	133.78 !	106.09
18:14	ZZZZZZ	118.34	139.4 !	147.41 !	139.41 !	146.21 !	145.2 !	145.5 !	145.34 !
18:18	ZZZZZZ	114.17	128.71 !	137.09 !	131.01 !	136.57 !	137.32 !	136.52 !	137.06 !
18:21	ZZZZZZ	110.4	122.51	129.4 !	125.11 !	129.85 !	130.63 !	130.55 !	131.43 !
18:25	MA25287-CCV7	109.53	119.22	128.36 !	123.71	128.4 !	130.29 !	130.23 !	132.35 !
18:29	MA25287-CCB7	104.81	113.19	121.3	116.76	121.27	123.58	123.73	125.51 !
18:32	ZZZZZZ	100.93	115.19	121.85	109.35	117.7	123.64	124.66	111.18
18:36	ZZZZZZ	104.1	0 !	0 !	109.94	120.35	126.26 !	126.44 !	107.83
18:40	ZZZZZZ	110.54	0 !	0 !	119.38	129.93 !	134.6 !	134.83 !	113.64
18:44	ZZZZZZ	116.3	0 !	0 !	122.99	134.81 !	139.16 !	137.99 !	117.52
18:47	ZZZZZZ	112.96	0 !	0 !	123.24	134.55 !	139.81 !	138.91 !	116.74
18:51	ZZZZZZ	113.24	128.8 !	137.76 !	130.69 !	136.4 !	136.02 !	135.83 !	137.05 !
18:55	ZZZZZZ	106.45	117.97	125.9 !	121.74	126.1 !	125.98 !	125.63 !	126.93 !
18:58	ZZZZZZ	101.1	110.91	118.68	114.22	118.36	119.33	118.71	120.5
19:02	MA25287-CCV8	100.2	108.13	116.13	113.18	116.18	119.49	119.39	122.2
19:06	MA25287-CCB8	96.64	103.53	112.09	109.15	111.88	114.44	114.22	117.22
19:09	ZZZZZZ	99.27	115.88	121.85	105.11	115.45	121.46	122.24	103.62
19:13	ZZZZZZ	103.86	126.36 !	128.31 !	107.36	119.14	124.98	124.24	99.75
19:17	ZZZZZZ	103.84	132.3 !	134.57 !	111.73	125.71 !	130.15 !	129.83 !	103.73
19:21	ZZZZZZ	102.69	131.6 !	135.95 !	113	126.72 !	131.98 !	132.07 !	104.62
19:24	ZZZZZZ	99.25	126.24 !	130.37 !	108.08	122.39	126.69 !	126.9 !	101.7
19:28	ZZZZZZ	110.24	128.87 !	136.02 !	129.97 !	135.56 !	135.1 !	133.94 !	134.09 !
19:32	ZZZZZZ	106	120.73	127.54 !	121.69	126.74 !	126.7 !	125.95 !	126.66 !
19:35	ZZZZZZ	101.43	114.53	123.47	116.88	122.42	123.21	121.94	122.32
19:39	MA25287-CCV9	99.13	110.17	117.48	113.7	118.89	121.02	120.28	122.82
19:43	MA25287-CCB9	97.6	106.18	114.65	110.83	114.2	114.83	115.24	117.53
20:00	ZZZZZZ	93.75	104.25	111.06	101.02	106.44	112.09	112.01	102.63
20:04	ZZZZZZ	96.15	113.41	118.36	103.7	111.92	117.37	116.54	101.06
20:07	ZZZZZZ	100.87	118.67	122.15	106.75	115.75	120.08	119.9	103.74
20:11	ZZZZZZ	101.67	121.32	0 !	108.85	118.42	122.15	122.15	104.27
20:15	ZZZZZZ	110.32	0 !	0 !	116.64	125.8 !	129.77 !	129.77 !	108.65
20:36	ZZZZZZ	101.78	119.83	122.06	106.66	114.61	118.95	118.91	100.94

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: X110210W1.CSV Analyst: ND

Parameters: Cr

Date Analyzed: 11/02/10 Methods: EPA 200.8 Run ID: MA25287

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4	Istd#5	Istd#6	Istd#7	Istd#8
20:40	ZZZZZZ	102.79	122.72	125.95 !	109.11	117.63	122.4	121.49	102.78
20:44	ZZZZZZ	106.96	130.36 !	132.47 !	113.87	122.17	125.72 !	126.21 !	105.7
20:55	ZZZZZZ	99.39	107.19	113.04	109.55	111.57	111.3	110.99	112.82
20:58	ZZZZZZ	95.67	103.92	109.37	106.18	107.39	108.3	107.2	109.21
21:02	MA25287-CCV10	94.18	100.81	108.32	104.46	107.02	107.96	108.37	110.45
21:06	MA25287-CCB10	86.79	90.77	96.86	94.79	96.55	97.28	97.43	100.65

! = Outside limits.

LEGEND:

Istd#	Parameter	Limits
Istd#1	Lithium	60-125 %
Istd#2	Scandium	60-125 %
Istd#3	Yttrium	60-125 %
Istd#4	Rhodium	60-125 %
Istd#5	Indium	60-125 %
Istd#6	Terbium	60-125 %
Istd#7	Holmium	60-125 %
Istd#8	Bismuth	60-125 %

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: X110210W1.CSV Date Analyzed: 11/02/10 Methods: EPA 200.8 QC Limits: result < RL Run ID: MA25287 Units: ug/l

Time: Sample ID:			13:56 ICB1		14:14 CCB1		14:55 CCB2		15:28 CCB3	
Metal	RL	IDL	raw	final	raw	final	raw	final	raw	final
Aluminum	50	.69	anr							
Antimony	0.50	.07								
Arsenic	1.0	.09	anr							
Barium	1.0	.056								
Beryllium	0.50	.015								
Boron	5.0	.53								
Cadmium	0.50	.058								
Calcium	250	4.7	anr							
Chromium	4.0	.058	0.0	<4.0	0.0040	<4.0	0.042	<4.0	0.21	<4.0
Cobalt	0.50	.002								
Copper	4.0	.11	anr							
Iron	50	.81								
Lead	0.50	.019	anr							
Magnesium	250	. 4								
Manganese	0.50	.016								
Molybdenum	1.0	.19								
Nickel	4.0	.042	anr							
Potassium	250	2.9								
Selenium	1.0	.057								
Silver	2.0	.008								
Sodium	250	.96								
Strontium	1.0	.008								
Thallium	0.50	.015								
Tin	1.0	.069								
Titanium	1.0	.046								
Uranium	1.0									
Vanadium	4.0	.45								
Zinc	4.0	.71	anr							

(*) Outside of QC limits
(anr) Analyte not requested

30 of 214
ACCUTEST
JA59191B

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

Time: Sample ID:			16:25 CCB4		16:47 CCB5		17:41 CCB6	
Metal	RL	IDL	raw	final	raw	final	raw	final
Aluminum	50	.69	anr					
Antimony	0.50	.07						
Arsenic	1.0	.09	anr					
Barium	1.0	.056						
Beryllium	0.50	.015						
Boron	5.0	.53						
Cadmium	0.50	.058						
Calcium	250	4.7	anr					
Chromium	4.0	.058	0.55	<4.0	0.45	<4.0	0.28	<4.0
Cobalt	0.50	.002						
Copper	4.0	.11	anr					
Iron	50	.81						
Lead	0.50	.019	anr					
Magnesium	250	. 4						
Manganese	0.50	.016						
Molybdenum	1.0	.19						
Nickel	4.0	.042	anr					
Potassium	250	2.9						
Selenium	1.0	.057						
Silver	2.0	.008						
Sodium	250	.96						
Strontium	1.0	.008						
Thallium	0.50	.015						
Tin	1.0	.069						
Titanium	1.0	.046						
Uranium	1.0							
Vanadium	4.0	.45						
Zinc	4.0	.71	anr					

^(*) Outside of QC limits
(anr) Analyte not requested

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: X110210W1.CSV Date Analyzed: 11/02/10 Methods: EPA 200.8 QC Limits: 90 to 110 % Recovery Run ID: MA25287 Units: ug/l

Time: Sample ID: Metal	ICV True	13:52 ICV1 Results	% Rec	CCV True	14:10 CCV1 Results	% Rec	CCV True	14:51 CCV2 Results	% Rec
Aluminum	anr								
Antimony									
Arsenic	anr								
Barium									
Beryllium									
Boron									
Cadmium									
Calcium	anr								
Chromium	60	60.7	101.2	50	49.4	98.8	50	49.3	98.6
Cobalt									
Copper	anr								
Iron									
Lead	anr								
Magnesium									
Manganese									
Molybdenum									
Nickel	anr								
Potassium									
Selenium									
Silver									
Sodium									
Strontium									
Thallium									
Tin									
Titanium									
Uranium									
Vanadium									
Zinc	anr								

(*) Outside of QC limits (anr) Analyte not requested

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: X110210W1.CSV Date Analyzed: 11/02/10 Methods: EPA 200.8 QC Limits: 90 to 110 % Recovery Run ID: MA25287 Units: ug/l

Time: Sample ID: Metal	CCV True	15:24 CCV3 Results	% Rec	CCV True	16:21 CCV4 Results	% Rec	CCV True	16:43 CCV5 Results	% Rec	
Aluminum	anr									<u>'</u>
Antimony										
Arsenic	anr									
Barium										
Beryllium										
Boron										
Cadmium										
Calcium	anr									
Chromium	50	49.6	99.2	50	50.3	100.6	50	50.0	100.0	
Cobalt										
Copper	anr									
Iron										
Lead	anr									
Magnesium										
Manganese										
Molybdenum										
Nickel	anr									
Potassium										
Selenium										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Uranium										
Vanadium										
Zinc	anr									

(*) Outside of QC limits (anr) Analyte not requested

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: X110210W1.CSV Date Analyzed: 11/02/10 Methods: EPA 200.8 QC Limits: 90 to 110 % Recovery Run ID: MA25287 Units: ug/1

Time: Sample ID:	CCV	17:37 CCV6	
Metal	True	Results	% Rec
Aluminum	anr		
Antimony			
Arsenic	anr		
Barium			
Beryllium			
Boron			
Cadmium			
Calcium	anr		
Chromium	50	50.7	101.4
Cobalt			
Copper	anr		
Iron			
Lead	anr		
Magnesium			
Manganese			
Molybdenum			
Nickel	anr		
Potassium			
Selenium			
Silver			
Sodium			
Strontium			
Thallium			
Tin			
Titanium			
Uranium			
Vanadium			

(*) Outside of QC limits (anr) Analyte not requested

anr

Zinc

Login Number: JA59191B Account: HWINJM - Honeywell International Inc.

Project: HLANJPR: SA-5 Site 153, Langer

File ID: X110210W1.CSV QC Limits: 50 to 150 % Recovery

Date Analyzed: 11/02/10 Run ID: MA25287

Methods: EPA 200.8 Units: ug/l

Time: Sample ID: Metal	CRI True	CRIA True	14:03 CRI1 Results	% Rec	14:07 CRIA1 Results	% Rec
Aluminum	50	25	anr			
Antimony	0.50	0.25				
Arsenic	1.0	0.50	anr			
Barium	1.0	0.50				
Beryllium	0.50	0.25				
Boron	5.0	2.5				
Cadmium	0.50	0.25				
Calcium	250	125	anr			
Chromium	4.0	2.0	3.9	97.5	1.9	95.0
Cobalt	0.50	0.25				
Copper	4.0	2.0	anr			
Iron	50	25				
Lead	0.50	0.25	anr			
Magnesium	250	125				
Manganese	0.50	0.25				
Molybdenum	1.0	0.50				
Nickel	4.0	2.0	anr			
Potassium	250	125				
Selenium	1.0	0.50				
Silver	2.0	1.0				
Sodium	250	125				
Strontium	1.0	0.50				
Thallium	0.50	0.25				
Tin	1.0	0.50				
Titanium	1.0	0.50				
Uranium	1.0	0.50				
Vanadium	4.0	2.0				
Zinc	4.0	2.0	anr			

(*) Outside of QC limits (anr) Analyte not requested

35 of 214
ACCUTEST.
JA59191B

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: JA59191B Account: HWINJM - Honeywell International Inc.

Account: HWINJM - Honeywell International Inc Project: HLANJPR: SA-5 Site 153, Langer

QC Batch ID: MP55425 Matrix Type: AQUEOUS Methods: EPA 200.8 Units: ug/l

Prep Date: 11/01/10

Metal	RL	IDL	MDL	MB raw	final
Aluminum	50	.69	.7		
Antimony	0.50	.07	.062		
Arsenic	1.0	.09	.17		
Barium	1.0	.056	.05		
Beryllium	0.50	.015	.086		
Boron	5.0	.53	.62		
Cadmium	0.50	.058	.13		
Calcium	250	4.7	11		
Chromium	4.0	.058	.094	0.26	<4.0
Cobalt	0.50	.002	.089		
Copper	4.0	.11	.082		
Iron	50	.81	2		
Lead	0.50	.019	.032		
Magnesium	250	. 4	1		
Manganese	0.50	.016	.023		
Molybdenum	1.0	.19	.042		
Nickel	4.0	.042	.034		
Potassium	250	2.9	3.7		
Selenium	1.0	.057	.079		
Silver	2.0	.008	.025		
Sodium	250	.96	1.9		
Strontium	1.0	.008	.017		
Thallium	0.50	.015	.058		
Tin	1.0	.069	.031		
Titanium	1.0	.046	.13		
Uranium	1.0				
Vanadium	4.0	.45	.38		
Zinc	4.0	.71	.22		

Associated samples MP55425: JA59191-6, JA59191-7, JA59191-6F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\dot{\ }$

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

QC Batch ID: MP55425 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

11/01/10 Prep Date:

Metal	JA59191-6F Original MS	Spikelot MPXDW1 % Rec	QC Limits
Aluminum	anr		
Antimony			
Arsenic			
Barium			
Beryllium			
Boron			
Cadmium			
Calcium			
Chromium	38.9 137	100 98.1	70-130
Cobalt			
Copper	anr		
Iron			
Lead	anr		
Magnesium			
Manganese			
Molybdenum			
Nickel	anr		
Potassium			
Selenium			
Silver			
Sodium			
Strontium			
Thallium			
Tin			
Titanium			
Uranium			
Vanadium			
Zinc	anr		

Associated samples MP55425: JA59191-6, JA59191-7, JA59191-6F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

QC Batch ID: MP55425 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

11/01/10

Metal	JA59191-6F Original MSD	Spikelot MPXDW1 % Rec	MSD RPD	QC Limit
Aluminum	anr			
Antimony				
Arsenic				
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium	38.9 139	100 100.1	1.4	15
Cobalt				
Copper	anr			
Iron				
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel	anr			
Potassium				
Selenium				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Uranium				
Vanadium				
Zinc	anr			

Associated samples MP55425: JA59191-6, JA59191-7, JA59191-6F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: JA59191B
Account: HWINJM - Honeywell International Inc.
Project: HLANJPR: SA-5 Site 153, Langer

QC Batch ID: MP55425 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/1

Prep Date: 11/01/10

Metal	LCS Result	Spikelot MPXDW1	% Rec	QC Limits
Aluminum	anr			
Antimony				
Arsenic				
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium	100	100	100.0	85-115
Cobalt				
Copper	anr			
Iron				
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel	anr			
Potassium				
Selenium				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Uranium				
Vanadium				
Zinc	anr			

Associated samples MP55425: JA59191-6, JA59191-7, JA59191-6F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

Instrument Detection Limits

Job Number: JA59191B

Account: HWINJM Honeywell International Inc. **Project:** HLANJPR: SA-5 Site 153, Langer

Instrument ID:	ICPMS1	Effective Date:	10/12/10
msu ument id.	ICTMS1	Effective Date.	10/12/10

Analyte	IDL ug/l
Antimony	.07
Arsenic	.09
Barium	.056
Beryllium	.015
Boron	.526
Cadmium	.058
Calcium	4.715
Chromium	.058
Cobalt	.002
Copper	.107
Iron	.813
Lead	.019
Magnesium	.403
Manganese	.016
Molybdenum	.193
Nickel	.042
Potassium	2.934
Selenium	.057
Silver	.008
Sodium	.963
Strontium	.008
Thallium	.015
Tin	.069
Titanium	.046
Vanadium	.453
Zinc	.712

The above applies to the following instrument runs: MA25287

Account: HWINJM Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

Instrument ID: ICPMS1 **Effective Date:** 01/04/10

Analyte	Linear Range ug/l
Aluminum	100000
Antimony	500
Arsenic	500
Barium	500
Beryllium	500
Boron	250
Cadmium	500
Calcium	100000
Chromium	500
Cobalt	500
Copper	500
Iron	100000
Lead	500
Magnesium	100000
Manganese	500
Molybdenum	500
Nickel	500
Potassium	100000
Selenium	500
Silver	250
Sodium	100000
Strontium	500
Thallium	500
Tin	125
Titanium	500
Vanadium	250
Zinc	500

The above applies to the following instrument runs: MA25287

Metals Anal	ysis		
Raw Data			

0	.p.o 2.ot						
No	Label	Туре	Weight	Rack	Row	Col	Height
1	std1 1	Fully Quant Standard	1.000	3	1	1	144
2	std2	Fully Quant Standard	1.000	3	1	2	144
3	std3	Fully Quant Standard	1.000	3	1	3	144
4	std4	Fully Quant Standard	1.000	3	1	4	144
5	std5	Fully Quant Standard	1.000	3	1	5	144
6	std6	Fully Quant Standard	1.000	3	1	6	144
7	std7	Fully Quant Standard	1.000	3	1	7	144
8	icv	Unknown	1.000	3	1	8	144
9	icb	Unknown	1.000	0	1	2	144
10	sampleconf	Unknown	1.000	0	1	2	144
11	cri	Unknown	1.000	3	1	9	144
12		Unknown	1.000	3	1	10	144
13	cria			0		10	
	CCV	Unknown	1.000		1		144
14	CCB	Unknown	1.000	0	1	2	144
15	mp55424-mb1	Unknown	1.000	3	1	12	144
16	mp55424-lc1	Unknown	1.000	3	2	1	144
17	mp55424-s1	Unknown	1.000	3	2	2	144
18	mp55424-s2	Unknown	1.000	3	2	3	144
19	ja59191-1	Unknown	1.000	3	2	4	144
20	mp55424-s3	Unknown	1.000	3	2	5	144
21	mp55424-s4	Unknown	1.000	3	2	6	144
22	ja59191-1f	Unknown	1.000	3	2	7	144
23	ja59191-2	Unknown	1.000	3	2	8	144
24	CCV	Unknown	1.000	0	1	1	144
25	ccb	Unknown	1.000	0	1	2	144
26	ja59191-3	Unknown	1.000	3	2	9	144
27	ja59191-4	Unknown	1.000	3	2	10	144
28	ja59191-5	Unknown	1.000	3	2	11	144
29	ja59191-2f	Unknown	1.000	3	2	12	144
30	ja59191-3f	Unknown	1.000	3	3	1	144
31	ja59191-4f	Unknown	1.000	3	3	2	144
32	ja59191-5f	Unknown	1.000	3	3	3	144
33	CCV	Unknown	1.000	0	1	1	144
34	ccb	Unknown	1.000	0	1	2	144
35	MP55464-MB1	Unknown	1.000	3	3	4	144
36				3	3	5	
	MP55464-B1	Unknown	1.000				144
37	JA58929-1	Unknown	1.000	3	3	6	144
38	JA58597-1	Unknown	1.000	3	3	7	144
39	JA58597-2	Unknown	1.000	3	3	8	144
40	JA58597-3	Unknown	1.000	3	3	9	144
41	JA58929-2	Unknown	1.000	3	3	10	144
42	JA59395-1	Unknown	1.000	3	3	11	144
43	JA59395-2	Unknown	1.000	3	3	12	144
44	CCV	Unknown	1.000	0	1	1	144
45	CCB	Unknown	1.000	0	1	2	144
46	JA60015-1	Unknown	1.000	3	4	1	144
47	JA60283-1	Unknown	1.000	3	4	2	144
48	MP55464-S1	Unknown	1.000	3	4	3	144
49	MP55464-S2	Unknown	1.000	3	4	4	144
50	CCV	Unknown	1.000	0	1	1	144
51	ccb	Unknown	1.000	0	1	2	144
52	mp55425-mb1	Unknown	1.000	3	4	5	144
53	mp55425-lc1	Unknown	1.000	3	4	6	144
54	mp55425-s1	Unknown	1.000	3	4	7	144
55	mp55425-s2	Unknown	1.000	3	4	8	144
56	ja59191-6f	Unknown	1.000	3	4	9	144
57	•	Unknown	1.000	3	4	10	144
	ja59191-6						
58	ja59191-7	Unknown	1.000	3	4	11	144
59	SAMPLECONF	Unknown	1.000	0	1	2	144
60	CCV	Unknown	1.000	0	1	1	144
61	ccb	Unknown	1.000	0	1	2	144
62	MP55294-MB1CONF	Unknown	1.000	3	4	12	144
63	MP55294-S1 DF50	Unknown	50.000	3	5	1	144
64	MP55294-S2 DF50	Unknown	50.000	3	5	2	144
65	T62089-1 DF50	Unknown	50.000	3	5	3	144
66	MP55294-S1 DF25	Unknown	25.000	3	5	4	144
67	MP55294-S2 DF25	Unknown	25.000	3	5	5	144

T42000 1 DE2E

68	T62089-1 DF25	Unknown	25.000	3	5	6	144
69	SAMPLECONF	Unknown	1.000	0	1	3	144
70	SAMPLECONF	Unknown	1.000	0	1	3	144
71	SAMPLECONF	Unknown	1.000	0	1	3	144
72	CCV	Unknown	1.000	0	1	1	144
73	CCB	Unknown	1.000	0	1	2	144
74	T62490-2 DF50	Unknown	50.000	1	1	1	144
75	T62494-1 DF50	Unknown	50.000	1	1	2	144
76	T62494-2 DF50	Unknown	50.000	1	1	3	144
77	T62494-3 DF50	Unknown	50.000	1	1	4	144
78	T62494-4 DF50	Unknown	50.000	1	1	5	144
79	sampleconf	Unknown	1.000	0	1	3	144
80	sampleconf	Unknown	1.000	0	1	3	144
81	SAMPLECONF	Unknown	1.000	0	1	4	144
82	CCV	Unknown	1.000	0	1	1	144
83	CCB	Unknown	1.000	0	1	2	144
84	T62490-2 DF25	Unknown	25.000	1	1	6	144
85	T62494-1 DF25	Unknown	25.000	1	1	7	144
86	T62494-2 DF25	Unknown	25.000	1	1	8	144
87	T62494-3 DF25	Unknown	25.000	1	1	9	144
88	T62494-4 DF25	Unknown	25.000	1	1	10	144
89	sampleconf	Unknown	1.000	0	1	4	144
90	sampleconf	Unknown	1.000	0	1	4	144
91	sampleconf	Unknown	1.000	0	1	4	144
92	CCV	Unknown	1.000	0	1	1	144
93	CCB	Unknown	1.000	0	1	2	144
94	T62490-2 DF50	Unknown	50.000	1	1	1	144
95	T62494-1 DF50	Unknown	50.000	1	1	2	144
96	T62494-2 DF50	Unknown	50.000	1	1	3	144
97	T62494-3 DF50	Unknown	50.000	1	1	4	144
98	T62494-4 DF50	Unknown	50.000	1	1	5	144
99	mp55294-s1conf df50	Unknown	50.000	3	5	1	144
100	mp55294-s2conf df50	Unknown	50.000	3	5	2	144
101	T62089-1conf DF50	Unknown	50.000	3	5	3	144
102	sampleconf	Unknown	1.000	0	1	4	144
103	sampleconf	Unknown	1.000	0	1	4	144
103	CCV	Unknown	1.000	0	1	1	144
105	CCB	Unknown	1.000	0	1	2	144
106	T62490-2 DF10	Unknown	10.000	1	1	11	144
107	T62494-1 DF10	Unknown	10.000	1	1	12	144
107	T62494-1 DF10	Unknown	10.000	1	2	1	144
109	T62494-2 DF10		10.000	1	2	2	144
		Unknown		1		3	
110 111	T62494-4 DF10 MP55294-S1 DF10	Unknown Unknown	10.000	3	2 5	3 7	144 144
			10.000			8	
112	MP55294-S2 DF10	Unknown	10.000	3	5 5	8 9	144
113	T62089-1 DF10	Unknown	10.000				144
114	RINSECONF	Unknown	1.000	0	1	3	144
115	SAMPLECONF	Unknown	1.000	0	1	3	144
116	CCVA	Unknown	1.000	0	1	1	144
117	CCB	Unknown	1.000	0	1	2	144

Fully Quant Calibration

Intercept CPS=12.410253 Intercept Conc=0.016139 Sensitivity=768.962688 Correlation Coeff=0.999874

 Label
 Defined
 Measured
 Error
 Mean CPS
 % Error

 std1 1
 0.000
 0.001
 0.001
 13.55
 0.00

10B FQ Block 1

Intercept CPS=152.144474 Intercept Conc=0.678168 Sensitivity=224.346402 Correlation Coeff=0.999769

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.228	0.228	101.05	0.00
std2	0.500	1.335	0.835	451.73	167.07
std3	5.000	5.691	0.691	1428.85	13.82
std4	25.000	23.710	1.290	5471.40	5.16
std5	50.000	49.416	0.584	11238.37	1.17
std6	100.000	100.576	0.576	22716.00	0.58

11B FQ Block 1

Intercept CPS=1098.427693 Intercept Conc=1.076730 Sensitivity=1020.151848 Correlation Coeff=0.999755

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.662	0.662	423.14	0.00
std2	0.500	0.834	0.334	1948.97	66.75
std3	5.000	5.019	0.019	6218.82	0.38
std4	25.000	24.373	0.627	25962.12	2.51
std5	50.000	51.564	1.564	53701.92	3.13
std6	100 000	99 372	0.628	102473 00	0.63

23Na FQ Block 1

Intercept CPS=42302.705762 Intercept Conc=14.509388 Sensitivity=2915.540315 Correlation Coeff=0.999759

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-2.257	2.257	35722.45	0.00
std2	0.500	-2.913	3.413	33810.98	682.51
std3	5.000	-0.046	5.046	42167.61	100.93
std4	25.000	21.864	3.136	106048.52	12.54
std5	50.000	68.062	18.062	240740.75	36.12
std6	100.000	96.208	3.792	322801.36	3.79
std7	1000.000	999.581	0.419	2956622.61	0.04

Intercept CPS=403.294768 Intercept Conc=1.456278 Sensitivity=276.935352 Correlation Coeff=0.999993

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.256	0.256	332.52	0.00
std2	0.500	-0.370	0.870	300.70	174.09
std3	5.000	4.769	0.231	1724.11	4.61
std4	25.000	24.354	0.646	7147.79	2.58
std5	50.000	53.088	3.088	15105.14	6.18
std6	100.000	98.946	1.054	27805.00	1.05
std7	1000.000	999.969	0.031	277329.99	0.00

26Mg FQ Block 1

Intercept CPS=323.545619 Intercept Conc=0.995836 Sensitivity=324.898431 Correlation Coeff=0.999988

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.206	0.206	390.36	0.00
std2	0.500	0.301	0.199	421.21	39.88
std3	5.000	4.883	0.117	1910.03	2.34
std4	25.000	24.750	0.250	8364.66	1.00
std5	50.000	53.193	3.193	17606.02	6.39
std6	100.000	97.023	2.977	31846.05	2.98
std7	1000 000	1000 145	0.145	325269.09	0.01

Intercept CPS=6364.452195 Intercept Conc=1.476353 Sensitivity=4310.927120 Correlation Coeff=0.999992

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.061	0.061	6628.07	0.00
std2	0.500	0.348	0.152	7864.51	30.41
std3	5.000	5.094	0.094	28323.19	1.87
std4	25.000	23.754	1.246	108767.27	4.98
std5	50.000	52.965	2.965	234692.95	5.93
std6	100.000	98.217	1.783	429771.00	1.78
std7	1000.000	1000.061	0.061	4317553.65	0.01

39K FQ Block 1

Intercept CPS=68750.681459 Intercept Conc=31.006046 Sensitivity=2217.331494 Correlation Coeff=0.999964

Label	Defined	Measured	Error	Mean CPS	% Error	
std1 1	0.000	1.921	1.921	73010.39	0.00	
std2	0.500	0.917	0.417	70784.87	83.48	
std3	5.000	6.091	1.091	82256.05	21.82	
std4	25.000	27.633	2.633	130021.66	10.53	
std5	50.000	50.182	0.182	180020.95	0.36	
std6	100.000	93.152	6.848	275298.68	6.85	
std7	1000 000	1000 604	0.604	2287422.01	0.06	

43Ca FQ Block 1

Intercept CPS=302.788008 Intercept Conc=34.811969 Sensitivity=8.697813 Correlation Coeff=0.997347

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-22.895	22.895	103.66	0.00
std2	0.500	-25.873	26.373	77.75	5274.65
std3	5.000	-19.101	24.101	136.65	482.02

```
std4
        25.000
                   37.891
                               12.891
                                        632.36
                                                     51.56
                   74.182
                                                     48.36
std5
        50.000
                               24.182
                                        948.01
                                        1536.84
                                                     41.88
std6
        100.000
                  141.881
                               41.881
std7
        1000.000
                  994.414
                               5.586
                                        8952.02
                                                     0.56
```

44Ca FQ Block 1

Intercept CPS=3771.492482 Intercept Conc=26.271943 Sensitivity=143.555902 Correlation Coeff=0.999084

			_		
Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-13.208	13.208	1875.34	0.00
std2	0.500	-16.321	16.821	1428.59	3364.10
std3	5.000	-10.457	15.457	2270.26	309.15
std4	25.000	38.596	13.596	9312.24	54.39
std5	50.000	67.676	17.676	13486.82	35.35
std6	100.000	117.057	17.057	20575.78	17.06
std7	1000.000	997.156	2.844	146919.15	0.28

47Ti FQ Block 1

Intercept CPS=94.611757 Intercept Conc=0.251106 Sensitivity=376.779926 Correlation Coeff=0.999899

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.181	0.181	26.52	0.00
std2	0.500	0.351	0.149	226.87	29.80
std3	5.000	4.910	0.090	1944.74	1.79
std4	25.000	24.818	0.182	9445.47	0.73
std5	50.000	51.102	1.102	19348.64	2.20
std6	100 000	99 500	0.500	37584 22	0.50

51V FQ Block 1

Intercept CPS=-878.131253 Intercept Conc=-0.160335 Sensitivity=5476.858318 Correlation Coeff=0.999988

Intercept CPS=3620.789388 Intercept Conc=0.660960 Sensitivity=5478.072845 Correlation Coeff=0.999988

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.018	0.018	3721.81	0.00
std2	0.500	0.503	0.003	6377.53	0.65
std3	5.000	5.151	0.151	31840.95	3.03
std4	25.000	24.651	0.349	138659.08	1.40
std5	50.000	50.193	0.193	278580.83	0.39
std6	100.000	99.983	0.017	551336.68	0.02

53Cr FQ Block 1

Intercept CPS=378.908535 Intercept Conc=0.612853 Sensitivity=618.269825 Correlation Coeff=0.999989

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.078	0.078	330.76	0.00
std2	0.500	0.364	0.136	603.69	27.29
std3	5.000	5.182	0.182	3583.01	3.65
std4	25.000	25.222	0.222	15973.01	0.89
std5	50.000	49.748	0.252	31136.29	0.50
std6	100.000	100.062	0.062	62244.39	0.06

Intercept CPS=193.376551 Intercept Conc=0.022005 Sensitivity=8787.682998 Correlation Coeff=0.999952

Label	Defined	Measured	Error	Mean CPS	% Erro
std1 1	0.000	0.016	0.016	335.02	0.00
std2	0.500	0.492	0.008	4518.24	1.57
std3	5.000	5.125	0.125	45234.19	2.51
std4	25.000	24.269	0.731	213464.10	2.92
std5	50.000	50.363	0.363	442765.56	0.73
std6	100.000	99.530	0.470	874833.95	0.47

56Fe FQ Block 1

Intercept CPS=195291.742357 Intercept Conc=46.578631 Sensitivity=4192.732558 Correlation Coeff=0.999920

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.267	0.267	194173.36	0.00
std2	0.500	-1.975	2.475	187009.39	495.08
std3	5.000	3.244	1.756	208893.26	35.12
std4	25.000	24.230	0.770	296881.36	3.08
std5	50.000	59.926	9.926	446545.96	19.85
std6	100.000	95.343	4.657	595041.13	4.66
std7	1000.000	999.999	0.001	4388018.53	0.00

57Fe FQ Block 1

Intercept CPS=1477.839607 Intercept Conc=8.474654 Sensitivity=174.383473 Correlation Coeff=0.999901

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-2.267	2.267	1082.46	0.00
std2	0.500	-2.267	2.767	1082.49	553.43
std3	5.000	2.221	2.779	1865.17	55.58
std4	25.000	23.361	1.639	5551.53	6.56

Intercept CPS=168.852557 Intercept Conc=0.025055 Sensitivity=6739.389569 Correlation Coeff=0.999988

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.005	0.005	203.52	0.00
std2	0.500	0.485	0.015	3434.17	3.10
std3	5.000	5.174	0.174	35039.85	3.48
std4	25.000	25.343	0.343	170967.59	1.37
std5	50.000	49.816	0.184	335895.99	0.37
std6	100.000	99.386	0.614	669970.25	0.61

60Ni FQ Block 1

Intercept CPS=246.098588 Intercept Conc=0.176711 Sensitivity=1392.662284 Correlation Coeff=0.999988

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.165	0.165	476.11	0.00
std2	0.500	0.471	0.029	902.62	5.72
std3	5.000	5.238	0.238	7541.15	4.76
std4	25.000	24.907	0.093	34933.24	0.37
std5	50.000	49.918	0.082	69764.65	0.16
std6	100.000	100.457	0.457	140148.56	0.46

62Ni FQ Block 1

Intercept CPS=23.631991 Intercept Conc=0.110793 Sensitivity=213.298140 Correlation Coeff=0.999962

 Label
 Defined
 Measured
 Error
 Mean CPS
 % Error

 std1 1
 0.000
 0.229
 0.229
 72.40
 0.00

Inst QC: MA25287

Intercept CPS=1622.314631 Intercept Conc=0.452603 Sensitivity=3584.410504 Correlation Coeff=0.999968

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.221	0.221	828.60	0.00
std2	0.500	0.308	0.192	2726.78	38.37
std3	5.000	5.036	0.036	19674.03	0.72
std4	25.000	25.147	0.147	91757.83	0.59
std5	50.000	50.536	0.536	182764.63	1.07
std6	100.000	99.694	0.306	358968.11	0.31

65Cu FQ Block 1

Intercept CPS=426.216489 Intercept Conc=0.246144 Sensitivity=1731.576679 Correlation Coeff=0.999965

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.003	0.003	421.22	0.00
std2	0.500	0.497	0.003	1287.40	0.53
std3	5.000	5.270	0.270	9551.97	5.40
std4	25.000	25.231	0.231	44116.19	0.93
std5	50.000	49.479	0.521	86102.34	1.04
std6	100 000	97 910	2 090	169965 49	2.09

66Zn FQ Block 1

Intercept CPS=3403.160851 Intercept Conc=2.294931 Sensitivity=1482.903210 Correlation Coeff=0.999788

67Zn FQ Block 1

Intercept CPS=661.733873 Intercept Conc=2.836832 Sensitivity=233.265113 Correlation Coeff=0.999743

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.188	0.188	617.82	0.00
std2	0.500	-0.013	0.513	658.67	102.63
std3	5.000	4.231	0.769	1648.75	15.37
std4	25.000	26.279	1.279	6791.71	5.12
std5	50.000	50.940	0.940	12544.18	1.88
std6	100.000	99.251	0.749	23813.63	0.75

68Zn FQ Block 1

Intercept CPS=3213.056401 Intercept Conc=3.046379 Sensitivity=1054.713429 Correlation Coeff=0.999570

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.184	0.184	3019.21	0.00
std2	0.500	-0.283	0.783	2914.31	156.65
std3	5.000	4.061	0.939	7496.19	18.78
std4	25.000	26.966	1.966	31654.76	7.87
std5	50.000	50.761	0.761	56751.37	1.52
std6	100.000	99.179	0.821	107818.27	0.82

Intercept CPS=6.186865 Intercept Conc=0.006237 Sensitivity=991.997271 Correlation Coeff=0.999965

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.040	0.040	-33.80	0.00
std2	0.500	0.464	0.036	466.09	7.28
std3	5.000	5.105	0.105	5070.61	2.11
std4	25.000	24.317	0.683	24128.22	2.73
std5	50.000	49.503	0.497	49113.12	0.99
std6	100.000	97.436	2.564	96662.08	2.56

77Se FQ Block 1

Intercept CPS=1133.982805 Intercept Conc=13.116795 Sensitivity=86.452733 Correlation Coeff=0.999983

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.336	0.336	1163.06	0.00
std2	0.500	0.156	0.344	1147.44	68.87
std3	5.000	5.106	0.106	1575.41	2.12
std4	25.000	24.956	0.044	3291.47	0.18
std5	50.000	49.878	0.122	5446.05	0.24
std6	100.000	100.069	0.069	9785.19	0.07

78Se FQ Block 1

Intercept CPS=889.722328 Intercept Conc=3.155901 Sensitivity=281.923439 Correlation Coeff=0.999988

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.076	0.076	868.22	0.00
std2	0.500	0.327	0.173	982.05	34.50
std3	5.000	5.193	0.193	2353.87	3.87
std4	25.000	24.893	0.107	7907.68	0.43
std5	50.000	50.289	0.289	15067.27	0.58

std6 100.000 99.874 0.126 29046.43 0.13

Intercept CPS=8.430220 Intercept Conc=0.070832 Sensitivity=119.017461 Correlation Coeff=0.999981

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.011	0.011	7.10	0.00
std2	0.500	0.514	0.014	69.66	2.89
std3	5.000	5.159	0.159	622.47	3.19
std4	25.000	24.850	0.150	2965.96	0.60
std5	50.000	50.501	0.501	6018.99	1.00
std6	100.000	99.873	0.127	11895.06	0.13

88Sr FQ Block 1

Intercept CPS=236.079720 Intercept Conc=0.023751 Sensitivity=9939.831239 Correlation Coeff=0.999964

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.000	0.000	232.62	0.00
std2	0.500	0.499	0.001	5194.41	0.23
std3	5.000	5.034	0.034	50271.48	0.68
std4	25.000	24.432	0.568	243083.52	2.27
std5	50.000	50.590	0.590	503092.63	1.18
std6	100.000	100.896	0.896	1003129.07	0.90

95Mo FQ Block 1

Intercept CPS=1481.452733 Intercept Conc=0.818877 Sensitivity=1809.127548 Correlation Coeff=0.999924

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.218	0.218	1875.19	0.00
std2	0.500	0.458	0.042	2309.95	8.41
std3	5.000	4.716	0.284	10013.88	5.67

```
        std4
        25.000
        24.670
        0.330
        46112.85
        1.32

        std5
        50.000
        51.576
        1.576
        94789.07
        3.15

        std6
        100.000
        101.679
        1.679
        185432.58
        1.68
```


Intercept CPS=885.226998 Intercept Conc=0.768011 Sensitivity=1152.623308 Correlation Coeff=0.999910

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.217	0.217	1134.89	0.00
std2	0.500	0.509	0.009	1471.82	1.78
std3	5.000	4.861	0.139	6488.37	2.78
std4	25.000	24.294	0.706	28887.53	2.82
std5	50.000	50.871	0.871	59520.47	1.74
std6	100.000	99.748	0.252	115856.79	0.25

98Mo FQ Block 1

Intercept CPS=2434.369080 Intercept Conc=0.815064 Sensitivity=2986.722103 Correlation Coeff=0.999906

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.181	0.181	2975.99	0.00
std2	0.500	0.423	0.077	3696.68	15.47
std3	5.000	4.791	0.209	16745.15	4.17
std4	25.000	24.470	0.530	75520.29	2.12
std5	50.000	50.982	0.982	154703.59	1.96
std6	100.000	99.652	0.348	300067.85	0.35

106Cd FQ Block 1

Intercept CPS=-477.425600 Intercept Conc=-3.625623 Sensitivity=131.680974 Correlation Coeff=0.999981

 Label
 Defined
 Measured
 Error
 Mean CPS
 % Error

 std1 1
 0.000
 -0.188
 0.188
 -502.18
 0.00

```
std2
       0.500
                  0.603
                              0.103
                                     -398.06
                                                  20.54
                                                  4.56
                                     150.93
std3
       5.000
                  4.772
                              0.228
std4
       25.000
                  25.170
                              0.170
                                     2836.98
                                                  0.68
std5
       50.000
                  50.350
                              0.350 6152.75
                                                  0.70
std6
        100.000
                  99.793
                              0.207
                                     12663.45
                                                  0.21
```

107Ag FQ Block 1

Intercept CPS=57.251978 Intercept Conc=0.008736 Sensitivity=6553.287250 Correlation Coeff=0.999993

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.000	0.000	57.95	0.00
std2	0.500	0.468	0.032	3127.19	6.31
std3	5.000	4.993	0.007	32776.54	0.14
std4	25.000	24.892	0.108	163180.81	0.43
std5	50.000	50.133	0.133	328591.99	0.27
std6	100.000	100.833	0.833	660847.77	0.83

108Cd FQ Block 1

Intercept CPS=-3.654913 Intercept Conc=-0.036336 Sensitivity=100.587885 Correlation Coeff=0.999972

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.065	0.065	2.91	0.00
std2	0.500	0.742	0.242	70.99	48.42
std3	5.000	5.045	0.045	503.84	0.91
std4	25.000	24.879	0.121	2498.88	0.48
std5	50.000	49.483	0.517	4973.74	1.03
std6	100 000	100 285	0.285	10083 82	0.29

109Ag FQ Block 1

Intercept CPS=-629.236014 Intercept Conc=-0.098138 Sensitivity=6411.733371 Correlation Coeff=0.999986

Intercept CPS=-323.473181 Intercept Conc=-0.213141 Sensitivity=1517.651174 Correlation Coeff=0.999968

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.013	0.013	-343.60	0.00
std2	0.500	0.502	0.002	438.45	0.41
std3	5.000	5.171	0.171	7525.00	3.43
std4	25.000	24.484	0.516	36834.25	2.07
std5	50.000	50.292	0.292	76002.87	0.58
std6	100.000	99.404	0.596	150536.77	0.60

114Cd FQ Block 1

Intercept CPS=-1343.837224 Intercept Conc=-0.364325 Sensitivity=3688.570756 Correlation Coeff=0.999949

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.217	0.217	-543.03	0.00
std2	0.500	0.704	0.204	1252.12	40.76
std3	5.000	5.246	0.246	18006.35	4.92
std4	25.000	24.397	0.603	88646.88	2.41
std5	50.000	49.597	0.403	181598.65	0.81
std6	100.000	100.339	0.339	368763.02	0.34

Intercept CPS=286.914437 Intercept Conc=0.075172 Sensitivity=3816.785663 Correlation Coeff=0.999960

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.012	0.012	239.48	0.00
std2	0.500	0.508	0.008	2225.68	1.59
std3	5.000	4.997	0.003	19359.61	0.06
std4	25.000	24.227	0.773	92756.80	3.09
std5	50.000	50.229	0.229	192001.70	0.46
std6	100.000	99.556	0.444	380272.25	0.44

121Sb FQ Block 1

Intercept CPS=105.247869 Intercept Conc=0.025690 Sensitivity=4096.850284 Correlation Coeff=0.999951

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.001	0.001	101.77	0.00
std2	0.500	0.589	0.089	2519.29	17.85
std3	5.000	5.037	0.037	20739.16	0.73
std4	25.000	24.304	0.696	99673.51	2.79
std5	50.000	50.096	0.096	205342.87	0.19
std6	100.000	100.950	0.950	413682.52	0.95

123Sb FQ Block 1

Intercept CPS=-61.938117 Intercept Conc=-0.019528 Sensitivity=3171.792884 Correlation Coeff=0.999970

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.057	0.057	117.79	0.00
std2	0.500	0.654	0.154	2011.83	30.76
std3	5.000	5.200	0.200	16430.08	3.99
std4	25.000	24.385	0.615	77283.41	2.46
std5	50.000	50.123	0.123	158918.81	0.25

std6 100.000 100.081 0.081 317375.08 0.08

137Ba FQ Block 1

Intercept CPS=72.037800 Intercept Conc=0.046328 Sensitivity=1554.946793 Correlation Coeff=0.999960

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.008	0.008	60.24	0.00
std2	0.500	0.505	0.005	857.38	1.01
std3	5.000	5.200	0.200	8157.39	4.00
std4	25.000	24.500	0.500	38167.99	2.00
std5	50.000	49.402	0.598	76890.12	1.20
std6	100.000	100.220	0.220	155909.48	0.22

203TI FQ Block 1

Intercept CPS=-763.011898 Intercept Conc=-0.112234 Sensitivity=6798.393328 Correlation Coeff=0.999965

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.120	0.120	52.07	0.00
std2	0.500	0.609	0.109	3377.09	21.80
std3	5.000	5.295	0.295	35235.86	5.90
std4	25.000	24.605	0.395	166510.38	1.58
std5	50.000	49.575	0.425	336268.64	0.85
std6	100.000	100.296	0.296	681087.89	0.30

205TI FQ Block 1

Intercept CPS=131.451199 Intercept Conc=0.007948 Sensitivity=16539.896251 Correlation Coeff=0.999948

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.000	0.000	132.75	0.00
std2	0.500	0.487	0.013	8193.46	2.51
std3	5.000	5.050	0.050	83662.81	1.01

std4 25.000 24.610 0.390 407178.90 1.56 std5 50.000 49.549 0.451 819666.17 0.90 std6 100.000 100.960 0.960 1669991.31 0.96

206Pb FQ Block 1

Intercept CPS=-183.972112 Intercept Conc=-0.032986 Sensitivity=5577.278457 Correlation Coeff=0.999990

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.092	0.092	326.89	0.00
std2	0.500	0.574	0.074	3020.10	14.90
std3	5.000	5.079	0.079	28144.02	1.58
std4	25.000	24.880	0.120	138576.80	0.48
std5	50.000	49.699	0.301	276999.26	0.60
std6	100.000	100.176	0.176	558527.86	0.18

207Pb FQ Block 1

Intercept CPS=25.394581 Intercept Conc=0.005333 Sensitivity=4761.780657 Correlation Coeff=0.999993

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.047	0.047	247.41	0.00
std2	0.500	0.539	0.039	2592.13	7.81
std3	5.000	5.157	0.157	24582.78	3.14
std4	25.000	24.803	0.197	118132.65	0.79
std5	50.000	49.826	0.174	237284.33	0.35
std6	100.000	100.128	0.128	476814.47	0.13

208Pb FQ Block 1

Intercept CPS=1152.421019 Intercept Conc=0.051577 Sensitivity=22343.671986 Correlation Coeff=0.999990

 Label
 Defined
 Measured
 Error
 Mean CPS
 % Error

 std1 1
 0.000
 0.000
 0.000
 1162.76
 0.00

std2	0.500	0.488	0.012	12055.85	2.40
std3	5.000	5.022	0.022	113359.21	0.44
std4	25.000	24.502	0.498	548611.23	1.99
std5	50.000	49.302	0.698	1102748.90	1.40
ctd6	100 000	00 271	0.720	2210221 02	0.73

Dilution Corrected Concentrations

std1 1 11/2/2010 13:26:35

Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
- rtuii		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	13:27:40	105.551%	-0.009	-0.242	-0.666	0.000	0.382	-0.127	0.646	0.510	<u>т 0.000</u>
2	13:28:45	96.555%	0.007	-0.218	-0.620	0.000	0.691	0.279	0.545	0.589	т 0.000
3	13:29:51	97.894%	0.007	-0.223	-0.699	0.000	-7.844	-0.918	-0.573	-0.915	<u>т 0.000</u>
	13.27.31	100.000%	0.007	-0.228	-0.662		-2.257	-0.256	0.206	0.061	<u>т 0.000</u>
X						0.000					
σ %RSD		4.854%	0.009	0.013	0.040 5.973	0.000	4.841	0.609	0.676 329.000	0.846 1383.000	<u>т 0.000</u> т 0.000
Run	Time	4.854 39K	617.300 43Ca	5.679 44Ca	45Sc	0.000 47Ti	214.500 51V	238.300 52Cr	529.000 53Cr	53CI O	55Mn
Kuii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	13:27:40	0.806	-22.000	-11.190	102.442%	-0.148	-0.019	0.039	-0.552	125.500	0.022
2	13:28:45	2.732	-22.280	-10.860	99.801%	-0.198	0.029	0.014	-0.103	124.200	0.021
3	13:29:51	2.732	-24.400	-17.580	97.757%	-0.197	-0.049	0.003	0.421	127.100	0.005
=	13.29.31	1.921	-24.400	-13.210	100.000%	-0.181	-0.049	0.003	-0.078	127.100	0.003
X		0.999	1.308	3.788	2.349%	0.029	0.013	0.018	0.487	1.465	0.010
σ %RSD		51.990	5.711	28.680	2.349%	15.940	304.700	102.300	625.300	1.465	59.140
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
Kuii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	13:27:40	-0.599	-1.865	0.018	0.144	0.256	-0.225	0.021	0.468	-0.383	-0.300
2	13:27:46	0.548	-1.901	0.018	0.206	0.230	-0.223	-0.001	0.400	-0.193	-0.149
3	13:29:51	-0.750	-3.037	-0.020	0.206	0.145	-0.211	-0.001	0.399	0.011	-0.149
	13.27.31	-0.750	-2.267	0.005	0.140	0.229	-0.221	-0.023	0.499	-0.188	-0.184
X		0.710	0.666	0.003	0.105	0.224	0.009	0.025	0.499	0.197	0.104
σ %RSD		266.200	29.390	422.000	21.410	32.500	4.128	876.100	17.660	104.600	56.470
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
Ruii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	13:27:40	-0.036	0.159	-0.216	0.000	0.000	-0.003	0.012	102.202%	-0.079	-0.045
2	13:28:45	-0.077	0.561	-0.097	0.000	0.000	-0.011	0.003	99.430%	0.343	0.346
3	13:29:51	-0.008	0.289	0.084	0.000	0.000	-0.020	-0.016	98.367%	0.389	0.349
X	13.27.31	-0.040	0.336	-0.076	0.000	0.000	-0.020	-0.000	100.000%	0.307	0.217
σ		0.034	0.205	0.151	0.000	0.000	0.008	0.014	1.980%	0.258	0.227
%RSD		85.040	60.950	198.500	0.000	0.000	75.500	4104.000	1.980	118.600	104.600
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	13:27:40	-0.074	103.364%	-0.446	0.001	0.273	0.036	0.113	-0.023	0.207	103.099%
2	13:28:45	0.229	98.386%	-0.236	0.000	0.261	0.065	0.109	-0.015	0.219	98.723%
3	13:29:51	0.389	98.250%	0.117	-0.001	0.239	0.094	0.109	-0.002	0.225	98.178%
Х		0.181	100.000%	-0.188	0.000	0.258	0.065	0.110	-0.013	0.217	100.000%
σ		0.235	2.914%	0.284	0.001	0.017	0.029	0.002	0.011	0.009	2.698%
%RSD		129.800	2.914	151.200	1208.000	6.606	44.340	2.236	82.000	4.112	2.698
Run	T:										207Pb
	i iime i	118Sn I	121Sb	123Sb	137Ba	159Tb	165Ho	203TI I	20511	20020	
Itan	Time	118Sn ppb	121Sb ppb	123Sb ppb	137Ba ppb	159Tb ppb	165Ho ppb	203TI ppb	205TI ppb	206Pb ppb	
1	13:27:40	118Sn ppb -0.035	121Sb ppb 0.001	123Sb ppb 0.046	137Ba ppb 0.016	159Tb ppb 104.293%	165Ho ppb 104.070%	203TI ppb 0.123	20511 ppb 0.001	ppb 0.101	ppb 0.050
1	13:27:40	ppb -0.035	ppb 0.001	ppb 0.046	ppb 0.016	ppb 104.293%	ppb 104.070%	ppb 0.123	ppb 0.001	ppb 0.101	ppb 0.050
1	13:27:40 13:28:45	ppb -0.035 -0.007	ppb 0.001 -0.003	ppb 0.046 0.051	ppb 0.016 -0.007	ppb 104.293% 98.239%	ppb 104.070% 97.674%	ppb 0.123 0.119	ppb 0.001 0.002	ppb 0.101 0.095	ppb 0.050 0.044
1 2 3	13:27:40	ppb -0.035 -0.007 0.004	ppb 0.001 -0.003 -0.001	0.046 0.051 0.073	ppb 0.016 -0.007 -0.031	ppb 104.293% 98.239% 97.468%	ppb 104.070% 97.674% 98.256%	ppb 0.123 0.119 0.117	ppb 0.001 0.002 -0.003	ppb 0.101 0.095 0.079	ppb 0.050 0.044 0.045
1 2 3 x	13:27:40 13:28:45	ppb -0.035 -0.007 0.004 -0.012	ppb 0.001 -0.003 -0.001	ppb 0.046 0.051 0.073 0.057	ppb 0.016 -0.007 -0.031 -0.008	ppb 104.293% 98.239% 97.468% 100.000%	ppb 104.070% 97.674% 98.256% 100.000%	ppb 0.123 0.119 0.117 0.120	ppb 0.001 0.002 -0.003 0.000	ppb 0.101 0.095 0.079 0.092	0.050 0.044 0.045 0.047
1 2 3	13:27:40 13:28:45	ppb -0.035 -0.007 0.004 -0.012 0.020	ppb 0.001 -0.003 -0.001 -0.001 0.002	ppb 0.046 0.051 0.073 0.057 0.014	ppb 0.016 -0.007 -0.031 -0.008 0.024	ppb 104.293% 98.239% 97.468% 100.000% 3.738%	ppb 104.070% 97.674% 98.256% 100.000% 3.537%	ppb 0.123 0.119 0.117 0.120 0.003	ppb 0.001 0.002 -0.003 0.000 0.002	ppb 0.101 0.095 0.079 0.092 0.011	ppb 0.050 0.044 0.045 0.047 0.003
1 2 3 x σ	13:27:40 13:28:45	ppb -0.035 -0.007 0.004 -0.012	ppb 0.001 -0.003 -0.001	ppb 0.046 0.051 0.073 0.057	ppb 0.016 -0.007 -0.031 -0.008	ppb 104.293% 98.239% 97.468% 100.000%	ppb 104.070% 97.674% 98.256% 100.000%	ppb 0.123 0.119 0.117 0.120	ppb 0.001 0.002 -0.003 0.000	ppb 0.101 0.095 0.079 0.092	0.050 0.044 0.045 0.047
1 2 3 x x σ %RSD	13:27:40 13:28:45 13:29:51	ppb -0.035 -0.007 0.004 -0.012 0.020 160.400	ppb 0.001 -0.003 -0.001 -0.001 0.002 258.900 209Bi	ppb 0.046 0.051 0.073 0.057 0.014 25.210	ppb 0.016 -0.007 -0.031 -0.008 0.024 309.800	ppb 104.293% 98.239% 97.468% 100.000% 3.738%	ppb 104.070% 97.674% 98.256% 100.000% 3.537%	ppb 0.123 0.119 0.117 0.120 0.003	ppb 0.001 0.002 -0.003 0.000 0.002	ppb 0.101 0.095 0.079 0.092 0.011	ppb 0.050 0.044 0.045 0.047 0.003
1 2 3 x x σ %RSD	13:27:40 13:28:45 13:29:51	ppb -0.035 -0.007 0.004 -0.012 0.020 160.400 208Pb	ppb 0.001 -0.003 -0.001 -0.001 0.002 258.900	ppb 0.046 0.051 0.073 0.057 0.014 25.210 220Bkg	ppb 0.016 -0.007 -0.031 -0.008 0.024 309.800 238U	ppb 104.293% 98.239% 97.468% 100.000% 3.738%	ppb 104.070% 97.674% 98.256% 100.000% 3.537%	ppb 0.123 0.119 0.117 0.120 0.003	ppb 0.001 0.002 -0.003 0.000 0.002	ppb 0.101 0.095 0.079 0.092 0.011	ppb 0.050 0.044 0.045 0.047 0.003
1 2 3 X	13:27:40 13:28:45 13:29:51	ppb -0.035 -0.007 0.004 -0.012 0.020 160.400 208Pb ppb	ppb 0.001 -0.003 -0.001 -0.001 0.002 258.900 209Bi	ppb 0.046 0.051 0.073 0.057 0.014 25.210 220Bkg ppb	ppb 0.016 -0.007 -0.031 -0.008 0.024 309.800 238U ppb	ppb 104.293% 98.239% 97.468% 100.000% 3.738%	ppb 104.070% 97.674% 98.256% 100.000% 3.537%	ppb 0.123 0.119 0.117 0.120 0.003	ppb 0.001 0.002 -0.003 0.000 0.002	ppb 0.101 0.095 0.079 0.092 0.011	ppb 0.050 0.044 0.045 0.047 0.003
1 2 3 X	13:27:40 13:28:45 13:29:51 Time	ppb -0.035 -0.007 0.004 -0.012 0.020 160.400 208Pb ppb 0.004	ppb 0.001 -0.003 -0.001 -0.001 0.002 258.900 209Bi ppb 102.382%	ppb 0.046 0.051 0.073 0.057 0.014 25.210 220Bkg ppb 0.000	ppb 0.016 -0.007 -0.031 -0.008 0.024 309.800 238U ppb 0.000	ppb 104.293% 98.239% 97.468% 100.000% 3.738%	ppb 104.070% 97.674% 98.256% 100.000% 3.537%	ppb 0.123 0.119 0.117 0.120 0.003	ppb 0.001 0.002 -0.003 0.000 0.002	ppb 0.101 0.095 0.079 0.092 0.011	ppb 0.050 0.044 0.045 0.047 0.003
1 2 3 X	13:27:40 13:28:45 13:29:51 Time 13:27:40 13:28:45	ppb -0.035 -0.007 0.004 -0.012 0.020 160.400 208Pb ppb 0.004 0.001	ppb 0.001 -0.003 -0.001 -0.001 0.002 258.900 209Bi ppb 102.382% 99.147%	ppb 0.046 0.051 0.073 0.057 0.014 25.210 220Bkg ppb 0.000 0.000	ppb 0.016 -0.007 -0.031 -0.008 0.024 309.800 238U ppb 0.000 0.000	ppb 104.293% 98.239% 97.468% 100.000% 3.738%	ppb 104.070% 97.674% 98.256% 100.000% 3.537%	ppb 0.123 0.119 0.117 0.120 0.003	ppb 0.001 0.002 -0.003 0.000 0.002	ppb 0.101 0.095 0.079 0.092 0.011	ppb 0.050 0.044 0.045 0.047 0.003
1 2 3 X	13:27:40 13:28:45 13:29:51 Time 13:27:40 13:28:45	ppb -0.035 -0.007 0.004 -0.012 0.020 160.400 208Pb ppb 0.004 0.001 -0.004	ppb 0.001 -0.003 -0.001 -0.001 0.002 258.900 209Bi ppb 102.382% 99.147% 98.471% 100.000%	ppb 0.046 0.051 0.073 0.057 0.014 25.210 220Bkg ppb 0.000 0.000 0.000 0.000	ppb 0.016 -0.007 -0.031 -0.008 0.024 309.800 238U ppb 0.000 0.000 0.000 0.000	ppb 104.293% 98.239% 97.468% 100.000% 3.738%	ppb 104.070% 97.674% 98.256% 100.000% 3.537%	ppb 0.123 0.119 0.117 0.120 0.003	ppb 0.001 0.002 -0.003 0.000 0.002	ppb 0.101 0.095 0.079 0.092 0.011	ppb 0.050 0.044 0.045 0.047 0.003
1 2 3 3 X G G WRSD Run 1 2 2 3 3	13:27:40 13:28:45 13:29:51 Time 13:27:40 13:28:45	ppb -0.035 -0.007 0.004 -0.012 0.020 160.400 208Pb ppb 0.004 0.001 -0.004	ppb 0.001 -0.003 -0.001 -0.001 0.002 258.900 209Bi ppb 102.382% 99.147% 98.471%	ppb 0.046 0.051 0.073 0.057 0.014 25.210 220Bkg ppb 0.000 0.000 0.000	ppb 0.016 -0.007 -0.031 -0.008 0.024 309.800 238U ppb 0.000 0.000 0.000	ppb 104.293% 98.239% 97.468% 100.000% 3.738%	ppb 104.070% 97.674% 98.256% 100.000% 3.537%	ppb 0.123 0.119 0.117 0.120 0.003	ppb 0.001 0.002 -0.003 0.000 0.002	ppb 0.101 0.095 0.079 0.092 0.011	ppb 0.050 0.044 0.045 0.047 0.003

std2 11/2/2010 13:30:16

User Pre-dilution: 1.00							0.511			0701
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:31:22	103.574%	0.513	1.612	0.783	0.000	-4.960	-0.772	0.012	-0.002	<u>T 0.000</u>
2 13:32:27	107.815%	0.467	1.356	0.776	0.000	2.499	0.528	1.099	1.300	<u>T 0.000</u>
3 13:33:32	101.722%	0.484	1.037	0.942	0.000	-6.277	-0.868	-0.209	-0.254	<u>т 0.000</u>
X	104.370%	0.488	1.335	0.834	0.000	-2.913	-0.371	0.301	0.348	<u>т 0.000</u>
σ	3.124%	0.023	0.288	0.094	0.000	4.732	0.780	0.700	0.834	т 0.000
%RSD	2.993	4.803	21.580	11.250	0.000	162.500	210.400	232.800	239.600	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:31:22	1.196	-29.610	-17.870	107.597%	0.335	0.549	0.521	0.123	121.600	0.492
2 13:32:27	-0.218	-20.310	-12.540	106.374%	0.305	0.354	0.476	0.445	122.100	0.498
3 13:33:32	1.774	-27.700	-18.550	101.614%	0.413	0.411	0.513	0.522	124.000	0.486
X	0.917	-25.870	-16.320	105.195%	0.351	0.438	0.503	0.364	122.600	0.492
σ	1.025	4.914	3.291	3.161%	0.056	0.100	0.024	0.212	1.260	0.006
%RSD	111.800	18.990	20.160	3.005	15.860	22.870	4.685	58.180	1.028	1.245
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:31:22	-2.626	-3.218	0.479	0.461	0.542	0.290	0.515	0.543	0.020	-0.291
2 13:32:27	-1.438	-0.897	0.518	0.488	0.651	0.318	0.482	0.458	-0.055	-0.349
3 13:33:32	-1.862	-2.686	0.456	0.465	0.509	0.317	0.495	0.596	-0.005	-0.210
X	-1.975	-2.267	0.485	0.471	0.567	0.308	0.497	0.532	-0.013	-0.283
σ	0.602	1.216	0.031	0.014	0.074	0.016	0.016	0.070	0.038	0.070
%RSD	30.460	53.620	6.475	3.010	13.120	5.233	3.293	13.120	289.200	24.690
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:31:22	0.407	0.194	0.283	0.000	0.000	0.505	0.474	105.110%	0.184	0.162
2 13:32:27	0.534	-0.141	0.219	0.000	0.000	0.526	0.537	104.098%	0.630	0.681
3 13:33:32	0.450	0.414	0.481	0.000	0.000	0.512	0.486	101.650%	0.560	0.684
X	0.464	0.156	0.328	0.000	0.000	0.515	0.499	103.619%	0.458	0.509
σ	0.064	0.279	0.137	0.000	0.000	0.011	0.033	1.779%	0.240	0.300
%RSD	13.890	179.300	41.670	0.000	0.000	2.149	6.684	1.717	52.350	59.020
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:31:22	0.136	104.932%	0.475	0.493	0.252	0.605	0.597	0.500	0.681	105.023%
2 13:32:27	0.525	103.101%	0.650	0.449	0.268	0.998	0.594	0.507	0.716	103.747%
3 13:33:32	0.607	102.148%	0.683	0.464	0.240	0.624	0.587	0.499	0.714	100.749%
X	0.423	103.394%	0.603	0.469	0.253	0.742	0.593	0.502	0.704	103.173%
σ	0.251	1.415%	0.112	0.022	0.014	0.222	0.005	0.004	0.020	2.194%
%RSD	59.460	1.369	18.600	4.765	5.645	29.900	0.817	0.864	2.775	2.127
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:31:22	0.493	0.573	0.625	0.550	102.741%	103.471%	0.612	0.478	0.572	0.505
2 13:32:27	0.508	0.580	0.680	0.506	102.501%	102.930%	0.600	0.500	0.587	0.556
3 13:33:32	0.523	0.615	0.656	0.459	100.601%	101.447%	0.615	0.484	0.565	0.557
X	0.508	0.589	0.654	0.505	101.948%	102.616%	0.609	0.487	0.575	0.539
σ	0.015	0.023	0.028	0.045	1.172%	1.048%	0.007	0.012	0.012	0.030
%RSD	2.950	3.820	4.225	8.971	1.172%	1.046%	1.316	2.386	2.015	5.537
	2.950 208Pb	209Bi		238U	1.150	1.021	1.310	2.300	2.010	0.007
Run Time			220Bkg							
1 13:31:22	ppb	ppb	ppb	ppb						
	0.475	104.064%	0.000	0.000						
2 13:32:27	0.500	101.515%	0.000	0.000						
3 13:33:32	0.489	102.347%	0.000	0.000						
X	0.488	102.642%	0.000	0.000						
σ	0.013	1.300%	0.000	0.000						
%RSD	2.588	1.266	0.000	0.000						

std3 11/2/2010 13:33:57

User Pre-dilution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:35:03	103.375%	4.934	5.469	4.637	0.000	-2.224	4.416	4.699	4.657	<u>T 0.000</u>
2 13:36:08	100.388%	5.080	5.986	5.239	0.000	-2.320	4.014	4.492	4.635	<u>T 0.000</u>
3 13:37:13	102.093%	5.170	5.617	5.183	0.000	4.405	5.878	5.458	5.989	<u>т 0.000</u>
X	101.952%	5.061	5.691	5.019	0.000	-0.046	4.769	4.883	5.094	<u>т 0.000</u>
σ	1.499%	0.119	0.266	0.333	0.000	3.855	0.981	0.509	0.776	<u>т 0.000</u>
%RSD	1.470	2.347	4.671	6.626	0.000	8321.000	20.560	10.410	15.230	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:35:03	5.430	-22.520	-11.350	101.459%	5.061	5.275	5.267	4.989	122.200	5.131
2 13:36:08	4.989	-21.900	-13.070	101.843%	4.776	5.000	5.039	5.309	120.100	5.062
3 13:37:13	7.854	-12.880	-6.949	97.124%	4.894	5.163	5.148	5.249	125.600	5.183
X	6.091	-19.100	-10.460	100.142%	4.910	5.146	5.151	5.182	122.600	5.125
σ	1.542	5.394	3.159	2.621%	0.143	0.138	0.114	0.171	2.797	0.060
%RSD	25.320	28.240	30.210	2.617	2.911	2.689	2.213	3.289	2.281	1.179
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	dqq	dqq	ppb	ppb	dqq	ppb	dqq	ppb	ppb
1 13:35:03	2.046	1.886	5.007	5.339	5.411	4.943	5.309	4.574	4.443	3.969
2 13:36:08	2.175	1.336	5.096	5.059	5.160	4.882	5.123	4.565	3.987	3.900
3 13:37:13	5.512	3.442	5.420	5.317	5.233	5.284	5.379	4.686	4.264	4.314
X	3.244	2.221	5.174	5.238	5.268	5.036	5.270	4.608	4.231	4.061
σ	1.965	1.092	0.217	0.156	0.129	0.217	0.133	0.067	0.230	0.222
%RSD	60.560	49.170	4.199	2.970	2.451	4.299	2.517	1.458	5.437	5.473
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
ituii iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:35:03	5.143	4.963	5.248	0.000	0.000	5.097	5.040	99.459%	4.449	4.626
2 13:36:08	5.053	4.848	4.989	0.000	0.000	5.175	4.940	101.371%	4.457	4.743
3 13:37:13	5.119	5.507	5.344	0.000	0.000	5.205	5.122	97.476%	5.243	5.214
X	5.105	5.106	5.193	0.000	0.000	5.159	5.034	99.435%	4.716	4.861
σ	0.047	0.352	0.184	0.000	0.000	0.056	0.091	1.948%	0.456	0.311
%RSD	0.913	6.887	3.540	0.000	0.000	1.077	1.815	1.959	9.665	6.405
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
1 12 25 02	ppb	ppb	ppb	ppb 1	ppb	ppb	ppb	ppb	ppb p	ppb
1 13:35:03	4.357	101.436%	4.104	4.951	0.340	5.215	5.028	4.996	5.157	101.509%
2 13:36:08	4.769	100.358%	4.735	4.938	0.294	5.151	5.109	5.240	5.237	100.740%
3 13:37:13	5.248	96.564%	5.476	5.089	0.217	4.769	5.196	5.279	5.344	99.655%
X	4.791	99.453%	4.772	4.993	0.284	5.045	5.111	5.171	5.246	100.635%
σ	0.446	2.559%	0.686	0.084	0.062	0.241	0.084	0.153	0.094	0.931%
%RSD	9.307	2.573	14.380	1.679	21.960	4.782	1.651	2.966	1.783	0.925
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
4 400000	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:35:03	4.974	4.965	5.194	5.124	100.151%	101.554%	5.326	5.072	5.067	5.024
2 13:36:08	5.042	5.004	5.183	5.136	100.376%	101.340%	5.279	5.054	5.024	5.213
3 13:37:13	4.976	5.140	5.223	5.339	97.142%	99.864%	5.280	5.025	5.146	5.235
X	4.997	5.037	5.200	5.200	99.223%	100.919%	5.295	5.050	5.079	5.157
σ	0.039	0.092	0.021	0.121	1.806%	0.920%	0.027	0.024	0.062	0.116
%RSD	0.775	1.819	0.397	2.317	1.820	0.912	0.510	0.473	1.223	2.241
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 13:35:03	5.007	100.771%	0.000	0.000						
2 13:36:08	5.013	100.428%	0.000	0.000						
3 13:37:13	5.045	101.016%	0.000	0.000						
X	5.022	100.738%	0.000	0.000						
σ	0.020	0.295%	0.000	0.000						
%RSD	0.407	0.293	0.000	0.000						
701100										

std4 11/2/2010 13:37:39

User Pre-allution: 1.00	00									
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:38:44	103.212%	23.820	22.950	23.200	0.000	19.590	23.760	24.330	23.300	<u>т 0.000</u>
2 13:39:50	99.500%	25.200	23.610	23.770	0.000	25.690	24.670	25.400	24.350	<u> 7 0.000</u>
3 13:40:55	98.989%	25.130	24.570	26.140	0.000	20.310	24.640	24.520	23.610	<u> 7 0.000</u>
X	100.567%	24.720	23.710	24.370	0.000	21.860	24.350	24.750	23.750	<u>т 0.000</u>
	2.305%	0.778	0.818	1.558	0.000	3.332	0.515		0.540	<u>т 0.000</u>
σ %RSD								0.569		
	2.292	3.148	3.450	6.393	0.000	15.240	2.116	2.297	2.273	<u>T 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
40.00.44	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:38:44	27.150	35.910	37.300	100.674%	24.980	24.460	24.280	24.910	131.000	24.170
2 13:39:50	27.410	41.210	43.270	99.385%	24.730	24.690	24.490	26.110	117.300	23.810
3 13:40:55	28.330	36.560	35.220	97.500%	24.750	25.040	25.180	24.650	127.100	24.830
X	27.630	37.890	38.600	99.186%	24.820	24.730	24.650	25.220	125.100	24.270
σ	0.621	2.890	4.182	1.596%	0.138	0.290	0.470	0.780	7.052	0.519
%RSD	2.248	7.627	10.840	1.609	0.555	1.171	1.905	3.094	5.637	2.137
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:38:44	23.530	22.600	25.740	24.120	24.880	25.370	24.480	26.540	26.100	26.170
2 13:39:50	25.360	24.110	24.970	25.630	23.690	24.500	25.330	26.130	26.270	26.940
3 13:40:55	23.810	23.380	25.330	24.970	24.630	25.570	25.890	26.780	26.470	27.790
Х	24.230	23.360	25.340	24.910	24.400	25.150	25.230	26.480	26.280	26.970
σ	0.985	0.754	0.386	0.756	0.622	0.568	0.713	0.334	0.181	0.810
%RSD	4.064	3.228	1.521	3.036	2.550	2.257	2.825	1.259	0.689	3.004
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
Ruii Iiiile	ppb	ppb	ppb		ppb	ppb	ppb	ppb	ppb	
1 13:38:44	24.180	25.120	24.660	ppb 0.000	0.000	24.830	24.150	100.350%	24.240	ppb 23.880
2 13:39:50	23.960	25.360	24.710	0.000	0.000	24.760	24.040	100.004%	24.820	23.940
3 13:40:55	24.820	24.390	25.320	0.000	0.000	24.970	25.110	96.944%	24.960	25.060
X	24.320	24.960	24.890	0.000	0.000	24.850	24.430	99.099%	24.670	24.290
σ	0.447	0.503	0.366	0.000	0.000	0.106	0.586	1.875%	0.381	0.661
%RSD	1.839	2.016	1.471	0.000	0.000	0.426	2.398	1.892	1.544	2.722
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:38:44	23.380	101.744%	24.320	24.180	0.429	25.340	24.570	24.120	24.300	100.383%
2 13:39:50	23.940	99.635%	25.220	24.640	0.227	23.320	24.590	24.820	24.310	99.698%
3 13:40:55	26.090	95.738%	25.970	25.860	0.374	25.980	25.250	24.510	24.590	98.352%
X	24.470	99.039%	25.170	24.890	0.344	24.880	24.800	24.480	24.400	99.477%
σ	1.428	3.047%	0.828	0.868	0.104	1.384	0.389	0.352	0.167	1.033%
%RSD	5.834	3.077	3.289	3.486	30.370	5.562	1.568	1.438	0.683	1.039
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
•	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:38:44	24.430	23.870	24.110	24.660	101.094%	100.074%	25.010	24.570	25.040	24.680
2 13:39:50	23.740	24.480	24.080	23.950	101.767%	99.743%	24.090	24.230	24.590	24.470
3 13:40:55	24.510	24.560	24.970	24.890	98.068%	100.887%	24.720	25.030	25.020	25.260
X	24.230	24.300	24.390	24.500	100.310%	100.235%	24.600	24.610	24.880	24.800
σ %RSD	0.427	0.377	0.504	0.491	1.970%	0.588%	0.473	0.403	0.253	0.411
	1.761	1.550	2.066	2.003	1.964	0.587	1.922	1.637	1.018	1.656
Run Time	208Pb	209Bi	220Bkg	238U						
1 12 20 44	ppb	ppb	ppb	ppb						
1 13:38:44	24.480	100.381%	0.000	0.000						
2 13:39:50	24.000	102.184%	0.000	0.000						
3 13:40:55	25.020	97.455%	0.000	0.000						
X	24.500	100.007%	0.000	0.000						
σ	0.512	2.386%	0.000	0.000						
%RSD	2.091	2.386	0.000	0.000						

std5 11/2/2010 13:41:21

User Pre-dilution: 1.00	00									
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:42:26	97.257%	50.250	49.480	51.340	0.000	62.790	51.610	53.340	51.070	т 0.000
2 13:43:32	97.908%	49.050	51.400	50.040	0.000	78.010	54.540	53.990	54.960	<u> 7 0.000</u>
3 13:44:37	95.551%	50.580	47.370	53.310	0.000	63.380	53.120	52.240	52.860	T 0.000
X	96.905%	49.960	49.420	51.560	0.000	68.060	53.090	53.190	52.970	т 0.000
σ	1.218%	0.806	2.014	1.642	0.000	8.623	1.464	0.885	1.950	<u>т 0.000</u>
%RSD										
	1.256	1.613	4.075	3.184	0.000	12.670	2.757	1.664	3.681	T 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 13:42:26	ppb	ppb (4.800	ppb	ppb	ppb 49.880	ppb	ppb	ppb	ppb	ppb
	48.900	64.890	63.580	101.025%		49.400	49.230	49.400	129.500	48.900
2 13:43:32	52.270	101.700	76.350	97.707%	52.100	50.710	50.560	50.940	137.800	50.930
3 13:44:37	49.380	55.980	63.110	97.428%	51.320	50.720	50.790	48.900	126.100	51.260
X	50.180	74.180	67.680	98.720%	51.100	50.270	50.190	49.750	131.100	50.360
σ	1.822	24.230	7.511	2.001%	1.130	0.761	0.837	1.060	6.004	1.281
%RSD	3.630	32.660	11.100	2.027	2.212	1.514	1.668	2.132	4.578	2.544
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:42:26	58.220	60.030	49.350	48.950	48.990	51.280	49.210	50.540	51.810	49.430
2 13:43:32	62.630	63.590	49.900	51.120	50.710	49.920	50.260	51.610	51.050	52.390
3 13:44:37	58.920	61.210	50.200	49.690	49.700	50.410	48.970	50.800	49.960	50.460
X	59.930	61.610	49.820	49.920	49.800	50.540	49.480	50.980	50.940	50.760
σ	2.369	1.812	0.431	1.104	0.861	0.685	0.686	0.559	0.930	1.503
%RSD	3.954	2.941	0.865	2.212	1.729	1.356	1.386	1.096	1.825	2.961
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:42:26	48.580	49.260	49.230	0.000	0.000	49.390	49.420	99.605%	50.290	49.490
2 13:43:32	50.010	50.790	51.160	0.000	0.000	51.480	52.230	98.074%	52.900	52.560
3 13:44:37	49.920	49.580	50.470	0.000	0.000	50.630	50.120	96.654%	51.530	50.570
X	49.500	49.880	50.290	0.000	0.000	50.500	50.590	98.111%	51.580	50.870
σ	0.799	0.809	0.980	0.000	0.000	1.051	1.465	1.476%	1.307	1.558
%RSD	1.615	1.623	1.948	0.000	0.000	2.082	2.897	1.504	2.535	3.062
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:42:26	49.370	98.933%	49.290	49.170	0.500	49.490	49.380	49.380	48.870	99.777%
2 13:43:32	52.580	96.662%	51.520	51.110	0.314	49.010	50.510	50.940	51.000	97.210%
3 13:44:37	51.000									
x		97.810%								
		97.810% 97.802%	50.240	50.110	0.466	49.950	49.150	50.560	48.920	98.021%
	50.980	97.802%	50.240 50.350	50.110 50.130	0.466 0.427	49.950 49.480	49.150 49.680	50.560 50.290	48.920 49.600	98.021% 98.336%
σ	50.980 1.605	97.802% 1.136%	50.240 50.350 1.119	50.110 50.130 0.971	0.466 0.427 0.099	49.950 49.480 0.474	49.150 49.680 0.727	50.560 50.290 0.813	48.920 49.600 1.216	98.021% 98.336% 1.312%
σ %RSD	50.980 1.605 3.148	97.802% 1.136% 1.161	50.240 50.350 1.119 2.223	50.110 50.130 0.971 1.936	0.466 0.427 0.099 23.130	49.950 49.480 0.474 0.957	49.150 49.680 0.727 1.463	50.560 50.290 0.813 1.616	48.920 49.600 1.216 2.451	98.021% 98.336% 1.312% 1.335
σ	50.980 1.605 3.148 118Sn	97.802% 1.136% 1.161 121Sb	50.240 50.350 1.119 2.223 123Sb	50.110 50.130 0.971 1.936 137Ba	0.466 0.427 0.099 23.130 159Tb	49.950 49.480 0.474 0.957 165Ho	49.150 49.680 0.727 1.463 203TI	50.560 50.290 0.813 1.616 205TI	48.920 49.600 1.216 2.451 206Pb	98.021% 98.336% 1.312% 1.335 207Pb
%RSD Time	50.980 1.605 3.148 118Sn ppb	97.802% 1.136% 1.161 121Sb	50.240 50.350 1.119 2.223 123Sb ppb	50.110 50.130 0.971 1.936 137Ba ppb	0.466 0.427 0.099 23.130 159Tb ppb	49.950 49.480 0.474 0.957 165Ho ppb	49.150 49.680 0.727 1.463 203TI ppb	50.560 50.290 0.813 1.616 205TI ppb	48.920 49.600 1.216 2.451 206Pb	98.021% 98.336% 1.312% 1.335 207Pb ppb
σ %RSD Run Time	50.980 1.605 3.148 118Sn ppb 49.940	97.802% 1.136% 1.161 121Sb ppb 48.910	50.240 50.350 1.119 2.223 123Sb ppb 48.990	50.110 50.130 0.971 1.936 137Ba ppb 48.120	0.466 0.427 0.099 23.130 159Tb ppb 100.689%	49.950 49.480 0.474 0.957 165Ho ppb 98.237%	49.150 49.680 0.727 1.463 203TI ppb 48.300	50.560 50.290 0.813 1.616 205TI ppb 49.260	48.920 49.600 1.216 2.451 206Pb ppb 49.190	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170
9 %RSD Time 1 13:42:26 2 13:43:32	50.980 1.605 3.148 118Sn ppb 49.940 50.160	97.802% 1.136% 1.161 121Sb ppb 48.910 50.950	50.240 50.350 1.119 2.223 123Sb ppb 48.990 50.970	50.110 50.130 0.971 1.936 137Ba ppb 48.120 50.220	0.466 0.427 0.099 23.130 159Tb ppb 100.689% 100.281%	49.950 49.480 0.474 0.957 165Ho ppb 98.237% 97.833%	49.150 49.680 0.727 1.463 203TI ppb 48.300 49.050	50.560 50.290 0.813 1.616 205TI ppb 49.260 49.710	48.920 49.600 1.216 2.451 206Pb ppb 49.190 49.100	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170 49.890
9 %RSD Time 1 13:42:26 2 13:43:32 3 13:44:37	50.980 1.605 3.148 118Sn ppb 49.940 50.160 50.590	97.802% 1.136% 1.161 121Sb ppb 48.910 50.950 50.430	50.240 50.350 1.119 2.223 123Sb ppb 48.990 50.970 50.400	50.110 50.130 0.971 1.936 137Ba ppb 48.120 50.220 49.860	0.466 0.427 0.099 23.130 159Tb ppb 100.689% 100.281% 96.903%	49.950 49.480 0.474 0.957 165Ho ppb 98.237% 97.833% 96.232%	49.150 49.680 0.727 1.463 203TI ppb 48.300 49.050 51.380	50.560 50.290 0.813 1.616 205TI ppb 49.260 49.710 49.680	48.920 49.600 1.216 2.451 206Pb ppb 49.190 49.100 50.810	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170 49.890 49.420
7 %RSD Run Time 1 13:42:26 2 13:43:32 3 13:44:37 x	50.980 1.605 3.148 118Sn ppb 49.940 50.160 50.590 50.230	97.802% 1.136% 1.161 121Sb ppb 48.910 50.950 50.430 50.100	50.240 50.350 1.119 2.223 123Sb ppb 48.990 50.970 50.400 50.120	50.110 50.130 0.971 1.936 137Ba ppb 48.120 50.220 49.860 49.400	0.466 0.427 0.099 23.130 159Tb ppb 100.689% 100.281% 96.903% 99.291%	49.950 49.480 0.474 0.957 165Ho ppb 98.237% 97.833% 96.232% 97.434%	49.150 49.680 0.727 1.463 203TI ppb 48.300 49.050 51.380 49.580	50.560 50.290 0.813 1.616 205TI ppb 49.260 49.710 49.680 49.550	48.920 49.600 1.216 2.451 206Pb ppb 49.190 49.100 50.810 49.700	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170 49.890 49.420 49.830
σ %RSD Time Run Time 1 13:42:26 2 13:43:32 3 13:44:37	50.980 1.605 3.148 118Sn ppb 49.940 50.160 50.590 50.230 0.329	97.802% 1.136% 1.161 121Sb ppb 48.910 50.950 50.430 50.100 1.059	50.240 50.350 1.119 2.223 123Sb ppb 48.990 50.970 50.400 50.120 1.019	50.110 50.130 0.971 1.936 137Ba ppb 48.120 50.220 49.860 49.400 1.122	0.466 0.427 0.099 23.130 159Tb ppb 100.689% 100.281% 96.903% 99.291% 2.078%	49.950 49.480 0.474 0.957 165Ho ppb 98.237% 97.833% 96.232% 97.434% 1.060%	49.150 49.680 0.727 1.463 203TI ppb 48.300 49.050 51.380 49.580 1.608	50.560 50.290 0.813 1.616 205TI ppb 49.260 49.710 49.680 49.550 0.252	48.920 49.600 1.216 2.451 206Pb ppb 49.190 49.100 50.810 49.700 0.962	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170 49.890 49.420 49.830 0.376
σ %RSD Time Run Time 1 13:42:26 2 13:43:32 3 13:44:37	50.980 1.605 3.148 118Sn ppb 49.940 50.160 50.590 50.230 0.329 0.655	97.802% 1.136% 1.161 121Sb ppb 48.910 50.950 50.430 50.100 1.059 2.115	50.240 50.350 1.119 2.223 123Sb ppb 48.990 50.970 50.400 50.120 1.019 2.033	50.110 50.130 0.971 1.936 137Ba ppb 48.120 50.220 49.860 49.400 1.122 2.271	0.466 0.427 0.099 23.130 159Tb ppb 100.689% 100.281% 96.903% 99.291%	49.950 49.480 0.474 0.957 165Ho ppb 98.237% 97.833% 96.232% 97.434%	49.150 49.680 0.727 1.463 203TI ppb 48.300 49.050 51.380 49.580	50.560 50.290 0.813 1.616 205TI ppb 49.260 49.710 49.680 49.550	48.920 49.600 1.216 2.451 206Pb ppb 49.190 49.100 50.810 49.700	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170 49.890 49.420 49.830
σ %RSD Time Run Time 1 13:42:26 2 13:43:32 3 13:44:37	50.980 1.605 3.148 118Sn ppb 49.940 50.160 50.590 50.230 0.329 0.655	97.802% 1.136% 1.161 121Sb ppb 48.910 50.950 50.430 50.100 1.059 2.115	50.240 50.350 1.119 2.223 123Sb ppb 48.990 50.970 50.400 50.120 1.019 2.033 220Bkg	50.110 50.130 0.971 1.936 137Ba ppb 48.120 50.220 49.860 49.400 1.122 2.271	0.466 0.427 0.099 23.130 159Tb ppb 100.689% 100.281% 96.903% 99.291% 2.078%	49.950 49.480 0.474 0.957 165Ho ppb 98.237% 97.833% 96.232% 97.434% 1.060%	49.150 49.680 0.727 1.463 203TI ppb 48.300 49.050 51.380 49.580 1.608	50.560 50.290 0.813 1.616 205TI ppb 49.260 49.710 49.680 49.550 0.252	48.920 49.600 1.216 2.451 206Pb ppb 49.190 49.100 50.810 49.700 0.962	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170 49.890 49.420 49.830 0.376
Time Run Time 1 13:42:26 2 13:43:32 3 13:44:37 x σ %RSD Run Time	50.980 1.605 3.148 118Sn ppb 49.940 50.160 50.590 50.230 0.329 0.655 208Pb	97.802% 1.136% 1.161 121Sb ppb 48.910 50.950 50.430 50.100 1.059 2.115 209Bi ppb	50.240 50.350 1.119 2.223 123Sb ppb 48.990 50.970 50.400 50.120 1.019 2.033 220Bkg	50.110 50.130 0.971 1.936 137Ba ppb 48.120 50.220 49.860 49.400 1.122 2.271 238U	0.466 0.427 0.099 23.130 159Tb ppb 100.689% 100.281% 96.903% 99.291% 2.078%	49.950 49.480 0.474 0.957 165Ho ppb 98.237% 97.833% 96.232% 97.434% 1.060%	49.150 49.680 0.727 1.463 203TI ppb 48.300 49.050 51.380 49.580 1.608	50.560 50.290 0.813 1.616 205TI ppb 49.260 49.710 49.680 49.550 0.252	48.920 49.600 1.216 2.451 206Pb ppb 49.190 49.100 50.810 49.700 0.962	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170 49.890 49.420 49.830 0.376
Time Run Time 1 13:42:26 2 13:43:32 3 13:44:37 x G %RSD Run Time 1 13:42:26	50.980 1.605 3.148 118Sn ppb 49.940 50.160 50.590 50.230 0.329 0.655 208Pb ppb	97.802% 1.136% 1.161 121Sb ppb 48.910 50.950 50.430 50.100 1.059 2.115 209Bi ppb 101.198%	50.240 50.350 1.119 2.223 123Sb ppb 48.990 50.970 50.400 50.120 1.019 2.033 220Bkg ppb 0.000	50.110 50.130 0.971 1.936 137Ba ppb 48.120 50.220 49.860 49.400 1.122 2.271 238U ppb	0.466 0.427 0.099 23.130 159Tb ppb 100.689% 100.281% 96.903% 99.291% 2.078%	49.950 49.480 0.474 0.957 165Ho ppb 98.237% 97.833% 96.232% 97.434% 1.060%	49.150 49.680 0.727 1.463 203TI ppb 48.300 49.050 51.380 49.580 1.608	50.560 50.290 0.813 1.616 205TI ppb 49.260 49.710 49.680 49.550 0.252	48.920 49.600 1.216 2.451 206Pb ppb 49.190 49.100 50.810 49.700 0.962	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170 49.890 49.420 49.830 0.376
Time Run Time 1 13:42:26 2 13:43:32 3 13:44:37 x G %RSD Run Time 1 13:42:26 2 13:43:32	50.980 1.605 3.148 118Sn ppb 49.940 50.160 50.590 50.230 0.329 0.655 208Pb ppb 48.930 49.170	97.802% 1.136% 1.161 121Sb ppb 48.910 50.950 50.430 50.100 1.059 2.115 209Bi ppb 101.198% 100.861%	50.240 50.350 1.119 2.223 123Sb ppb 48.990 50.970 50.400 50.120 1.019 2.033 220Bkg ppb 0.000 0.000	50.110 50.130 0.971 1.936 137Ba ppb 48.120 50.220 49.860 49.400 1.122 2.271 238U ppb 0.000 0.000	0.466 0.427 0.099 23.130 159Tb ppb 100.689% 100.281% 96.903% 99.291% 2.078%	49.950 49.480 0.474 0.957 165Ho ppb 98.237% 97.833% 96.232% 97.434% 1.060%	49.150 49.680 0.727 1.463 203TI ppb 48.300 49.050 51.380 49.580 1.608	50.560 50.290 0.813 1.616 205TI ppb 49.260 49.710 49.680 49.550 0.252	48.920 49.600 1.216 2.451 206Pb ppb 49.190 49.100 50.810 49.700 0.962	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170 49.890 49.420 49.830 0.376
Time Run Time 1 13:42:26 2 13:43:32 3 13:44:37 x G %RSD Run Time 1 13:42:26 2 13:43:32 3 13:44:37	50.980 1.605 3.148 118Sn ppb 49.940 50.160 50.590 50.230 0.329 0.655 208Pb ppb 48.930 49.170 49.810	97.802% 1.136% 1.161 121Sb ppb 48.910 50.950 50.430 50.100 1.059 2.115 209Bi ppb 101.198% 100.861% 98.950%	50.240 50.350 1.119 2.223 123Sb ppb 48.990 50.970 50.400 50.120 1.019 2.033 220Bkg ppb 0.000 0.000	50.110 50.130 0.971 1.936 137Ba ppb 48.120 50.220 49.860 49.400 1.122 2.271 238U ppb 0.000 0.000	0.466 0.427 0.099 23.130 159Tb ppb 100.689% 100.281% 96.903% 99.291% 2.078%	49.950 49.480 0.474 0.957 165Ho ppb 98.237% 97.833% 96.232% 97.434% 1.060%	49.150 49.680 0.727 1.463 203TI ppb 48.300 49.050 51.380 49.580 1.608	50.560 50.290 0.813 1.616 205TI ppb 49.260 49.710 49.680 49.550 0.252	48.920 49.600 1.216 2.451 206Pb ppb 49.190 49.100 50.810 49.700 0.962	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170 49.890 49.420 49.830 0.376
Time Run Time 1 13:42:26 2 13:43:32 3 13:44:37 x G %RSD Run Time 1 13:42:26 2 13:43:32	50.980 1.605 3.148 118Sn ppb 49.940 50.160 50.590 50.230 0.329 0.655 208Pb ppb 48.930 49.170 49.810 49.300	97.802% 1.136% 1.161 121Sb ppb 48.910 50.950 50.430 50.100 1.059 2.115 209Bi ppb 101.198% 100.861% 98.950% 100.336%	50.240 50.350 1.119 2.223 123Sb ppb 48.990 50.970 50.400 50.120 1.019 2.033 220Bkg ppb 0.000 0.000 0.000 0.000	50.110 50.130 0.971 1.936 137Ba ppb 48.120 50.220 49.860 49.400 1.122 2.271 238U ppb 0.000 0.000 0.000	0.466 0.427 0.099 23.130 159Tb ppb 100.689% 100.281% 96.903% 99.291% 2.078%	49.950 49.480 0.474 0.957 165Ho ppb 98.237% 97.833% 96.232% 97.434% 1.060%	49.150 49.680 0.727 1.463 203TI ppb 48.300 49.050 51.380 49.580 1.608	50.560 50.290 0.813 1.616 205TI ppb 49.260 49.710 49.680 49.550 0.252	48.920 49.600 1.216 2.451 206Pb ppb 49.190 49.100 50.810 49.700 0.962	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170 49.890 49.420 49.830 0.376
Time Run Time 1 13:42:26 2 13:43:32 3 13:44:37 x G %RSD Run Time 1 13:42:26 2 13:43:32 3 13:44:37 x σ π π π π π π π π π π π π	50.980 1.605 3.148 118Sn ppb 49.940 50.160 50.590 50.230 0.329 0.655 208Pb ppb 48.930 49.170 49.810 49.300 0.456	97.802% 1.136% 1.161 121Sb ppb 48.910 50.950 50.430 50.100 1.059 2.115 209Bi ppb 101.198% 100.861% 98.950% 100.336% 1.212%	50.240 50.350 1.119 2.223 123Sb ppb 48.990 50.970 50.400 50.120 1.019 2.033 220Bkg ppb 0.000 0.000 0.000 0.000	50.110 50.130 0.971 1.936 137Ba ppb 48.120 50.220 49.860 49.400 1.122 2.271 238U ppb 0.000 0.000 0.000	0.466 0.427 0.099 23.130 159Tb ppb 100.689% 100.281% 96.903% 99.291% 2.078%	49.950 49.480 0.474 0.957 165Ho ppb 98.237% 97.833% 96.232% 97.434% 1.060%	49.150 49.680 0.727 1.463 203TI ppb 48.300 49.050 51.380 49.580 1.608	50.560 50.290 0.813 1.616 205TI ppb 49.260 49.710 49.680 49.550 0.252	48.920 49.600 1.216 2.451 206Pb ppb 49.190 49.100 50.810 49.700 0.962	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170 49.890 49.420 49.830 0.376
Time 1 13:42:26 2 13:43:32 3 13:44:37 x G %RSD Run Time 1 13:42:26 2 13:43:32 3 13:44:37 x	50.980 1.605 3.148 118Sn ppb 49.940 50.160 50.590 50.230 0.329 0.655 208Pb ppb 48.930 49.170 49.810 49.300	97.802% 1.136% 1.161 121Sb ppb 48.910 50.950 50.430 50.100 1.059 2.115 209Bi ppb 101.198% 100.861% 98.950% 100.336%	50.240 50.350 1.119 2.223 123Sb ppb 48.990 50.970 50.400 50.120 1.019 2.033 220Bkg ppb 0.000 0.000 0.000 0.000	50.110 50.130 0.971 1.936 137Ba ppb 48.120 50.220 49.860 49.400 1.122 2.271 238U ppb 0.000 0.000 0.000	0.466 0.427 0.099 23.130 159Tb ppb 100.689% 100.281% 96.903% 99.291% 2.078%	49.950 49.480 0.474 0.957 165Ho ppb 98.237% 97.833% 96.232% 97.434% 1.060%	49.150 49.680 0.727 1.463 203TI ppb 48.300 49.050 51.380 49.580 1.608	50.560 50.290 0.813 1.616 205TI ppb 49.260 49.710 49.680 49.550 0.252	48.920 49.600 1.216 2.451 206Pb ppb 49.190 49.100 50.810 49.700 0.962	98.021% 98.336% 1.312% 1.335 207Pb ppb 50.170 49.890 49.420 49.830 0.376

std6 11/2/2010 13:45:02

User Pre-allution: 1.00		OD a	100	110	120	22No	25140	2/14~	2741	27.01
Run Time	6Li	9Be	10B ppb	11B ppb	13C	23Na	25Mg	26Mg	27AI ppb	37CI
1 13:46:08	ppb p 98.563%	ppb 98.610	99.140	95.460	ppb 0.000	ppb 95.430	ppb 94.750	93.380	95.210	ррb <u>т 0.000</u>
2 13:47:13	98.195%	97.300	97.600	м 102.900	0.000	91.740	99.980	97.640	96.200	<u>т 0.000</u>
	90.326%			99.710	0.000				103.200	<u>т 0.000</u>
		м 112.800	м 105.000			101.400	102.100	100.000		
X	95.695%	м 102.900	м 100.600	м 99.370	0.000	96.210	98.950	97.020	98.220	<u>т 0.000</u>
σ %RSD	4.653%	м 8.588	<u>м 3.896</u>	м 3.757	0.000	4.898	3.788	3.375	4.372	<u>т 0.000</u>
Run Time	4.862 39K	<u>м 8.346</u> 43Са	<u>м 3.874</u> 44Са	<u>м 3.781</u> 45Sc	0.000 47Ti	5.091 51V	3.829 52Cr	3.478 53Cr	4.452 53CI O	<u>т 0.000</u> 55Мп
Ruii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:46:08	91.850	145.600	119.600	99.839%	97.720	97.940	97.280	95.830	159.800	97.780
2 13:47:13	92.010	131.700	115.500	99.504%	м 100.300	99.230	99.520	м 100.300	122.900	98.910
3 13:48:19	95.590	148.300	116.000	95.728%	м 100.500	м 102.600	м 103.200	м 104.000	124.900	м 101.900
	93.150	141.900	117.100	98.357%	м 99.500	м 99.920	м 99.980	<u>м 104.000</u> м 100.100	135.900	м 99.530
σ	2.116	8.921	2.223	2.283%	<u>м 99.500</u> м 1.546	м 99.920 м 2.411	<u>м 99.960</u> м 2.963	<u>м 100. 100</u> м 4. 108	20.750	<u>м 99.530</u> м 2.124
%RSD	2.110	6.287	1.899	2.321	<u>м 1.540</u> <u>м 1.553</u>	<u>м 2.411</u> м 2.413	м 2.964	<u>м 4. 108</u> м 4. 105	15.270	м 2.124 м 2.134
Run Time	56Fe	57Fe	59Co	60Ni	<u>м 1.353</u> 62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
ituii iiiic	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:46:08	95.240	96.060	98.630	99.620	99.700	98.480	94.810	98.200	99.880	97.430
2 13:47:13	93.540	97.330	98.080	99.850	99.600	99.910	98.880	99.290	99.230	98.580
3 13:48:19	97.250	101.200	м 101.500	м 101.900	м 101.400	м 100.700	м 100.000	м 100.400	98.650	м 101.500
Х	95.340	98.190	м 99.390	м 100.500	м 100.200	м 99.690	м 97.910	м 99.290	99.250	м 99.180
σ	1.859	2.654	м 1.812	м 1.251	м 1.019	м 1.126	м 2.742	м 1.083	0.614	м 2.113
%RSD	1.950	2.703	м 1.823	м 1.245	<u>м 1.017</u>	м 1.129	м 2.800	м 1.091	0.619	м 2.130
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:46:08	96.930	99.260	99.620	0.000	0.000	м 100.200	м 103.800	97.864%	м 101.100	м 100.900
2 13:47:13	96.250	98.520	98.350	0.000	0.000	98.080	97.200	99.949%	98.960	95.030
3 13:48:19	99.130	м 102.400	м 101.700	0.000	0.000	м 101.400	м 101.700	95.658%	м 105.000	м 103.300
X	97.440	м 100.100	м 99.870	0.000	0.000	м 99.870	м 100.900	97.824%	м 101.700	м 99.750
σ	1.504	м 2.073	м 1.666	0.000	0.000	м 1.663	м 3.368	2.146%	м 3.063	м 4.255
%RSD	1.544	м 2.072	<u>м 1.668</u>	0.000	0.000	<u>м 1.665</u>	м 3.338	2.193	м 3.012	<u>м 4.266</u>
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:46:08	98.290	99.128%	97.950	99.140	0.862	99.700	99.210	96.700	97.360	100.760%
2 13:47:13	98.750	99.922%	98.120	м 102.300	0.636	97.300	м 100.000	99.630	м 102.000	97.659%
3 13:48:19	м 101.900	96.379%	м 103.300	м 101.100	0.777	м 103.900	м 101.400	м 101.900	м 101.600	95.746%
X	м 99.650	98.477%	м 99.790	м 100.800	0.758	м 100.300	м 100.200	м 99.400	м 100.300	98.055%
σ	<u>м 1.974</u>	1.859%	<u>м 3.040</u>	<u>м 1.582</u>	0.114	м 3.316	<u>м 1.108</u>	<u>м 2.596</u>	<u>м 2.587</u>	2.530%
Run Time	м 1.980	1.888	<u>м 3.046</u> 123Sb	<u>м 1.569</u> 137Ва	15.040 159Tb	<u>м 3.306</u> 165Но	<u>м 1.106</u> 203ТІ	м 2.612	<u>м 2.578</u> 206Рb	2.581 207Pb
Run Time	118Sn ppb	121Sb ppb	ppb	ррb	ppb	ppb	ppb	205TI ppb	ppb	ppb
1 13:46:08	97.010	97.270	97.130	98.440	100.851%	100.493%	98.510	98.640	97.900	96.480
2 13:47:13	99.820	м 101.800	м 100.700	м 102.400	99.740%	97.644%	м 102.800	м 103.000	м 103.200	м 102.100
3 13:48:19	м 101.800	м 103.700	м 102.500	99.870	98.083%	96.319%	99.600	м 101.300	99.400	м 101.800
X	м 99.560	м 101.000	м 100.100	м 100.200	99.558%	98.152%	м 100.300	м 101.000	м 100.200	м 100.100
σ	м 2.425	м 3.327	м 2.709	м 1.980	1.393%	2.133%	м 2.219	м 2.177	м 2.746	м 3.161
%RSD	<u>м 2. 435</u>	м 3.29 <u>6</u>	м 2.707	<u>м 1.976</u>	1.399	2.173	<u>м 2.213</u>	<u>м 2.156</u>	<u>м 2.741</u>	<u>м 3.157</u>
Run Time	208Pb	209Bi	220Bkg	238U		_				
	ppb	ppb	ppb	ppb						
1 13:46:08	96.430	103.206%	0.000	0.000						
2 13:47:13	м 102.000	98.454%	0.000	0.000						
3 13:48:19	99.380	100.409%	0.000	0.000						
X	м 99.270	100.690%	0.000	0.000						
σ	м 2.788	2.388%	0.000	0.000						
%RSD	м 2.808	2.372	0.000	0.000						

std7 11/2/2010 13:48:44

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:49:50	104.218%	0.130	3.918	3.428	0.000	⊤ 969.300	974.900	954.500	⊤ 963.200	<u>⊤ 0.000</u>
2 13:50:55	99.642%	-0.001	1.840	1.574	0.000	тм 1028.000	м 1023.000	м 1011.000	тм 1027.000	т 0.000
3 13:52:01	97.662%	0.007	1.468	0.990	0.000	тм 1001.000	м 1002.000	м 1035.000	тм 1010.000	<u> </u>
X	100.507%	0.045	2.409	1.997	0.000	тм 999.600	м 1000.000	м 1000.000	тм 1000.000	<u>т 0.000</u>
σ	3.362%	0.074	1.320	1.273	0.000	тм 29.510	м 24.170	м 41.220	тм 33.130	<u>т 0.000</u>
%RSD	3.345	163.000	54.820	63.710	0.000	тм 2.953	м 2.417	м 4.122	тм 3.313	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:49:50	<u> 7 961.000</u>	981.800	959.000	103.886%	0.099	-0.115	0.110	-0.956	111.300	0.130
2 13:50:55	тм 1031.000	988.300	м 1047.000	99.577%	-0.045	0.064	0.014	-0.155	109.100	0.021
3 13:52:01	тм 1010.000	м 1013.000	985.700	100.143%	-0.039	0.262	-0.030	0.348	104.600	0.022
X	тм 1001.000	м 994.400	м 997.200	101.202%	0.005	0.070	0.031	-0.255	108.300	0.058
σ	<u>тм 35.750</u>	м 16.540	м 45.030	2.342%	0.082	0.189	0.072	0.658	3.420	0.063
%RSD	<u>тм 3.573</u>	м 1.663	м 4.516	2.314	1676.000	269.200	230.000	258.500	3.156	108.900
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 13:49:50	ppb <u>1</u> 960.700	ppb 966.600	ppb 0.093	ppb 0.152	ppb 0 .327	ppb -0.165	ppb 0.084	ppb 2.354	ppb 1.842	ppb 1.445
2 13:50:55	тм 1042.000	м 1023.000	-0.016	0.132	0.266	-0.103	-0.062	2.534	2.071	1.694
3 13:52:01	T 997.500	м 1009.000	-0.022	0.035	0.116	-0.256	-0.070	2.555	1.645	1.629
X X	<u>тм</u> 1000.000	м 999.700	0.019	0.068	0.110	-0.226	-0.076	2.484	1.853	1.589
σ	тм 40.610	м 29.470	0.065	0.073	0.109	0.053	0.087	0.113	0.214	0.129
%RSD	<u>тм 4.061</u>	м 2.948	350.000	108.000	45.900	23.360	534.100	4.536	11.530	8.117
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:49:50	0.221	-1.491	-0.057	0.000	0.000	0.324	0.112	103.997%	2.581	2.421
2 13:50:55	-0.138	-0.491	-0.073	0.000	0.000	0.100	0.029	99.578%	1.812	1.942
3 13:52:01	-0.000	-1.070	-0.186	0.000	0.000	0.072	0.023	100.477%	1.860	1.816
X	0.027	-1.017	-0.105	0.000	0.000	0.165	0.055	101.351%	2.084	2.060
σ	0.181	0.502	0.070	0.000	0.000	0.138	0.050	2.335%	0.431	0.319
%RSD	658.100	49.360	66.720	0.000	0.000	83.340	90.740	2.304	20.660	15.490
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:49:50	2.489	103.793%	0.097	0.104	0.236	0.036	0.216	0.130	0.314	104.849%
2 13:50:55	1.924	99.666%	-0.618	0.073	0.290	0.122	0.174	-0.040	0.203	100.228%
3 13:52:01	1.956	97.119%	-0.426	0.092	0.275	0.094	0.189	-0.021	0.191	99.449%
X	2.123	100.193%	-0.316	0.090	0.267	0.084	0.193	0.023	0.236	101.509%
σ %RSD	0.317 14.930	3.368% 3.362	0.370 117.200	0.015 17.160	0.028 10.440	0.044 51.800	0.021 11.050	0.093 402.500	0.068 28.650	2.919% 2.875
Run Time	14.930 118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
itan mine	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:49:50	1.036	3.565	3.567	0.098	106.268%	103.454%	0.219	0.100	0.173	0.150
2 13:50:55	1.488	3.341	3.411	0.012	101.711%	99.422%	0.166	0.045	0.086	0.055
3 13:52:01	1.778	3.499	3.466	-0.012	101.021%	100.689%	0.158	0.042	0.092	0.064
X	1.434	3.468	3.481	0.033	103.000%	101.188%	0.181	0.062	0.117	0.090
σ	0.374	0.115	0.080	0.058	2.851%	2.062%	0.033	0.033	0.049	0.052
%RSD	26.060	3.320	2.285	175.800	2.768	2.038	18.120	52.410	41.600	58.130
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 13:49:50	0.088	103.689%	0.000	0.000						
2 13:50:55	0.009	101.024%	0.000	0.000						
3 13:52:01	0.007	100.110%	0.000	0.000						
X	0.035	101.608%	0.000	0.000						
σ	0.046	1.860%	0.000	0.000						
%RSD	133.700	1.830	0.000	0.000						

icv 11/2/2010 13:52:26

User Pre-allution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:53:32	100.205%	57.730	57.740	62.750	0.000	416.000	438.300	433.900	58.700	<u>T 0.000</u>
2 13:54:37	99.813%	57.430	63.010	66.580	0.000	435.900	445.700	430.500	59.970	<u> 7 0.000</u>
3 13:55:42	101.413%	56.360	59.090	64.560	0.000	428.800	442.500	424.700	58.080	T 0.000
Х	100.477%	57.170	59.950	64.630	0.000	426.900	442.200	429.700	58.920	т 0.000
σ	0.834%	0.720	2.738	1.913	0.000	10.110	3.702	4.656	0.966	т 0.000
%RSD	0.830									<u>т 0.000</u>
		1.260	4.567	2.960	0.000	2.369	0.837	1.084	1.640	
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 12 52 22	ppb	ppb	ppb 45.4.700	ppb	ppb (1.570	ppb	ppb	ppb	ppb	ppb
1 13:53:32	413.400	490.600	454.700	98.871%	61.570	59.320	60.840	60.270	135.200	59.760
2 13:54:37	417.400	480.100	450.600	101.220%	60.470	61.270	62.130	64.140	119.900	60.680
3 13:55:42	412.100	475.200	452.500	101.203%	63.130	57.480	59.130	55.160	140.300	58.480
X	414.300	481.900	452.600	100.431%	61.720	59.360	60.700	59.860	131.800	59.640
σ	2.766	7.858	2.029	1.351%	1.336	1.895	1.507	4.502	10.610	1.101
%RSD	0.668	1.631	0.448	1.345	2.165	3.193	2.483	7.520	8.054	1.846
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:53:32	446.100	441.300	61.720	58.900	58.600	61.020	59.420	56.870	59.410	60.540
2 13:54:37	<u> 7 451.400</u>	461.300	61.500	59.830	58.960	60.060	61.330	59.430	58.570	60.990
3 13:55:42	439.000	429.500	58.990	59.820	59.330	58.740	58.010	58.300	58.320	59.270
Х	т 445.500	444.000	60.740	59.520	58.960	59.940	59.590	58.200	58.770	60.260
σ	т 6.231	16.060	1.513	0.532	0.368	1.148	1.670	1.279	0.569	0.892
%RSD	<u>т 1.399</u>	3.617	2.491	0.332	0.624	1.916	2.802	2.197	0.968	1.480
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
ituii iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:53:32	57.070	58.700	58.590	0.000	0.000	59.100	60.860	100.275%	59.990	60.850
2 13:54:37	58.290	59.680	59.270	0.000	0.000	59.840	62.370	101.079%	62.030	62.620
3 13:55:42	56.740	57.590	58.360	0.000	0.000	58.630	60.930	101.145%	59.670	59.200
X	57.370	58.660	58.740	0.000	0.000	59.190	61.390	100.833%	60.560	60.890
σ	0.816	1.041	0.472	0.000	0.000	0.610	0.850	0.484%	1.280	1.709
%RSD	1.423	1.775	0.803	0.000	0.000	1.030	1.385	0.480	2.113	2.807
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:53:32	60.870	98.613%	58.090	59.120	0.618	59.210	58.330	59.130	58.050	100.747%
2 13:54:37	61.790	99.042%	59.110	60.010	0.497	58.420	59.580	60.210	58.340	101.878%
3 13:55:42	60.320	101.297%	61.540	57.680	0.282	57.870	57.010	58.650	57.000	102.019%
X	60.990	99.651%	59.580	58.940	0.465	58.500	58.310	59.330	57.790	101.548%
σ	0.745	1.442%	1.773	1.176	0.170	0.673	1.285	0.802	0.704	0.697%
%RSD	1.221	1.447	2.976	1.995	36.570	1.150	2.204	1.352	1.219	0.687
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:53:32	59.740	62.740	63.590	58.250	102.953%	101.469%	60.980	60.930	58.930	58.160
2 13:54:37	62.570	64.830	64.640	60.100	102.186%	102.643%	61.830	62.290	60.650	59.140
3 13:55:42	59.770	62.780	62.800	57.790	103.152%	102.839%	60.120	60.670	58.530	58.310
X	60.690	63.450	63.680	58.710	102.763%	102.317%	60.980	61.300	59.370	58.540
σ		1.194	0.923	1.223	0.510%	0.741%	0.851	0.867		0.529
%RSD	1.627								1.129	
	2.681	1.882	1.449	2.083 238U	0.497	0.724	1.395	1.415	1.902	0.904
Run Time	208Pb	209Bi	220Bkg							
	ppb	ppb 103.269%	ppb	ppb						
1 12.52.22		1113 /64%	0.000	0.000						
1 13:53:32	57.960			0.000						
2 13:54:37	59.420	102.763%	0.000	0.000						
2 13:54:37 3 13:55:42	59.420 57.770	102.763% 103.541%	0.000 0.000	0.000						
2 13:54:37	59.420 57.770 58.390	102.763% 103.541% 103.191%	0.000 0.000 0.000	0.000 0.000						
2 13:54:37 3 13:55:42	59.420 57.770 58.390 0.905	102.763% 103.541% 103.191% 0.394%	0.000 0.000 0.000 0.000	0.000 0.000 0.000						
2 13:54:37 3 13:55:42 x	59.420 57.770 58.390	102.763% 103.541% 103.191%	0.000 0.000 0.000	0.000 0.000						

icb 11/2/2010 13:56:09

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
ituii iiiic	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:57:14	99.978%	0.095	2.267	2.268	0.000	-8.408	-0.644	-0.158	-0.923	⊤ 0.000
2 13:58:19	98.631%	0.003	1.747	1.110	0.000	-9.202	-1.227	-0.827	-1.130	T 0.000
3 13:59:24	100.511%	-0.001	0.942	0.741	0.000	-9.208	-1.323	-0.796	-1.157	T 0.000
X	99.706%	0.032	1.652	1.373	0.000	-8.939	-1.065	-0.594	-1.070	<u>т 0.000</u>
σ	0.969%	0.055	0.667	0.797	0.000	0.460	0.367	0.378	0.128	<u>т 0.000</u>
%RSD	0.972	169.800	40.400	58.050	0.000	5.146	34.500	63.680	11.990	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn _
itan ime	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:57:14	-1.212	-30.360	-20.250	103.500%	-0.009	0.124	0.010	0.128	110.900	0.064
2 13:58:19	0.428	-31.520	-21.740	99.764%	-0.145	-0.208	0.004	-1.207	120.700	0.002
3 13:59:24	-1.028	-31.250	-21.820	101.472%	-0.154	-0.070	-0.015	-0.245	114.300	-0.001
Х	-0.604	-31.040	-21.270	101.578%	-0.103	-0.051	-0.000	-0.441	115.300	0.022
σ	0.898	0.606	0.886	1.870%	0.081	0.167	0.013	0.689	4.961	0.037
%RSD	148.800	1.951	4.165	1.841	78.950	323.800	3124.000	156.200	4.304	168.100
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:57:14	-3.689	-2.902	0.056	0.132	0.227	-0.219	0.012	-0.661	-1.373	-1.554
2 13:58:19	-2.860	-3.107	-0.011	0.041	0.146	-0.267	-0.063	-0.770	-1.262	-1.372
3 13:59:24	-5.065	-3.232	-0.014	0.007	0.050	-0.297	-0.080	-0.721	-1.231	-1.533
X	-3.871	-3.080	0.010	0.060	0.141	-0.261	-0.044	-0.717	-1.289	-1.486
σ	1.114	0.167	0.039	0.064	0.089	0.040	0.049	0.054	0.075	0.099
%RSD	28.770	5.406	378.400	107.700	63.070	15.160	111.400	7.556	5.813	6.691
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:57:14	-0.052	-0.435	-0.209	0.000	0.000	0.186	0.046	102.411%	1.125	1.143
2 13:58:19	-0.028	-0.232	-0.009	0.000	0.000	0.056	-0.008	97.753%	0.791	0.856
3 13:59:24	-0.004	-0.563	-0.193	0.000	0.000	0.096	-0.013	98.445%	0.846	0.925
X	-0.028	-0.410	-0.137	0.000	0.000	0.113	0.008	99.536%	0.921	0.975
σ	0.024	0.167	0.111	0.000	0.000	0.067	0.032	2.514%	0.179	0.150
%RSD	84.710	40.720	81.370	0.000	0.000	59.000	393.100	2.525	19.420	15.360
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 13:57:14	1.087	102.778%	0.033	0.045	0.245	0.092	0.157	0.055	0.271	101.995%
2 13:58:19	0.768	99.258%	-0.636	0.024	0.291	0.094	0.123	-0.030	0.206	97.785%
3 13:59:24	0.803	99.409%	-0.793	0.017	0.296	0.036	0.127	-0.048	0.191	100.481%
X	0.886	100.482%	-0.465	0.029	0.277	0.074	0.136	-0.007	0.222	100.087%
σ	0.175	1.990%	0.439	0.014	0.028	0.033	0.018	0.055	0.043	2.133%
%RSD	19.740	1.980	94.360	49.830	10.050	44.110	13.580	737.200	19.180	2.131
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
1 13:57:14	ppb 0.274	ppb 0.320	ppb 0.378	ppb 0.024	ppb 101.022%	ppb 102.235%	ppb 0.322	ppb 0.202	ppb 0.134	ppb 0.094
2 13:58:19	0.362	0.320	0.417	-0.011	99.526%	99.107%	0.322	0.202	0.134	0.041
3 13:59:24	0.458	0.349	0.417	-0.033	99.737%	98.353%	0.196	0.073	0.088	0.054
X	0.365	0.346	0.417	-0.007	100.095%	99.899%	0.246	0.123	0.103	0.063
σ	0.092	0.025	0.039	0.029	0.809%	2.058%	0.067	0.069	0.027	0.027
%RSD	25.260	7.099	9.351	433.400	0.809	2.060	27.110	56.220	25.950	43.420
Run Time	208Pb	209Bi	220Bkg	238U	0.007	2.000	27.110	30.220	20.700	10.120
	ppb	ppb	ppb	ppb						
1 13:57:14	0.045	103.690%	0.000	0.000						
2 13:58:19	-0.000	100.333%	0.000	0.000						
3 13:59:24	0.000	100.480%	0.000	0.000						
Х	0.015	101.501%	0.000	0.000						
σ	0.026	1.897%	0.000	0.000						
%RSD	173.200	1.869	0.000	0.000						

sampleconf 11/2/2010 13:59:50

User Pre-dilution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:00:56	104.214%	0.016	0.623	0.642	0.000	-8.686	-1.224	-0.849	-1.133	<u>T 0.000</u>
2 14:02:01	96.479%	-0.001	1.145	0.374	0.000	-8.249	-1.274	-0.849	-1.024	<u>т 0.000</u>
3 14:03:07	108.913%	-0.009	0.887	0.277	0.000	-8.771	-1.277	-0.835	-1.062	<u>T 0.000</u>
X	103.202%	0.002	0.885	0.431	0.000	-8.569	-1.258	-0.845	-1.073	<u>т 0.000</u>
σ	6.279%	0.013	0.261	0.189	0.000	0.280	0.030	0.008	0.055	т 0.000
%RSD	6.084	644.300	29.510	43.890	0.000	3.271	2.367	0.970	5.138	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
,	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:00:56	-0.420	-29.890	-21.680	99.993%	-0.160	-0.087	0.011	-0.922	124.100	0.001
2 14:02:01	0.798	-31.380	-21.260	95.626%	-0.188	-0.136	0.009	-1.004	124.200	-0.001
3 14:03:07	-1.808	-30.930	-21.820	109.921%	-0.113	-0.237	-0.032	-1.486	123.600	0.002
X	-0.477	-30.730	-21.580	101.847%	-0.154	-0.153	-0.004	-1.137	124.000	0.001
	1.304	0.760	0.292	7.325%	0.038	0.133	0.025	0.305	0.320	0.001
σ %RSD										
	273.500	2.474	1.351	7.193	24.610	50.090	609.000	26.820	0.258	188.300
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 14 00 5/	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:00:56	-2.817	-3.293	-0.017	0.080	0.113	-0.271	-0.099	-0.797	-1.351	-1.524
2 14:02:01	-2.445	-2.963	-0.013	0.037	0.157	-0.282	-0.086	-0.798	-1.427	-1.415
3 14:03:07	-3.982	-3.461	-0.016	0.061	0.038	-0.280	-0.074	-0.814	-1.543	-1.572
X	-3.081	-3.239	-0.016	0.059	0.103	-0.278	-0.086	-0.803	-1.440	-1.504
σ	0.802	0.254	0.002	0.022	0.061	0.006	0.013	0.010	0.097	0.080
%RSD	26.030	7.825	12.120	36.170	59.010	2.100	14.640	1.213	6.712	5.333
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:00:56	-0.079	-0.567	-0.196	0.000	0.000	-0.046	-0.014	104.544%	-0.258	-0.195
2 14:02:01	0.023	0.059	0.103	0.000	0.000	-0.030	-0.014	93.805%	0.007	-0.032
3 14:03:07	0.058	-1.037	-0.392	0.000	0.000	0.001	-0.017	105.987%	0.057	0.157
X	0.001	-0.515	-0.161	0.000	0.000	-0.025	-0.015	101.446%	-0.065	-0.023
σ	0.071	0.549	0.249	0.000	0.000	0.024	0.002	6.656%	0.170	0.176
%RSD	11930.000	106.700	154.400	0.000	0.000	95.270	12.610	6.561	262.300	752.500
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:00:56	-0.243	102.493%	-0.377	0.008	0.270	0.064	0.112	-0.025	0.208	103.261%
2 14:02:01	-0.042	93.587%	-0.489	0.004	0.278	0.067	0.112	-0.035	0.204	93.068%
3 14:03:07	0.059	108.123%	-0.067	0.005	0.248	0.036	0.113	-0.005	0.215	106.264%
X	-0.075	101.401%	-0.311	0.006	0.266	0.056	0.112	-0.022	0.209	100.864%
σ	0.154	7.329%	0.219	0.002	0.016	0.017	0.001	0.015	0.006	6.917%
%RSD	204.600	7.228	70.240	35.370	5.838	30.200	0.624	68.700	2.804	6.857
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:00:56	0.039	0.162	0.172	-0.018	102.473%	102.223%	0.131	0.015	0.073	0.039
2 14:02:01	0.167	0.180	0.242	-0.023	95.524%	93.636%	0.136	0.014	0.073	0.044
3 14:03:07	0.202	0.220	0.241	-0.027	105.753%	105.353%	0.130	0.012	0.078	0.038
Х	0.136	0.188	0.218	-0.023	101.250%	100.404%	0.132	0.014	0.074	0.040
σ	0.086	0.029	0.040	0.005	5.223%	6.067%	0.003	0.002	0.003	0.003
%RSD	63.230	15.720	18.520	21.030	5.158	6.042	2.401	11.970	3.833	7.943
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 14:00:56	-0.010	103.510%	0.000	0.000						
2 14:02:01	-0.008	97.186%	0.000	0.000						
3 14:03:07	-0.009	107.029%	0.000	0.000						
X	-0.009	102.575%	0.000	0.000						
σ	0.001	4.988%	0.000	0.000						
%RSD	10.190	4.863	0.000	0.000						
1	10.170	7.000	0.000	0.000						

cri 11/2/2010 14:03:33

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:04:39	110.468%	0.471	4.968	5.416	0.000	237.200	236.200	230.400	45.640	<u>T 0.000</u>
2 14:05:44	106.639%	0.412	5.223	5.456	0.000	248.900	246.400	240.100	46.270	<u>T 0.000</u>
3 14:06:50	106.248%	0.428	5.287	5.301	0.000	243.500	243.300	240.800	46.970	<u>T 0.000</u>
X	107.785%	0.437	5.159	5.391	0.000	243.200	241.900	237.100	46.290	<u>т 0.000</u>
σ	2.332%	0.031	0.169	0.080	0.000	5.857	5.252	5.794	0.668	<u>т 0.000</u>
%RSD	2.163	7.025	3.272	1.490	0.000	2.409	2.171	2.444	1.443	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:04:39	223.800	212.100	218.700	111.132%	0.822	3.963	3.752	3.261	119.300	0.505
2 14:05:44	227.000	229.300	231.500	108.565%	0.980	4.130	3.958	4.095	121.800	0.499
3 14:06:50	233.300	227.800	236.400	105.014%	0.904	4.172	3.942	3.534	124.100	0.519
X	228.100	223.100	228.800	108.237%	0.902	4.088	3.884	3.630	121.700	0.507
σ	4.857	9.531	9.140	3.072%	0.079	0.110	0.115	0.425	2.377	0.010
%RSD	2.130	4.272	3.994	2.838	8.779	2.695	2.948	11.710	1.953	1.998
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:04:39	40.240	43.020	0.469	4.179	3.863	3.633	3.747	2.672	2.642	1.940
2 14:05:44	43.420	47.030	0.483	4.253	4.084	3.803	4.008	2.907	2.234	2.058
3 14:06:50	44.310	46.150	0.469	4.242	4.680	3.767	4.030	3.020	2.207	2.058
X	42.660	45.400	0.474	4.225	4.209	3.734	3.928	2.866	2.361	2.019
σ	2.140	2.107	0.008	0.040	0.423	0.089	0.158	0.178	0.244	0.068
%RSD	5.017	4.642	1.625	0.941	10.050	2.395	4.010	6.206	10.330	3.373
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 14:04:39	ppb 0.830	ppb 0.365	ppb 0.555	ppb 0.000	ppb 0.000	ppb 0.858	ppb 0.953	ppb 107.151%	ppb 0.595	ppb 0.588
2 14:05:44	0.830		0.555	0.000	0.000	0.838	0.953		0.779	0.388
3 14:06:50	0.946	0.440 0.609	0.710	0.000	0.000	0.997	0.963	104.583% 105.303%	1.003	0.729
							0.948			
X	0.884	0.471	0.697	0.000	0.000	0.935		105.679%	0.792	0.765
σ %RSD	0.059 6.631	0.125 26.550	0.136 19.520	0.000	0.000	0.071 7.576	0.008 0.801	1.325% 1.253	0.204 25.770	0.197 25.710
Run Time	98Mo	103Rh	19.520 106Cd	107Ag	108Mo O	108Cd	109Ag	1.253 111Cd	114Cd	115In
Kuii Iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:04:39	0.555	109.991%	0.140	2.087	0.276	0.609	2.205	0.519	0.668	107.787%
2 14:05:44	0.765	106.465%	0.219	2.120	0.264	0.521	2.300	0.497	0.702	104.093%
3 14:06:50	1.001	103.807%	0.277	2.168	0.264	0.585	2.334	0.458	0.686	103.410%
X	0.774	106.754%	0.212	2.125	0.268	0.572	2.280	0.491	0.685	105.097%
σ	0.223	3.102%	0.069	0.041	0.007	0.045	0.067	0.031	0.017	2.355%
%RSD	28.840	2.906	32.590	1.927	2.504	7.954	2.947	6.356	2.506	2.241
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:04:39	0.903	0.644	0.709	0.936	106.251%	107.790%	0.572	0.471	0.561	0.530
2 14:05:44	1.001	0.656	0.738	1.001	106.435%	105.149%	0.624	0.488	0.559	0.527
3 14:06:50	1.037	0.724	0.734	0.980	106.409%	102.666%	0.659	0.499	0.581	0.533
X	0.980	0.674	0.727	0.973	106.365%	105.202%	0.618	0.486	0.567	0.530
σ	0.070	0.044	0.015	0.033	0.099%	2.562%	0.044	0.014	0.012	0.003
%RSD	7.113	6.449	2.117	3.432	0.093	2.436	7.049	2.856	2.160	0.534
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 14:04:39	0.467	108.117%	0.000	0.000						
2 14:05:44	0.470	106.539%	0.000	0.000						
3 14:06:50	0.486	103.618%	0.000	0.000						
X	0.474	106.091%	0.000	0.000						
σ	0.010	2.283%	0.000	0.000						
%RSD	2.092	2.152	0.000	0.000						

cria 11/2/2010 14:07:15

User Pre-dilution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:08:20	109.387%	0.219	3.092	2.654	0.000	119.800	118.100	114.900	22.130	<u>T 0.000</u>
2 14:09:26	106.867%	0.273	2.789	2.366	0.000	129.800	118.900	121.600	23.320	<u> </u>
3 14:10:31	101.304%	0.277	3.099	2.895	0.000	129.200	121.500	123.100	23.030	<u> </u>
X	105.853%	0.256	2.993	2.638	0.000	126.200	119.500	119.900	22.830	<u>т 0.000</u>
σ	4.136%	0.033	0.177	0.265	0.000	5.616	1.775	4.324	0.624	т 0.000
%RSD	3.908	12.710	5.904	10.040	0.000	4.449	1.486	3.608	2.735	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
,	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:08:20	112.600	102.400	102.800	106.683%	0.346	1.693	1.773	1.142	125.200	0.253
2 14:09:26	116.800	96.020	111.500	103.535%	0.372	2.365	1.970	3.349	118.400	0.267
3 14:10:31	115.300	102.400	109.700	103.298%	0.248	2.122	1.957	1.696	122.800	0.250
X	114.900	100.300	108.000	104.505%	0.322	2.060	1.900	2.062	122.200	0.257
	2.136	3.667	4.593	1.890%	0.322	0.341	0.110	1.148	3.428	0.237
σ %RSD										
	1.859	3.658	4.253	1.809	20.270	16.530	5.812	55.700	2.806	3.521
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 14 00 00	ppb	ppb ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:08:20	19.070	20.770	0.219	2.031	2.047	1.592	1.883	1.088	0.756	0.620
2 14:09:26	21.420	20.710	0.248	2.398	2.047	1.712	2.003	1.248	0.816	0.445
3 14:10:31	20.380	19.820	0.230	2.289	2.382	1.695	1.973	1.259	0.619	0.524
X	20.290	20.430	0.232	2.240	2.158	1.666	1.953	1.198	0.731	0.529
σ	1.175	0.531	0.015	0.189	0.194	0.065	0.062	0.095	0.101	0.087
%RSD	5.792	2.598	6.427	8.418	8.970	3.876	3.192	7.952	13.840	16.520
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:08:20	0.512	-0.218	0.225	0.000	0.000	0.488	0.454	105.365%	0.142	0.133
2 14:09:26	0.385	0.626	0.224	0.000	0.000	0.489	0.461	102.343%	0.264	0.256
3 14:10:31	0.391	0.547	0.271	0.000	0.000	0.449	0.459	102.981%	0.377	0.410
X	0.429	0.318	0.240	0.000	0.000	0.475	0.458	103.563%	0.261	0.266
σ	0.072	0.466	0.027	0.000	0.000	0.023	0.004	1.593%	0.117	0.139
%RSD	16.680	146.400	11.200	0.000	0.000	4.851	0.795	1.538	44.940	52.130
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:08:20	0.096	106.855%	-0.013	1.044	0.269	0.384	1.151	0.192	0.436	105.482%
2 14:09:26	0.201	104.244%	0.094	1.078	0.249	0.201	1.195	0.247	0.445	103.140%
3 14:10:31	0.423	102.529%	0.383	1.045	0.231	0.230	1.192	0.279	0.459	102.574%
X	0.240	104.543%	0.155	1.056	0.250	0.272	1.179	0.240	0.447	103.732%
σ	0.167	2.179%	0.205	0.019	0.019	0.098	0.025	0.044	0.012	1.542%
%RSD	69.660	2.084	132.600	1.812	7.640	36.220	2.106	18.310	2.595	1.486
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:08:20	0.493	0.333	0.369	0.543	105.388%	104.627%	0.368	0.239	0.312	0.268
2 14:09:26	0.528	0.366	0.401	0.540	103.512%	103.545%	0.376	0.244	0.314	0.254
3 14:10:31	0.556	0.386	0.433	0.512	102.054%	103.415%	0.353	0.242	0.332	0.268
Х	0.526	0.362	0.401	0.532	103.652%	103.862%	0.366	0.242	0.319	0.263
σ	0.032	0.027	0.032	0.017	1.672%	0.665%	0.011	0.003	0.011	0.008
%RSD	6.073	7.342	7.959	3.200	1.613	0.640	3.129	1.097	3.371	3.028
Run Time	208Pb	209Bi	220Bkg	238U	1.010	0.010	0.127	1.077	0.071	0.020
itan inno	ppb	ppb	ppb	ppb						
1 14:08:20	0.227	106.153%	0.000	0.000						
2 14:09:26	0.231	104.900%	0.000	0.000						
3 14:10:31	0.233	104.703%	0.000	0.000						
X X	0.230	105.252%	0.000	0.000						
	0.230	0.786%	0.000	0.000						
σ %RSD	1.280	0.786%	0.000	0.000						
751155	1.200	0.747	0.000	0.000						

CCV 11/2/2010 14:10:58

User Pre-dilution: 1.00	-	ODe	100	110	120	22No	OEMa.	2/14~	2741	27.01
Run Time	6Li	9Be ppb	10B ppb	11B ppb	13C ppb	23Na	25Mg	26Mg	27AI ppb	37CI
1 14:12:03	ppb 100.837%	48.030	48.820	47.440	0.000	ppb <u>⊤ 506.400</u>	ppb 503.100	ppb 505.500	<u> </u>	ppb
2 14:13:09	98.536%	49.100	51.590	51.020	0.000	<u>+ 525.200</u>	516.300	533.800	<u>т 548.400</u>	<u>т 0.000</u> <u>т 0.000</u>
3 14:14:14	96.844%	50.810	49.350	52.110	0.000	<u>T 514.900</u>	516.600	535.600	T 528.100	<u>T 0.000</u>
X	98.739%	49.310	49.920	50.190	0.000	<u>T 515.500</u>	512.000	525.000	<u>т 533.000</u>	<u>т 0.000</u>
σ %RSD	2.004%	1.401	1.469	2.444	0.000	<u>т 9.421</u>	7.690	16.860	<u>т 13.620</u>	<u>т 0.000</u>
	2.030	2.842 43Ca	2.943 44Ca	4.869	0.000	<u>т 1.828</u> 51V	1.502	3.212 53Cr	<u>T 2.554</u>	<u>т 0.000</u> 55Мп
Run Time	39K ppb	ppb	ppb	45Sc ppb	47Ti ppb	ppb	52Cr ppb	ppb	53CIO ppb	ppb
1 14:12:03	490.000	505.500	502.800	104.542%	48.890	47.640	47.500	47.750	127.200	47.180
2 14:13:09	523.500	553.300	531.300	100.390%	51.030	50.680	50.710	51.490	119.100	49.380
3 14:14:14	499.900	516.800	521.200	103.153%	49.820	50.070	50.110	49.760	123.400	48.270
X	504.500	525.200	518.400	102.695%	49.910	49.460	49.440	49.670	123.200	48.280
σ	17.160	24.950	14.440	2.114%	1.070	1.605	1.706	1.870	4.019	1.101
%RSD	3.402	4.750	2.786	2.058	2.144	3.244	3.451	3.765	3.262	2.281
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	dqq	dqq	dqq	ppb	ppb	ppb	dqq	dqq	ppb
1 14:12:03	<u>⊤ 505.700</u>	507.800	48.260	48.390	47.510	47.130	47.840	46.940	44.560	46.280
2 14:13:09	<u>т 543.600</u>	530.900	51.970	52.160	49.610	50.610	51.500	48.890	48.680	50.280
3 14:14:14	т 529.700	533.100	50.140	50.690	48.620	48.900	50.440	48.510	47.560	50.230
X	т 526.300	523.900	50.120	50.410	48.580	48.880	49.930	48.110	46.930	48.930
σ	т 19.190	13.980	1.855	1.899	1.050	1.738	1.882	1.035	2.132	2.292
%RSD	т 3.646	2.669	3.702	3.766	2.162	3.556	3.770	2.151	4.543	4.684
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:12:03	46.860	47.690	47.900	0.000	0.000	47.760	48.020	103.490%	46.460	47.250
2 14:13:09	50.240	50.570	51.100	0.000	0.000	51.430	50.970	99.610%	50.240	50.160
3 14:14:14	48.840	49.990	49.410	0.000	0.000	49.400	50.350	99.691%	50.970	50.470
X	48.650	49.420	49.470	0.000	0.000	49.530	49.780	100.931%	49.220	49.290
σ	1.698	1.523	1.600	0.000	0.000	1.841	1.557	2.217%	2.421	1.774
%RSD	3.491	3.081	3.234	0.000	0.000	3.717	3.129	2.197	4.919	3.599
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:12:03	46.370	104.268%	45.630	47.130	0.619	47.800	47.210	47.020	47.460	104.294%
2 14:13:09	50.910	99.738%	51.480	49.970	0.508	51.790	49.910	51.000	50.520	98.726%
3 14:14:14	50.490	99.238%	51.230	49.390	0.504	51.340	49.080	50.030	49.820	100.186%
X	49.260	101.081%	49.450	48.830	0.544	50.310	48.730	49.350	49.270	101.069%
σ	2.512	2.771%	3.307	1.502	0.065	2.186	1.382	2.077	1.603	2.887%
%RSD	5.101	2.742	6.688	3.077	12.030	4.345	2.836	4.210	3.254	2.857 207Pb
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho ppb	203TI ppb	205TI ppb	206Pb	
1 14:12:03	ppb 4 7.510	ppb 46.680	ppb 4 6.770	ppb 4 7.950	ppb 102.603%	104.890%	48.160	47.840	ppb 46.440	ppb 47.300
2 14:13:09	50.590	51.130	51.480	50.630	102.003%	104.890%	49.810	50.170	50.180	50.090
3 14:14:14	47.900	49.730	49.610	49.830	100.414%	101.339%	49.720	48.610	48.880	49.430
X	48.670	49.180	49.290	49.470	103.22376	101.734%	49.230	48.870	48.500	48.940
σ	1.679	2.272	2.372	1.378	1.477%	1.898%	0.923	1.190	1.901	1.459
%RSD	3.450	4.619	4.813	2.785	1.47776	1.847	1.876	2.435	3.920	2.980
Run Time	208Pb	209Bi	220Bkg	238U	1.447	1.047	1.070	2.430	3.720	2.700
.tan inne	ppb	ppb	ppb	ppb						
1 14:12:03	46.860	105.397%	0.000	0.000						
2 14:13:09	49.750	101.981%	0.000	0.000						
3 14:14:14	48.490	104.416%	0.000	0.000						
X	48.370	103.932%	0.000	0.000						
σ	1.451	1.759%	0.000	0.000						
%RSD	2.999	1.692	0.000	0.000						

CCB 11/2/2010 14:14:40

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:15:45	104.721%	0.037	2.161	1.532	0.000	-7.526	-0.701	-0.403	-0.463	<u>т 0.000</u>
2 14:16:51	96.767%	0.037	1.085	0.845	0.000	-9.240	-1.275	-0.403		<u>1 0.000</u>
									-1.131	
3 14:17:56	99.152%	0.010	0.836	0.481	0.000	-9.328	-1.394	-0.837	-1.174	<u>T 0.000</u>
X	100.214%	0.019	1.361	0.953	0.000	-8.698	-1.123	-0.685	-0.923	<u>т 0.000</u>
σ	4.082%	0.015	0.704	0.534	0.000	1.016	0.371	0.245	0.399	<u>т 0.000</u>
%RSD	4.073	79.950	51.740	56.030	0.000	11.680	33.000	35.720	43.200	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:15:45	-0.988	-27.470	-20.950	102.836%	-0.141	0.016	-0.014	0.372	116.600	0.028
2 14:16:51	0.342	-30.400	-21.110	96.757%	-0.126	0.118	-0.004	0.644	119.100	0.004
3 14:17:56	-0.223	-32.190	-21.440	100.113%	-0.122	-0.060	0.030	-0.438	117.600	0.001
X	-0.290	-30.020	-21.170	99.902%	-0.130	0.024	0.004	0.193	117.800	0.011
σ	0.667	2.380	0.249	3.045%	0.010	0.089	0.023	0.563	1.296	0.015
%RSD	230.600	7.928	1.176	3.048	7.480	365.300	561.300	291.700	1.101	135.200
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:15:45	-3.186	-2.709	0.023	0.085	0.161	-0.245	-0.019	-0.812	-1.352	-1.653
2 14:16:51	-0.768	-2.435	-0.013	0.020	0.162	-0.272	-0.075	-0.771	-1.344	-1.509
3 14:17:56	-2.214	-2.721	-0.015	0.049	0.198	-0.298	-0.066	-0.778	-1.561	-1.502
Х	-2.056	-2.622	-0.001	0.051	0.174	-0.272	-0.053	-0.787	-1.419	-1.555
σ	1.217	0.162	0.021	0.032	0.021	0.026	0.030	0.022	0.123	0.085
%RSD	59.170	6.174	1529.000	62.830	12.050	9.682	56.340	2.755	8.665	5.476
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:15:45	0.055	-0.879	-0.214	0.000	0.000	0.128	0.016	105.120%	0.832	0.901
2 14:16:51	0.011	-0.422	0.049	0.000	0.000	0.045	-0.015	100.178%	0.699	0.662
3 14:17:56	-0.051	-0.073	-0.129	0.000	0.000	0.098	-0.017	99.555%	0.726	0.712
Х	0.005	-0.458	-0.098	0.000	0.000	0.090	-0.005	101.618%	0.752	0.758
σ	0.053	0.404	0.134	0.000	0.000	0.042	0.018	3.049%	0.070	0.126
%RSD	1079.000	88.190	137.100	0.000	0.000	46.970	350.000	3.000	9.356	16.580
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
itan jinno	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:15:45	0.954	102.135%	-0.672	0.028	0.292	0.092	0.139	-0.032	0.221	103.142%
2 14:16:51	0.648	99.547%	-0.022	0.014	0.247	0.065	0.123	-0.005	0.220	98.846%
3 14:17:56	0.686	99.452%	-0.813	0.016	0.299	0.065	0.126	-0.044	0.185	99.811%
X	0.763	100.378%	-0.502	0.019	0.279	0.074	0.129	-0.027	0.208	100.600%
	0.763		0.422		0.279		0.129		0.208	2.254%
σ %RSD	21.910	1.522% 1.517	84.030	0.008 41.070	10.160	0.015 20.970		0.020 74.460	9.894	2.254%
Run Time	21.910 118Sn	1.517 121Sb	123Sb	137Ba	15.160 159Tb	165Ho	6.746 203TI	205TI	206Pb	2.24 I 207Pb
Kuii Tiifle	ppb	1213b ppb	ppb	ррb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:15:45	0.401	1.412	1.443	0.009	101.269%	102.109%	0.184	0.070	0.106	0.072
2 14:16:51					97.701%					
	0.609	1.294	1.335	-0.035		97.618%	0.162	0.036 0.032	0.082	0.034 0.037
	0.685	1.277	1.349	-0.028	100.021%	100.666%	0.155		0.076	
X	0.565	1.328	1.376	-0.018	99.664%	100.131%	0.167	0.046	0.088	0.048
σ	0.147	0.074	0.059	0.024	1.811%	2.293%	0.015	0.021	0.016	0.021
%RSD	26.020	5.538	4.276	133.700	1.817	2.290	8.968	45.500	18.160	44.750
Run Time	208Pb	209Bi	220Bkg	238U						
4 44 45 15	ppb	ppb	ppb	ppb						
1 14:15:45	0.022	103.735%	0.000	0.000						
2 14:16:51	-0.006	101.356%	0.000	0.000						
3 14:17:56	-0.009	103.679%	0.000	0.000						
X	0.003	102.923%	0.000	0.000						
σ	0.017	1.357%	0.000	0.000						
%RSD	650.100	1.319	0.000	0.000						

mp55424-mb1 11/2/2010 14:18:23

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
itan inic	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:19:29	103.393%	-0.002	0.782	0.234	0.000	-6.965	-0.763	0.022	0.565	⊤ 0.000
2 14:20:35	106.267%	0.005	0.747	0.182	0.000	-8.596	-0.982	-0.394	0.250	T 0.000
3 14:21:40	104.010%	-0.009	0.561	0.184	0.000	-8.137	-0.995	-0.295	0.280	⊤ 0.000
X	104.556%	-0.002	0.697	0.200	0.000	-7.899	-0.914	-0.222	0.365	т 0.000
σ	1.513%	0.007	0.119	0.029	0.000	0.841	0.130	0.217	0.174	т 0.000
%RSD	1.447	353.100	17.020	14.590	0.000	10.650	14.270	97.610	47.640	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
itan inic	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:19:29	0.726	-23.560	-14.470	99.051%	-0.175	0.110	-0.002	0.080	90.140	0.037
2 14:20:35	-0.986	-22.840	-15.880	107.043%	-0.180	0.086	0.004	-0.093	84.540	0.031
3 14:21:40	1.921	-27.720	-14.810	101.853%	-0.192	0.025	0.000	-0.385	87.520	0.034
Х	0.554	-24.710	-15.050	102.649%	-0.182	0.074	0.001	-0.133	87.400	0.034
σ	1.461	2.637	0.734	4.055%	0.009	0.044	0.003	0.235	2.802	0.003
%RSD	263.900	10.670	4.879	3.950	4.743	59.630	585.800	177.400	3.206	8.337
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:19:29	-0.866	-2.306	-0.004	0.135	0.455	0.232	0.359	0.179	-0.574	-0.579
2 14:20:35	-2.086	-2.263	-0.016	0.152	0.190	0.239	0.422	0.007	-1.034	-0.788
3 14:21:40	-1.159	-2.815	-0.018	0.188	0.310	0.227	0.361	0.064	-0.446	-0.556
X	-1.371	-2.461	-0.012	0.158	0.318	0.233	0.381	0.083	-0.684	-0.641
σ	0.637	0.307	0.008	0.027	0.132	0.006	0.036	0.088	0.309	0.127
%RSD	46.470	12.480	60.600	17.060	41.600	2.624	9.431	105.100	45.170	19.860
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:19:29	-0.100	-3.026	-0.124	0.000	0.000	-0.004	0.003	100.121%	-0.304	-0.232
2 14:20:35	-0.096	-3.766	-0.198	0.000	0.000	0.031	-0.006	106.246%	-0.189	-0.084
3 14:21:40	0.011	-3.845	-0.118	0.000	0.000	-0.015	-0.005	102.038%	0.014	0.045
X	-0.062	-3.546	-0.147	0.000	0.000	0.004	-0.003	102.802%	-0.160	-0.090
σ	0.063	0.452	0.044	0.000	0.000	0.024	0.005	3.133%	0.161	0.139
%RSD	101.900	12.750	30.180	0.000	0.000	587.600	165.700	3.048	100.600	153.200
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
1 1 1 1 1 2 2 2	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:19:29	-0.299	99.755%	-0.171	0.003	0.257	0.065	0.109	-0.015	0.209	98.102%
2 14:20:35	-0.182	103.631%	0.454	-0.000	0.214	0.063	0.109	0.025	0.245	106.347%
3 14:21:40	0.039	101.218%	-0.073	0.003	0.250	0.064	0.111	-0.007	0.217	101.476%
X	-0.147	101.534%	0.070	0.002	0.240	0.064	0.109	0.001	0.224	101.975%
σ %RSD	0.172 116.400	1.958% 1.928	0.336 479.700	0.002 105.000	0.023 9.723	0.001 1.217	0.001 1.002	0.021 2582.000	0.019 8.570	4.146% 4.065
Run Time	118Sn	1.926 121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
Kuii Iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:19:29	0.012	0.235	0.281	0.047	98.882%	99.132%	0.130	0.006	0.097	0.051
2 14:20:35	0.054	0.200	0.243	0.049	104.996%	103.343%	0.126	0.003	0.094	0.050
3 14:21:40	0.076	0.197	0.287	0.053	99.307%	102.407%	0.125	0.001	0.091	0.048
Х	0.047	0.211	0.270	0.050	101.062%	101.627%	0.127	0.003	0.094	0.050
σ	0.033	0.021	0.024	0.003	3.414%	2.211%	0.003	0.002	0.003	0.002
%RSD	69.260	10.070	8.844	5.633	3.378	2.176	2.340	69.850	3.052	3.366
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 14:19:29	0.007	99.518%	0.000	0.000						
2 14:20:35	0.006	106.127%	0.000	0.000						
3 14:21:40	0.001	103.172%	0.000	0.000						
Х	0.005	102.939%	0.000	0.000						
σ	0.003	3.311%	0.000	0.000						
%RSD	64.300	3.216	0.000	0.000						

mp55424-lc1 11/2/2010 14:22:06

User Pre-dilut											
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	:23:11	107.969%	95.190	0.325	0.118	0.000	<u> 7 503.300</u>	502.900	521.500	<u> 7 521.600</u>	<u>T 0.000</u>
2 14:	:24:17	104.824%	96.040	0.515	0.145	0.000	<u> 7 523.400</u>	532.700	528.600	<u>т 531.000</u>	<u>T 0.000</u>
3 14:	:25:22	99.610%	м 100.900	0.524	0.003	0.000	<u> 7 526.600</u>	528.800	546.000	<u>т 530.700</u>	<u>т 0.000</u>
X		104.134%	м 97.390	0.455	0.089	0.000	<u>т 517.800</u>	521.500	532.000	<u>т 527.700</u>	<u>т 0.000</u>
σ		4.222%	м 3.100	0.112	0.075	0.000	т 12.600	16.190	12.610	<u>т 5.342</u>	<u>т 0.000</u>
%RSD		4.054	м 3.183	24.660	85.070	0.000	т 2.434	3.105	2.371	т 1.012	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:	:23:11	494.700	502.900	495.800	107.137%	-0.017	98.950	97.210	м 100.500	141.900	97.890
2 14:	:24:17	517.300	526.400	511.100	102.821%	-0.000	м 100.800	м 100.500	99.840	164.700	99.840
	:25:22	524.100	537.000	540.700	99.644%	0.007	м 100.300	99.880	98.040	162.200	м 100.000
X	.EG.EE	512.000	522.100	515.800	103.201%	-0.003	м 100.000	м 99.190	м 99.450	156.300	м 99.250
		15.410	17.450	22.830	3.761%	0.013	м 0.949	м 1.749	м 1.263	12.500	м 1.175
%RSD		3.009									
Run	Time	56Fe	3.341 57Fe	4.426 59Co	3.644 60Ni	363.600 62Ni	<u>м 0.948</u> 63Си	<u>м 1.763</u> 65Си	<u>м 1.270</u> 66Zn	8.001 67Zn	<u>м 1.184</u> 68Zn
Kuii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14	:23:11	<u>⊤ 525.600</u>	518.300	м 101.500	98.970	97.270	98.410	99.590	97.290	94.500	98.640
	:24:17	<u>+ 548.900</u>	542.000	м 101.300	м 101.800	м 102.900	м 101.300	м 101.800	м 102.400	99.860	м 102.400
	:25:22	T 542.500	528.500	м 102.600	98.390	95.870	м 102.100	м 101.000	98.840	96.980	99.870
	.23.22							м 100.800			
X		<u>т 539.000</u>	529.600	м 102.600	м 99.720	м 98.670	м 100.600		м 99.510	97.120	м 100.300
σ		<u>τ 12.050</u>	11.900	<u>м 1.140</u>	м 1.822	м 3.697	м 1.943	м 1.127	м 2.622	2.684	м 1.938
%RSD	Time o	<u>T 2.236</u>	2.248	м 1.111	м 1.827	м 3.746	м 1.931	м 1.118	м 2.635	2.764 95Mo	м 1.932
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	*	97Mo
1 14	:23:11	ppb	ррb м 195.400	ррb м 193.900	0.000	ppb	ррb м 193.800	ppb 0.043	ppb 105.742%	ppb -0.183	-0.134
		97.120				0.000					
	:24:17	м 101.900	м 201.500	м 200.600	0.000	0.000	м 202.500	0.033	101.570%	-0.040	-0.016
	:25:22	97.880	м 196.400	м 194.800	0.000	0.000	м 193.900	0.028	103.529%	0.033	0.036
X		м 98.980	м 197.800	м 196.400	0.000	0.000	м 196.700	0.035	103.613%	-0.063	-0.038
σ		<u>м 2.596</u>	м 3.250	м 3.644	0.000	0.000	<u>м 5.010</u>	0.007	2.087%	0.110	0.087
%RSD		м 2.622	м 1.644	м 1.856	0.000	0.000	м 2.546	20.870	2.015	173.500	228.700
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	:23:11	-0.143	104.072%	м 102.000	м 102.100	0.495	98.750	98.900	97.880	96.460	103.062%
	:24:17	-0.123	101.513%	м 104.000	м 101.400	0.512	м 100.800	м 101.100	99.470	м 100.500	101.327%
3 14:	:25:22	0.071	98.395%	м 100.800	м 100.400	0.441	96.320	99.230	м 100.000	98.040	101.394%
X		-0.065	101.327%	м 102.300	м 101.300	0.483	м 98.610	м 99.750	м 99.130	м 98.320	101.927%
σ		0.118	2.843%	м 1.624	<u>м 0.819</u>	0.037	<u>м 2.227</u>	<u>м 1.200</u>	м 1.114	<u>м 2.017</u>	0.983%
%RSD		182.600	2.806	<u>м 1.588</u>	м 0.809	7.636	м 2.258	м 1.203	м 1.124	<u>м 2.051</u>	0.964
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:		0.069	м 104.000	м 104.500	99.290	104.630%	104.950%	99.080	м 100.900	99.160	98.820
	:24:17	0.123	м 105.800	м 105.700	м 101.200	104.210%	104.977%	м 100.500	м 102.700	м 100.400	м 101.700
3 14:	:25:22	0.149	м 104.200	м 104.300	м 100.300	102.556%	102.994%	м 101.300	м 100.500	98.690	96.750
X		0.114	м 104.700	м 104.800	м 100.300	103.799%	104.307%	м 100.300	м 101.300	м 99.410	м 99.070
σ		0.041	<u>м 1.001</u>	<u>м 0.777</u>	м 0.940	1.096%	1.137%	<u>м 1.109</u>	м 1.203	<u>м 0.884</u>	м 2.461
%RSD		35.800	<u>м 0.957</u>	<u>м 0.741</u>	м 0.938	1.056	1.090	<u>м 1.106</u>	<u>м 1.187</u>	<u>м 0.890</u>	<u>м 2.484</u>
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
	:23:11	98.600	106.560%	0.000	0.000						
	:24:17	м 100.900	104.789%	0.000	0.000						
3 14:	:25:22	98.120	104.748%	0.000	0.000						
X		м 99.190	105.366%	0.000	0.000						
σ		м 1.463	1.034%	0.000	0.000						
0/ 000		м 1.475	0.982	0.000	0.000						
%RSD		M 1.473	0.702	0.000	0.000						

mp55424-s1 11/2/2010 14:25:48

	-airution: 1.00						2011		2/11		0.7.01
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	14:26:51	95.624%	87.180	м 183.700	м 194.500	0.000	тм 21450.000	тм 7629.000	тм 7642.000	тм 1560.000	<u>T 0.000</u>
2	14:27:57	93.467%	83.940	м 194.400	м 202.800	0.000	тм 21560.000	тм 7649.000	тм 7627.000	тм 1551.000	<u>T 0.000</u>
3	14:29:02	93.926%	86.570	м 190.100	м 194.600	0.000	тм 22050.000	тм 7704.000	тм 7774.000	тм 1582.000	<u> </u>
X		94.339%	85.900	м 189.400	м 197.300	0.000	тм 21690.000	тм 7661.000	тм 7681.000	тм 1565.000	<u>т 0.000</u>
σ		1.136%	1.722	м 5.407	м 4.769	0.000	тм 319.900	тм 39.070	тм 81.020	тм 15.840	<u>т 0.000</u>
%RSD		1.205	2.005	м 2.854	<u>м 2.417</u>	0.000	<u>тм 1.475</u>	<u>тм 0.510</u>	<u>тм 1.055</u>	<u>тм 1.013</u>	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	14:26:51	тм 3703.000	м 87200.000	тм 92510.000	104.999%	40.610	84.200	85.660	80.670	118.900	<u>тм 2233.000</u>
2	14:27:57	тм 3659.000	м 87500.000	тм 93800.000	103.048%	38.890	85.300	86.300	86.180	95.410	<u>тм 2196.000</u>
3	14:29:02	тм 3663.000	м 88070.000	тм 96890.000	102.272%	39.990	87.550	87.350	89.620	98.130	тм 2263.000
X		тм 3675.000	м 87590.000	тм 94400.000	103.440%	39.830	85.690	86.440	85.490	104.100	тм 2230.000
σ		тм 24.580	м 445.000	тм 2253.000	1.405%	0.869	1.707	0.850	4.512	12.830	тм 33.390
%RSD		<u>тм 0.669</u>	м 0.508	<u>тм 2.387</u>	1.358	2.183	1.992	0.984	5.278	12.320	тм 1.497
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	14:26:51	тм 3410.000	м 3482.000	83.750	82.810	80.120	м 102.900	м 106.000	81.100	83.110	81.750
2	14:27:57	тм 3387.000	м 3452.000	83.250	82.330	81.540	м 101.700	м 104.200	80.590	81.380	81.490
3	14:29:02	тм 3472.000	м 3576.000	86.610	81.760	83.650	м 108.100	м 104.900	80.400	83.740	83.700
X		тм 3423.000	м 3503.000	84.540	82.300	81.770	м 104.200	м 105.000	80.700	82.740	82.310
σ		тм 43.910	м 64.620	1.812	0.530	1.775	м 3.427	м 0.906	0.362	1.223	1.207
%RSD		тм 1.283	м 1.845	2.144	0.644	2.171	м 3.288	м 0.863	0.448	1.478	1.467
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	14:26:51	77.630	м 145.400	м 143.800	0.000	0.000	м 143.100	тм 451.400	117.280%	1.786	1.964
2	14:27:57	76.690	м 146.900	м 144.500	0.000	0.000	м 143.000	тм 447.900	116.996%	1.938	2.130
3	14:29:02	78.780	м 151.500	м 147.000	0.000	0.000	м 146.400	тм 458.400	115.609%	2.404	2.508
X		77.700	м 147.900	м 145.100	0.000	0.000	м 144.200	тм 452.600	116.628%	2.043	2.201
σ		1.047	м 3.186	м 1.716	0.000	0.000	м 1.919	тм 5.302	0.894%	0.322	0.279
%RSD		1.347	м 2.154	м 1.182	0.000	0.000	м 1.331	<u>тм 1.172</u>	0.767	15.760	12.660
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	14:26:51	2.008	93.432%	86.360	85.730	0.798	87.700	85.160	86.660	84.120	97.560%
2	14:27:57	2.013	93.671%	85.550	87.590	0.827	87.360	85.300	84.180	84.950	97.720%
3	14:29:02	2.489	93.652%	85.780	87.370	0.819	87.420	86.670	86.180	85.720	98.074%
X		2.170	93.585%	85.900	86.900	0.815	87.490	85.710	85.670	84.930	97.785%
σ		0.276	0.133%	0.418	1.019	0.015	0.181	0.832	1.312	0.801	0.263%
%RSD		12.730	0.142	0.487	1.173	1.824	0.207	0.971	1.531	0.943	0.269
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	14:26:51	0.217	90.790	90.490	м 204.400	100.143%	100.876%	92.710	94.010	97.380	97.500
2	14:27:57	0.237	90.390	89.680	м 203.300	100.534%	99.824%	92.380	91.990	95.980	95.870
3	14:29:02	0.250	91.330	90.970	м 204.600	100.863%	101.713%	92.860	94.010	98.250	97.330
X		0.235	90.840	90.380	м 204.100	100.513%	100.804%	92.650	93.330	97.200	96.900
σ		0.016	0.473	0.655	м 0.715	0.360%	0.947%	0.248	1.162	1.148	0.896
%RSD		7.006	0.521	0.725	м 0.350	0.358	0.939	0.268	1.245	1.181	0.924
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	14:26:51	97.050	96.069%	0.000	0.000						
2	14:27:57	95.990	96.911%	0.000	0.000						
3	14:29:02	97.610	97.798%	0.000	0.000						
X		96.880	96.926%	0.000	0.000						
σ		0.824	0.865%	0.000	0.000						
%RSD		0.851	0.892	0.000	0.000						

mp55424-s2 11/2/2010 14:29:27

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	dqq	dqq	dqq	ppb	ppb
1 14:30:33	91.890%	91.000	м 190.800	м 200.300	0.000	тм 22830.000	тм 7591.000	тм 7667.000	тм 1606.000	т 0.000
2 14:31:38	88.897%	87.450	м 201.700	м 212.100	0.000	тм 22020.000	тм 7747.000	тм 7707.000	тм 1592.000	т 0.000
3 14:32:43	84.183%	93.220	м 206.600	м 212.500	0.000	тм 22780.000	тм 7949.000	тм 8149.000	тм 1663.000	т 0.000
Х	88.323%	90.560	м 199.700	м 208.300	0.000	тм 22540.000	тм 7762.000	тм 7841.000	тм 1620.000	т 0.000
σ	3.886%	2.913	м 8.098	м 6.942	0.000	тм 452.400	тм 179.400	тм 267.500	тм 37.610	т 0.000
%RSD	4.399	3.217	м 4.055	м 3.333	0.000	тм 2.007	тм 2.312	тм 3.412	тм 2.321	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:30:33	тм 3664.000	м 87720.000	тм 93620.000	105.273%	39.010	85.850	84.170	84.050	132.500	<u>тм 2215.000</u>
2 14:31:38	тм 3706.000	м 87350.000	тм 94540.000	102.629%	40.070	86.040	85.580	84.920	137.700	тм 2220.000
3 14:32:43	тм 3781.000	м 90350.000	тм 96760.000	98.243%	39.150	88.480	87.760	86.140	123.900	тм 2268.000
X	тм 3717.000	м 88470.000	тм 94970.000	102.048%	39.410	86.790	85.840	85.040	131.400	тм 2234.000
σ	<u>тм 59.640</u>	м 1634.000	тм 1616.000	3.551%	0.574	1.464	1.811	1.052	6.967	_{TM} 29.010
%RSD	<u>тм 1.605</u>	<u>м 1.847</u>	<u>тм 1.702</u>	3.480	1.458	1.687	2.110	1.237	5.303	<u>тм 1.298</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:30:33	тм 3402.000	м 3554.000	85.830	81.720	81.120	м 101.800	м 102.700	80.750	83.910	82.770
2 14:31:38	тм 3446.000	м 3559.000	86.360	82.790	79.950	м 101.300	99.820	81.200	81.950	82.580
3 14:32:43	тм 3524.000	м 3536.000	89.100	83.100	81.860	м 101.800	м 103.600	80.620	82.520	85.760
X	тм 3457.000	м 3550.000	87.100	82.540	80.980	м 101.700	м 102.100	80.860	82.790	83.700
σ	тм 62.060	м 12.410	1.754	0.723	0.963	м 0.300	<u>м 1.987</u>	0.301	1.007	1.780
%RSD	тм 1.795	м 0.350	2.014	0.876	1.189	м 0.295	м 1.947	0.372	1.216	2.127
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 14:30:33	ppb	ppb	ppb	ppb	ppb	ppb	ррb тм 450.400	ppb	ppb	ppb 1.705
	76.260	м 143.800	м 141.600	0.000	0.000	м 138.800		118.075%	1.758	
2 14:31:38	78.260	м 148.600	м 144.000	0.000	0.000	м 145.900	<u>тм 469.800</u>	113.573%	1.725	1.957
3 14:32:43	78.460	м 148.600	м 145.900	0.000	0.000	м 144.100	<u>тм 461.500</u>	113.191%	1.986	2.237
X	77.660	м 147.000	м 143.800	0.000	0.000	м 143.000	тм 460.600	114.946%	1.823	1.966
σ %RSD	1.220	м 2.766	<u>м 2.154</u>	0.000	0.000	м 3.707	<u>тм 9.740</u>	2.716%	0.142	0.266
Run Time	1.570 98Mo	<u>м 1.881</u> 103Rh	<u>м 1.498</u> 106Сd	0.000 107Ag	0.000 108Mo O	<u>м 2.593</u> 108Сd	<u>тм 2.115</u> 109Ag	2.363 111Cd	7.781 114Cd	13.520 115I n
Kuii Iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:30:33	1.791	94.368%	84.690	88.510	0.879	87.280	86.600	87.390	85.620	98.535%
2 14:31:38	2.047	90.965%	88.820	89.630	0.976	92.440	89.090	90.410	87.980	94.985%
3 14:32:43	2.048	88.607%	91.360	90.980	0.742	91.290	89.630	90.310	88.910	94.309%
Х	1.962	91.313%	88.290	89.710	0.866	90.340	88.440	89.370	87.510	95.943%
σ	0.149	2.897%	3.368	1.236	0.117	2.713	1.615	1.719	1.695	2.270%
%RSD	7.566	3.172	3.815	1.378	13.560	3.003	1.826	1.923	1.937	2.366
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:30:33	0.395	91.640	90.380	м 209.700	102.037%	102.827%	95.450	95.770	98.740	98.110
2 14:31:38	0.334	94.680	93.480	м 211.900	99.003%	103.453%	96.870	97.250	м 100.200	м 100.500
3 14:32:43	0.357	94.100	93.780	м 212.500	100.027%	99.925%	92.760	95.580	99.590	м 100.200
X	0.362	93.470	92.550	м 211.400	100.356%	102.068%	95.020	96.200	м 99.520	м 99.600
σ	0.031	1.611	1.885	м 1.446	1.543%	1.882%	2.086	0.914	м 0.750	м 1.294
%RSD	8.555	1.724	2.037	<u>м 0.684</u>	1.538	1.844	2.196	0.950	м 0.753	м 1.300
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 14:30:33	98.630	98.686%	0.000	0.000						
2 14:31:38	м 100.500	97.435%	0.000	0.000						
3 14:32:43	99.580	98.577%	0.000	0.000						
X	_м 99.570	98.233%	0.000	0.000						
σ	м 0.938	0.693%	0.000	0.000						
%RSD	м 0.942	0.705	0.000	0.000						

ja59191-1 11/2/2010 14:33:09

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Trail Time	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:34:14	94.153%	0.145	м 181.000	м 188.000	0.000	тм 19790.000	тм 6682.000	тм 6599.000	тм 1052.000	<u>т 0.000</u>
2 14:35:20	84.322%	0.054	м 191.800	м 212.000	0.000	тм 21040.000	тм 7178.000	тм 7133.000	тм 1129.000	т 0.000
3 14:36:23	85.265%	0.040	м 190.900	м 196.300	0.000	тм 21300.000	м 7173.000	тм 6853.000	тм 1076.000	<u>т 0.000</u>
X	87.913%	0.079	м 187.900	м 198.800	0.000	тм 20710.000	тм 7011.000	тм 6862.000	тм 1086.000	т 0.000
σ	5.425%	0.057	м 5.966	м 12.220	0.000	тм 808.600	тм 284.900	тм 267.300	тм 39.290	<u>т 0.000</u>
%RSD	6.170	71.670	м 3.175	м 6.150	0.000	тм 3.904	тм 4.064	тм 3.896	тм 3.618	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:34:14	тм 3047.000	м 81170.000	тм 88740.000	103.275%	37.260	2.722	3.629	3.472	96.090	<u>тм 1990.000</u>
2 14:35:20	тм 3168.000	м 85580.000	тм 91580.000	98.572%	45.250	2.995	3.963	4.204	92.520	тм 2144.000
3 14:36:23	тм 3092.000	м 81940.000	тм 89500.000	98.238%	39.930	2.569	3.557	2.811	97.200	тм 2072.000
Х	тм 3102.000	м 82900.000	тм 89940.000	100.028%	40.810	2.762	3.716	3.495	95.270	тм 2069.000
σ	тм 60.930	м 2358.000	тм 1471.000	2.817%	4.068	0.216	0.217	0.697	2.445	_{TM} 77.340
%RSD	<u>тм 1.964</u>	м 2.845	<u>тм 1.636</u>	2.816	9.967	7.808	5.828	19.930	2.567	<u>тм 3.739</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 14.24.14	ppb	ppb	ppb	ppb 4 271	ppb	ppb	ppb	ppb 4 755	ppb 0.014	ppb
1 14:34:14 2 14:35:20	TM 2848.000	м 2949.000 м 3069.000	4.893 4.973	4.371	5.752	20.270	20.610	6.755 6.883	8.914	8.580 8.842
	тм 2969.000			4.746	5.837	20.640	21.730		9.171	
3 14:36:23	тм 2923.000	м 2969.000	4.804 4.890	4.503 4.540	5.638 5.743	20.330	21.160	6.696 6.778	9.076 9.054	8.485 8.636
X	тм 2913.000	м 2996.000				20.420	21.170			
σ %RSD	<u>тм 60.820</u> тм 2.088	<u>м 64.320</u> м 2.147	0.085 1.731	0.190 4.190	0.100 1.734	0.196 0.961	0.561 2.650	0.096 1.417	0.130 1.434	0.185 2.144
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
itan inne	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:34:14	2.088	0.592	-0.110	0.000	0.000	0.641	тм 433.300	117.385%	1.821	2.071
2 14:35:20	1.973	0.633	-0.214	0.000	0.000	0.295	тм 440.700	113.450%	1.907	1.981
3 14:36:23	1.893	0.782	-0.354	0.000	0.000	0.147	тм 440.900	111.561%	2.054	2.496
X	1.985	0.669	-0.226	0.000	0.000	0.361	тм 438.300	114.132%	1.927	2.183
σ	0.098	0.100	0.122	0.000	0.000	0.254	тм 4.320	2.971%	0.118	0.275
%RSD	4.948	14.920	54.080	0.000	0.000	70.360	тм 0.986	2.603	6.118	12.600
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:34:14	1.986	94.516%	-3.485	0.076	0.491	0.273	0.190	-0.042	0.271	97.982%
2 14:35:20	2.101	90.662%	-2.377	0.022	0.420	0.341	0.126	-0.057	0.220	96.976%
3 14:36:23	2.275	88.121%	-2.937	0.016	0.453	0.287	0.124	-0.084	0.208	94.284%
X	2.121	91.100%	-2.933	0.038	0.455	0.300	0.147	-0.061	0.233	96.414%
σ	0.146	3.220%	0.554	0.033	0.036	0.036	0.038	0.021	0.034	1.912%
%RSD	6.864	3.535	18.900	85.860	7.816	11.940	25.570	34.340	14.380	1.983
Run Time	118Sn ppb	121Sb ppb	123Sb ppb	137Ba ppb	159Tb ppb	165Ho ppb	203TI ppb	205TI ppb	206Pb ppb	207Pb ppb
1 14:34:14	0.162	0.729	0.740	м 110.500	103.123%	104.932%	0.391	0.260	5.308	5.257
2 14:35:20	0.198	0.756	0.804	м 111.900	101.997%	101.261%	0.239	0.111	5.362	5.321
3 14:36:23	0.201	0.918	0.935	м 112.300	100.044%	100.973%	0.217	0.102	5.541	5.358
X	0.187	0.801	0.826	м 111.600	101.721%	102.389%	0.282	0.158	5.404	5.312
σ	0.021	0.102	0.099	м 0.934	1.558%	2.207%	0.095	0.089	0.122	0.051
%RSD	11.450	12.760	12.000	<u>м 0.837</u>	1.532	2.156	33.520	56.130	2.255	0.969
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 14:34:14	5.168	100.879%	0.000	0.000						
2 14:35:20	5.211	100.082%	0.000	0.000						
3 14:36:23	5.285	97.633%	0.000	0.000						
X	5.221	99.531%	0.000	0.000						
σ	0.059	1.692%	0.000	0.000						
%RSD	1.135	1.700	0.000	0.000						

mp55424-s3 11/2/2010 14:36:49

User Pre-allut											0701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
4 44	07.55	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	:37:55	86.936%	89.560	м 217.500	м 212.600	0.000	тм 23930.000	тм 7857.000	тм 7786.000	T 493.900	<u>T 0.000</u>
	:39:00	81.004%	97.690	м 218.000	м 235.000	0.000	тм 25730.000	тм 8452.000	тм 8339.000	<u> </u>	<u>T 0.000</u>
=	:40:05	82.830%	95.830	м 222.400	м 224.000	0.000	тм 25340.000	тм 8211.000	тм 8380.000	<u>т 521.000</u>	<u>T 0.000</u>
X		83.590%	94.360	м 219.300	м 223.900	0.000	тм 25000.000	тм 8173.000	тм 8168.000	<u>т 515.500</u>	<u>т 0.000</u>
σ		3.038%	4.262	м 2.677	м 11.190	0.000	<u>тм 948.200</u>	тм 299.700	<u>тм 331.600</u>	<u>т 19.370</u>	<u>т 0.000</u>
%RSD		3.635	4.517	<u>м 1.221</u>	<u>м 4.997</u>	0.000	<u>тм 3.793</u>	<u>тм 3.667</u>	<u>тм 4.059</u>	<u>т 3.757</u>	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	:37:55	тм 3941.000	м 97860.000	тм 105500.000	95.167%	0.534	92.180	89.040	91.270	128.500	тм 2410.000
2 14:	:39:00	тм 4161.000	м 101800.000	тм 109100.000	92.546%	0.442	96.030	94.510	95.670	117.200	тм 2496.000
3 14:	:40:05	тм 4211.000	м 102500.000	тм 111400.000	90.088%	0.301	95.670	95.390	94.010	132.100	тм 2601.000
X		тм 4104.000	м 100700.000	тм 108700.000	92.601%	0.426	94.630	92.980	93.650	125.900	тм 2502.000
σ		тм 143.800	м 2479.000	тм 3015.000	2.540%	0.117	2.128	3.444	2.220	7.782	_{TM} 95.440
%RSD		<u>тм 3.504</u>	м 2.462	<u>тм 2.774</u>	2.743	27.490	2.248	3.704	2.370	6.180	<u>тм 3.815</u>
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	:37:55	тм 2374.000	м 2467.000	91.860	89.190	86.550	82.900	84.170	81.780	83.930	84.060
2 14:	:39:00	тм 2457.000	м 2556.000	95.600	90.610	91.380	85.070	85.850	84.890	88.060	86.430
3 14:	:40:05	тм 2508.000	м 2652.000	97.820	92.760	92.320	88.160	88.020	86.810	88.110	89.390
X		тм 2446.000	м 2558.000	95.090	90.850	90.080	85.380	86.010	84.490	86.700	86.630
σ		тм 67.610	м 92.480	3.010	1.797	3.096	2.643	1.933	2.538	2.398	2.673
%RSD		<u>тм 2.764</u>	м.3.615	3.166	1.978	3.436	3.096	2.247	3.004	2.765	3.086
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:	:37:55	85.050	м 162.700	м 158.200	0.000	0.000	м 156.500	тм 530.500	107.187%	2.358	2.464
2 14:	:39:00	88.060	м 165.900	м 161.800	0.000	0.000	м 161.800	тм 540.200	105.025%	2.537	2.672
3 14:	:40:05	89.400	м 173.100	м 165.500	0.000	0.000	м 165.100	тм 552.900	102.522%	2.855	3.203
X		87.500	м 167.200	м 161.800	0.000	0.000	м 161.100	тм 541.200	104.911%	2.583	2.780
σ		2.231	м 5.333	м 3.645	0.000	0.000	м 4.363	тм 11.240	2.335%	0.252	0.381
%RSD		2.550	м 3.189	м 2.252	0.000	0.000	м 2.707	тм 2.077	2.225	9.754	13.710
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:	:37:55	2.573	88.645%	92.890	94.430	1.035	96.920	93.030	93.670	92.110	93.439%
2 14:	:39:00	2.748	87.532%	98.150	96.930	0.618	96.060	95.670	96.430	94.770	91.717%
3 14:	:40:05	3.047	84.449%	м 102.600	96.700	0.430	97.100	95.590	98.090	95.560	91.403%
X		2.789	86.875%	м 97.890	96.020	0.694	96.690	94.760	96.070	94.140	92.186%
σ		0.239	2.174%	м 4.875	1.386	0.310	0.557	1.505	2.233	1.806	1.096%
%RSD		8.576	2.502	м 4.980	1.443	44.620	0.576	1.589	2.325	1.918	1.189
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:	:37:55	0.175	м 100.600	м 100.900	м 210.000	99.878%	101.765%	99.630	м 100.800	м 100.300	м 100.400
2 14:	:39:00	0.208	м 103.700	м 103.900	м 215.600	98.557%	98.528%	м 104.200	м 104.300	м 104.400	м 105.300
3 14:	:40:05	0.207	м 105.400	м 105.100	м 216.800	96.943%	97.912%	м 103.500	м 106.200	м 105.900	м 105.300
X		0.197	м 103.200	м 103.300	м 214.100	98.460%	99.402%	м 102.400	м 103.700	м 103.500	м 103.700
σ		0.018	м 2.451	м 2.160	м 3.654	1.470%	2.070%	м 2.468	м 2.749	м 2.929	м 2.823
%RSD		9.404	м 2.375	м 2.092	м 1.707	1.493	2.082	м 2.409	м 2.650	м 2.829	м 2.723
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1 14:	:37:55	м 100.700	99.102%	0.000	0.000						
2 14:	:39:00	м 104.700	96.869%	0.000	0.000						
3 14:	:40:05	м 105.300	96.352%	0.000	0.000						
X		м 103.600	97.441%	0.000	0.000						
σ		м 2.525	1.461%	0.000	0.000						
%RSD		<u>м 2.438</u>	1.500	0.000	0.000						
				-	-						

mp55424-s4 11/2/2010 14:40:31

User Pre-	-allution: 1.00	10									
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	14:41:36	82.578%	96.520	м 210.000	м 221.800	0.000	тм 24280.000	тм 7825.000	тм 7967.000	<u>т 510.800</u>	<u>т 0.000</u>
2	14:42:42	90.367%	89.910	м 223.600	м 212.500	0.000	тм 24440.000	тм 7692.000	тм 7849.000	<u> 7 507.800</u>	<u>T 0.000</u>
3	14:43:47	84.880%	98.780	м 221.600	м 229.900	0.000	тм 25140.000	тм 8253.000	тм 8377.000	т 533.500	T 0.000
X		85.942%	95.070	м 218.400	м 221.400	0.000	тм 24620.000	тм 7923.000	тм 8064.000	т 517.400	т 0.000
σ		4.002%	4.609	м 7.355	м 8.711	0.000	тм 459.200	тм 293.200	тм 276.900	т 14.080	т 0.000
%RSD		4.656	4.848	м 3.368	м 3.934	0.000	тм 1.865	тм 3.700	тм 3.434	<u>т 2.721</u>	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	<u>™ 3.700</u> 52Cr	53Cr	53CI O	55Mn
Ruii	Time	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	14:41:36	тм 3976.000	м 97140.000	тм 105300.000	91.951%	0.438	94.950	92.970	93.670	127.600	тм 2438.000
2	14:42:42	тм 4046.000	м 98810.000	тм 105200.000	96.256%	0.353	94.030	93.140	94.980	140.200	тм 2463.000
3	14:43:47	тм 4198.000	м 101300.000	тм 108700.000	93.451%	0.548	98.800	97.300	96.450	128.400	тм 2546.000
X		тм 4073.000	м 99 100.000	тм 106400.000	93.886%	0.446	95.930	94.470	95.030	132.100	тм 2482.000
σ		тм 113.300	м 2117.000	_{тм} 1974.000	2.185%	0.098	2.531	2.454	1.387	7.078	тм 56.330
%RSD		<u>тм 2.781</u>	м 2.137	<u>тм 1.856</u>	2.328	21.950	2.639	2.598	1.460	5.359	<u>тм 2.269</u>
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	14:41:36	тм 2398.000	м 2513.000	95.150	92.320	92.040	86.550	87.420	96.360	97.500	99.840
2	14:42:42	тм 2410.000	м 2532.000	96.600	90.910	89.100	89.000	85.230	97.220	98.640	99.620
3	14:43:47	тм 2495.000	м 2641.000	98.840	94.340	93.770	90.040	88.320	м 100.800	99.620	м 102.900
X		тм 2434.000	м 2562.000	96.860	92.520	91.640	88.530	86.990	м 98.130	98.590	м 100.800
σ	İ	тм 53.200	м 68.840	1.860	1.726	2.362	1.791	1.590	м 2.359	1.063	м 1.809
%RSD		тм 2.185	м 2.687	1.920	1.865	2.578	2.023	1.828	м 2.404	1.079	м 1.79 <u>5</u>
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	dqq	ppb	ppb	ppb
1	14:41:36	89.170	м 171.400	м 166.500	0.000	0.000	м 164.500	тм 535.900	103.414%	2.666	2.542
2	14:42:42	88.910	м 171.200	м 166.200	0.000	0.000	м 164.700	тм 525.200	108.109%	2.654	2.575
3	14:43:47	91.770	м 174.300	м 171.200	0.000	0.000	м 170.300	тм 545.200	106.082%	2.857	3.051
	14.43.47										
X		89.950	м 172.300	м 168.000	0.000	0.000	м 166.500	<u>тм 535.400</u>	105.868%	2.726	2.722
σ		1.585	м 1.718	м 2.804	0.000	0.000	м 3.289	тм 10.050	2.355%	0.114	0.285
%RSD	1	1.762	м 0.997	м 1.669	0.000	0.000	м 1.975	<u>тм 1.876</u>	2.224	4.185	10.460
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	14:41:36	2.565	88.010%	97.290	97.300	0.645	95.620	95.800	97.110	94.740	92.315%
2	14:42:42	2.617	90.297%	97.760	98.060	0.632	95.790	96.510	97.890	94.790	95.261%
3	14:43:47	2.936	87.796%	м 100.600	99.940	0.729	99.720	98.390	99.060	97.970	92.708%
X		2.706	88.701%	<u>м 98.540</u>	98.440	0.668	97.040	96.900	98.020	95.830	93.428%
σ		0.201	1.386%	<u>м 1.766</u>	1.360	0.053	2.316	1.339	0.983	1.849	1.599%
%RSD		7.414	1.563	<u>м 1.792</u>	1.381	7.905	2.386	1.382	1.003	1.929	1.712
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	14:41:36	0.153	м 105.100	м 103.900	м 211.000	99.408%	100.518%	м 102.700	м 104.300	м 103.800	м 104.400
2	14:42:42	0.189	м 104.200	м 103.500	м 214.100	102.495%	103.564%	м 104.100	м 105.800	м 104.700	м 105.000
3	14:43:47	0.204	м 107.500	м 106.600	м 219.600	99.635%	100.088%	м 105.000	м 107.100	м 106.200	м 107.300
X		0.182	м 105.600	м 104.700	м 214.900	100.513%	101.390%	м 103.900	м 105.700	м 104.900	м 105.600
σ	İ	0.026	м 1.720	м 1.700	м 4.362	1.720%	1.895%	м 1.15 <u>6</u>	м 1.409	м 1.232	м 1.540
%RSD		14.280	<u>м 1.628</u>	<u>м 1.624</u>	м 2.030	1.712	1.869	<u>м 1.113</u>	м 1.333	<u>м 1.175</u>	<u>м 1.459</u>
Run	Time	208Pb	209Bi	220Bkg	238U					<u></u>	
		ppb	ppb	ppb	ppb						
1	14:41:36	м 103.900	98.022%	0.000	0.000						
2	14:42:42	м 104.900	100.334%	0.000	0.000						
3	14:43:47	м 107.200	99.044%	0.000	0.000						
X	17.73.47		99.133%	0.000	0.000						
		м 105.300									
σ		м 1.726	1.158%	0.000	0.000						
%RSD	I	м 1.638	1.168	0.000	0.000						

ja59191-1f 11/2/2010 14:44:13

OSCI TTC-dilation: 1:00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:45:19	93.534%	0.075	м 208.200	м 221.200	0.000	тм 23900.000	тм 7144.000	тм 7283.000	5.666	<u> </u>
2 14:46:24	89.681%	0.050	м 227.800	м 248.300	0.000	тм 25040.000	тм 7869.000	тм 7757.000	5.562	<u>т 0.000</u>
3 14:47:29	88.353%	0.009	м 234.800	м 234.300	0.000	тм 25160.000	тм 7716.000	тм 7914.000	5.220	<u>т 0.000</u>
X	90.523%	0.044	м 223.600	м 234.600	0.000	тм 24700.000	тм 7576.000	тм 7651.000	5.483	<u>т 0.000</u>
σ	2.691%	0.033	м 13.790	м 13.580	0.000	тм 693.700	тм 382.000	тм 328.700	0.233	т 0.000
%RSD	2.972	74.610	м 6.168	м 5.789	0.000	тм 2.809	тм 5.042	тм 4.296	4.253	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:45:19	тм 3444.000	м 95540.000	тм 102400.000	101.584%	0.455	0.320	0.621	0.182	110.800	тм 2316.000
2 14:46:24	тм 3630.000	м 102000.000	тм 112500.000	96.795%	0.505	0.003	0.633	-1.075	119.200	тм 2508.000
3 14:47:29	тм 3715.000	м 104400.000	тм 110900.000	95.103%	0.629	0.135	0.590	0.132	117.200	тм 2525.000
	тм 3596.000	м 100700.000	тм 108600.000	97.827%	0.530	0.153	0.615	-0.254	115.700	тм 2449.000
X										
σ %RSD	<u>тм 138.300</u>	м 4602.000	тм 5432.000	3.362%	0.090	0.159	0.022	0.712	4.369	<u>тм 116.100</u>
	<u>тм 3.846</u>	<u>м 4.571</u>	<u>тм 5.001</u>	3.436	16.940	104.000	3.644	280.800	3.776	тм 4.740
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 14 45 10	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:45:19	тм 1888.000	м 2000.000	5.158	3.577	4.813	0.777	0.871	2.118	5.265	3.798
2 14:46:24	тм 2043.000	м 2176.000	5.360	3.897	5.332	0.763	1.003	2.330	4.642	4.150
3 14:47:29	тм 2054.000	м 2165.000	5.216	3.439	4.766	0.732	1.022	2.299	4.722	4.115
X	тм 1995.000	м 2114.000	5.245	3.638	4.970	0.758	0.966	2.249	4.877	4.021
σ	тм 92.610	м 98.690	0.104	0.235	0.314	0.023	0.082	0.115	0.339	0.194
%RSD	<u>тм 4.642</u>	м 4.669	1.990	6.452	6.318	3.002	8.501	5.090	6.950	4.828
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:45:19	2.184	2.606	-0.074	0.000	0.000	0.714	тм 521.800	111.786%	2.486	2.614
2 14:46:24	2.195	2.878	-0.408	0.000	0.000	0.304	<u>тм 547.000</u>	108.985%	2.934	3.019
3 14:47:29	2.169	2.997	-0.326	0.000	0.000	0.198	<u>тм 566.400</u>	107.222%	3.013	3.111
X	2.183	2.827	-0.269	0.000	0.000	0.406	тм 545.100	109.331%	2.811	2.915
σ	0.013	0.201	0.174	0.000	0.000	0.273	тм 22.330	2.302%	0.285	0.265
%RSD	0.589	7.092	64.620	0.000	0.000	67.200	тм 4.097	2.105	10.120	9.075
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:45:19	2.642	93.003%	-2.904	0.069	0.453	0.305	0.174	-0.041	0.272	98.037%
2 14:46:24	2.977	89.744%	-3.739	0.009	0.506	0.254	0.120	-0.122	0.164	93.504%
3 14:47:29	3.142	89.315%	-2.957	0.014	0.460	0.348	0.122	-0.100	0.182	93.651%
X	2.920	90.687%	-3.200	0.031	0.473	0.303	0.138	-0.088	0.206	95.064%
σ	0.254	2.017%	0.468	0.033	0.029	0.047	0.030	0.042	0.058	2.576%
%RSD	8.710	2.224	14.610	106.900	6.055	15.560	21.950	47.550	28.200	2.709
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:45:19	0.021	0.647	0.626	м 110.700	105.115%	106.118%	0.356	0.232	2.396	2.371
2 14:46:24	0.058	0.715	0.836	м 121.200	100.179%	101.596%	0.223	0.111	2.593	2.495
3 14:47:29	0.062	0.870	0.902	м 120.000	100.718%	101.236%	0.204	0.096	2.539	2.420
X	0.047	0.744	0.788	м 117.300	102.004%	102.983%	0.261	0.146	2.509	2.429
σ	0.023	0.114	0.144	м 5.723	2.708%	2.720%	0.083	0.074	0.102	0.062
%RSD	48.590	15.370	18.290	м 4.878	2.655	2.642	31.700	51.010	4.061	2.572
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 14:45:19	2.287	102.881%	0.000	0.000						
2 14:46:24	2.409	98.576%	0.000	0.000						
3 14:47:29	2.391	98.999%	0.000	0.000						
X	2.362	100.152%	0.000	0.000						
σ	0.066	2.373%	0.000	0.000						
%RSD	2.786	2.369	0.000	0.000						

ja59191-2 11/2/2010 14:47:55

User Pre-dilution: 1.00	00									
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:48:59	84.319%	0.063	м 190.300	м 206.400	0.000	тм 21240.000	тм 6677.000	тм 6671.000	T 742.200	T 0.000
2 14:50:04	87.986%	0.030	м 198.900	м 199.300	0.000	тм 21870.000	м 6801.000	тм 6528.000	T 724.700	<u>т 0.000</u>
3 14:51:09	81.295%	0.034	м 198.400	м 211.000	0.000	тм 21850.000	м 6999.000	тм 6827.000	т 737.800	т 0.000
Х	84.534%	0.042	м 195.900	м 205.500	0.000	тм 21650.000	тм 6826.000	тм 6675.000	т 734.900	т 0.000
σ	3.351%	0.018	м 4.826	м 5.919	0.000	тм 359.500	тм 162.500	тм 149.500	т 9.069	т 0.000
%RSD	3.964	42.350	<u>м 4.020</u> м 2.464	<u>м 3.717</u> м 2.879	0.000	тм 1.660	тм 2.380	тм 2.239	<u>т 1.234</u>	<u>т 0.000</u>
Run Time	3.704 39K	43Ca	<u>₩ 2.404</u>	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
Kuii Iiiile	ppb	ppb			ppb	ppb	ppb	ppb		ppb
1 14:48:59	тм 3160.000	м 86080.000	ррb тм 93850.000	ppb 94.338%	27.560	1.879	2.441	2.295	ppb 104.800	тм 2129.000
2 14:50:04	тм 3146.000	м 83410.000	тм 94090.000	95.000%	26.590	1.857	2.402	2.768	101.700	тм 2112.000
3 14:51:09	тм 3163.000	м 86520.000	тм 92800.000	94.106%	33.200	1.899	2.477	2.964	100.600	тм 2164.000
X	тм 3156.000	м 85340.000	тм 93580.000	94.481%	29.120	1.878	2.440	2.676	102.400	тм 2135.000
σ	<u>тм 9.041</u>	м 1685.000	тм 685.300	0.464%	3.567	0.021	0.038	0.344	2.174	<u>тм 26.460</u>
%RSD	<u>тм 0.286</u>	<u>м 1.974</u>	<u>тм 0.732</u>	0.491	12.250	1.136	1.541	12.850	2.123	<u>тм 1.239</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:48:59	тм 2723.000	м 2828.000	4.419	3.728	5.050	23.040	22.670	5.406	7.846	7.304
2 14:50:04	тм 2698.000	м 2766.000	4.502	3.740	4.571	23.250	23.510	5.464	8.114	7.046
3 14:51:09	тм 2701.000	м 2769.000	4.395	3.689	4.864	22.750	22.890	5.398	7.932	7.410
X	тм 2707.000	м 2788.000	4.439	3.719	4.828	23.020	23.030	5.423	7.964	7.253
σ	тм 13.620	м 35.310	0.056	0.027	0.242	0.250	0.436	0.036	0.137	0.187
%RSD	тм 0.503	м 1.267	1.259	0.714	5.003	1.088	1.893	0.667	1.718	2.583
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	dqq	ppb	ppb	ppb	ppb	dqq	ppb	ppb	ppb	ppb
1 14:48:59	2.019	1.108	-0.583	0.000	0.000	0.169	тм 467.400	108.740%	1.988	2.248
2 14:50:04	2.091	0.792	-0.497	0.000	0.000	0.181	тм 469.300	107.847%	2.028	2.260
3 14:51:09	2.065	0.694	-0.442	0.000	0.000	0.218	тм 461.600	109.029%	2.015	2.055
	2.058	0.865	-0.507	0.000	0.000	0.189		107.52776	2.013	2.188
X							тм 466.100			
σ %RSD	0.037	0.217	0.071	0.000	0.000	0.026	<u>тм 4.011</u>	0.616%	0.020	0.115
	1.783	25.050	13.990	0.000	0.000	13.520	<u>тм 0.861</u>	0.568	1.011	5.243
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
1 14 40 50	ppb	ppb	ppb	ppb	ppb ppb	ppb	ppb	ppb	ppb	ppb
1 14:48:59	2.195	89.139%	-2.454	0.015	0.425	0.318	0.121	-0.067	0.220	92.998%
2 14:50:04	1.979	86.710%	-3.040	0.008	0.452	0.164	0.119	-0.098	0.195	92.123%
3 14:51:09	2.121	89.246%	-2.688	0.008	0.440	0.317	0.120	-0.078	0.186	94.211%
X	2.098	88.365%	-2.727	0.010	0.439	0.266	0.120	-0.081	0.200	93.111%
σ	0.110	1.434%	0.295	0.004	0.013	0.088	0.001	0.016	0.018	1.048%
%RSD	5.227	1.623	10.820	40.430	3.041	33.210	0.790	19.410	8.812	1.126
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:48:59	0.131	0.319	0.381	м 111.700	99.398%	101.151%	0.172	0.050	4.552	4.435
2 14:50:04	0.108	0.329	0.408	м 113.000	99.119%	99.404%	0.155	0.039	4.451	4.439
3 14:51:09	0.127	0.375	0.415	м 110.600	100.870%	101.089%	0.155	0.038	4.456	4.475
X	0.122	0.341	0.402	м 111.800	99.796%	100.548%	0.161	0.042	4.487	4.449
σ	0.012	0.030	0.018	м 1.202	0.941%	0.991%	0.009	0.007	0.057	0.022
%RSD	9.866	8.715	4.443	м 1.075	0.943	0.986	5.911	15.660	1.271	0.491
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 14:48:59	4.393	98.834%	0.000	0.000						
2 14:50:04	4.358	97.985%	0.000	0.000						
3 14:51:09	4.333	99.478%	0.000	0.000						
X 14.51.09	4.361	98.766%	0.000	0.000						
σ % psp	0.030	0.749%	0.000	0.000						
%RSD	0.690	0.758	0.000	0.000						

CCV 11/2/2010 14:51:36

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:52:41	91.141%	46.420	59.650	58.820	0.000	497.700	527.600	525.800	<u> </u>	т 0.000
2 14:53:46	92.163%	48.420	56.850	56.720	0.000	510.600	533.500	519.100	т 532.200	т 0.000
3 14:54:52	89.678%	50.070	59.240	56.110	0.000	500.900	528.200	525.700	<u> </u>	т 0.000
X	90.994%	48.300	58.580	57.210	0.000	503.100	529.800	523.600	<u>т 532.800</u>	<u>т 0.000</u>
σ	1.249%	1.830	1.513	1.421	0.000	6.752	3.274	3.837	<u>τ 5.106</u>	<u>т 0.000</u>
%RSD	1.373	3.789	2.582	2.484	0.000	1.342	0.618	0.733	<u>т 0.958</u>	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:52:41	499.500	668.600	650.600	93.797%	50.070	50.010	49.610	50.130	125.000	52.510
2 14:53:46	511.500	559.400	530.200	92.942%	50.140	49.570	49.320	48.350	131.600	49.900
3 14:54:52	508.300	536.400	514.500	92.781%	49.430	49.560	49.060	48.520	138.600	50.030
X	506.400	588.100	565.100	93.173%	49.880	49.710	49.330	49.000	131.700	50.810
σ	6.262	70.670	74.460	0.546%	0.394	0.253	0.277	0.982	6.807	1.470
%RSD	1.237	12.020	13.180	0.586	0.790	0.508	0.562	2.005	5.168	2.893
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 14:52:41	ppb <u>⊤530.500</u>	ppb 536.300	ppb 49.190	ppb 48.790	ppb 50.000	ppb 48.180	ppb 50.190	ppb 47.610	ppb 4 7.310	ppb 48.610
2 14:53:46	±536.500	524.700	49.190	49.220	48.220	49.160	49.400	49.010	48.490	50.010
3 14:54:52	±539.300	524.700	50.660	50.060	47.290	50.290	49.460	48.780	50.050	48.690
X 14.54.52	т 535.400	528.000	49.830	49.350	48.500	49.210	49.820	48.470	48.620	49.100
σ	<u>т 4.493</u>	7.244	0.755	0.647	1.381	1.054	0.396	0.752	1.376	0.784
%RSD	<u>т 0.839</u>	1.372	1.515	1.312	2.847	2.142	0.390	1.552	2.831	1.597
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
ituii iiiii	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:52:41	47.130	48.260	48.060	0.000	0.000	48.760	49.250	99.986%	47.690	47.090
2 14:53:46	48.700	49.100	50.530	0.000	0.000	49.810	49.500	98.035%	49.960	49.490
3 14:54:52	49.010	48.840	50.200	0.000	0.000	50.610	49.700	96.829%	50.170	49.370
X	48.280	48.730	49.600	0.000	0.000	49.730	49.490	98.284%	49.270	48.650
σ	1.006	0.426	1.338	0.000	0.000	0.926	0.229	1.593%	1.376	1.352
%RSD	2.083	0.874	2.699	0.000	0.000	1.863	0.463	1.621	2.792	2.779
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:52:41	47.320	98.987%	51.350	48.470	0.336	49.060	48.460	49.220	48.540	100.690%
2 14:53:46	50.240	97.279%	50.670	49.120	0.490	50.440	48.240	49.400	47.880	100.923%
3 14:54:52	49.400	97.075%	48.590	49.560	0.706	51.670	49.020	49.840	48.740	98.384%
X	48.980	97.780%	50.200	49.050	0.511	50.390	48.570	49.490	48.390	99.999%
σ	1.504	1.050%	1.435	0.546	0.186	1.307	0.399	0.318	0.451	1.403%
Run Time	3.070	1.074 121Sb	2.858 123Sb	1.112 137Ba	36.410 159Tb	2.595	0.822 203TI	0.642 205TI	0.932 206Pb	1.403 207Pb
Kuii Iiiile	118Sn ppb	ppb	ppb	ppb	ppb	165Ho ppb	ppb	ppb	ppb	ppb
1 14:52:41	48.670	47.740	48.260	47.870	105.491%	106.079%	49.040	49.080	48.940	48.950
2 14:53:46	48.130	49.150	49.050	49.230	102.881%	105.271%	49.110	49.880	49.620	49.990
3 14:54:52	48.600	48.810	49.170	48.910	104.135%	102.542%	51.010	50.120	50.250	49.930
Х	48.470	48.570	48.830	48.670	104.169%	104.631%	49.720	49.690	49.610	49.620
σ	0.292	0.732	0.491	0.712	1.306%	1.853%	1.119	0.544	0.653	0.585
%RSD	0.602	1.508	1.006	1.463	1.253	1.771	2.250	1.095	1.316	1.178
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 14:52:41	48.410	110.484%	0.000	0.000						
2 14:53:46	49.550	108.425%	0.000	0.000						
3 14:54:52	49.510	106.633%	0.000	0.000						
X	49.160	108.514%	0.000	0.000						
σ	0.649	1.927%	0.000	0.000						
%RSD	1.321	1.776	0.000	0.000						

ccb 11/2/2010 14:55:17

User Pre-dilution: 1.00								2/11		07.01
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
4 44 5 4 00	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:56:22	92.646%	0.072	5.976	7.141	0.000	-3.381	0.360	0.666	0.539	<u>T 0.000</u>
2 14:57:28	88.591%	0.005	6.384	5.860	0.000	-8.114	-1.071	-0.494	-1.041	<u>T 0.000</u>
3 14:58:33	90.193%	0.009	4.730	5.354	0.000	-2.383	-0.214	0.294	-0.055	<u> </u>
X	90.477%	0.028	5.697	6.118	0.000	-4.626	-0.308	0.155	-0.186	<u>т 0.000</u>
σ	2.042%	0.038	0.862	0.921	0.000	3.062	0.720	0.592	0.798	<u>т 0.000</u>
%RSD	2.257	133.000	15.130	15.060	0.000	66.190	233.600	381.600	430.300	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:56:22	-0.504	-22.030	-12.700	92.546%	-0.128	-0.064	0.106	0.012	131.000	0.198
2 14:57:28	-0.952	-29.190	-18.300	93.712%	-0.154	-0.147	0.007	-0.219	133.500	0.072
3 14:58:33	-0.137	-23.800	-13.920	92.561%	-0.153	0.003	0.012	0.126	130.600	0.109
X	-0.531	-25.010	-14.970	92.940%	-0.145	-0.069	0.042	-0.027	131.700	0.126
σ	0.409	3.727	2.942	0.669%	0.015	0.075	0.056	0.175	1.561	0.065
%RSD	76.960	14.900	19.650	0.720	9.993	107.600	134.100	652.500	1.185	51.550
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:56:22	-0.333	-0.768	0.061	0.092	0.246	-0.193	-0.001	-0.740	-1.293	-1.415
2 14:57:28	-1.469	-2.622	-0.013	0.053	0.130	-0.264	-0.053	-0.883	-1.455	-1.508
3 14:58:33	1.748	-1.716	0.015	0.086	0.161	-0.271	-0.074	-0.646	-1.273	-1.393
X	-0.018	-1.702	0.021	0.077	0.179	-0.243	-0.043	-0.756	-1.340	-1.439
σ	1.631	0.927	0.038	0.021	0.060	0.043	0.038	0.119	0.100	0.061
%RSD	9088.000	54.460	178.300	27.080	33.480	17.670	87.940	15.770	7.458	4.237
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:56:22	0.138	-0.247	-0.062	0.000	0.000	0.215	0.077	96.338%	0.947	0.875
2 14:57:28	-0.041	0.162	-0.105	0.000	0.000	0.087	0.006	96.056%	0.522	0.572
3 14:58:33	-0.140	0.757	-0.170	0.000	0.000	0.129	0.021	95.491%	0.645	0.645
X	-0.015	0.224	-0.112	0.000	0.000	0.144	0.035	95.962%	0.705	0.697
σ	0.141	0.505	0.054	0.000	0.000	0.065	0.038	0.432%	0.219	0.158
%RSD	962.900	225.500	48.500	0.000	0.000	45.450	107.600	0.450	31.030	22.680
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:56:22	0.939	96.488%	-0.664	0.047	0.287	0.036	0.160	0.028	0.253	98.644%
2 14:57:28	0.485	96.974%	-0.000	0.016	0.245	0.065	0.125	0.000	0.216	98.388%
3 14:58:33	0.716	95.723%	-0.871	0.026	0.302	0.066	0.133	-0.047	0.206	98.523%
X	0.713	96.395%	-0.512	0.030	0.278	0.056	0.139	-0.006	0.225	98.518%
σ	0.227	0.631%	0.455	0.016	0.030	0.017	0.018	0.038	0.025	0.128%
%RSD	31.860	0.654	88.890	52.530	10.720	30.220	13.080	628.900	11.080	0.130
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:56:22	0.421	1.444	1.617	0.039	103.119%	101.114%	0.211	0.091	0.127	0.098
2 14:57:28	0.521	1.295	1.281	-0.000	101.849%	101.142%	0.156	0.039	0.088	0.042
3 14:58:33	0.648	1.334	1.326	0.018	100.079%	101.046%	0.168	0.041	0.086	0.045
X	0.530	1.357	1.408	0.019	101.682%	101.101%	0.179	0.057	0.100	0.062
σ	0.113	0.077	0.183	0.020	1.527%	0.050%	0.029	0.029	0.023	0.032
%RSD	21.400	5.688	12.960	104.100	1.501	0.049	16.170	51.330	22.960	51.270
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 14:56:22	0.047	105.973%	0.000	0.000						
2 14:57:28	-0.002	104.583%	0.000	0.000						
3 14:58:33	0.001	105.283%	0.000	0.000						
X	0.015	105.279%	0.000	0.000						
σ	0.027	0.695%	0.000	0.000						
%RSD	178.300	0.660	0.000	0.000						
	-	-								

ja59191-3 11/2/2010 14:59:00

user Pre-dilution:	1.000										
Run Tin	ne	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		opb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:00:	<u>05</u> 87.69	9%	0.022	97.800	95.000	0.000	TM 23240.000	тм 7717.000	тм 7731.000	10.040	<u>T 0.000</u>
2 15:01:	11 80.37	8%	0.002	м 102.300	м 104.200	0.000	тм 24260.000	тм 7982.000	тм 7911.000	10.960	<u>T 0.000</u>
3 15:02:	16 81.51	3%	0.020	99.790	м 104.000	0.000	тм 23860.000	тм 8114.000	тм 8178.000	10.300	<u> </u>
X	83.19	6%	0.015	м 99.950	м 101.100	0.000	тм 23790.000	тм 7938.000	тм 7940.000	10.430	<u>т 0.000</u>
σ	3.94	0%	0.011	м 2.242	м 5.275	0.000	тм 510.200	тм 202.000	тм 224.900	0.474	т 0.000
%RSD	4	736	74.090	м 2.243	м 5.218	0.000	тм 2.145	тм 2.544	тм 2.833	4.541	т 0.000
Run Tin	ne	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
-		opb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:00:	D5 <u>тм 7797</u>	.000	м 107900.000	тм 117300.000	90.843%	0.984	1.175	0.751	2.150	94.560	тм 3401.000
2 15:01:	11 тм 8038	.000	м 107800.000	тм 115800.000	92.140%	0.976	0.610	0.804	-0.728	94.640	тм 3459.000
3 15:02:	16 тм 8143	.000	м 111100.000	тм 118100.000	88.719%	1.140	0.864	0.731	-0.904	90.470	тм 3488.000
Х	тм 7993		м 108900.000	тм 117100.000	90.567%	1.033	0.883	0.762	0.173	93.220	тм 3449.000
σ	тм 177		м 1897.000	тм 1152.000	1.727%	0.093	0.283	0.038	1.715	2.387	тм 44.710
%RSD		220	м 1.742	тм 0.984	1.907	8.972	32.040	4.986	992.700	2.561	тм 1.296
Run Tin		6Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
itan i		opb	dqq	ppb	ppb	ppb	ppb	dqq	ppb	ppb	ppb
1 15:00:			тм 26140.000	-0.404	3.563	5.051	1.892	2.133	12.700	21.370	18.810
2 15:01:			тм 26480.000	-0.421	3.831	5.812	1.926	2.224	12.540	21.450	18.930
3 15:02:			тм 27010.000	-0.435	3.659	5.343	1.950	2.213	12.530	20.080	19.450
X X	тм 25110		тм 26540.000	-0.420	3.685	5.402	1.922	2.190	12.590	20.970	19.070
σ	<u>тм 281</u>		тм 437.300	0.015	0.135	0.384	0.030	0.050	0.093	0.770	0.341
%RSD		120	<u>тм 1.648</u>	3.632	3.674	7.100	1.535	2.276	0.737	3.671	1.788
Run Tin		5As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
itan iii		opb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:00:		.710	4.049	-0.027	0.000	0.000	0.129	тм 995.200	91.476%	0.749	0.811
2 15:01:	_	.160	3.789	-0.087	0.000	0.000	0.182	тм 1023.000	90.774%	0.969	1.113
3 15:02:		.800	3.828	-0.032	0.000	0.000	0.183	тм 1008.000	91.163%	1.054	1.089
X		.890	3.889	-0.049	0.000	0.000	0.165	тм 1009.000	91.137%	0.924	1.004
σ		234	0.140	0.033	0.000	0.000	0.031	тм 13.740	0.352%	0.157	0.167
%RSD		177	3.605	68.450	0.000	0.000	18.940	<u>тм 1.362</u>	0.33276	17.010	16.670
Run Tin		Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	<u>™ 1.302</u> 109Ag	111Cd	17.010	115In
Kuii III		opb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:00:	_	733	87.758%	-4.266	0.029	0.537	0.195	0.133	-0.226	0.073	91.566%
2 15:01:		.000	85.690%	-3.675	0.025	0.497	0.198	0.131	-0.209	0.114	90.439%
3 15:02:		.023	87.547%	-4.316	0.032	0.542	0.228	0.129	-0.228	0.080	91.492%
X X		919	86.998%	-4.085	0.028	0.525	0.207	0.127	-0.221	0.089	91.166%
		161	1.138%	0.357	0.003	0.025	0.018	0.002	0.010	0.022	0.631%
σ %RSD		.540	1.130%	8.728	11.010	4.732	8.563	1.466	4.713	24.930	0.692
Run Tin		3Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
itan iii		opb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:00:		.071	0.664	0.714	м 304.300	97.835%	98.461%	0.134	0.014	0.898	0.904
2 15:01:		128	0.654	0.708	м 317.300	96.995%	98.421%	0.130	0.014	0.982	0.869
3 15:02:	_	164	0.670	0.694	м 314.100	95.814%	97.347%	0.134	0.012	0.974	0.885
-		121	0.663	0.705	м 311.900	96.881%	98.077%	0.133	0.012	0.951	0.886
σ		.047	0.008	0.705		1.015%	0.632%	0.133	0.013	0.951	0.886
%RSD					м 6.727						
Run Tin		. <mark>510</mark> 3Pb	1.248 209Bi	1.516 220Bkg	<u>м 2.157</u> 238U	1.048 1	0.645	1.786	8.658	4.834	1.995
Kuii III		opb	ppb	220BKg ppb	2380 ppb						
1 15:00:	_	.816	96.514%	0.000	0.000	J					
2 15:01:		.856		0.000	0.000						
3 15:02:		846	93.848%		0.000						
			94.963%	0.000							
X		839	95.108%	0.000	0.000						
σ ον μερ		021	1.339%	0.000	0.000						
%RSD	2	477	1.408	0.000	0.000						

ja59191-4 11/2/2010 15:02:42

Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii	mine	ppb		dqq	ppb	ppb	ppb	ppb	ppb		
1	15:03:47	78.617%	ppb 0.003	м 430.000	м 486.800	0.000	тм 458100.000	тм 46770.000	тм 46730.000	ppb 79.650	ppb <u>⊤0.000</u>
	15:04:53	78.964%	0.030	м 468.700	м 507.200	0.000	тм 478900.000	тм 47980.000	тм 47450.000	81.450	<u>⊤ 0.000</u>
											· · · · · · · · · · · · · · · · · · ·
	15:05:58	80.447%	0.016	м 466.000	м 490.200	0.000	тм 477700.000	тм 48160.000	тм 47420.000	81.120	<u>T 0.000</u>
X		79.343%	0.016	м 454.900	м 494.800	0.000	тм 471600.000	тм 47640.000	тм 47200.000	80.740	<u>т 0.000</u>
σ		0.972%	0.014	м 21.580	м 10.950	0.000	тм 11670.000	тм 755.800	тм 410.200	0.958	<u>т 0.000</u>
%RSD	т:	1.225	85.830	м 4.743	м 2.213	0.000	тм 2.476	<u>тм 1.587</u>	тм 0.869	1.186	<u>T 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1	15.02.47	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	15:03:47	тм 18900.000	м 122900.000	тм 132400.000	94.031%	3.532	0.855	15.290	15.130	114.500	<u>тм 513.700</u>
	15:04:53	тм 19760.000	м 127500.000	тм 135800.000	95.456%	3.714	0.520	16.080	15.340	155.900	тм 528.500
	15:05:58	тм 19600.000	м 126300.000	тм 135700.000	99.185%	3.421	0.591	15.870	15.530	170.200	тм 525.100
X		тм 19420.000	м 125600.000	тм 134600.000	96.224%	3.556	0.656	15.750	15.340	146.900	тм 522.400
σ		тм 458.800	м 2415.000	тм 1916.000	2.661%	0.148	0.176	0.412	0.199	28.940	тм 7.724
%RSD	1	тм 2.362	м 1.923	тм 1.423	2.766	4.154	26.890	2.616	1.296	19.700	<u>тм 1.479</u>
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	15.00.47	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	15:03:47	тм 2916.000	м 3122.000	-0.486	0.222	44.590	4.129	1.060	5.457	14.350	12.110
	15:04:53	тм 2971.000	м 3171.000	-0.531	0.516	62.300	4.963	1.124	5.951	15.340	12.780
	15:05:58	тм 2974.000	м 3120.000	-0.542	0.326	62.270	4.970	0.970	5.764	14.350	12.250
X		тм 2954.000	м 3138.000	-0.520	0.355	56.390	4.687	1.052	5.724	14.680	12.380
σ		тм 32.390	м 29.090	0.030	0.149	10.220	0.483	0.077	0.249	0.570	0.354
%RSD		<u>тм 1.097</u>	м 0.927	5.742	41.920	18.120	10.310	7.351	4.357	3.882	2.860
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	15:03:47	2.016	6.576	0.225	0.000	0.000	-0.353	тм 1049.000	93.533%	4.406	4.489
	15:04:53	2.032	8.985	0.445	0.000	0.000	-0.858	тм 1054.000	95.144%	4.559	4.715
	15:05:58	2.085	9.382	0.258	0.000	0.000	-0.857	тм 1061.000	97.822%	4.541	4.999
X		2.044	8.315	0.309	0.000	0.000	-0.689	тм 1055.000	95.500%	4.502	4.734
σ		0.036	1.519	0.119	0.000	0.000	0.292	<u>тм 6.141</u>	2.166%	0.084	0.256
%RSD		1.748	18.260	38.430	0.000	0.000	42.310	<u>тм 0.582</u>	2.268	1.859	5.397
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	15:03:47	4.489	82.921%	-3.935	0.012	0.529	0.435	0.118	-0.242	0.088	89.233%
	15:04:53	4.696	82.057%	-4.770	0.010	0.572	0.270	0.117	-0.267	0.058	89.350%
3	15:05:58	4.842	85.430%	-4.767	0.009	0.591	0.522	0.113	-0.290	0.046	91.390%
X		4.676	83.470%	-4.490	0.010	0.564	0.409	0.116	-0.266	0.064	89.991%
σ		0.178	1.752%	0.481	0.001	0.032	0.128	0.003	0.024	0.022	1.213%
%RSD		3.797	2.099	10.710	12.950	5.603	31.190	2.255	8.950	34.180	1.348
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	15:03:47	0.176	0.408	0.423	м 357.500	97.921%	98.639%	0.140	0.018	0.957	0.924
	15:04:53	0.237	0.372	0.483	м 370.700	98.568%	99.230%	0.130	0.016	1.000	0.910
3	15:05:58	0.241	0.418	0.477	м 373.400	101.664%	102.759%	0.133	0.008	1.004	0.966
X		0.218	0.400	0.461	м 367.200	99.384%	100.209%	0.134	0.014	0.987	0.933
σ		0.037	0.024	0.033	м 8.481	2.001%	2.228%	0.006	0.005	0.026	0.029
%RSD		16.800	6.110	7.125	м 2.310	2.013	2.223	4.109	38.390	2.679	3.142
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
	15:03:47	0.869	86.527%	0.000	0.000						
2	15:04:53	0.893	87.091%	0.000	0.000						
3	15:05:58	0.894	89.571%	0.000	0.000						
X		0.885	87.730%	0.000	0.000						
σ		0.014	1.619%	0.000	0.000						
%RSD		1.582	1.846	0.000	0.000						

ja59191-5 11/2/2010 15:06:24

Pot Pot	37CI ppb r 0.000 r 0.000 r 0.000 r 0.000 r 0.000			0/14	0514	1400	400	445	100	25			User Pre-
1 15:07:29 86.196% 0.026 \(\frac{u}{2}\) 25:00 0.000 \(\frac{w}{3}\) 27:50 0.000 0.000 \(\frac{w}{3}\) 27:50 0.000 0	r 0.000 r 0.000 r 0.000 r 0.000 r 0.000 r 0.000			26Mg	25Mg	23Na	13C	11B	10B	9Be	6Li	Time	Run
2 15:08:34	r 0.000 r 0.000 r 0.000 r 0.000 r 0.000												
3 15:09:40 79.796% 0.030 \(\frac{\mathbb{W}}{\mathbb{M}} \) 0.030 \(\frac{\mathbb{W}}{\mathbb{M}} \) 0.030 \(\frac{\mathbb{W}}{\mathbb{M}} \) 0.030 \(\frac{\mathbb{W}}{\mathbb{M}} \) 0.030 \(\frac{\mathbb{W}}{\mathbb{M}} \) 0.000 \(\frac{\mathbb{W}}{\mathbb{M}} \) 0.000 \(\frac{\mathbb{W}}{\mathbb{M}} \) 25510.000 \(\mathbb{M}} \) 0.000 \(\frac{\mathbb{W}}{\mathbb{M}} \) 25510.000 \(\mathbb{M}} \) 0.000 \(\mathbb{M}} \) 25510.000 \(\mathbb{M}} \) 0.000 \(\mathbb{M}} \) 25510.000 \(\mathbb{M}} \) 1717.000 \(\	r 0.000 r 0.000 r 0.000											_	
X 83.602% 0.034 w 309.300 w 325.500 0.000 w 7986.000 m 32510.000 rot 7717.000 c 3.368% 0.010 w 13.160 w 8.834 0.000 m 2598.000 m 1212.000 m 1461.000 rot 33.230 m 3.250 m 1717.000 m 1461.000 rot 7717.00	r 0.000 r 0.000 r 0.000	_		·	· · ·				·				
Section Sec	r 0.000											15:09:40	=
No. Str. No. N	0.000	1	<u>т 717.000</u>	тм 32500.000	тм 32510.000	<u>тм 79860.000</u>	0.000	м 325.500	м 309.300	0.034	83.602%		X
Run Time 39K	_	1	<u>т 33.230</u>	тм 1461.000	тм 1212.000		0.000	<u>м 9.834</u>	м 13.160	0.010	3.368%		
Pho												<u>. </u>	%RSD
1 15:07:29 № 9702.000 № 120400.000 № 129200.000 104.390% 14.410 1.741 28.850 28.000 159.000 № 82 2 15:08:34 № 10130.000 № 125900.000 № 134600.000 100.517% 14.400 2.061 30.600 31.310 158.400 № 83 3 15:09:40 № 100290.000 № 130900.000 № 133900.000 100.554% 14.310 1.758 30.190 29.870 165.800 № 8 σ № 302.200 № 295.000 № 4387.000 3.818% 0.150 0.296 1.192 1.698 12.330 № 8 № 85D № 3.011 № 4.211 № 3.276 3.797 1.050 16.820 3.948 5.683 7.437 ▼ № 85D № 3.011 № 4.211 № 3.276 3.797 1.050 16.820 3.948 5.683 7.437 ▼ Rul Time 56Fe 57Fe 59Co 60NI 62NI 63Cu 65Cu 62Cu 62Cu	55Mn								44Ca			Time	Run
2	ppb												
3 15:09:40 m 10290.000 m 13990.000 m 137900.000 96.755% 14.140 1.471 31.120 30.290 180.100 m 28 28 28 28 28 28 28	31.500									·			
X № 10040,000 № 125700,000 № 133900,000 100.554% 14.310 1.758 30.190 29.870 165.800 № 8 σ № 302.200 № 5295.000 № 4387.000 3.818% 0.150 0.296 1.192 1.698 12.330 № Run Time 56Fe 57Fe 59Co 60Ni 62Ni 63Cu 65Cu 66Zn 67Zn 7 1 15:07.29 № 517.000 № 517.000 1.443 9.703 19.470 24.160 23.900 55.890 58.210 2 15:08:34 № 5437.000 № 5767.000 1.538 9.470 13.510 25.090 24.700 58.870 60.860 3 15:09:40 № 5619.000 № 5767.000 1.502 9.779 15.130 24.770 24.700 58.850 60.130 x № 5409.000 № 5729.000 1.502 9.779 15.130 24.770 24.700 58.850 60.130 x № 4225.600 № 152	78.400												
T _M 302.200 M 5295.000 T _M 4387.000 3.818% 0.150 0.296 1.192 1.698 12.330 T _M 3.011 M 4.211 T _M 3.276 3.797 1.050 16.820 3.948 5.683 7.437 T _M 3.011 T _M 3.276 59Co 60Ni 62Ni 63Cu 65Cu 66Zn 67Zn 7.437 T _M 3.011 7.437 T _M 3.011 7.437 T _M 3.011 7.437 T _M 3.011 7.437 T _M 517.000 M 5517.000 1.443 9.703 19.470 24.160 23.900 55.890 58.210 7.437 7.437 7.437 7.437 7.437 7.437 7.437 7.437 7.437 7.437 7.437 7.437 7.437 7.437 7.437 7.437 7.438	92.400											15:09:40	3
№ASSD ma 3.011 м.4.211 ma 3.276 3.797 1.050 16.820 3.948 5.683 7.437 T Run Time 56Fe 57Fe 59Co 60Ni 62Ni 63Cu 65Cu 66Zn 67Zn ppb	<u>67.500</u>	тм 80											X
Run Time 56Fe 57Fe 59Co 60Ni 62Ni 63Cu 65Cu 66Zn 67Zn 9pb ppb	31.900		12.330]	
ppb pp	3.677	<u>TN</u>											
1 15:07:29 1 5:171.000 M 5517.000 1.443 9.703 19.470 24.160 23.900 55.890 58.210 2 15:08:34 1 5437.000 M 5767.000 1.538 9.470 13.510 25.090 24.700 58.870 60.860 3 15:09:40 1 5619.000 M 5903.000 1.525 10.170 12.410 25.070 25.510 60.300 61.320 X 1 5409.000 M 5729.000 1.502 9.779 15.130 24.770 24.700 58.350 60.130 σ 1 225.600 M 195.800 0.051 0.354 3.796 0.533 0.803 2.251 1.678 3 15:09.1 1 3 4.171 M 3.417 3.426 3.620 25.090 2.150 3.252 3.857 2.791 Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 1 15:07:29 2.186 6.172 -0.317 0.000	68Zn	<u> </u>										Time	Run
2 15:08:34 ™ 5437.000 № 5767.000 1.538 9.470 13.510 25.090 24.700 58.870 60.860 3 15:09:40 ™ 5619.000 № 5903.000 1.525 10.170 12.410 25.070 25.510 60.300 61.320 X ™ 5409.000 № 5729.000 1.502 9.779 15.130 24.770 24.700 58.350 60.130 G ™ 225.600 № 195.800 0.051 0.354 3.796 0.533 0.803 2.251 1.678 №RSD ™ 4.171 № 3.417 3.426 3.620 25.090 2.150 3.252 3.857 2.791 Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 1 15:07:29 2.186 6.172 -0.317 0.000 0.000 0.069 № 867.500 106.683% 7.154 2 15:08:34 2.068 7.407 -0.302 0.000 0.000<	ppb				V								
3 15:09:40 1M 5619.000 M5903.000 1.525 10.170 12.410 25.070 25.510 60.300 61.320	60.500												
X TM 5409.000 M 5729.000 1.502 9.779 15.130 24.770 24.700 58.350 60.130 σ TM 225.600 M 195.800 0.051 0.354 3.796 0.533 0.803 2.251 1.678 π 4.171 M 3.417 3.426 3.620 25.090 2.150 3.252 3.857 2.791 Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb 1 15:07:29 2.186 6.172 -0.317 0.000 0.000 0.069 TM 867.500 106.683% 7.154 2 15:08:34 2.068 7.407 -0.302 0.000 0.000 0.000 0.100 TM 911.900 104.241% 7.454 3 15:09:40 2.256 7.740 -0.230 0.000 0.000 0.201 TM 905.500 103.291% 7.868 X 2.170 7.106 -0.283 0.000 0.000 0.069 TM 23.960 1.750% 0.359 π 23.960 1.750% 0.359 π 23.960 1.750% 0.359 π 23.960 1.750% 0.359 π 23.960 1.750% 0.359 π 23.960 1.750% 0.359 π 23.960 1.7104 1.785 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo 0 108Cd 109Ag 111Cd 114Cd 1.1104 1.1404 1.1404 1.1404 π 1.1106 1.1406 1.1406 1.07Ag 1.08Mo 0 108Cd 1.09Ag 1.11Cd 1.1406 π 24.700 58.350 60.130	61.200												
σ ™ 225.600 № 195.800 0.051 0.354 3.796 0.533 0.803 2.251 1.678 %RSD ™ 4.171 № 3.417 3.426 3.620 25.090 2.150 3.252 3.857 2.791 Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 1 15:07:29 2.186 6.172 -0.317 0.000 0.000 0.069 ™ 867.500 106.683% 7.154 2 15:08:34 2.068 7.407 -0.302 0.000 0.000 0.100 № 911.900 104.241% 7.454 3 15:09:40 2.256 7.740 -0.230 0.000 0.000 0.201 № 95.500 103.291% 7.868 x 2.170 7.106 -0.283 0.000 0.000 0.123 № 895.000 104.738% 7.492 σ 0.095 0.826 0.046 0.000 0.000 0.069 № 23.960 </td <td>61.870</td> <td>(</td> <td>61.320</td> <td>60.300</td> <td>25.510</td> <td>25.070</td> <td>12.410</td> <td></td> <td>1.525</td> <td>м 5903.000</td> <td>тм 5619.000</td> <td>15:09:40</td> <td>3</td>	61.870	(61.320	60.300	25.510	25.070	12.410		1.525	м 5903.000	тм 5619.000	15:09:40	3
WRSD TM 4.171 M 3.417 3.426 3.620 25.090 2.150 3.252 3.857 2.791 Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo ppb	61.190	(60.130	58.350	24.700	24.770	15.130	9.779		м 5729.000	тм 5409.000	1	X
Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 1 15:07:29 2.186 6.172 -0.317 0.000 0.000 0.069 1 867.500 106.683% 7.154 2 15:08:34 2.068 7.407 -0.302 0.000 0.000 0.100 1 911.900 104.241% 7.454 3 15:09:40 2.256 7.740 -0.230 0.000 0.000 0.201 1 905.500 103.291% 7.868 x 2.170 7.106 -0.283 0.000 0.000 0.0123 1 895.000 104.738% 7.492 σ 0.095 0.826 0.046 0.000 0.000 0.069 1 23.960 1.750% 0.359 %RSD 4.382 11.620 16.360 0.000 0.000 56.170 1 2.678 1.671 4.785 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo 108Cd	0.685		1.678	2.251	0.803	0.533	3.796	0.354	0.051	м 195.800	тм 225.600		σ
ppb pb pb pb pb pb	1.119						25.090						%RSD
1 15:07:29 2.186 6.172 -0.317 0.000 0.000 0.069 ™ 867.500 106.683% 7.154 2 15:08:34 2.068 7.407 -0.302 0.000 0.000 0.100 ™ 911.900 104.241% 7.454 3 15:09:40 2.256 7.740 -0.230 0.000 0.000 0.201 ™ 905.500 103.291% 7.868 X 2.170 7.106 -0.283 0.000 0.000 0.123 ™ 895.000 104.738% 7.492 σ 0.095 0.826 0.046 0.000 0.000 0.069 ™ 23.960 1.750% 0.359 %RSD 4.382 11.620 16.360 0.000 0.000 56.170 ™ 2.678 1.671 4.785 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd	97Mo	<u> </u>	95Mo	89Y	88Sr	82Se	81Br	79Br	78Se	77Se	75As	Time	Run
2 15:08:34 2.068 7.407 -0.302 0.000 0.000 0.100 ™ 911.900 104.241% 7.454 3 15:09:40 2.256 7.740 -0.230 0.000 0.000 0.201 ™ 905.500 103.291% 7.868 X 2.170 7.106 -0.283 0.000 0.000 0.123 ™ 895.000 104.738% 7.492 σ 0.095 0.826 0.046 0.000 0.000 0.069 ™ 23.960 1.750% 0.359 %RSD 4.382 11.620 16.360 0.000 0.000 56.170 № 2.678 1.671 4.785 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd	ppb												
3 15:09:40 2.256 7.740 -0.230 0.000 0.000 0.201 1 m 905.500 103.291% 7.868 X 2.170 7.106 -0.283 0.000 0.000 0.123 m 895.000 104.738% 7.492 σ 0.095 0.826 0.046 0.000 0.000 0.069 m 23.960 1.750% 0.359 √ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ κ	7.395		7.154	106.683%	тм 867.500	0.069	0.000	0.000	-0.317	6.172	2.186	15:07:29	1
X 2.170 7.106 -0.283 0.000 0.000 0.123 ™ 895.000 104.738% 7.492 □ 0.095 0.826 0.046 0.000 0.000 0.069 ™ 23.960 1.750% 0.359 %RSD 4.382 11.620 16.360 0.000 0.000 56.170 ™ 2.678 1.671 4.785 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd	7.631		7.454	104.241%	тм 911.900	0.100	0.000	0.000	-0.302		2.068	15:08:34	2
G 0.095 0.826 0.046 0.000 0.000 0.069 1 23.960 1.750% 0.359 0.850 0.359 0.	8.153		7.868	103.291%	тм 905.500	0.201	0.000	0.000	-0.230	7.740	2.256	15:09:40	3
%RSD 4.382 11.620 16.360 0.000 0.000 56.170 ™ 2.678 1.671 4.785 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd	7.727		7.492	104.738%	тм 895.000	0.123	0.000	0.000	-0.283	7.106	2.170		X
Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd	0.388		0.359	1.750%	тм 23.960	0.069	0.000	0.000	0.046	0.826	0.095]	σ
	5.021		4.785	1.671	<u>тм 2.678</u>	56.170	0.000	0.000	16.360	11.620	4.382]	%RSD
	115In	<u> </u>	114Cd	111Cd	109Ag	108Cd	108Mo O	107Ag	106Cd	103Rh	98Mo	Time	Run
	ppb						ppb						
1 15:07:29 7.439 93.279% -4.056 0.027 0.534 0.364 0.129 -0.119 0.181 98	.537%	98.	0.181	-0.119	0.129	0.364	0.534	0.027	-4.056	93.279%	7.439	15:07:29	1
2 15:08:34 7.841 90.018% -3.569 0.021 0.498 0.342 0.128 -0.070 0.220 97	.244%	97.	0.220	-0.070	0.128	0.342	0.498	0.021	-3.569	90.018%	7.841	15:08:34	2
3 15:09:40 8.285 88.176% -3.402 0.029 0.506 0.598 0.125 -0.077 0.212 95	.165%	95.	0.212	-0.077	0.125	0.598	0.506	0.029	-3.402	88.176%	8.285	15:09:40	3
x 7.855 90.491% -3.676 0.026 0.513 0.435 0.127 -0.089 0.204 96	.982%	96.	0.204	-0.089	0.127	0.435	0.513	0.026	-3.676	90.491%	7.855]	X
σ 0.423 2.585% 0.340 0.004 0.019 0.142 0.002 0.027 0.021 1	701%	1.	0.021	0.027	0.002	0.142	0.019	0.004	0.340	2.585%	0.423]	σ
%RSD 5.383 2.856 9.247 16.570 3.671 32.690 1.529 29.920 10.120	1.754		10.120		1.529	32.690	3.671	16.570		2.856	5.383]	%RSD
	207Pb	2				-						Time	Run
ppb ppb ppb ppb ppb ppb ppb ppb	ppb												
1 15:07:29 0.595 0.331 0.358 №180.700 107.682% 109.194% 0.140 0.018 3.097	2.992												
2 15:08:34 0.600 0.375 0.420 м188.000 105.562% 107.800% 0.138 0.016 3.174	3.209		3.174	0.016	0.138	107.800%	105.562%	м 188.000	0.420	0.375	0.600	15:08:34	2
3 15:09:40 0.664 0.371 0.417 <u>M189.600</u> 103.811% 103.860% 0.140 0.022 3.236	3.176		3.236	0.022	0.140	103.860%	103.811%	м 189.600	0.417	0.371	0.664	15:09:40	3
x 0.620 0.359 0.398 <u>M186.100</u> 105.685% 106.951% 0.139 0.019 3.169	3.126		3.169	0.019	0.139	106.951%	105.685%	м 186.100	0.398	0.359	0.620]	X
σ 0.039 0.024 0.035 <u>м 4.771</u> 1.939% 2.766% 0.001 0.003 0.070	0.117		0.070	0.003	0.001	2.766%	1.939%	м 4.771	0.035	0.024	0.039]	σ
%RSD 6.212 6.753 8.853 м 2.564 1.834 2.587 0.637 17.290 2.206			2.206	17.290	0.637	2.587	1.834	м 2.564	8.853	6.753	6.212		%RSD
Run Time 208Pb 209Bi 220Bkg 238U	3.732							238U	220Bkg	209Bi	208Pb	Time	Run
ppb ppb ppb							1	ppb	ppb	ppb	ppb		
1 15:07:29 2.965 101.938% 0.000 0.000													1
2 15:08:34 3.091 99.191% 0.000 0.000									•	101.938%	2.965		
3 15:09:40 3.130 98.115% 0.000 0.000							I	0.000	0.000				
							I	0.000 0.000	0.000 0.000	99.191%	3.091	15:08:34	2
x 3.062 99.748% 0.000 0.000							I	0.000 0.000 0.000	0.000 0.000 0.000	99.191% 98.115%	3.091 3.130	15:08:34 15:09:40	3
x 3.062 99.748% 0.000 0.000 σ 0.087 1.972% 0.000 0.000							I	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	99.191% 98.115% 99.748%	3.091 3.130 3.062	15:08:34 15:09:40	2 3 X
							I	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000	99.191% 98.115% 99.748% 1.972%	3.091 3.130 3.062 0.087	15:08:34 15:09:40	2 3 x σ

ja59191-2f 11/2/2010 15:10:06

User Pre-dilution: 1.00										1
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:11:11	84.427%	-0.003	м 225.300	м 239.200	0.000	тм 24530.000	тм 7479.000	тм 7470.000	14.730	<u>T 0.000</u>
2 15:12:16	84.210%	0.010	м 224.200	м 226.700	0.000	тм 23740.000	тм 7288.000	тм 7446.000	13.470	<u>T 0.000</u>
3 15:13:22	87.218%	0.005	м 218.400	м 226.300	0.000	тм 22770.000	тм 7318.000	тм 7267.000	13.430	<u> </u>
X	85.285%	0.004	м 222.600	м 230.800	0.000	тм 23680.000	тм 7362.000	тм 7394.000	13.880	<u>т 0.000</u>
σ	1.677%	0.007	м 3.713	м 7.341	0.000	тм 883.000	тм 102.600	тм 111.100	0.742	<u>т 0.000</u>
%RSD	1.967	165.900	м 1.668	м 3.181	0.000	тм 3.729	тм 1.393	тм 1.503	5.347	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:11:11	тм 3440.000	м 98340.000	тм 105900.000	96.815%	0.622	0.343	0.294	0.897	135.500	тм 2366.000
2 15:12:16	тм 3437.000	м 94590.000	тм 104700.000	94.736%	0.664	0.556	0.255	-0.024	116.200	тм 2355.000
3 15:13:22	тм 3443.000	м 95430.000	тм 101700.000	98.929%	0.772	0.634	0.261	0.091	112.000	тм 2348.000
X	тм 3440.000	м 96120.000	тм 104100.000	96.826%	0.686	0.511	0.270	0.321	121.200	тм 2356.000
σ	тм 2.782	м 1966.000	тм 2163.000	2.096%	0.000	0.151	0.270	0.502	12.540	тм 8.886
%RSD	<u>тм 0.081</u>					29.540			10.350	
		<u>м 2.045</u>	<u>тм 2.078</u>	2.165	11.280		7.825	156.200		<u>тм 0.377</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 15.11.11	ppb	ppb	ppb	ppb 3.438	ppb 4.503	ppb	ppb 1,005	ppb 2.010	ppb	ppb
1 15:11:11	TM 2046.000	м 2172.000	5.099		4.592	0.952	1.235	2.018	4.169	3.556
2 15:12:16	тм 2017.000	м 2111.000	4.867	3.169	4.062	0.942	1.094	1.769	4.330	3.459
3 15:13:22	тм 1998.000	м 2120.000	4.692	3.253	4.351	0.910	1.150	1.620	4.112	3.487
X	тм 2020.000	м 2134.000	4.886	3.287	4.335	0.935	1.160	1.802	4.203	3.501
σ	тм 23.940	м 32.870	0.205	0.138	0.265	0.022	0.071	0.201	0.113	0.050
%RSD	<u>тм 1.185</u>	<u>м 1.540</u>	4.185	4.186	6.118	2.378	6.113	11.140	2.691	1.421
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:11:11	2.187	3.566	-0.550	0.000	0.000	0.068	тм 539.000	108.817%	2.634	2.819
2 15:12:16	2.069	2.427	-0.507	0.000	0.000	0.119	<u>тм 515.800</u>	110.171%	2.558	2.728
3 15:13:22	1.803	3.214	-0.605	0.000	0.000	0.032	тм 523.000	109.254%	2.742	2.864
X	2.020	3.069	-0.554	0.000	0.000	0.073	тм 525.900	109.414%	2.645	2.804
σ	0.197	0.583	0.049	0.000	0.000	0.044	тм 11.890	0.691%	0.093	0.070
%RSD	9.753	19.000	8.884	0.000	0.000	60.080	<u>тм 2.260</u>	0.632	3.503	2.483
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:11:11	2.649	89.755%	-3.671	0.001	0.509	0.377	0.110	-0.141	0.159	94.571%
2 15:12:16	2.664	90.849%	-2.949	-0.001	0.452	0.250	0.110	-0.108	0.179	96.181%
3 15:13:22	2.866	90.692%	-3.159	0.001	0.461	0.189	0.109	-0.100	0.187	96.500%
X	2.726	90.432%	-3.260	0.000	0.474	0.272	0.109	-0.116	0.175	95.751%
σ	0.121	0.591%	0.371	0.001	0.031	0.096	0.001	0.021	0.014	1.034%
%RSD	4.444	0.654	11.390	333.300	6.507	35.260	0.509	18.380	8.093	1.080
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:11:11	0.070	0.202	0.265	м 114.900	102.405%	102.930%	0.132	0.016	2.465	2.425
2 15:12:16	0.060	0.233	0.276	м 110.100	104.031%	105.616%	0.135	0.013	2.416	2.311
3 15:13:22	0.081	0.254	0.291	м 112.000	105.049%	104.683%	0.132	0.013	2.471	2.300
Х	0.071	0.230	0.277	м 112.300	103.828%	104.410%	0.133	0.014	2.451	2.345
σ	0.011	0.026	0.013	м 2.383	1.334%	1.364%	0.002	0.001	0.030	0.069
%RSD	14.990	11.350	4.835	м 2.121	1.284	1.306	1.380	9.479	1.230	2.944
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 15:11:11	2.354	99.676%	0.000	0.000						
2 15:12:16	2.254	103.001%	0.000	0.000						
3 15:13:22	2.305	102.368%	0.000	0.000						
X	2.305	101.682%	0.000	0.000						
σ	0.050	1.766%	0.000	0.000						
%RSD	2.168	1.736	0.000	0.000						

ja59191-3f 11/2/2010 15:13:47

User Pre-dilution: 1.00 Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:14:53	90.924%	0.012	м 106.000	м 111.100	0.000	тм 23580.000	тм 7893.000	тм 8024.000	3.424	<u>1 0.000</u>
2 15:15:58	87.388%	0.012	<u>м 103.800</u> м 107.800	м 111.400	0.000	тм 24610.000	тм 8149.000	тм 8331.000	3.212	<u>т 0.000</u>
3 15:17:04	87.066%		<u>м 104.000</u>	м 113.300		тм 24300.000	тм 8229.000	тм 8253.000		<u>т 0.000</u>
		0.005			0.000	тм 24160.000			3.290	
X	88.460%	0.012	м 106.000	м 112.000	0.000		тм 8090.000	тм 8203.000	3.309	<u>т 0.000</u>
σ	2.141%	0.006	м 1.879	<u>м 1.167</u>	0.000	<u>тм 528.800</u>	тм 175.400	тм 159.300	0.108	<u>т 0.000</u>
%RSD	2.420	54.140	м 1.773	м 1.042	0.000	<u>тм 2.189</u>	тм 2.169	<u>тм 1.942</u>	3.254	T 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 15:14:53	ррb тм 8014.000	ррb м 109000.000	ррb тм 119200.000	ppb 98.365%	ppb 0.666	ppb [0.396	ppb 0.229	ppb 0.882	ppb 95.460	ррb тм 3386.000
2 15:15:58	тм 8182.000	м 112400.000	тм 120600.000	97.346%	0.729	-0.109	0.227	-1.513	93.780	тм 3434.000
3 15:17:04	тм 8157.000	м 113000.000	тм 120900.000	96.194%	0.724	0.500	0.108	-0.064	81.240	тм 3481.000
										·
X	тм 8118.000	м 111400.000	тм 120200.000	97.302%	0.649	0.262	0.202	-0.232	90.160	тм 3434.000
σ %RSD	тм 90.360	м 2137.000	тм 929.500	1.086%	0.090	0.326	0.031	1.206	7.774	<u>тм 47.650</u>
	<u>тм 1.113</u>	м 1.918	<u>тм 0.773</u>	1.116	13.780	124.300	15.530	521.100	8.622	<u>тм 1.388</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 15:14:53	ррb тм 23650.000	ррb ™ 25320.000	ppb -0.478	ppb 2.289	ppb 4.466	ppb [0.110	ppb 0.357	ppb 5.968	ppb 13.790	ppb 12.360
2 15:14:53	тм 24210.000	тм 25680.000	-0.478	2.289	4.400	0.110	0.357	5.842	14.560	12.360
	TM 24340.000	тм 25620.000	-0.513	2.319	3.541	0.073	0.329	6.086 5.966	14.820	12.990
X	тм 24070.000	тм 25540.000	-0.501	2.309	4.114	0.096	0.342		14.390	12.610
σ	<u>тм 368.000</u>	тм 195.300	0.020	0.017	0.500	0.020	0.014	0.122	0.537	0.339
%RSD	<u>тм 1.529</u>	тм 0.765	3.985	0.731 79Br	12.160	21.020	4.039	2.040 89Y	3.729	2.689
Run Time	75As	77Se	78Se		81Br	82Se	88Sr		95Mo	97Mo
1 15:14:53	ppb 18.780	ppb 3.146	ppb -0.456	ppb 0.000	ppb 0.000	ppb [0.072	ррb <u>тм 1015.000</u>	ppb 99.089%	ppb 0.752	ppb 0.725
2 15:15:58	18.910	2.299			0.000	0.072		99.708%	0.752	
3 15:17:04	19.340	2.299	-0.471 -0.371	0.000 0.000	0.000	0.073	тм 1025.000	96.931%	0.755	0.847 0.865
							™ 1038.000			
X	19.010	2.631	-0.433	0.000	0.000	0.079	тм 1026.000	98.576%	0.806	0.812
σ %RSD	0.290	0.453	0.053	0.000	0.000	0.012	<u>тм 11.890</u>	1.458%	0.091	0.076
	1.525	17.200	12.360	0.000	0.000	15.220	<u>тм 1.159</u>	1.479	11.250	9.348
Run Time	98Mo ppb	103Rh ppb	106Cd	107Ag	108Mo O ppb	108Cd ppb	109Ag	111Cd ppb	114Cd	115In
1 15:14:53	0.672	93.726%	ppb -4.704	ppb 0.001	0.566	0.214	ppb 0.107	-0.273	ppb 0.046	ppb 99.032%
2 15:15:58	0.771	94.565%	-3.991	-0.001	0.518	0.184	0.107	-0.273	0.040	98.482%
3 15:17:04	0.929	91.878%	-5.225	0.005	0.589	0.066	0.111	-0.298	0.031	97.730%
	0.790	93.390%	-4.640	0.003	0.558	0.000	0.111	-0.269	0.031	98.415%
X				0.002	0.037	0.155		0.031	0.048	0.654%
σ %RSD	0.130 16.390	1.375% 1.472	0.619 13.350	188.800	6.553	50.370	0.002 1.948	11.410	37.540	0.664
Run Time	118Sn	1.472 121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
itan nine	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:14:53	-0.014	0.139	0.199	м 307.200	105.226%	106.589%	0.125	0.005	0.193	0.135
2 15:15:58	0.010	0.161	0.207	м 313.000	104.824%	105.388%	0.125	0.004	0.182	0.149
3 15:17:04	0.016	0.190	0.203	м 311.900	104.148%	103.785%	0.125	0.003	0.170	0.148
X	0.004	0.163	0.203	м 310.700	104.733%	105.254%	0.125	0.004	0.182	0.144
σ	0.004	0.026	0.004	м 3.113	0.544%	1.407%	0.000	0.004	0.102	0.007
%RSD	387.300	15.860	2.043	м 3.113 м 1.002	0.544%	1.407%	0.326	25.210	6.251	5.181
Run Time	208Pb	209Bi	220Bkg	238U	0.320	1.557	0.320	23.210	0.231	3.101
Time Inne	ppb	ppb	ppb	ppb						
1 15:14:53	0.099	102.674%	0.000	0.000						
2 15:15:58	0.095	101.936%	0.000	0.000						
3 15:17:04	0.091	102.306%	0.000	0.000						
X X	0.095	102.305%	0.000	0.000						
σ	0.093	0.369%	0.000	0.000						
%RSD	3.797	0.364%	0.000	0.000						
751155	3.171	0.301	0.000	0.000						

ja59191-4f 11/2/2010 15:17:30

User Pre-allution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:18:35	85.916%	0.005	м 460.000	м 502.700	0.000	тм 485500.000	тм 48600.000	тм 47980.000	8.750	<u>т 0.000</u>
2 15:19:41	85.099%	0.014	м 483.100	<u>м 537.600</u>	0.000	тм 496800.000	<u>тм 51510.000</u>	тм 50670.000	9.258	<u> </u>
3 15:20:46	89.902%	0.025	м 475.900	м 498.400	0.000	тм 480300.000	тм 50450.000	тм 49280.000	9.074	<u>т 0.000</u>
X	86.972%	0.015	м 473.000	м 512.900	0.000	тм 487500.000	тм 50190.000	тм 49310.000	9.027	<u>т 0.000</u>
σ	2.570%	0.010	м 11.830	м 21.510	0.000	тм 8473.000	тм 1469.000	тм 1345.000	0.257	<u>т 0.000</u>
%RSD	2.955	66.760	м 2.502	м 4.194	0.000	тм 1.738	тм 2.928	тм 2.728	2.849	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:18:35	тм 19800.000	м 125100.000	тм 136900.000	106.464%	1.332	0.790	11.080	11.680	106.300	тм 527.300
2 15:19:41	тм 20560.000	м 129400.000	тм 139700.000	110.198%	1.238	0.471	11.640	10.990	145.100	тм 541.200
3 15:20:46	тм 20490.000	м 129000.000	тм 137500.000	113.594%	1.093	0.147	11.210	9.977	164.400	тм 538.300
X	тм 20280.000	м 127800.000	тм 138000.000	110.085%	1.221	0.469	11.310	10.880	138.600	тм 535.600
σ	тм 415.500	м 2332.000	тм 1485.000	3.566%	0.121	0.322	0.292	0.857	29.590	тм 7.292
%RSD	тм 2.049	м 1.824	тм 1.076	3.240	9.880	68.550	2.583	7.874	21.350	тм 1.362
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	dqq	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb
1 15:18:35	тм 2864.000	м 3032.000	-0.587	21.950	65.600	3.458	0.590	м 205.000	м 201.700	м 208.500
2 15:19:41	тм 2954.000	м 3170.000	-0.601	22.560	82.040	4.272	0.599	м 212.700	м 209.700	м 218.100
3 15:20:46	тм 2925.000	м 3128.000	-0.594	22.260	81.000	4.098	0.560	м 210.000	м 208.700	м 215.000
X	тм 2914.000	м 3110.000	-0.594	22.260	76.210	3.943	0.583	м 209.200	м 206.700	м 213.900
σ	тм 46.180	м 70.710	0.007	0.305	9.208	0.429	0.021	м 3.909	м 4.328	м 4.891
%RSD	тм 1.584	м 2.274	1.192	1.370	12.080	10.870	3.517	<u>м 1.868</u>	<u>м 1.020</u> м 2.094	<u>м 2.287</u>
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
Train Time	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:18:35	1.831	4.146	-0.162	0.000	0.000	-0.177	тм 1069.000	103.909%	4.524	4.792
2 15:19:41	1.848	6.321	0.086	0.000	0.000	-0.861	тм 1115.000	106.431%	5.423	5.600
3 15:20:46	1.758	7.666	0.046	0.000	0.000	-0.667	тм 1084.000	110.349%	5.546	5.606
X	1.812	6.044	-0.010	0.000	0.000	-0.568	тм 1089.000	106.896%	5.164	5.333
σ	0.048	1.776	0.133	0.000	0.000	0.353	тм 23.790	3.245%	0.558	0.468
%RSD	2.651	29.380	1329.000	0.000	0.000	62.110	<u>тм 2.184</u>	3.036	10.800	8.774
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
Ruii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:18:35	4.523	91.537%	-5.632	0.006	0.621	0.156	0.106	-0.315	0.019	99.659%
2 15:19:41	5.429	92.288%	-5.433	0.000	0.631	0.483	0.109	-0.326	0.017	99.996%
3 15:20:46	5.858	94.252%	-5.456	0.000	0.623	0.356	0.107	-0.309	0.022	103.446%
	5.270	92.692%	-5.507	0.000	0.625	0.332	0.107	-0.307	0.022	103.440%
X										
σ %RSD	0.682	1.402%	0.109	0.003	0.006	0.165	0.002	0.008	0.002	2.096%
Run Time	12.940 118Sn	1.512 121Sb	1.977 123Sb	162.300 137Ba	0.924 159Tb	49.680 165Ho	1.533 203TI	2.645 205TI	10.930 206Pb	2.075 207Pb
ituii iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:18:35	0.021	0.169	0.259	м 364.900	107.677%	109.371%	0.123	0.001	0.371	0.325
2 15:19:41	0.010	0.189	0.255	м 382.500	110.061%	109.829%	0.123	0.001	0.415	0.323
3 15:20:46	0.010	0.235	0.293	м 377.100	112.067%	112.984%	0.124	0.002	0.415	0.331
X	0.027	0.197	0.269	м 374.800	109.935%	110.728%	0.122	0.002	0.387	0.339
σ	0.021	0.034	0.021	м 8.998	2.198%	1.967%	0.002	0.001	0.024	0.013
%RSD	77.960	17.050	7.734	м 2.401	1.999	1.777	1.460	31.820	6.251	3.792
Run Time	208Pb	209Bi	220Bkg	238U						
1 15:18:35	ppb 0.284	ppb	ppb	ppb 0.000						
	0.284	94.105%	0.000	0.000						
2 15:19:41	0.317	94.414%	0.000	0.000						
3 15:20:46	0.294	96.948%	0.000	0.000						
X	0.298	95.155%	0.000	0.000						
σ	0.017	1.560%	0.000	0.000						
%RSD	5.648	1.639	0.000	0.000						

ja59191-5f 11/2/2010 15:21:12

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
ituii iiiic	ppb	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:22:17	90.136%	0.012	м 331.800	м 347.000	0.000	тм 77270.000	тм 33520.000	тм 33130.000	6.301	<u>⊤ 0.000</u>
2 15:23:23	82.709%	0.015	м 362.000	м 362.400	0.000	тм 81550.000	тм 35920.000	тм 36220.000	6.973	± 0.000
3 15:24:28	89.383%	0.004	м 359.700	м 375.000	0.000	тм 79610.000	тм 35820.000	тм 35410.000	6.704	T 0.000
X X	87.409%	0.011	м 351.200	м 361.500	0.000	тм 79480.000	тм 35090.000	тм 34920.000	6.659	<u>т 0.000</u>
	4.088%	0.005	м 16.850	м 14.040	0.000	тм 2142.000	тм 1360.000	тм 1606.000	0.338	<u>т 0.000</u>
σ %RSD	4.000 76	52.030	<u>м 10.830</u> м 4.798	м 14.040	0.000	тм 2.696	тм 3.876	тм 4.600	5.075	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
ixuii iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:22:17	тм 10060.000	м 119900.000	тм 129700.000	110.902%	0.905	1.677	3.305	3.703	162.500	тм 874.200
2 15:23:23	тм 10450.000	м 127300.000	тм 133900.000	103.337%	1.142	1.570	3.432	2.822	185.800	тм 914.700
3 15:24:28	тм 10410.000	м 128100.000	тм 136700.000	108.790%	0.963	1.845	3.687	3.840	192.000	тм 931.600
X	тм 10310.000	м 125100.000	тм 133400.000	107.676%	1.003	1.697	3.474	3.455	180.100	тм 906.900
σ	тм 216.700	м 4501.000	тм 3524.000	3.903%	0.124	0.139	0.194	0.552	15.550	тм 29.520
%RSD	тм 2.103	м 3.597	тм 2.641	3.625	12.340	8.184	5.596	15.980	8.632	тм 3.255
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
Kun mine	ppb	ppb	ppb	ppb	ppb	ppb	dqq	ppb	ppb	ppb
1 15:22:17	тм 3917.000	м 4197.000	0.984	7.608	15.520	1.079	0.940	6.332	10.980	9.216
2 15:23:23	тм 41 40.000	м 4308.000	1.042	8.272	9.818	0.970	0.994	6.241	10.820	9.882
3 15:24:28	тм 4209.000	м 4408.000	1.097	7.895	9.409	0.906	1.000	6.472	10.790	9.673
Х	тм 4089.000	м 4304.000	1.041	7.925	11.580	0.985	0.978	6.348	10.860	9.590
σ	тм 152.900	м 105.500	0.056	0.333	3.416	0.088	0.033	0.116	0.102	0.341
%RSD	тм 3.740	м 2.451	5.423	4.201	29.500	8.918	3.363	1.832	0.941	3.552
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
,	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:22:17	4.155	7.665	-0.193	0.000	0.000	-0.023	тм 873.700	110.050%	10.550	10.490
2 15:23:23	4.642	8.527	-0.110	0.000	0.000	0.142	тм 913.700	104.791%	11.290	11.100
3 15:24:28	4.674	9.542	-0.412	0.000	0.000	0.215	тм 924.200	107.332%	11.730	11.820
X	4.490	8.578	-0.238	0.000	0.000	0.111	тм 903.900	107.391%	11.190	11.140
σ	0.291	0.939	0.156	0.000	0.000	0.122	тм 26.630	2.630%	0.599	0.661
%RSD	6.478	10.950	65.420	0.000	0.000	109.800	<u>тм 2.947</u>	2.449	5.354	5.939
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:22:17	10.500	99.816%	-3.937	0.002	0.508	0.120	0.107	-0.214	0.087	106.528%
2 15:23:23	11.580	94.053%	-4.284	0.002	0.548	0.360	0.112	-0.248	0.057	100.311%
3 15:24:28	11.830	95.426%	-4.286	0.001	0.538	0.238	0.110	-0.255	0.077	103.016%
X	11.300	96.432%	-4.169	0.002	0.531	0.239	0.110	-0.239	0.074	103.285%
σ	0.708	3.011%	0.201	0.001	0.021	0.120	0.003	0.022	0.015	3.117%
%RSD	6.264	3.122	4.818	37.590	3.967	50.260	2.344	9.354	20.720	3.018 207Pb
Run Time	118Sn ppb	121Sb ppb	123Sb ppb	137Ba ppb	159Tb ppb	165Ho ppb	203TI ppb	205TI ppb	206Pb ppb	ppb
1 15:22:17	-0.003	0.350	0.410	м 162.300	115.178%	113.758%	0.122	0.002	0.293	0.227
2 15:23:23	0.015	0.379	0.428	м 172.800	109.149%	109.946%	0.122	0.002	0.307	0.257
3 15:24:28	0.013	0.389	0.423	м 177.400	109.837%	112.444%	0.121	0.000	0.307	0.237
X	0.013	0.372	0.421	м 170.800	111.388%	112.049%	0.122	0.004	0.293	0.240
σ	0.015	0.021	0.009	м 7.759	3.300%	1.937%	0.001	0.002	0.014	0.016
%RSD	118.200	5.517	2.189	<u>м 7.737</u> м 4.542	2.963	1.728	0.613	64.780	4.926	6.594
Run Time	208Pb	209Bi	220Bkg	238U	2.700	11720	0.0.0	011700	,20	0.071
	ppb	ppb	ppb	ppb						
1 15:22:17	0.189	106.301%	0.000	0.000						
2 15:23:23	0.200	102.697%	0.000	0.000						
3 15:24:28	0.194	103.870%	0.000	0.000						
Х	0.194	104.289%	0.000	0.000						
σ	0.006	1.839%	0.000	0.000						
%RSD	2.848	1.763	0.000	0.000						

CCV 11/2/2010 15:24:55

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	dqq	ppb	ppb	ppb	ppb	ppb
1 15:26:01	102.589%	47.370	64.810	66.100	0.000	т 695.400	595.300	593.000	т 522.900	⊤ 0.000
2 15:27:06	95.299%	49.550	63.340	66.520	0.000	<u> </u>	563.500	546.400	т 565.600	⊤ 0.000
3 15:28:11	97.336%	48.630	59.110	63.090	0.000	т 522.200	506.500	518.700	<u>т 534.600</u>	T 0.000
X	98.408%	48.510	62.420	65.240	0.000	т 597.700	555.100	552.700	т 541.000	т 0.000
σ	3.762%	1.094	2.956	1.872	0.000	т 88.730	45.020	37.560	т 22.060	т 0.000
%RSD	3.822	2.255	4.735	2.869	0.000	т 14.850	8.110	6.797	т 4.077	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:26:01	501.500	834.400	832.100	108.408%	47.800	47.760	48.390	47.950	253.000	50.360
2 15:27:06	519.600	582.000	584.700	102.799%	50.630	51.050	50.710	51.220	242.500	50.740
3 15:28:11	495.900	551.400	529.200	102.637%	49.340	49.600	49.660	48.650	217.500	48.990
X	505.600	655.900	648.700	104.614%	49.260	49.470	49.590	49.270	237.700	50.030
σ	12.400	155.300	161.300	3.286%	1.418	1.651	1.162	1.722	18.220	0.920
%RSD	2.452	23.680	24.860	3.141	2.878	3.337	2.344	3.495	7.666	1.839
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:26:01	<u>т 520.000</u>	534.100	48.770	48.060	48.610	48.090	48.050	47.370	46.070	47.400
2 15:27:06	<u>т 542.800</u>	549.800	51.710	50.970	49.230	51.780	50.780	49.900	47.980	49.150
3 15:28:11	<u>⊤ 525.700</u>	530.500	50.590	49.620	48.950	50.220	48.920	48.110	49.000	48.370
X	<u>т 529.500</u>	538.100	50.360	49.550	48.930	50.030	49.250	48.460	47.680	48.310
σ	<u>т 11.870</u>	10.230	1.485	1.452	0.311	1.855	1.396	1.302	1.486	0.874
%RSD	т 2.241	1.902	2.949	2.929	0.635	3.708	2.834	2.686	3.117	1.810
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 15 07 01	ppb	ppb	ppb 47,070	ppb	ppb	ppb	ppb	ppb	ppb 40,200	ppb
1 15:26:01	47.380	52.650	47.870	0.000	0.000	48.970	51.110	110.763%	48.280	47.810
2 15:27:06	49.310	54.710	50.480	0.000	0.000	50.520	51.370	107.344%	50.270	50.220
3 15:28:11	48.180	52.980	49.530	0.000	0.000	49.660	49.500	105.787%	49.970	50.020
X	48.290	53.450	49.290	0.000	0.000	49.720	50.660	107.964%	49.510	49.350
σ %RSD	0.970	1.103	1.323	0.000	0.000	0.780	1.015	2.545%	1.074	1.337
Run Time	2.009 98Mo	2.063 103Rh	2.684 106Cd	0.000 107Ag	0.000 108Mo O	1.569 108Cd	2.003 109Ag	2.358 111Cd	2.170 114Cd	2.708 115In
Kuii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:26:01	48.010	108.948%	47.660	49.220	0.611	49.410	48.150	48.500	47.220	111.736%
2 15:27:06	50.850	106.418%	52.250	50.440	0.403	50.870	49.940	50.420	49.830	107.652%
3 15:28:11	49.470	103.066%	50.870	49.860	0.519	51.050	49.310	49.920	49.540	106.555%
х	49.450	106.144%	50.260	49.840	0.511	50.440	49.130	49.610	48.860	108.648%
σ	1.421	2.951%	2.354	0.606	0.105	0.900	0.909	0.997	1.428	2.730%
%RSD	2.873	2.780	4.684	1.216	20.460	1.783	1.850	2.010	2.923	2.513
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:26:01	48.310	47.190	46.970	48.670	116.749%	117.420%	49.030	49.010	48.540	48.870
2 15:27:06	50.010	49.530	49.770	50.100	113.008%	112.912%	51.430	50.720	51.220	51.600
3 15:28:11	48.620	48.410	49.040	48.850	110.685%	112.336%	49.810	49.570	49.760	49.880
X	48.980	48.380	48.590	49.210	113.480%	114.223%	50.090	49.770	49.840	50.120
σ	0.907	1.166	1.451	0.779	3.060%	2.784%	1.222	0.875	1.340	1.380
%RSD	1.852	2.411	2.986	1.582	2.696	2.437	2.439	1.757	2.689	2.753
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 15:26:01	48.370	121.281%	0.000	0.000						
2 15:27:06	50.750	117.120%	0.000	0.000						
3 15:28:11	49.350	115.826%	0.000	0.000						
X	49.490	118.076%	0.000	0.000						
σ	1.197	2.850%	0.000	0.000						
%RSD	2.418	2.414	0.000	0.000						

ccb 11/2/2010 15:28:37

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
ituii iiiio	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:29:42	96.812%	0.030	10.420	11.160	0.000	4.925	1.312	1.860	-0.057	<u>т 0.000</u>
2 15:30:48	97.420%	0.003	9.977	9.285	0.000	-2.496	-0.320	0.054	-1.116	т 0.000
3 15:31:53	94.974%	0.003	8.506	9.035	0.000	-1.663	-0.372	0.017	-0.865	т 0.000
Х	96.402%	0.012	9.634	9.827	0.000	0.256	0.207	0.644	-0.679	т 0.000
σ	1.274%	0.015	1.002	1.161	0.000	4.065	0.958	1.053	0.553	т 0.000
%RSD	1.321	128.000	10.400	11.820	0.000	1591.000	463.000	163.700	81.440	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:29:42	-1.477	-18.490	-11.630	100.876%	-0.116	0.073	0.252	0.122	218.400	0.122
2 15:30:48	-1.307	-25.150	-17.430	98.659%	-0.167	-0.120	0.216	0.467	228.100	0.054
3 15:31:53	-1.710	-27.530	-17.490	99.412%	-0.137	-0.146	0.174	0.720	229.800	0.058
X	-1.498	-23.720	-15.520	99.649%	-0.140	-0.064	0.214	0.436	225.400	0.078
σ	0.202	4.681	3.365	1.127%	0.025	0.120	0.039	0.300	6.149	0.038
%RSD	13.480	19.730	21.680	1.131	18.180	185.700	18.250	68.790	2.728	49.140
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:29:42	-0.103	-1.506	0.054	0.070	0.227	-0.241	-0.047	-0.772	-1.069	-1.508
2 15:30:48	0.815	-2.227	-0.018	0.041	0.261	-0.288	-0.078	-0.795	-1.087	-1.514
3 15:31:53	2.163	-1.880	-0.009	0.043	0.194	-0.255	-0.093	-0.760	-1.102	-1.473
X	0.959	-1.871	0.009	0.051	0.227	-0.261	-0.073	-0.776	-1.086	-1.498
σ	1.140	0.361	0.039	0.016	0.034	0.024	0.024	0.018	0.017	0.022
%RSD	118.900	19.280	424.400	31.630	14.820	9.108	32.250	2.286	1.529	1.458
Run Time	75As	77Se	78Se	79Br	81 Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:29:42	-0.125	4.892	-0.166	0.000	0.000	0.119	0.080	107.152%	0.938	0.935
2 15:30:48	-0.143	5.752	-0.213	0.000	0.000	0.131	0.015	104.502%	0.645	0.636
3 15:31:53	-0.176	6.120	-0.188	0.000	0.000	0.096	0.011	104.032%	0.637	0.651
X	-0.148	5.588	-0.189	0.000	0.000	0.115	0.036	105.229%	0.740	0.741
σ	0.026	0.630	0.024	0.000	0.000	0.017	0.039	1.682%	0.172	0.169
%RSD	17.700	11.270	12.590	0.000	0.000	15.150	109.500	1.599	23.230	22.740
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
1 15:29:42	ppb 0.871	ppb 106.357%	ppb -0.395	ppb 0.051	ppb 0.276	ppb 0.142	ppb 0.151	-0.004	ppb 0.237	ppb 108.397%
2 15:30:48	0.639	100.337 %	-0.920	0.025	0.276	0.142	0.131	-0.060	0.237	105.461%
3 15:31:53	0.625	102.710%	-0.310	0.023	0.265	0.064	0.136	-0.023	0.208	105.503%
X	0.023	103.900%	-0.542	0.036	0.282	0.004	0.130	-0.023	0.200	106.454%
σ	0.712	2.129%	0.331	0.014	0.202	0.045	0.010	0.029	0.025	1.683%
%RSD	19.440	2.12478	61.010	38.100	7.443	50.500	6.920	97.440	11.640	1.581
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
ituii iiiii	ppb	ppb	ppb	ppb	ppb	dqq	ppb	ppb	ppb	ppb
1 15:29:42	0.367	1.406	1.471	0.039	110.843%	111.254%	0.196	0.074	0.117	0.086
2 15:30:48	0.512	1.245	1.259	-0.007	108.561%	108.038%	0.146	0.033	0.087	0.043
3 15:31:53	0.658	1.290	1.396	-0.017	109.095%	108.303%	0.148	0.029	0.080	0.038
Х	0.512	1.314	1.375	0.005	109.499%	109.198%	0.163	0.046	0.094	0.056
σ	0.145	0.083	0.108	0.030	1.194%	1.785%	0.028	0.025	0.019	0.026
%RSD	28.400	6.313	7.827	594.700	1.090	1.635	17.290	54.420	20.610	47.190
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 15:29:42	0.033	114.845%	0.000	0.000						
2 15:30:48	-0.002	111.522%	0.000	0.000						
3 15:31:53	-0.006	111.506%	0.000	0.000						
Х	0.008	112.625%	0.000	0.000						
σ	0.022	1.923%	0.000	0.000						
%RSD	264.400	1.707	0.000	0.000						

MP55464-MB1 11/2/2010 15:48:16

User Pre-dilution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:49:21	100.953%	-0.005	4.450	4.195	0.000	-8.055	-1.261	-0.777	-1.217	<u>T 0.000</u>
2 15:50:27	98.690%	0.003	4.095	4.201	0.000	-8.420	-1.268	-0.854	-1.241	<u> </u>
3 15:51:32	93.071%	0.004	4.055	4.444	0.000	-8.171	-1.295	-0.831	-1.224	<u>т 0.000</u>
X	97.571%	0.000	4.200	4.280	0.000	-8.215	-1.275	-0.820	-1.228	<u>т 0.000</u>
σ	4.058%	0.005	0.217	0.142	0.000	0.186	0.018	0.039	0.012	т 0.000
%RSD	4.159	1092.000	5.171	3.321	0.000	2.269	1.389	4.803	1.007	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:49:21	-2.617	-29.220	-20.990	99.868%	-0.175	0.055	0.189	0.406	216.800	0.225
2 15:50:27	-2.525	-30.500	-21.970	99.068%	0.093	-0.280	0.190	-1.265	218.900	0.220
3 15:51:32	-1.784	-33.150	-21.580	98.894%	-0.151	-0.040	0.155	0.609	210.700	0.216
	-2.309							-0.083		0.210
X		-30.960	-21.510	99.277%	-0.078	-0.089	0.178		215.500	
σ	0.457	2.001	0.493	0.520%	0.148	0.173	0.020	1.028	4.268	0.005
%RSD	19.780	6.463	2.292	0.524	190.300	195.100	11.050	1235.000	1.981	2.065
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:49:21	26.730	25.040	-0.020	0.076	0.113	-0.278	-0.067	-0.860	-1.307	-1.581
2 15:50:27	26.990	26.110	-0.017	0.051	0.196	-0.284	-0.063	-0.817	-1.304	-1.600
3 15:51:32	27.290	26.060	-0.022	0.055	0.214	-0.267	-0.083	-0.818	-1.194	-1.621
X	27.000	25.740	-0.020	0.060	0.174	-0.277	-0.071	-0.832	-1.268	-1.600
σ	0.279	0.603	0.002	0.013	0.054	0.009	0.011	0.025	0.064	0.020
%RSD	1.035	2.342	10.720	21.990	30.950	3.204	15.260	2.987	5.064	1.245
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:49:21	-0.190	6.837	-0.257	0.000	0.000	0.016	-0.017	105.200%	-0.345	-0.239
2 15:50:27	-0.101	6.758	-0.150	0.000	0.000	-0.083	-0.018	102.340%	-0.127	-0.138
3 15:51:32	-0.054	6.702	-0.025	0.000	0.000	-0.086	-0.020	99.444%	0.048	0.018
X	-0.115	6.766	-0.144	0.000	0.000	-0.051	-0.018	102.328%	-0.141	-0.120
σ	0.069	0.068	0.116	0.000	0.000	0.058	0.002	2.878%	0.197	0.130
%RSD	60.210	1.003	80.750	0.000	0.000	114.600	9.482	2.812	139.700	108.400
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:49:21	-0.379	103.151%	-1.217	0.003	0.328	0.091	0.111	-0.079	0.172	104.860%
2 15:50:27	-0.145	100.963%	-0.402	0.002	0.269	0.036	0.110	-0.018	0.207	103.133%
3 15:51:32	0.107	100.297%	-0.057	0.001	0.246	0.036	0.112	-0.003	0.224	102.646%
X	-0.139	101.470%	-0.559	0.002	0.281	0.055	0.112	-0.033	0.224	103.546%
σ	0.243	1.493%	0.596	0.001	0.042	0.032	0.001	0.040	0.027	1.164%
Run Time	175.300 118Sn	1.472	106.500 123Sb	37.340	15.000	57.870	0.764	121.400 205TI	13.230	1.124 207Pb
Run Time		121Sb		137Ba	159Tb	165Ho	203TI		206Pb	
1 15:49:21	0.003	ppb 0.119	ppb 0.157	ppb 0.021	ppb	ppb 105.932%	ppb 0.120	ppb 0.001	ppb 0 .072	ppb 0.042
		0.118	0.157	-0.031	106.776%		0.120	-0.001		
2 15:50:27	0.055	0.183	0.240	-0.037	103.331%	101.920%	0.117	-0.002	0.068	0.039
3 15:51:32	0.131	0.256	0.274	-0.028	102.674%	104.641%	0.117	-0.002	0.072	0.037
X	0.063	0.186	0.224	-0.032	104.260%	104.164%	0.118	-0.002	0.071	0.039
σ	0.064	0.069	0.060	0.005	2.203%	2.048%	0.001	0.000	0.002	0.002
%RSD	102.800	37.350	26.810	14.540	2.113	1.966	1.091	25.130	3.198	5.821
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 15:49:21	-0.011	108.324%	0.000	0.000						
2 15:50:27	-0.012	105.229%	0.000	0.000						
3 15:51:32	-0.012	107.278%	0.000	0.000						
X	-0.012	106.944%	0.000	0.000						
σ	0.001	1.574%	0.000	0.000						
%RSD	8.072	1.472	0.000	0.000						

MP55464-B1 11/2/2010 15:51:58

User Pre-dilution: 1.00	00									
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:53:03	98.853%	93.180	4.173	4.155	0.000	408.200	480.600	490.200	<u> 7514.000</u>	<u>т 0.000</u>
2 15:54:08	98.076%	92.710	3.804	3.888	0.000	509.700	485.600	492.700	<u>⊤ 519.200</u>	<u> 7 0.000</u>
3 15:55:14	97.889%	92.600	4.106	3.594	0.000	488.100	496.200	486.800	<u>т 515.000</u>	<u> 7 0.000</u>
X	98.272%	92.830	4.028	3.879	0.000	468.700	487.500	489.900	т <u>516.100</u>	т 0.000
σ	0.511%	0.310	0.197	0.281	0.000	53.450	7.979	2.940	т 2.780	т 0.000
%RSD	0.520	0.334	4.880	7.234	0.000	11.410	1.637	0.600	<u>т 0.539</u>	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
itan iniic	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:53:03	469.600	479.100	470.000	100.125%	-0.168	97.050	96.450	96.520	198.200	96.160
2 15:54:08	478.300	472.500	483.300	97.655%	-0.143	98.500	99.550	95.070	190.000	99.780
3 15:55:14	481.600	472.300	490.800	96.037%		99.140	99.560	м 101.900	167.900	99.640
					-0.164					
X	476.500	474.100	481.400	97.939%	-0.158	98.230	98.520	м 97.820	185.300	98.530
σ	6.225	4.429	10.570	2.059%	0.014	1.073	1.789	м 3.574	15.690	2.049
%RSD	1.306	0.934	2.196	2.102	8.679	1.092	1.816	м 3.654	8.464	2.079
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:53:03	<u> 7 499.400</u>	503.800	99.310	95.770	93.070	99.360	96.000	94.450	95.700	94.790
2 15:54:08	518.800	511.400	м 103.000	99.610	96.450	м 100.900	96.730	97.280	98.020	96.800
3 15:55:14	<u> 7 508.600</u>	512.500	99.180	97.880	95.850	98.170	96.690	94.350	94.910	97.390
X	<u>т 508.900</u>	509.200	м 100.500	97.760	95.120	м 99.490	96.470	95.360	96.210	96.330
σ	<u>т 9.710</u>	4.733	<u>м 2.156</u>	1.921	1.803	м 1.393	0.410	1.663	1.617	1.366
%RSD	<u>т 1.908</u>	0.929	<u>м 2.145</u>	1.966	1.896	<u>м 1.400</u>	0.425	1.744	1.681	1.418
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:53:03	95.230	м 196.900	м 189.800	0.000	0.000	м 189.900	0.006	103.694%	-0.535	-0.470
2 15:54:08	98.200	м 198.000	м 196.100	0.000	0.000	м 194.700	0.006	101.119%	-0.406	-0.369
3 15:55:14	97.750	м 201.900	м 196.700	0.000	0.000	м 196.200	0.000	99.771%	-0.223	-0.116
X	97.060	м 198.900	м 194.200	0.000	0.000	м 193.600	0.004	101.528%	-0.388	-0.318
σ	1.599	м 2.657	м 3.786	0.000	0.000	м 3.252	0.003	1.993%	0.157	0.183
%RSD	1.648	м 1.336	м 1.949	0.000	0.000	<u>м 1.680</u>	82.440	1.963	40.440	57.410
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:53:03	-0.510	104.159%	96.160	96.630	0.509	93.320	94.390	96.620	93.480	104.474%
2 15:54:08	-0.403	99.164%	м 100.800	96.920	0.510	97.230	97.510	97.560	96.530	102.068%
3 15:55:14	-0.256	99.352%	м 100.100	96.590	0.391	95.000	95.940	96.310	96.150	102.053%
X	-0.389	100.892%	м 99.010	96.720	0.470	95.180	95.940	96.830	95.390	102.865%
σ	0.128	2.831%	м 2.484	0.182	0.068	1.963	1.560	0.649	1.658	1.393%
%RSD	32.780	2.806	м 2.509	0.188	14.480	2.062	1.626	0.670	1.739	1.354
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:53:03	0.012	97.380	97.470	94.750	107.364%	108.391%	96.140	98.030	96.730	97.420
2 15:54:08	0.012	м 101.200	м 100.100	95.240	105.400%	106.158%	98.520	м 100.300	99.480	98.960
3 15:55:14	0.038	99.290	99.170	96.140	104.886%	105.578%	97.840	98.970	97.360	97.370
X	0.021	м 99.280	м 98.920	95.380	105.883%	106.709%	97.500	м 99.100	97.860	97.920
σ	0.015	м 1.888	м 1.342	0.703	1.308%	1.485%	1.226	м 1.144	1.442	0.901
%RSD	73.140	м 1.902	м 1.356	0.738	1.235	1.392	1.257	м 1.154	1.474	0.920
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 15:53:03	96.670	109.961%	0.000	0.000						
2 15:54:08	98.550	108.402%	0.000	0.000						
3 15:55:14	97.100	108.268%	0.000	0.000						
Х	97.440	108.877%	0.000	0.000						
σ	0.988	0.941%	0.000	0.000						
%RSD	1.013	0.864	0.000	0.000						

JA58929-1 11/2/2010 15:55:40

1 556-64 90.29% 90.00	User Pre-dilution: 1		9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 15.56.45 00 20 20 53.46 56.310 0.000 0.000 0.0000 0	Kuii iiiik	_									
2 15.57.51 10.88% 0.004 58.510 58.120 0.000	1 15:56:4										
3 558-56 91,013 90,018 99,030 62,870 0,000 31,924,000 31,512,000 0,634 1,000 0		=									
Table	3 15:58:50	=					-				· · · · · · · · · · · · · · · · · · ·
Color Col											
Num Time 390											
Fig. Time 39K 43Ca 44Ca 45Sc 47Ti 51V 52Cr 53Cr 53Cl 55Mn 59Dh ppb											
1 15:56:45 61:200	Run Time	39K				47Ti					55Mn
2 15.57.51 6.67		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
3 15:58:56 678 800	1 15:56:4	641.200	м 44560.000	тм 48730.000	96.872%	0.594	2.499	0.090	-0.456	98.140	0.666
1 15.56.45 18.90	2 15:57:5	657.200	м 43500.000	тм 48140.000	100.741%	0.329	2.340	0.062	-0.420	111.700	0.623
18-90	3 15:58:50	678.800	м 45240.000	тм 49640.000	100.928%	0.462	2.424	0.090	0.251	123.700	0.653
Run Time 566 567 596 596 596 596 596 660 628 636	X	659.100	м 44430.000	тм 48830.000	99.514%	0.462	2.421	0.081	-0.208	111.200	0.648
Run Time 56Fe 57Fe 59Co 60Ni 62Ni 63Cu 65Cu 66Zn 67Zn 66Zn 66Zn 67Zn 67Zn 66Zn 67Zn 66Zn 67Zn 66Zn 67Zn 66Zn 67Zn 67Zn 66Zn 67Zn 67Zn 62Zn 67Zn 67Zn 67Zn 67Zn 67Zn 62Zn 67Zn	σ	18.900	м 874.700	тм 755.900	2.290%	0.133	0.080	0.016	0.398	12.810	0.022
The color	%RSD	2.868	м 1.969	тм 1.548	2.301	28.780	3.291	19.740	191.200	11.520	3.404
1 15:56:45 5.781 65:50 -0.229 -0.357 0.069 11:920 11:920 47:610 54:370 54:040 2 15:57:51 4.690 65:630 -0.245 -0.370 0.089 11:920 11:570 47:810 53:890 52:950 3 15:58:56 5.761 67:210 -0.252 -0.433 0.074 11:920 12:210 49:400 54:370 54:860 X X 54:10 66:120 -0.242 -0.386 0.077 11:820 11:900 48:300 54:140 53:950 32:800 11:540 1.433 4.849 10:590 13:280 1.541 2.696 2.102 0.721 1.775 78:10 7756 7756 7756 77856 7798r 818r 8256 8857 89Y 95:560 97:560	Run Time	e 56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
2 55.57.51		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
3 15:58:56 5.761 67.210 -0.252 -0.433 0.074 11.920 12.210 49.460 54.370 54.860 x 5.411 66.120 -0.242 -0.386 0.077 11.820 11.900 48.300 54.140 53.950 6.424 0.948 0.012 0.041 0.010 0.182 0.321 1.015 0.391 0.958	1 15:56:4	5.781	65.520	-0.229	-0.357	0.069	11.920	11.920	47.610	54.370	54.040
X 0.624 0.948 0.012 0.041 0.010 0.182 0.321 1.015 0.391 0.958 0.958 0.978 0.1540 0.152 0.941 0.010 0.182 0.321 1.015 0.391 0.958	2 15:57:5	4.690	65.630	-0.245	-0.370	0.089	11.610	11.570	47.810	53.690	52.950
Name	3 15:58:50	5.761	67.210	-0.252	-0.433	0.074	11.920	12.210	49.460	54.370	54.860
No. 11.540 1.433 4.849 10.590 13.280 1.541 2.996 2.102 0.721 1.775	X	5.411	66.120	-0.242	-0.386	0.077	11.820	11.900	48.300	54.140	53.950
Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 97Mo 1 15:56:45 5.841 -1.232 0.564 0.000 0.000 0.901 me654.200 97:121% 1.304 1.327 2 15:57:51 5.747 -1.317 0.205 0.000 0.000 0.591 me654.200 97:121% 1.304 1.327 3 15:58:56 5.941 -0.781 0.163 0.000 0.000 0.564 0.002 100.654.000 100.0829% 1.565 1.566 3 15:58:56 5.941 -0.781 0.163 0.000 0.000 0.692 me654.000 100.056% 1.547 1.543 α 0.097 0.288 0.220 0.000 0.000 0.000 0.000 1.00.056% 1.564 1.543 π 1.662 25.970 70.820 0.000 0.000 0.000 me54.000 me54.000 1.000 1.	σ	0.624	0.948	0.012	0.041	0.010	0.182	0.321	1.015	0.391	0.958
1 15:56:45 5.841 -1.232 0.564 0.000 0.000 0.901 \(\bullet \) \(\b	%RSD	11.540	1.433	4.849	10.590	13.280	1.541	2.696	2.102	0.721	1.775
1 15:56:45 5.841 -1.232 0.564 0.000 0.000 0.901 m 654 200 97.121% 1.304 1.327 2 15:57:51 5.747 -1.317 0.205 0.000 0.000 0.586 m 655 200 100.829% 1.565 1.566 3 15:58:56 5.941 -0.781 0.163 0.000 0.000 0.586 m 652 300 102.217% 1.771 1.737 x	Run Time	9 75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
2 15:57:51 5.747 -1.317 0.205 0.000 0.000 0.591					ppb	ppb	ppb	ppb		ppb	
3 15:58:56 5.941 -0.781 0.163 0.000 0.000 0.586 652.300 102.217% 1.771 1.737 x 5.843 1.110 0.311 0.000 0.000 0.092			-1.232	0.564	0.000	0.000	0.901	тм 654.200	97.121%	1.304	1.327
x 5.843 -1.110 0.311 0.000 0.000 0.692 m 654.000 100.056% 1.547 1.543 σ 0.097 0.288 0.220 0.000 0.000 0.180 m 1.669 2.634% 0.234 0.206 MSD 1.662 25.970 70.820 0.000 0.000 26.060 m 1.669 2.633 15.120 13.340 Run Time 98Mo 103Rh 106cd 107Ag 108Mo 108Cd 109Ag 111cd 114cd 114cd 114cd 114cd 115ch 98.027% -1.881 0.075 0.377 0.183 0.170 -0.038 0.204 99.558% 1 15:56:45 1.300 95.347% -1.881 0.075 0.377 0.183 0.170 -0.038 0.204 99.558% 2 15:56:45 1.300 95.347% -2.381 0.075 0.377 0.183 0.170 -0.086 0.168 101.72% 3 15:56	2 15:57:5	=	-1.317	0.205	0.000		0.591	тм 655.600	100.829%		
σ 0.097 0.288 0.220 0.000 0.000 0.180 m1.669 m(0.255) 2.634% 0.234 0.206 %R8D 1.662 25.970 70.820 0.000 0.000 26.060 m(0.255) 2.633 15.120 13.340 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115.16 ppb	3 15:58:50	5.941	-0.781	0.163	0.000	0.000	0.586	тм 652.300	102.217%	1.771	1.737
No. Time 98Mo 103Rh 106Cd 107Ag 108Mo 108Cd 109Ag 111Cd 114Cd 115In	X	5.843	-1.110	0.311	0.000	0.000	0.692	тм 654.000	100.056%	1.547	1.543
Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In	σ	0.097	0.288	0.220	0.000	0.000	0.180	<u>тм 1.669</u>	2.634%	0.234	0.206
PD	%RSD		25.970	70.820	0.000	0.000	26.060	<u>тм 0.255</u>	2.633	15.120	13.340
1 15:56:45 1.300 95.347% -1.881 0.075 0.377 0.183 0.170 -0.038 0.204 99.558% 2 15:57:51 1.568 98.027% -2.317 0.045 0.400 0.093 0.156 -0.086 0.168 101.772% 3 15:58:56 1.837 99.192% -2.047 0.066 0.386 0.149 0.159 -0.090 0.179 102.988% x 1.568 97.522% -2.082 0.062 0.388 0.142 0.162 -0.071 0.184 101.439% x 1.568 97.522% -2.082 0.062 0.388 0.142 0.162 -0.071 0.184 101.439% x 0.269 1.972% 0.220 0.015 0.012 0.045 0.008 0.029 0.018 17.130 x 0.269 1.972% 0.202 0.015 0.012 0.045 0.008 0.029 0.018 1.739% x 0.171	Run Time		 								
2 15:57:51 1.568 98.027% -2.317 0.045 0.400 0.093 0.156 -0.086 0.168 101.772% 3 15:58:56 1.837 99.192% -2.047 0.066 0.386 0.149 0.159 -0.090 0.179 102.988% X 1.568 97.522% -2.082 0.062 0.388 0.142 0.162 -0.071 0.184 101.439% σ 0.269 1.972% 0.220 0.015 0.012 0.045 0.008 0.029 0.018 1.739% WRSD 17.130 2.022 10.560 24.790 2.981 31.810 4.743 40.530 9.975 1.714 Run Time 118Sn 121Sb 123Sb 137Ba 157bb 165Ho 203Tl 205Tl 206Pb 207Pb ppb 207Fl		_	•								
3 15:58:56 1.837 99.192% -2.047 0.066 0.386 0.149 0.159 -0.090 0.179 102.988% x		=									
X		=									
σ (MRSD) 0.269 (1.972% (1.7130) 0.220 (10.560) 0.015 (24.790) 0.012 (2.981) 0.045 (31.810) 0.008 (0.029) 0.018 (1.739% (1.714) Run Time 118Sn (121Sb) 123Sb (137Ba) 159Tb (165Ho) 203Tl (203Tl) 205Tl (206Pb) 207Pb (207Pb) ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb	3 15:58:50										
Name	X		97.522%		0.062		0.142	0.162	-0.071	0.184	
Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb											
Ppb Ppb		_									
1 15:56:45 -0.041 0.719 0.773 M 244.300 104.790% 104.952% 0.458 0.343 0.458 0.424 2 15:57:51 -0.034 0.764 0.785 M 250.600 107.622% 108.260% 0.283 0.157 0.435 0.392 3 15:58:56 -0.010 0.807 0.845 M 249.800 108.859% 109.541% 0.258 0.136 0.453 0.392 X -0.029 0.763 0.801 M 248.200 107.090% 107.584% 0.333 0.212 0.449 0.403 3 0.016 0.044 0.039 M 3.441 2.086% 2.368% 0.109 0.114 0.012 0.018 %RSD 57.700 5.794 4.809 M 1.386 1.948 2.201 32.640 53.850 2.661 4.581 Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb 20.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0	Run I IIme		 								
2 15:57:51 -0.034 0.764 0.785 M 250.600 M 249.800 107.622% 108.260% 0.283 0.157 0.435 0.392 3 15:58:56 -0.010 0.807 0.845 M 249.800 108.859% 109.541% 0.258 0.136 0.453 0.392 x -0.029 0.763 0.801 M 248.200 107.090% 107.584% 0.333 0.212 0.449 0.403 σ 0.016 0.044 0.039 M 3.441 2.086% 2.368% 0.109 0.114 0.012 0.018 %RSD 57.700 5.794 4.809 M 1.386 1.948 2.201 32.640 53.850 2.661 4.581 Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb 238U 2.201 32.640 53.850 2.661 4.581 1 15:56:45 0.369 103.487% 0.000 0.000 0.000 2 15:57:51 0.348 107.026% 0.000 0.000 0.000 0.000	1 15.57 4		•								
3 15:58:56 -0.010 0.807 0.845 M 249.800 108.859% 109.541% 0.258 0.136 0.453 0.392											
x -0.029 0.763 0.801 м 248.200 107.090% 107.584% 0.333 0.212 0.449 0.403 σ 0.016 0.044 0.039 м 3.441 2.086% 2.368% 0.109 0.114 0.012 0.018 %RSD 57.700 5.794 4.809 м 1.386 1.948 2.201 32.640 53.850 2.661 4.581 Run Time 208Pb 209Bi 220Bkg 238U 238U 2.201 32.640 53.850 2.661 4.581 1 15:56:45 0.369 103.487% 0.000 0.000 0.000 2 15:57:51 0.348 107.026% 0.000 0.000 3 15:58:56 0.344 108.156% 0.000 0.000											
σ 0.016 0.044 0.039 м 3.441 2.086% 2.368% 0.109 0.114 0.012 0.018 %RSD 57.700 5.794 4.809 м 1.386 1.948 2.201 32.640 53.850 2.661 4.581 Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb 1 15:56:45 0.369 103.487% 0.000 0.000 2 15:57:51 0.348 107.026% 0.000 0.000 3 15:58:56 0.344 108.156% 0.000 0.000		_									
%RSD 57.700 5.794 4.809 M 1.386 1.948 2.201 32.640 53.850 2.661 4.581 Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb 1 15:56:45 0.369 103.487% 0.000 0.000 2 15:57:51 0.348 107.026% 0.000 0.000 3 15:58:56 0.344 108.156% 0.000 0.000											
Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb 1 15:56:45 0.369 103.487% 0.000 0.000 2 15:57:51 0.348 107.026% 0.000 0.000 3 15:58:56 0.344 108.156% 0.000 0.000											
ppb ppb ppb ppb 1 15:56:45 0.369 103.487% 0.000 0.000 2 15:57:51 0.348 107.026% 0.000 0.000 3 15:58:56 0.344 108.156% 0.000 0.000						1.948	2.201	32.640	53.850	2.661	4.581
1 15:56:45 0.369 103.487% 0.000 0.000 2 15:57:51 0.348 107.026% 0.000 0.000 3 15:58:56 0.344 108.156% 0.000 0.000	Run I IIme		•								
2 15:57:51 0.348 107.026% 0.000 0.000 3 15:58:56 0.344 108.156% 0.000 0.000	1 15.54.41	_	•								
3 15:58:56 0.344 108.156% 0.000 0.000		=									
0.334 100.22370 0.000 0.000											
σ 0.014 2.436% 0.000 0.000 %RSD 3.852 2.293 0.000 0.000											
%RSD 3.852 2.293 0.000 0.000	/0K3D	3.002	2.293	0.000	0.000						

JA58597-1 11/2/2010 15:59:21

User Pre-dilution: 1.0										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:00:27	98.747%	0.006	35.390	35.590	0.000	тм 29310.000	м 3994.000	м 3930.000	6.614	<u> </u>
2 16:01:32	94.167%	-0.000	35.030	35.790	0.000	тм 29480.000	м 4025.000	м 4121.000	6.775	<u>T 0.000</u>
3 16:02:37	96.065%	0.007	35.550	34.330	0.000	тм 29570.000	м 3887.000	м 4069.000	6.564	т 0.000
X	96.327%	0.004	35.320	35.240	0.000	тм 29450.000	м 3969.000	м 4040.000	6.651	<u>т 0.000</u>
	2.301%	0.004	0.267	0.791	0.000		м 72.500	м 98.630		
σ %RSD						тм 132.600			0.110	<u>т 0.000</u>
	2.389	95.500	0.756	2.245	0.000	<u>тм 0.450</u>	м 1.827	м 2.441	1.653	<u>T 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
4 4/ 00 07	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:00:27	тм 2990.000	м 20830.000	тм 22630.000	103.899%	0.435	-0.033	0.019	-0.549	150.200	4.469
2 16:01:32	тм 3102.000	м 21290.000	тм 23580.000	100.075%	0.445	-0.019	0.069	-0.511	153.100	4.671
3 16:02:37	тм 3050.000	<u>м 21810.000</u>	тм 23030.000	98.791%	0.369	0.002	0.036	-0.300	155.900	4.654
X	тм 3047.000	м 21310.000	тм 23080.000	100.922%	0.416	-0.017	0.041	-0.453	153.100	4.598
σ	_{TM} 55.860	м 490.700	тм 477.000	2.657%	0.041	0.018	0.026	0.134	2.857	0.112
%RSD	тм 1.833	м 2.303	тм 2.067	2.633	9.875	106.200	62.160	29.520	1.866	2.432
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb
1 16:00:27	-8.162	21.520	-0.103	1.065	1.185	2.653	2.687	32.560	32.310	32.180
2 16:01:32	-6.993	21.880	-0.117	1.199	1.363	2.583	2.870	34.110	33.650	34.700
3 16:02:37	-6.783	21.740	-0.124	1.093	1.541	2.563	2.702	33.660	32.720	33.030
X 10.02.37	-7.313	21.740	-0.124	1.119	1.363	2.600	2.753	33.440	32.720	33.300
σ	0.743	0.182	0.011	0.071	0.178	0.047	0.101	0.796	0.688	1.286
%RSD	10.160	0.839	9.240	6.310	13.060	1.826	3.685	2.380	2.091	3.862
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:00:27	0.798	-0.297	-0.324	0.000	0.000	0.137	м 105.300	105.182%	-0.235	-0.041
2 16:01:32	0.858	-0.044	-0.131	0.000	0.000	0.245	м 106.700	102.128%	-0.043	0.007
3 16:02:37	0.925	-0.491	-0.167	0.000	0.000	0.263	м 108.000	103.463%	0.071	0.189
X	0.860	-0.278	-0.207	0.000	0.000	0.215	м 106.700	103.591%	-0.069	0.052
σ	0.064	0.224	0.103	0.000	0.000	0.068	м 1.340	1.531%	0.155	0.122
%RSD	7.418	80.730	49.670	0.000	0.000	31.730	м 1.256	1.478	224.500	234.800
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:00:27	-0.197	102.050%	-0.693	0.019	0.292	0.091	0.117	-0.026	0.215	104.747%
2 16:01:32	-0.075	98.029%	-0.632	0.015	0.287	0.093	0.118	-0.024	0.211	103.689%
3 16:02:37	0.097	101.849%	-0.751	0.013	0.292	0.036	0.120	-0.037	0.203	104.177%
	-0.059	100.642%	-0.692	0.016	0.292	0.074	0.120	-0.029	0.203	104.177%
X										
σ	0.148	2.266%	0.060	0.003	0.003	0.032	0.001	0.007	0.006	0.530%
%RSD	251.800	2.251	8.620	20.090	1.071	43.840	1.024	23.940	2.999	0.508
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
4 4 4 4 4	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:00:27	-0.036	0.315	0.365	28.130	110.295%	110.806%	0.154	0.035	0.367	0.322
2 16:01:32	-0.027	0.354	0.439	28.310	107.948%	108.423%	0.154	0.026	0.352	0.358
3 16:02:37	-0.031	0.427	0.450	28.160	108.918%	108.516%	0.139	0.021	0.340	0.294
X	-0.031	0.365	0.418	28.200	109.054%	109.248%	0.149	0.027	0.353	0.325
σ	0.005	0.057	0.046	0.095	1.179%	1.349%	0.008	0.007	0.013	0.032
%RSD	14.580	15.580	11.100	0.335	1.081	1.235	5.650	26.210	3.770	9.874
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 16:00:27	0.269	108.385%	0.000	0.000						
2 16:01:32	0.270	109.731%	0.000	0.000						
3 16:02:37	0.257	110.755%	0.000	0.000						
X 10.02.37	0.265	109.624%	0.000	0.000						
σ	0.007	1.189%	0.000	0.000						
%RSD	2.725	1.084	0.000	0.000						

JA58597-2 11/2/2010 16:03:03

User Pre-dilution: 1.00		0D -	100	110	120	221-	OEM-:	2/14-	07.41	2701
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 16:04:08	ppb ppb	ppb	ppb	ppb	ppb	ppb	ppb 3904 000	ppb 3955.000	ppb 5 004	ppb
	95.993%	0.003	33.000	35.380	0.000	тм 27490.000	м 3896.000	м 3855.000	5.804	T 0.000
2 16:05:13	89.962%	-0.004	34.420	36.090	0.000	тм 28700.000	м 4139.000	м 4084.000	6.242	<u>T 0.000</u>
3 16:06:19	92.739%	-0.008	32.760	35.160	0.000	тм 27830.000	м 3792.000	м 3908.000	5.715	<u>T 0.000</u>
X	92.898%	-0.003	33.390	35.540	0.000	тм 28010.000	м 3943.000	м 3949.000	5.920	<u>т 0.000</u>
σ	3.019%	0.006	0.897	0.484	0.000	<u>тм 625.200</u>	м 177.900	м 120.000	0.282	<u>т 0.000</u>
%RSD	3.249	193.600	2.685	1.361	0.000	<u>тм 2.232</u>	<u>м 4.512</u>	м 3.038	4.768	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 1 1 0 1 0 0	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:04:08	тм 2893.000	м 20390.000	тм 22160.000	100.469%	0.412	0.136	0.076	0.071	158.700	3.165
2 16:05:13	тм 3011.000	м 20740.000	тм 22350.000	97.869%	0.383	-0.013	0.023	-0.430	165.400	3.209
3 16:06:19	тм 2888.000	м 19690.000	тм 21360.000	101.128%	0.303	0.036	0.032	0.751	163.200	3.063
X	тм 2931.000	м 20270.000	тм 21960.000	99.822%	0.366	0.053	0.044	0.131	162.400	3.146
σ	тм 69.660	м 536.100	тм 526.500	1.723%	0.057	0.076	0.028	0.592	3.414	0.075
%RSD	тм 2.377	м 2.645	<u>тм 2.398</u>	1.726	15.450	142.300	64.650	453.300	2.102	2.377
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
4 4 44 45	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:04:08	-9.706	19.750	-0.114	1.074	1.663	1.814	1.874	22.340	21.330	22.060
2 16:05:13	-8.424	19.520	-0.117	1.057	1.670	1.802	2.032	23.320	22.880	23.340
3 16:06:19	-9.783	17.560	-0.109	1.028	1.117	1.737	1.803	21.310	21.510	21.720
X	-9.304	18.950	-0.113	1.053	1.483	1.784	1.903	22.320	21.910	22.370
σ	0.764	1.203	0.004	0.023	0.318	0.042	0.117	1.005	0.849	0.857
%RSD	8.207	6.347	3.442	2.231	21.410	2.327	6.153	4.504	3.876	3.828
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:04:08	0.873	-0.222	-0.206	0.000	0.000	0.237	м 101.700	104.321%	-0.360	-0.352
2 16:05:13	0.941	-0.155	-0.202	0.000	0.000	0.262	м 106.800	101.616%	-0.196	-0.138
3 16:06:19	0.882	-0.647	-0.280	0.000	0.000	0.217	м 102.600	104.974%	-0.003	-0.088
X	0.899	-0.341	-0.229	0.000	0.000	0.238	м 103.700	103.637%	-0.186	-0.192
σ	0.037	0.267	0.044	0.000	0.000	0.023	м 2.724	1.780%	0.179	0.140
%RSD	4.104	78.170	19.210	0.000	0.000	9.492	<u>м 2.625</u>	1.718	96.050	72.900
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:04:08	-0.338	100.931%	-1.245	0.005	0.324	0.036	0.109	-0.056	0.186	104.992%
2 16:05:13	-0.199	99.313%	-0.360	0.004	0.272	0.121	0.110	-0.015	0.216	101.998%
3 16:06:19	-0.028	102.988%	0.105	0.003	0.239	0.091	0.109	0.007	0.236	105.796%
X	-0.188	101.077%	-0.500	0.004	0.278	0.083	0.109	-0.021	0.213	104.262%
σ	0.155	1.842%	0.686	0.001	0.043	0.043	0.001	0.032	0.026	2.001%
%RSD	82.500	1.822	137.100	21.830	15.480	51.930	0.717	152.300	12.030	1.920
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:04:08	-0.040	0.210	0.234	28.030	110.959%	110.983%	0.129	0.011	0.407	0.364
2 16:05:13	-0.030	0.271	0.283	28.620	107.723%	108.692%	0.127	0.008	0.398	0.384
3 16:06:19	-0.027	0.236	0.309	27.610	112.826%	113.202%	0.124	0.007	0.407	0.357
X	-0.032	0.239	0.275	28.090	110.502%	110.959%	0.127	0.009	0.404	0.368
σ	0.007	0.030	0.038	0.509	2.582%	2.255%	0.002	0.002	0.005	0.014
%RSD	21.290	12.730	13.920	1.813	2.337	2.033	1.751	20.580	1.236	3.709
Run Time	208Pb	209Bi	220Bkg	238U						
1 1/0/00	ppb	ppb	ppb	ppb						
1 16:04:08	0.314	110.688%	0.000	0.000						
2 16:05:13	0.321	110.892%	0.000	0.000						
3 16:06:19	0.301	112.896%	0.000	0.000						
X	0.312	111.492%	0.000	0.000						
σ	0.010	1.220%	0.000	0.000						
%RSD	3.300	1.095	0.000	0.000						

JA58597-3 11/2/2010 16:06:44

User Pre-alli	TULIOTI: 1.00	J									
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	[ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 1	16:07:50	94.678%	-0.004	33.350	35.520	0.000	тм 30120.000	м 3939.000	м 3942.000	11.830	<u>T 0.000</u>
2 1	16:08:55	93.750%	0.004	35.240	37.120	0.000	тм 30670.000	м 3930.000	м 4030.000	12.090	T 0.000
3 1	16:10:01	92.700%	-0.000	34.190	34.730	0.000	тм 29660.000	м 3925.000	м 4002.000	11.950	т 0.000
x		93.709%	-0.000	34.260	35.790	0.000	тм 30150.000	м 3931.000	м 3991.000	11.960	т 0.000
σ		0.990%	0.004	0.946	1.217	0.000	тм 505.900	м 7.147	м 45.170	0.127	т 0.000
%RSD		1.057	1185.000	2.761	3.401	0.000	тм 1.678	м 0.182	м 1.132	1.064	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 1	16:07:50	тм 3090.000	м 21930.000	тм 24210.000	98.525%	0.694	0.136	0.085	0.615	171.700	15.170
	16:08:55	тм 3055.000	м 22050.000	тм 24340.000	101.589%	0.569	0.017	0.096	0.478	176.700	15.040
	16:10:01	тм 3054.000	м 22130.000	тм 24270.000	97.505%	0.579	-0.214	0.066	-0.238	184.900	15.240
X		тм 3067.000	м 22040.000	тм 24270.000	99.206%	0.614	-0.020	0.082	0.285	177.700	15.150
σ		тм 20.720	м 101.600	тм 63.090	2.126%	0.069	0.178	0.016	0.458	6.684	0.100
%RSD		тм 0.676	<u>м 0.461</u>	тм 0.260	2.143	11.260	884.400	18.890	160.700	3.760	0.660
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	dqq	dqq	ppb	dqq	ppb	ppb	ppb	ppb
1 1	16:07:50	30.510	61.230	-0.055	2.204	2.690	17.790	18.570	м 170.900	м 164.600	м 172.200
	16:08:55	28.020	62.870	-0.063	2.380	2.598	18.210	18.380	м 169.800	м 165.100	м 171.300
	16:10:01	28.180	58.810	-0.057	2.167	2.509	17.770	18.210	м 169.800	м 164.400	м 170.700
X	10.10.01	28.900	60.970	-0.058	2.250	2.599	17.930	18.390	м 170.200	м 164.700	м 171.400
		1.396	2.043	0.004	0.114	0.090	0.248	0.184	м 0.643	м 0.338	м 0.788
σ %RSD		4.829	3.351	6.792	5.060	3.473	1.385	0.184	<u>м 0.043</u> м 0.378	м 0.336 м 0.205	м 0.788 м 0.459
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
Ruii	111110	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 1	16:07:50	0.863	0.132	-0.326	0.000	0.000	0.123	м 111.700	103.656%	-0.305	-0.279
	16:08:55	0.965	-0.026	-0.309	0.000	0.000	0.228	м 114.400	104.991%	-0.191	-0.033
	16:10:01	0.852	0.895	-0.188	0.000	0.000	0.266	м 113.100	101.977%	0.029	0.029
X	10.10.01	0.893	0.334	-0.274	0.000	0.000	0.205	м 113.100	103.542%	-0.155	-0.094
%RSD		0.062	0.493	0.075	0.000	0.000	0.074	м 1.339	1.510%	0.170	0.163
Run	Time	6.982 98Mo	147.500 103Rh	27.320 106Cd	0.000 107Ag	0.000 108Mo O	36.070 108Cd	<u>м 1.184</u> 109Ag	1.459 111Cd	109.200 114Cd	172.900 115In
Kuii	Tillle	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 1	16:07:50	-0.294	100.518%	-0.769	0.002	0.296	0.092	0.109	-0.034	0.213	105.433%
	16:08:55	-0.274	100.518%	-1.084	0.002	0.270	0.064	0.109	-0.054	0.213	106.679%
	16:10:01	0.019	98.323%	-0.299	0.002	0.267	0.121	0.111	-0.030	0.236	103.829%
X	10.10.01	-0.131	99.831%	-0.244	0.003	0.207	0.092	0.111	-0.014	0.236	105.313%
%RSD		0.157 120.200	1.308% 1.310	0.395 55.060	0.002 64.510	0.024 8.248	0.029 31.010	0.001 0.711	0.018 54.970	0.019 8.576	1.429% 1.357
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
Kuii	Tillie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 1	16:07:50	0.466	0.166	0.219	38.360	110.933%	111.956%	0.128	0.006	5.682	5.744
	16:08:55	0.457	0.200	0.217	38.710	112.889%	112.964%	0.128	0.005	5.614	5.561
	16:10:01	0.437	0.200	0.247	38.740	109.554%	110.700%	0.129	0.003	5.590	5.652
_	10.10.01	0.437	0.173			111.126%	111.873%	0.130	0.007	5.628	5.652
X				0.236	38.600						
%RSD		0.042	0.018	0.015	0.209	1.676%	1.134%	0.001	0.001	0.048	0.092
	Time	9.491	9.611	6.332	0.541	1.508	1.014	0.760	11.710	0.850	1.621
Run	Time	208Pb	209Bi ppb	220Bkg	238U ppb						
1 1	16:07:50	ppb 5.538	110.390%	ppb 0.000	0.000						
	16:07:50		113.606%	0.000	0.000						
	16:08:55	5.468 5.491	110.158%	0.000							
	10.10.01	5.491			0.000						
X			111.385%	0.000	0.000						
σ		0.036	1.927%	0.000	0.000						
%RSD		0.657	1.730	0.000	0.000						

JA58929-2 11/2/2010 16:10:26

User Pre-dilution: 1.00	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:11:32	86.443%	0.005	м 443.900	м 461.300	0.000	тм 37120.000	тм 21080.000	тм 21430.000	1.283	т 0.000
2 16:12:37	83.201%	0.002	м 466.600	м 494.000	0.000	тм 38100.000	тм 21920.000	тм 21930.000	1.304	т 0.000
3 16:13:41	84.043%	0.023	м 459.900	м 476.400	0.000	тм 37090.000	тм 21640.000	тм 21860.000	5.171	т 0.000
Х	84.562%	0.010	м 456.800	м 477.200	0.000	тм 37440.000	тм 21540.000	тм 21740.000	2.586	т 0.000
σ	1.682%	0.012	м 11.650	м 16.370	0.000	тм 571.200	тм 425.800	тм 272.300	2.239	т 0.000
%RSD	1.989	116.400	м 2.550	м 3.431	0.000	тм 1.526	тм 1.976	тм 1.252	86.560	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:11:32	тм 1096.000	м 76390.000	тм 81460.000	96.874%	0.359	1.611	-0.047	0.055	137.300	47.100
2 16:12:37	тм 1137.000	м 77770.000	тм 82920.000	95.364%	0.273	1.183	-0.042	-1.278	163.800	48.410
3 16:13:41	тм 1132.000	м 75740.000	тм 82200.000	94.809%	0.316	1.680	-0.030	0.777	168.600	46.530
X	тм 1122.000	м 76630.000	тм 82190.000	95.682%	0.316	1.491	-0.039	-0.149	156.600	47.350
σ	тм 22.480	м 1033.000	тм 727.800	1.069%	0.043	0.270	0.009	1.042	16.890	0.965
%RSD	тм 2.004	<u>м 1.348</u>	<u>тм 0.886</u>	1.117	13.550	18.070	22.340	700.800	10.790	2.038
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 1/ 11 22	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:11:32 2 16:12:37	-14.810 -13.300	82.660	-0.350 -0.365	0.121	0.819	м 134.400	м 134.100	72.100 73.890	69.240	72.670 74.270
		83.560		0.104	1.071	м 134.800	м 133.900		69.330	
3 16:13:41	-11.030	82.140	-0.260	0.188	0.894	м 129.400	м 128.600	72.820 72.940	69.980	72.380 73.110
X	-13.050	82.790	-0.325	0.138	0.928	м 132.800	м 132.200		69.510	
σ %RSD	1.898 14.550	0.716 0.865	0.057 17.430	0.044 32.290	0.129 13.940	<u>м 2.975</u> м 2.240	<u>м 3.120</u> м 2.360	0.900 1.233	0.402 0.579	1.018 1.392
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
itan mile	ppb	ppb	ppb	ppb	ppb	ppb	dqq	ppb	ppb	ppb
1 16:11:32	23.960	0.780	0.458	0.000	0.000	0.866	тм 3968.000	99.838%	5.325	5.387
2 16:12:37	24.280	2.603	0.494	0.000	0.000	0.915	тм 4115.000	98.025%	5.537	5.985
3 16:13:41	23.730	3.772	0.438	0.000	0.000	0.904	тм 3989.000	97.995%	5.992	6.322
х	23.990	2.385	0.464	0.000	0.000	0.895	тм 4024.000	98.619%	5.618	5.898
σ	0.279	1.508	0.029	0.000	0.000	0.026	тм 79.270	1.055%	0.341	0.473
%RSD	1.162	63.240	6.156	0.000	0.000	2.866	тм 1.970	1.070	6.067	8.027
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:11:32	5.229	94.391%	-13.610	0.003	1.146	0.066	0.116	-0.755	-0.255	100.190%
2 16:12:37	5.757	93.041%	-13.870	0.003	1.169	0.155	0.115	-0.779	-0.276	99.428%
3 16:13:41	6.448	91.764%	-13.470	0.024	1.142	0.186	0.124	-0.728	-0.237	99.431%
X	5.811	93.065%	-13.650	0.010	1.152	0.136	0.118	-0.754	-0.256	99.683%
σ	0.612	1.314%	0.203	0.012	0.014	0.063	0.005	0.025	0.019	0.439%
%RSD	10.520	1.412	1.487	119.100	1.255	46.100	4.551	3.379	7.601	0.440
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
1 16:11:32	ppb 0.379	ppb 0.360	ppb 0.420	ppb 23.010	ppb 108.664%	ppb 109.389%	ppb 0.125	ppb 0.005	ppb 4.491	ppb 4.392
2 16:12:37	0.379	0.382	0.420	23.430	106.886%	104.384%	0.123	0.003	4.459	4.442
3 16:13:41	0.333	0.362	0.413	22.880	100.886%	100.974%	0.123	0.003	4.459	4.442
X X	0.320	0.413	0.477	23.110	107.607%	107.727%	0.147	0.009	4.469	4.429
σ	0.031	0.028	0.436	0.288	0.935%	1.235%	0.132	0.010	0.019	0.032
%RSD	8.857	7.138	8.041	1.245	0.93576	1.235%	10.080	104.100	0.420	0.725
Run Time	208Pb	209Bi	220Bkg	238U	3.007		.0.000	.550	220	5.725
•	ppb	ppb	ppb	ppb						
1 16:11:32	4.324	105.686%	0.000	0.000						
2 16:12:37	4.309	106.851%	0.000	0.000						
3 16:13:41	4.346	106.047%	0.000	0.000						
Х	4.327	106.194%	0.000	0.000						
σ	0.019	0.596%	0.000	0.000						
%RSD	0.432	0.562	0.000	0.000						

JA59395-1 11/2/2010 16:14:06

User Pre-dilution: 1.00 Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kull Illile	ppb	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:15:11	84.245%	0.001	49.650	51.270	0.000	тм 8499.000	тм 20070.000	тм 19860.000	-0.203	<u>т 0.000</u>
2 16:16:17	79.824%	0.007	44.510	45.260	0.000	тм 9040.000	тм 20610.000	тм 21060.000	-0.656	<u>т 0.000</u>
3 16:17:22	81.038%	-0.012	40.850	43.530	0.000	тм 8539.000	тм 20100.000	тм 20160.000	-0.448	<u>т 0.000</u>
X	81.702%	-0.001	45.010	46.680	0.000	тм 8693.000	тм 20260.000	тм 20360.000	-0.436	<u>т 0.000</u>
σ	2.284%	0.010	4.421	4.061	0.000	тм 301.600	тм 306.700	тм 626.800	0.227	т 0.000
%RSD	2.795	868.700	9.823	8.700	0.000	тм 3.469	тм 1.514	тм 3.078	52.040	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:15:11	291.700	м 34420.000	тм 37550.000	91.769%	0.583	7.957	0.386	0.097	197.800	2.386
2 16:16:17	305.400	м 34940.000	тм 38380.000	90.514%	0.644	7.759	0.344	-1.070	199.700	2.474
3 16:17:22	291.200	м 34430.000	тм 37680.000	92.609%	0.551	7.964	0.263	0.948	184.900	2.304
X	296.100	м 34600.000	тм 37870.000	91.631%	0.593	7.893	0.331	-0.008	194.100	2.388
σ	8.040	м 299.100	тм 449.700	1.054%	0.048	0.116	0.063	1.013	8.062	0.085
%RSD	2.716	<u>м 0.865</u>	<u>тм 1.187</u>	1.151	8.020	1.471	18.890	12320.000	4.154	3.558
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:15:11	24.760	69.440	-0.171	0.080	0.339	26.120	26.510	35.190	32.180	35.610
2 16:16:17	25.570	71.850	-0.194	0.112	0.592	27.350	27.530	36.200	34.230	36.290
3 16:17:22	25.130	70.050	-0.190	0.165	0.535	25.980	27.090	36.040	35.530	35.060
X	25.150	70.450	-0.185	0.119	0.489	26.480	27.040	35.810	33.980	35.650
σ	0.406	1.252	0.012	0.043	0.133	0.759	0.514	0.541	1.692	0.619
%RSD	1.613	1.777	6.713	36.010	27.170	2.866	1.901	1.510	4.979	1.737
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
4 4 45 44	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:15:11	0.080	3.299	-0.263	0.000	0.000	0.151	33.150	93.244%	-0.156	-0.085
2 16:16:17	0.061	2.415	-0.142	0.000	0.000	0.121	31.650	93.089%	-0.074	-0.051
3 16:17:22	-0.027	2.572	-0.113	0.000	0.000	0.087	30.660	94.443%	0.078	0.110
X	0.038	2.762	-0.172	0.000	0.000	0.120	31.820	93.592%	-0.051	-0.009
σ	0.057	0.471	0.080	0.000	0.000	0.032	1.254	0.741%	0.119	0.104
%RSD	149.300	17.070	46.260	0.000	0.000	26.770	3.940	0.792	234.000	1205.000
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
1 16:15:11	ppb -0.053	ppb 91.341%	ppb -0.577	ppb 1 0.007	ppb 0.279	ppb 0.036	ppb 0.115	ppb 0.004	ppb 0.223	ppb 96.313%
2 16:16:17	-0.053	88.823%	0.427	0.007	0.219	0.036	0.116	0.004	0.223	94.261%
3 16:17:22	0.143	90.328%	-0.350	0.003	0.212	0.030	0.111	0.042	0.240	96.109%
X 10.17.22	0.143	90.164%	-0.350	0.001	0.253	0.057	0.111	0.000	0.245	95.561%
σ	0.117	1.267%	0.526	0.003	0.036	0.037	0.002	0.022	0.026	1.131%
%RSD	1448.000	1.405	315.400	74.760	14.160	62.350	2.128	124.800	10.560	1.13178
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
itali illio	ppb	ppb	ppb	ppb	ppb	dqq	ppb	ppb	ppb	ppb
1 16:15:11	0.059	0.050	0.118	0.190	102.876%	104.960%	0.121	0.003	0.990	0.898
2 16:16:17	0.072	0.061	0.100	0.140	100.960%	100.600%	0.121	0.000	0.977	0.885
3 16:17:22	0.089	0.095	0.140	0.091	101.617%	101.437%	0.118	0.001	0.919	0.893
х	0.074	0.068	0.119	0.141	101.818%	102.332%	0.120	0.001	0.962	0.892
σ	0.015	0.023	0.020	0.049	0.973%	2.314%	0.002	0.002	0.038	0.007
%RSD	20.390	34.210	16.990	35.140	0.956	2.261	1.655	107.800	3.931	0.750
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 16:15:11	0.857	104.940%	0.000	0.000						
2 16:16:17	0.860	103.386%	0.000	0.000						
3 16:17:22	0.833	104.483%	0.000	0.000						
X	0.850	104.270%	0.000	0.000						
σ	0.014	0.798%	0.000	0.000						
%RSD	1.691	0.766	0.000	0.000						

JA59395-2 11/2/2010 16:17:48

User Pre-dilution: 1.00 Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kull Illile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:18:54	84.777%	-0.007	39.340	41.470	0.000	тм 8733.000	тм 20210.000	тм 20110.000	-0.737	<u>т 0.000</u>
2 16:19:59	87.853%	0.001	39.500	39.790	0.000	тм 8677.000	тм 19930.000	тм 20320.000	-0.183	<u>т 0.000</u>
3 16:21:05	81.043%	-0.007	38.610	40.330	0.000	тм 8832.000	тм 20980.000	тм 21140.000	-0.775	<u>т 0.000</u>
X X	84.558%	-0.007	39.150	40.530	0.000	тм 8747.000	тм 20370.000	тм 20520.000	-0.565	<u>т 0.000</u>
	3.410%	0.005	0.475	0.858	0.000	тм 78.040	тм 544.900	тм 544.400	0.331	т 0.000
σ %RSD	4.033	99.810	1.213	2.117	0.000	тм 0.892	<u>тм 2.674</u>	тм 2.653	58.640	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
itan iiiic	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:18:54	298.300	м 34780.000	тм 37320.000	94.789%	0.605	8.039	0.313	0.278	186.400	2.287
2 16:19:59	296.200	м 34890.000	тм 38250.000	93.715%	0.670	8.209	0.352	1.068	184.500	2.368
3 16:21:05	303.100	м 34670.000	тм 38480.000	92.853%	0.467	8.125	0.349	-0.155	196.100	2.381
X	299.200	м 34780.000	тм 38020.000	93.785%	0.581	8.124	0.338	0.397	189.000	2.345
σ	3.544	м 109.800	тм 616.000	0.970%	0.104	0.085	0.022	0.620	6.221	0.051
%RSD	1.185	м 0.316	тм 1.620	1.034	17.820	1.048	6.474	156.300	3.291	2.169
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:18:54	5.733	49.990	-0.179	-0.215	0.215	26.760	27.040	24.700	22.730	24.320
2 16:19:59	6.338	53.180	-0.185	-0.191	0.143	27.320	27.770	25.020	24.630	24.640
3 16:21:05	6.653	52.270	-0.189	-0.238	0.062	27.470	27.870	26.130	24.360	24.730
х	6.241	51.810	-0.185	-0.215	0.140	27.180	27.560	25.280	23.900	24.560
σ	0.468	1.641	0.005	0.023	0.076	0.374	0.452	0.753	1.025	0.217
%RSD	7.490	3.167	2.786	10.910	54.620	1.376	1.640	2.978	4.290	0.881
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:18:54	-0.077	2.461	-0.243	0.000	0.000	0.099	31.550	94.599%	-0.431	-0.367
2 16:19:59	0.119	1.706	-0.258	0.000	0.000	0.143	30.820	96.749%	-0.280	-0.245
3 16:21:05	-0.008	2.677	-0.246	0.000	0.000	0.186	31.700	93.601%	-0.171	-0.137
X	0.012	2.281	-0.249	0.000	0.000	0.143	31.360	94.983%	-0.294	-0.250
σ	0.099	0.510	0.008	0.000	0.000	0.043	0.470	1.609%	0.131	0.115
%RSD	862.300	22.350	3.181	0.000	0.000	30.450	1.498	1.694	44.470	46.090
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:18:54	-0.428	91.511%	-0.383	0.003	0.266	0.036	0.111	0.002	0.235	97.312%
2 16:19:59	-0.198	92.644%	-0.803	0.010	0.299	0.096	0.112	-0.024	0.213	97.345%
3 16:21:05	-0.149	90.744%	-0.389	0.005	0.269	0.067	0.114	-0.014	0.223	94.687%
X	-0.258	91.633%	-0.525	0.006	0.278	0.067	0.112	-0.012	0.223	96.448%
σ	0.149	0.956%	0.241	0.004	0.018	0.030	0.001	0.013	0.011	1.525%
Run Time	57.710 118Sn	1.043 121Sb	45.910 123Sb	62.310 137Ba	6.482 159Tb	45.100 165Ho	1.243 203TI	107.900 205TI	4.955 206Pb	1.581 207Pb
Ruii Illile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:18:54	-0.020	0.042	0.084	0.107	104.132%	104.552%	0.120	0.000	0.283	0.256
2 16:19:59	-0.020	0.042	0.102	0.123	103.102%	104.011%	0.120	0.002	0.286	0.253
3 16:21:05	0.007	0.002	0.102	0.123	103.102%	101.681%	0.120	-0.002	0.288	0.253
X	-0.009	0.061	0.105	0.120	101.737%	103.415%	0.121	0.001	0.286	0.254
σ	0.014	0.018	0.022	0.011	1.201%	1.526%	0.001	0.001	0.002	0.234
%RSD	153.900	30.380	21.120	9.058	1.166	1.475	0.950	163.100	0.841	0.561
Run Time	208Pb	209Bi	220Bkg	238U	1.100	1.175	3.733	.00.100	3.011	3.001
	ppb	ppb	ppb	ppb						
1 16:18:54	0.202	104.299%	0.000	0.000						
2 16:19:59	0.201	108.120%	0.000	0.000						
3 16:21:05	0.201	104.180%	0.000	0.000						
Х	0.201	105.533%	0.000	0.000						
σ	0.001	2.241%	0.000	0.000						
%RSD	0.301	2.124	0.000	0.000						

CCV 11/2/2010 16:21:31

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Trail Time	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:22:37	91.533%	48.340	53.700	55.150	0.000	530.000	549.900	542.700	<u> </u>	<u>т 0.000</u>
2 16:23:42	90.629%	50.710	54.710	55.020	0.000	528.300	524.000	525.000	т 532.900	т 0.000
3 16:24:48	86.383%	52.700	57.950	58.880	0.000	556.400	540.400	544.400	<u> </u>	т 0.000
Х	89.515%	50.580	55.450	56.350	0.000	538.200	538.100	537.400	т 541.600	т 0.000
σ	2.750%	2.185	2.223	2.191	0.000	15.720	13.080	10.700	т 13.730	т 0.000
%RSD	3.072	4.319	4.008	3.888	0.000	2.921	2.431	1.992	т 2.535	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:22:37	514.800	583.300	566.600	90.424%	50.950	49.750	49.540	49.360	402.900	49.660
2 16:23:42	510.700	533.400	514.400	93.182%	47.470	48.740	49.330	48.950	396.600	49.280
3 16:24:48	520.400	566.800	564.200	89.799%	51.150	50.320	52.170	48.650	406.300	52.150
X	515.300	561.200	548.400	91.135%	49.860	49.600	50.340	48.990	401.900	50.360
σ	4.862	25.430	29.430	1.800%	2.070	0.801	1.581	0.353	4.922	1.562
%RSD	0.944	4.532	5.367	1.975	4.152	1.615	3.141	0.720	1.225	3.101
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:22:37	<u> 537.600</u>	531.800	49.530	48.750	48.180	48.770	49.520	49.380	49.550	48.580
2 16:23:42	535.600	530.100	50.050	48.510	48.990	48.040	48.720	48.500	47.330	47.760
3 16:24:48	<u> </u>	555.500	50.350	50.390	52.340	50.720	49.320	51.960	51.620	50.800
X	<u>т 543.800</u>	539.100	49.970	49.220	49.840	49.180	49.190	49.950	49.500	49.050
σ	<u>т 12.530</u>	14.220	0.416	1.024	2.201	1.386	0.421	1.798	2.147	1.574
Run Time	<u>т 2.303</u> 75As	2.638 77Se	0.832 78Se	2.080 79Br	4.416 81Br	2.819 82Se	0.857 88Sr	3.599 89Y	4.338 95Mo	3.208 97Mo
Kuii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:22:37	48.140	62.470	49.550	0.000	0.000	49.360	49.390	100.124%	48.580	48.720
2 16:23:42	48.410	62.980	49.520	0.000	0.000	50.030	49.320	99.354%	48.370	49.400
3 16:24:48	49.530	64.760	51.000	0.000	0.000	51.340	51.420	97.757%	51.620	51.340
Х	48.690	63.410	50.020	0.000	0.000	50.240	50.040	99.078%	49.520	49.820
σ	0.739	1.202	0.848	0.000	0.000	1.011	1.193	1.207%	1.821	1.356
%RSD	1.517	1.896	1.695	0.000	0.000	2.011	2.383	1.219	3.677	2.721
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:22:37	48.470	96.304%	52.430	48.660	0.292	49.230	49.130	50.780	49.230	100.928%
2 16:23:42	49.810	97.159%	48.670	49.360	0.719	51.690	48.400	50.030	48.140	101.985%
3 16:24:48	51.730	96.067%	51.910	49.570	0.505	51.790	49.710	51.300	49.690	99.575%
X	50.000	96.510%	51.000	49.190	0.505	50.910	49.080	50.700	49.020	100.829%
σ	1.637	0.574%	2.035	0.478	0.214	1.450	0.657	0.638	0.795	1.208%
%RSD	3.273	0.595	3.989	0.971	42.300	2.848	1.338	1.258	1.621	1.198
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
4 4/ 00 07	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:22:37	49.550	48.960	48.520	48.670	105.173%	105.036%	50.110	50.030	50.010	49.910
2 16:23:42	48.510	49.500	48.360	48.590	107.260%	106.497%	49.620	49.830	49.660	49.070
3 16:24:48	49.780	50.730	50.980	50.460	104.864%	103.529%	51.130	50.480	50.860	51.210
X	49.280	49.730	49.290	49.240	105.765%	105.021%	50.290	50.110	50.170	50.070
σ	0.674	0.909	1.468	1.055	1.303%	1.484%	0.769	0.333	0.618	1.077
Run Time	1.368 208Pb	1.829 209Bi	2.978 220Bkg	2.143 238U	1.232	1.413	1.528	0.664	1.231	2.152
ituii iiiie	ppb	ppb	ppb	ppb						
1 16:22:37	49.540	110.087%	0.000	0.000						
2 16:23:42	48.990	110.923%	0.000	0.000						
3 16:24:48	50.390	108.233%	0.000	0.000						
X	49.640	109.748%	0.000	0.000						
σ	0.706	1.377%	0.000	0.000						
%RSD	1.421	1.255	0.000	0.000						

CCB 11/2/2010 16:25:13

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:26:19	92.712%	0.056	6.749	6.563	0.000	-6.054	-0.191	0.216	-0.538	т 0.000
2 16:27:24	86.969%	0.001	5.754	5.692	0.000	-6.424	-0.582	-0.203	-0.893	т 0.000
3 16:28:30	92.393%	0.004	5.132	5.450	0.000	-7.897	-0.850	-0.642	-1.128	т 0.000
X	90.691%	0.020	5.879	5.902	0.000	-6.791	-0.541	-0.209	-0.853	<u>т 0.000</u>
σ	3.228%	0.031	0.816	0.585	0.000	0.975	0.331	0.429	0.297	<u>т 0.000</u>
%RSD	3.559	152.700	13.880	9.917	0.000	14.360	61.190	204.900	34.770	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:26:19	-1.666	-29.080	-18.800	91.615%	-0.169	-0.082	0.600	2.004	374.900	0.056
2 16:27:24	-1.249	-28.770	-19.620	92.668%	-0.161	-0.149	0.538	1.003	376.800	0.023
3 16:28:30	-0.977	-28.700	-20.650	91.301%	-0.119	-1.128	0.515	-3.173	403.300	0.011
X	-1.298	-28.850	-19.690	91.861%	-0.149	-0.453	0.551	-0.055	385.000	0.030
σ	0.347	0.203	0.926	0.716%	0.027	0.586	0.044	2.746	15.850	0.024
%RSD	26.760	0.702	4.703	0.780	18.060	129.200	7.935	4951.000	4.118	79.550
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 16:26:19	ppb -0.014	ppb -3.066	ppb 0.017	ppb 0.068	ppb 0.231	ppb -0.260	ppb -0.047	ppb -0.712	ppb -0.846	ppb -1.496
2 16:27:24	0.806	-1.873	-0.009	0.008	0.231	-0.282	-0.047	-0.712	-0.407	-1.470
3 16:28:30	0.800	-2.567	-0.007	0.043	0.075	-0.279	-0.083	-0.705	-0.850	-1.540
X 10.28.30	0.517	-2.507	-0.013	0.041	0.073	-0.274	-0.063	-0.706	-0.701	-1.502
σ	0.477	0.599	0.017	0.015	0.091	0.012	0.022	0.007	0.255	0.035
%RSD	88.830	23.930	851.100	30.410	71.630	4.443	30.800	0.935	36.310	2.359
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:26:19	0.076	12.670	-0.090	0.000	0.000	0.134	0.033	98.120%	0.765	0.804
2 16:27:24	-0.087	13.200	-0.052	0.000	0.000	0.107	0.004	98.039%	0.522	0.716
3 16:28:30	0.043	13.020	-0.064	0.000	0.000	0.078	-0.001	97.508%	0.538	0.553
X	0.011	12.960	-0.069	0.000	0.000	0.106	0.012	97.889%	0.608	0.691
σ	0.086	0.271	0.020	0.000	0.000	0.028	0.018	0.332%	0.136	0.127
%RSD	810.400	2.091	28.890	0.000	0.000	26.330	155.700	0.339	22.320	18.390
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:26:19	0.809	97.256%	0.067	0.043	0.238	0.036	0.150	0.037	0.244	98.112%
2 16:27:24	0.581	96.308%	0.394	0.035	0.219	0.094	0.132	0.022	0.243	100.198%
3 16:28:30	0.568	96.278%	-0.077	0.029	0.249	0.065	0.137	-0.003	0.225	99.059%
X	0.653	96.614%	0.128	0.036	0.236	0.065	0.140	0.019	0.237	99.123%
σ %RSD	0.136 20.780	0.556% 0.576	0.241 188.100	0.007 19.900	0.015 6.376	0.029 44.370	0.010 6.969	0.020 107.700	0.011 4.600	1.045% 1.054
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
itan iinic	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:26:19	0.351	1.329	1.351	0.003	101.283%	104.120%	0.198	0.070	0.104	0.065
2 16:27:24	0.537	1.247	1.265	-0.030	103.060%	103.859%	0.160	0.039	0.083	0.045
3 16:28:30	0.668	1.275	1.322	-0.021	104.287%	104.003%	0.149	0.032	0.078	0.036
X	0.519	1.284	1.313	-0.016	102.877%	103.994%	0.169	0.047	0.088	0.048
σ	0.160	0.042	0.044	0.017	1.510%	0.131%	0.026	0.020	0.013	0.015
%RSD	30.790	3.267	3.331	109.200	1.468	0.126	15.210	43.740	15.220	30.570
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 16:26:19	0.020	106.546%	0.000	0.000						
2 16:27:24	-0.002	107.417%	0.000	0.000						
3 16:28:30	-0.007	107.238%	0.000	0.000						
X	0.004	107.067%	0.000	0.000						
σ	0.015	0.460%	0.000	0.000						
%RSD	412.400	0.430	0.000	0.000						

JA60015-1 11/2/2010 16:28:56

User Pre-dilution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
4 4/ 00 04	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:30:01	87.240%	0.005	14.130	14.930	0.000	тм 7013.000	м 3015.000	м 2991.000	0.596	<u>T 0.000</u>
2 16:31:07	88.825%	0.001	14.270	13.800	0.000	тм 6898.000	м 2962.000	м 2875.000	-0.262	<u>т 0.000</u>
3 16:32:12	87.451%	0.005	15.260	13.970	0.000	тм 6935.000	м 3032.000	м 3017.000	-0.040	<u> </u>
X	87.839%	0.004	14.560	14.230	0.000	тм 6949.000	м 3003.000	м 2961.000	0.098	<u>т 0.000</u>
σ	0.861%	0.003	0.618	0.609	0.000	<u>тм 58.440</u>	м 36.530	<u>м 75.610</u>	0.445	<u>т 0.000</u>
%RSD	0.980	74.230	4.243	4.281	0.000	<u>тм 0.841</u>	<u>м 1.216</u>	м 2.554	453.600	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:30:01	652.000	м 25660.000	тм 27650.000	92.350%	0.208	0.287	0.261	1.318	251.900	0.246
2 16:31:07	640.600	м 24440.000	<u>тм 26770.000</u>	95.257%	0.218	0.072	0.164	1.531	235.300	0.227
3 16:32:12	652.800	м 25950.000	тм 27680.000	90.213%	0.302	-0.078	0.206	-1.128	242.200	0.227
X	648.500	м 25350.000	тм 27370.000	92.606%	0.243	0.094	0.210	0.574	243.100	0.234
σ	6.831	м 802.900	_{тм} 517.900	2.532%	0.052	0.184	0.049	1.478	8.353	0.011
%RSD	1.053	<u>м 3.167</u>	<u>тм 1.893</u>	2.734	21.250	195.900	23.140	257.500	3.435	4.693
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:30:01	2.290	36.320	-0.143	-0.203	0.221	5.701	6.088	0.473	0.083	-0.272
2 16:31:07	-0.758	33.780	-0.156	-0.178	0.170	5.522	5.814	0.585	0.789	-0.092
3 16:32:12	1.742	32.470	-0.161	-0.225	0.122	5.775	6.089	0.618	0.475	-0.266
X	1.091	34.190	-0.153	-0.202	0.171	5.666	5.997	0.559	0.449	-0.210
σ	1.625	1.953	0.009	0.024	0.049	0.130	0.158	0.076	0.353	0.102
%RSD	148.900	5.712	6.118	11.710	28.780	2.299	2.641	13.640	78.680	48.800
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:30:01	0.066	5.425	-0.175	0.000	0.000	0.157	46.780	93.904%	2.325	2.343
2 16:31:07	-0.027	4.333	-0.099	0.000	0.000	0.027	46.060	95.984%	2.337	2.371
3 16:32:12	0.086	3.934	-0.069	0.000	0.000	0.126	46.570	94.807%	2.580	2.539
X	0.042	4.564	-0.114	0.000	0.000	0.103	46.470	94.898%	2.414	2.417
σ	0.061	0.772	0.055	0.000	0.000	0.068	0.370	1.043%	0.144	0.106
%RSD	145.400	16.920	47.860	0.000	0.000	66.090	0.797	1.099	5.968	4.387
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
,	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:30:01	2.298	94.164%	0.032	0.031	0.247	0.126	0.130	-0.003	0.226	95.873%
2 16:31:07	2.339	92.975%	-0.029	0.016	0.249	0.126	0.129	-0.005	0.219	99.067%
3 16:32:12	2.535	92.159%	-0.860	0.024	0.302	0.097	0.128	-0.051	0.191	97.188%
X	2.391	93.100%	-0.286	0.024	0.266	0.116	0.129	-0.020	0.212	97.376%
σ	0.126	1.008%	0.498	0.008	0.032	0.017	0.001	0.027	0.018	1.605%
%RSD	5.287	1.083	174.500	31.940	11.870	14.540	0.957	138.900	8.696	1.648
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
•	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:30:01	0.017	0.229	0.262	4.414	101.069%	102.148%	0.130	0.010	0.226	0.196
2 16:31:07	0.039	0.193	0.251	4.313	103.585%	103.891%	0.124	0.005	0.213	0.178
3 16:32:12	0.030	0.222	0.281	4.241	100.183%	100.714%	0.127	0.005	0.226	0.185
X	0.029	0.215	0.264	4.323	101.612%	102.251%	0.127	0.007	0.222	0.186
σ	0.011	0.019	0.016	0.087	1.765%	1.591%	0.003	0.003	0.008	0.009
%RSD	37.110	9.060	5.914	2.020	1.737	1.556	2.245	42.300	3.459	4.792
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 16:30:01	0.140	103.461%	0.000	0.000						
2 16:31:07	0.130	107.316%	0.000	0.000						
3 16:32:12	0.140	105.403%	0.000	0.000						
Х	0.136	105.393%	0.000	0.000						
σ	0.005	1.927%	0.000	0.000						
%RSD	3.908	1.828	0.000	0.000						
	220		2.230							

JA60283-1 11/2/2010 16:32:38

User Pre-dilution: 1.00		0.0	405	445	100	2011	0514	0/14	07.41	07.01
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 16:33:44	ppb 85.223%	-0.003	ppb 68.460	ppb 69.180	ppb 0.000	ррb _{тм} 9865.000	ррb тм 20010.000	ррb _{тм} 20740.000	-0.143	ppb
2 16:34:49	84.043%	-0.003	70.390	69.440	0.000	тм 9898.000	тм 19980.000	тм 19660.000	-0.143	<u>1 0.000</u>
							· · · · · · · · · · · · · · · · · · ·			
	84.372%	0.023	65.720	69.280	0.000	тм 9644.000	тм 19600.000	тм 19680.000	1.419	<u>T 0.000</u>
X	84.546%	0.004	68.190	69.300	0.000	тм 9802.000	тм 19860.000	тм 20030.000	0.230	<u>т 0.000</u>
σ	0.609%	0.017	2.345	0.132	0.000	тм 138.100	тм 226.600	тм 615.700	1.053	<u>т 0.000</u>
%RSD	0.720	391.000	3.440	0.191	0.000	тм 1.409	<u>тм 1.141</u>	тм 3.075	457.200	<u>T 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 16:33:44	ppb	ррb м 48370.000	ppb ™ 53320.000	ppb ppb	ppb	ppb	ppb	ppb	ppb 166.900	ppb 0.396
	812.600			90.930%	0.440	2.330	0.277	-1.818		
2 16:34:49	727.900	м 46050.000	тм 49400.000	95.327%	0.290	2.731	0.324	0.930	142.500	0.353
3 16:35:54	815.600	м 45640.000	тм 50780.000	92.957%	0.523	2.607	0.287	1.742	146.600	0.398
X	785.400	м 46680.000	тм 51170.000	93.071%	0.418	2.556	0.296	0.285	152.000	0.382
σ	49.810	м 1471.000	тм 1988.000	2.201%	0.118	0.205	0.025	1.866	13.060	0.026
%RSD	6.342	м 3.151	тм 3.885	2.365	28.340	8.026	8.420	655.500	8.590	6.709
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 17.00.44	ppb	ppb	ppb 0.244	ppb D	ppb	ppb	ppb	ppb	ppb ppb	ppb
1 16:33:44	-16.010	43.060	-0.266	-0.436	0.093	27.280	26.880	45.640	58.390	55.290
2 16:34:49	-17.970	39.720	-0.270	-0.444	0.141	26.110	26.120	44.910	55.600	52.940
3 16:35:54	-15.060	41.230	-0.228	-0.414	0.089	25.380	26.150	45.300	55.380	52.880
X	-16.350	41.340	-0.255	-0.431	0.108	26.260	26.380	45.280	56.460	53.700
σ	1.483	1.671	0.023	0.016	0.029	0.961	0.430	0.368	1.677	1.373
%RSD	9.074	4.043	9.046	3.683	26.910	3.661	1.631	0.813	2.970	2.556
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 1 1 00 11	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:33:44	7.180	1.223	0.356	0.000	0.000	0.499	тм 468.000	93.573%	0.167	0.253
2 16:34:49	6.791	0.528	0.201	0.000	0.000	0.464	тм 453.800	96.080%	0.272	0.281
3 16:35:54	6.847	0.922	0.275	0.000	0.000	0.552	тм 460.900	95.093%	0.732	0.920
X	6.939	0.891	0.277	0.000	0.000	0.505	тм 460.900	94.915%	0.390	0.485
σ	0.210	0.349	0.078	0.000	0.000	0.044	<u>тм 7.091</u>	1.263%	0.301	0.378
%RSD	3.029	39.150	27.960	0.000	0.000	8.780	тм 1.539	1.330	77.060	77.910
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:33:44	0.242	91.748%	-1.427	0.002	0.342	0.127	0.113	-0.067	0.187	96.635%
2 16:34:49	0.370	92.643%	-1.285	0.012	0.328	0.066	0.115	-0.050	0.202	98.062%
3 16:35:54	0.792	91.917%	-1.953	0.016	0.376	0.097	0.123	-0.109	0.180	96.187%
X	0.468	92.102%	-1.555	0.010	0.349	0.097	0.117	-0.075	0.189	96.961%
σ	0.288	0.476%	0.352	0.007	0.024	0.030	0.005	0.030	0.011	0.979%
%RSD	61.460	0.516	22.630	71.240	6.960	31.480	4.465	40.050	5.764	1.010
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:33:44	-0.019	0.119	0.148	м 401.800	102.231%	103.562%	0.124	0.003	0.203	0.167
2 16:34:49	-0.026	0.098	0.159	м 394.300	103.583%	103.787%	0.119	0.001	0.189	0.142
3 16:35:54	0.003	0.130	0.155	м 395.500	102.480%	102.038%	0.128	0.008	0.215	0.148
Х	-0.014	0.116	0.154	м 397.200	102.765%	103.129%	0.124	0.004	0.202	0.152
σ	0.015	0.016	0.005	м 4.027	0.719%	0.951%	0.005	0.004	0.013	0.013
%RSD	108.900	13.990	3.378	<u>м 1.014</u>	0.700	0.923	3.912	99.790	6.589	8.599
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 16:33:44	0.114	103.912%	0.000	0.000						
2 16:34:49	0.108	105.731%	0.000	0.000						
3 16:35:54	0.119	105.288%	0.000	0.000						
X	0.114	104.977%	0.000	0.000						
σ	0.006	0.948%	0.000	0.000						
%RSD	4.911	0.903	0.000	0.000						

MP55464-S1 11/2/2010 16:36:21

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	dqq	ppb	ppb	ppb	dqq	dqq	dqq	ppb	ppb
1 16:37:26	81.723%	м 103.400	55.790	60.650	0.000	тм 9901.000	тм 15320.000	тм 15520.000	98.150	⊤ 0.000
2 16:38:31	81.420%	м 103.600	56.570	62.320	0.000	тм 9932.000	тм 15140.000	тм 15830.000	97.190	т 0.000
3 16:39:37	83.976%	м 100.500	56.050	58.500	0.000	тм 9668.000	тм 14990.000	тм 15340.000	96.130	т 0.000
Х	82.373%	м 102.500	56.140	60.490	0.000	тм 9834.000	тм 15150.000	тм 15570.000	97.160	т 0.000
σ	1.397%	м 1.753	0.400	1.919	0.000	тм 144.300	тм 165.700	тм 245.700	1.015	т 0.000
%RSD	1.696	м 1.710	0.712	3.172	0.000	тм 1.468	тм 1.094	тм 1.578	1.045	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:37:26	761.400	м 45870.000	тм 49340.000	89.777%	0.390	м 100.400	97.900	97.540	201.400	98.000
2 16:38:31	775.300	м 44180.000	тм 48590.000	91.274%	0.297	98.610	94.530	95.000	206.700	98.800
3 16:39:37	778.600	м 44130.000	тм 48270.000	90.716%	0.300	98.360	95.200	96.380	191.800	96.290
X	771.800	м 44730.000	тм 48730.000	90.589%	0.329	м 99.110	95.880	96.310	200.000	97.700
σ	9.166	м 988.300	тм 548.400	0.756%	0.053	м 1.084	1.786	1.268	7.537	1.284
%RSD	1.188	м 2.210	<u>тм 1.125</u>	0.835	16.100	м 1.093	1.863	1.316	3.769	1.315
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:37:26	103.400	161.600	98.340	92.840	92.420	м 107.100	м 107.000	м 147.300	м 151.400	м 157.600
2 16:38:31	98.330	159.700	95.850	91.340	90.940	м 107.000	м 106.100	м 145.000	м 151.800	м 155.000
3 16:39:37	100.700	154.400	93.740	91.560	90.970	м 103.300	м 101.300	м 145.600	м 151.700	м 152.800
X	100.800	158.500	95.980	91.910	91.440	м 105.800	м 104.800	м 146.000	м 151.600	м 155.100
σ	2.547	3.728	2.305	0.811	0.844	м 2.191	м 3.091	<u>м 1.167</u>	м 0.208	м 2.423
%RSD	2.527	2.351	2.401	0.882	0.923	м 2.071	м 2.950	м 0.799	м 0.137	м 1.562
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:37:26	м 110.000	м 221.200	м 215.700	0.000	0.000	м 215.100	тм 652.100	92.910%	1.550	1.582
2 16:38:31	м 109.800	м 217.700	м 214.100	0.000	0.000	м 216.900	<u>тм 654.600</u>	93.314%	1.640	1.876
3 16:39:37	м 109.000	м 216.300	м 214.400	0.000	0.000	м 213.300	тм 649.000	93.870%	1.847	2.093
X	м 109.600	м 218.400	м 214.700	0.000	0.000	м 215.100	<u>тм 651.900</u>	93.364%	1.679	1.850
σ	м 0.532	м 2.544	м 0.832	0.000	0.000	<u>м 1.818</u>	<u>тм 2.811</u>	0.482%	0.152	0.256
%RSD	м 0.486	м 1.165	м 0.388	0.000	0.000	м 0.845	<u>тм 0.431</u>	0.517	9.062	13.850
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
1 16:37:26	ppb 1.616	ppb 89.683%	ррb м 104.300	ppb 76.290	ppb 0.603	ррb м 101.400	ppb 72.520	ррb м 104.500	ррb м 100.700	ppb 94.717%
2 16:38:31	1.730	90.855%	<u>м 104.300</u> м 102.900	71.080	0.538	99.170	72.160	м 104.900	м 100.700	96.239%
3 16:39:37	1.730	89.968%	м 103.200	69.900	0.702	м 101.700	72.100	м 102.300	м 101.100	95.080%
X X	1.750	90.169%	м 103.200	72.420	0.702	м 101.700	72.310	м 102.300	м 100.700	95.346%
σ	0.146	0.611%	м 0.734	3.402	0.014	<u>м 100.800</u> м 1.388	0.191	<u>м 103.200</u> м 1.150	м 0.322	0.795%
%RSD	8.325	0.678	м 0.710	4.697	13.400	<u>м 1.388</u> м 1.378	0.264	<u>м 1.130</u> м 1.114	м 0.322 м 0.320	0.74378
Run Time	118Sn	121Sb	123Sb	137Ba	15.400	165Ho	203TI	205TI	206Pb	207Pb
itaii iiiiis	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:37:26	-0.020	92.360	90.900	м 356.300	100.412%	101.652%	м 103.400	м 104.600	м 102.900	м 101.800
2 16:38:31	-0.001	93.350	92.870	м 349.200	102.769%	103.035%	м 102.800	м 103.000	м 101.200	м 101.200
3 16:39:37	0.023	92.140	92.010	м 348.400	101.374%	102.309%	м 100.500	м 102.500	м 100.500	м 100.300
X	0.001	92.620	91.930	м 351.300	101.518%	102.332%	м 102.200	м 103.400	м 101.500	м 101.100
σ	0.021	0.646	0.988	м 4.372	1.185%	0.692%	м 1.560	м 1.095	м 1.200	м 0.770
%RSD	3317.000	0.697	1.075	м 1.244	1.168	0.676	м 1.526	м 1.059	м 1.182	м 0.762
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 16:37:26	м 102.400	102.088%	0.000	0.000						
2 16:38:31	м 101.300	103.714%	0.000	0.000						
3 16:39:37	м 100.200	104.536%	0.000	0.000						
X	м 101.300	103.446%	0.000	0.000						
σ	м 1.101	1.246%	0.000	0.000						
%RSD	м 1.087	1.205	0.000	0.000						

MP55464-S2 11/2/2010 16:40:03

Run	dilution: 1.00-	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:41:08	82.300%	м 108.900	58.990	62.280	0.000	тм 10160.000	тм 15880.000	тм 15930.000	100.700	⊤ 0.000
2	16:42:13	85.367%	м 103.400	58.350	58.920	0.000	тм 9858.000	тм 15190.000	тм 14910.000	95.860	<u>⊤ 0.000</u>
3	16:43:18	81.301%	м 105.500	59.450	61.880	0.000	тм 10010.000	тм 16080.000	тм 15770.000	97.790	T 0.000
X		82.989%	м 105.900	58.930	61.030	0.000	тм 10010.000	тм 15720.000	тм 15540.000	98.100	т 0.000
σ		2.119%	м 2.794	0.556	1.840	0.000	тм 149.100	тм 470.100	тм 547.600	2.413	т 0.000
%RSD		2.553	м 2.637	0.943	3.014	0.000	тм 1.490	тм 2.991	тм 3.525	2.460	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:41:08	787.600	м 46370.000	тм 49460.000	92.280%	0.381	м 102.500	99.950	98.740	211.900	м 102.400
2	16:42:13	763.000	м 43130.000	тм 47200.000	96.418%	0.244	98.770	95.710	94.570	186.000	96.430
3	16:43:18	787.700	м 43780.000	тм 47710.000	94.485%	0.230	99.140	96.150	97.360	169.500	97.460
X		779.400	м 44420.000	тм 48120.000	94.394%	0.285	м 100.100	97.270	96.890	189.100	м 98.770
σ		14.220	м 1714.000	тм 1183.000	2.071%	0.083	м 2.062	2.331	2.127	21.380	м 3.198
%RSD		1.825	м 3.857	<u>тм 2.458</u>	2.194	29.300	м 2.059	2.396	2.195	11.300	м 3.238
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	1 1 1 00	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:41:08	108.300	168.200	99.460	95.670	91.420	м 110.100	м 107.200	м 150.700	м 154.600	м 156.800
2	16:42:13	101.000	161.300	93.530	90.880	91.610	м 103.600	м 104.400	м 143.600	м 146.700	м 153.000
3	16:43:18	101.900	161.700	93.610	91.730	92.570	м 103.400	м 103.800	м 143.400	м 151.400	м 152.600
X		103.700	163.700	95.530	92.760	91.870	м 105.700	м 105.100	м 145.900	м 150.900	м 154.100
σ		3.968	3.852	3.399	2.554	0.616	м 3.800	м 1.802	м 4.134	м 3.970	м 2.34 <u>5</u>
%RSD Run	Time	3.825 75As	2.353 77Se	3.558 78Se	2.753 79Br	0.670 81Br	<u>м 3.596</u> 82Se	<u>м 1.714</u> 88Sr	<u>м 2.833</u> 89Y	<u>м 2.632</u> 95Мо	<u>м 1.521</u> 97Мо
Kuii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:41:08	м 111.700	м 225.500	м 219.400	0.000	0.000	м 219.300	тм 661.400	94.219%	1.850	1.673
2	16:42:13	м 107.600	м 216.900	м 212.200	0.000	0.000	м 212.100	тм 636.700	97.312%	1.630	1.828
3	16:43:18	м 108.500	м 215.000	м 211.600	0.000	0.000	м 214.500	тм 645.400	97.395%	1.962	1.976
X		м 109.300	м 219.100	м 214.400	0.000	0.000	м 215.300	тм 647.800	96.309%	1.814	1.826
σ		м 2.145	м 5.555	м 4.334	0.000	0.000	м 3.700	тм 12.520	1.810%	0.169	0.152
%RSD		м 1.963	<u>м 2.535</u>	<u>м 2.021</u>	0.000	0.000	<u>м 1.718</u>	тм 1.933	1.879	9.299	8.311
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:41:08	1.742	92.343%	м 105.000	70.440	0.853	м 105.600	73.110	м 102.600	м 101.100	97.108%
2	16:42:13	1.780	94.523%	99.250	72.000	0.941	м 101.400	68.820	м 101.200	97.910	100.248%
3	16:43:18	1.891	92.431%	м 100.300	68.980	0.769	99.570	67.880	м 100.600	97.870	100.472%
X		1.804	93.099%	м 101.500	70.470	0.854	м 102.200	69.940	м 101.500	м 98.950	99.276%
σ		0.077	1.234%	м 3.060	1.509	0.086	м 3.082	2.790	м 1.020	м 1.839	1.881%
%RSD		4.288	1.325	м 3.015	2.141	10.080	м 3.017	3.989	м 1.005	м 1.859	1.895
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	1/ /1 00	ppb 0.151	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:41:08	0.151	98.730	98.580	м 357.200	103.064%	103.206%	м 105.500	м 106.400	м 104.600	м 104.100
	16:42:13	-0.016	96.600	96.880	м 347.800	105.117%	107.051%	м 100.800	м 103.000	м 101.000	м 100.300
3	16:43:18	-0.008	95.520	95.760	м 343.000	105.094%	104.850%	м 102.000	м 102.900	м 101.400	м 100.400
X		0.042	96.950	97.070	м 349.400	104.425%	105.036%	м 102.800	м 104.100	м 102.300	м 101.600
%RSD		0.094	1.636	1.419	м 7.235 2.071	1.179%	1.929%	<u>м 2.408</u>	м 1.980 и 1.003	м 1.973	м 2.190 2.155
Run	Time	224.300 208Pb	1.687 209Bi	1.462 220Bkg	<u>м 2.071</u> 238U	1.129	1.836	м 2.344	м 1.902	м 1.928	м 2.155
ixuii	Time	ppb	ppb	ppb	ppb						
1	16:41:08	м 104.400	103.575%	0.000	0.000						
	16:42:13	м 100.400	107.661%	0.000	0.000						
3	16:43:18	м 100.300	107.818%	0.000	0.000						
X		м 101.700	106.351%	0.000	0.000						
σ		м 2.352	2.405%	0.000	0.000						
%RSD		<u>м 2.313</u>	2.262	0.000	0.000						

ccv 11/2/2010 16:43:45

User Pre-dilution: 1.00		0.5	100	445	100	001	0514	0/14	0741	0701
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 1/ 44 50	ppb	ppb 40.730	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:44:50	89.129%	49.630	52.900	57.040	0.000	526.300	550.200	537.100	т 539.300	<u> 7 0.000</u>
2 16:45:55	88.076%	50.950	57.610	59.030	0.000	537.400	544.400	534.300	<u> </u>	<u>T 0.000</u>
3 16:47:01	88.980%	50.710	54.720	55.960	0.000	506.900	536.000	529.100	<u> 7 535.900</u>	<u>т 0.000</u>
X	88.728%	50.430	55.070	57.340	0.000	523.500	543.600	533.500	<u>т 538.300</u>	<u>т 0.000</u>
σ	0.570%	0.707	2.376	1.556	0.000	15.480	7.145	4.056	<u>т 2.087</u>	<u>т 0.000</u>
%RSD	0.642	1.403	4.313	2.714	0.000	2.957	1.314	0.760	<u>т 0.388</u>	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:44:50	521.700	572.400	574.000	88.387%	50.370	50.260	51.530	50.930	318.200	51.420
2 16:45:55	521.900	565.900	531.000	93.149%	48.520	48.520	49.110	48.620	318.900	49.610
3 16:47:01	519.400	551.700	534.100	91.983%	48.540	49.040	49.390	48.220	303.900	49.480
X	521.000	563.300	546.400	91.173%	49.150	49.280	50.010	49.260	313.600	50.170
σ	1.387	10.590	23.940	2.482%	1.063	0.894	1.324	1.464	8.480	1.089
%RSD	0.266	1.879	4.381	2.722	2.163	1.814	2.646	2.973	2.704	2.170
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:44:50	561.900	552.200	49.410	50.060	48.900	50.030	49.630	50.350	50.110	50.700
2 16:45:55	<u>т 542.000</u>	533.300	50.150	47.530	47.700	48.770	47.650	49.890	48.400	48.940
3 16:47:01	555.100	537.800	48.660	49.670	47.960	49.010	49.500	50.500	49.520	50.710
X	<u>т 553.000</u>	541.100	49.400	49.090	48.190	49.270	48.920	50.250	49.340	50.120
σ	<u>т 10.120</u>	9.881	0.748	1.363	0.631	0.665	1.108	0.317	0.871	1.016
%RSD	<u>т 1.830</u>	1.826	1.515	2.776	1.310	1.351	2.264	0.630	1.766	2.027
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:44:50	49.190	59.450	51.150	0.000	0.000	50.750	50.930	97.717%	49.100	49.500
2 16:45:55	49.050	60.380	50.710	0.000	0.000	51.250	50.980	96.860%	50.880	50.670
3 16:47:01	48.540	62.830	50.640	0.000	0.000	50.160	51.060	96.132%	50.080	49.280
X	48.930	60.890	50.830	0.000	0.000	50.720	50.990	96.903%	50.020	49.820
σ	0.341	1.750	0.278	0.000	0.000	0.542	0.062	0.793%	0.895	0.744
%RSD	0.697	2.874	0.548	0.000	0.000	1.069	0.121	0.818	1.789	1.494
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:44:50	48.950	96.336%	52.910	52.410	0.233	48.910	51.330	49.950	49.450	100.161%
2 16:45:55	50.390	96.171%	50.490	52.660	0.518	50.640	52.280	50.690	49.000	100.046%
3 16:47:01	50.110	97.206%	50.910	52.840	0.474	50.540	52.620	50.890	49.040	99.296%
X	49.820	96.571%	51.440	52.640	0.408	50.030	52.080	50.510	49.160	99.835%
σ	0.762	0.556%	1.292	0.217	0.154	0.970	0.670	0.496	0.249	0.470%
%RSD	1.530	0.576	2.512	0.412	37.650	1.938	1.287	0.981	0.507	0.470
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:44:50	49.060	56.660	56.550	48.200	103.066%	104.271%	49.520	49.580	49.900	50.030
2 16:45:55	48.910	57.710	57.230	48.770	104.402%	103.978%	49.790	50.200	50.230	50.030
3 16:47:01	49.290	58.100	58.110	49.710	104.008%	103.619%	49.090	49.660	49.230	50.060
X	49.090	57.490	57.290	48.900	103.826%	103.956%	49.470	49.810	49.790	50.040
σ	0.191	0.749	0.782	0.763	0.686%	0.326%	0.353	0.339	0.511	0.020
%RSD	0.389	1.303	1.365	1.561	0.661	0.314	0.713	0.680	1.026	0.039
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 16:44:50	49.280	110.007%	0.000	0.000						
1 10.44.30										
2 16:45:55	49.950	107.950%	0.000	0.000						
	49.950 49.090	107.950% 109.227%	0.000 0.000	0.000						
2 16:45:55	₫									
2 16:45:55 3 16:47:01 x	49.090 49.440	109.227% 109.061%	0.000 0.000	0.000 0.000						
2 16:45:55 3 16:47:01	49.090	109.227%	0.000	0.000						

ccb 11/2/2010 16:47:26

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kull Illile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:48:32	90.446%	0.021	5.769	5.219	0.000	-7.516	-0.307	-0.017	-0.727	<u>7 0.000</u>
2 16:49:37	90.363%	0.021	4.505	4.440	0.000	4.684	1.661	1.748	0.875	<u>г 0.000</u>
	•									· · · · · · · · · · · · · · · · · · ·
3 16:50:42	99.559%	0.010	3.688	4.228	0.000	-7.568	-0.553	-0.358	-1.089	<u>1 0.000</u>
X	93.456%	0.013	4.654	4.629	0.000	-3.467	0.267	0.458	-0.314	<u>т 0.000</u>
σ	5.286%	0.007	1.049	0.522	0.000	7.059	1.214	1.130	1.045	<u>т 0.000</u>
%RSD	5.656	51.210	22.530	11.280	0.000	203.600	454.700	246.900	333.000	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 16:48:32	ppb	ppb	ppb	ppb	ppb 0.194	ppb	ppb 0.454	ppb	ppb	ppb
	-1.642	-29.140	-19.770	92.748%	-0.186	0.209	0.456	1.711	305.300	0.044
2 16:49:37	0.758	-17.850	-10.790	91.037%	-0.143	0.187	0.482	1.153	313.800	0.066
3 16:50:42	-2.748	-29.640	-18.200	101.634%	-0.206	-0.605	0.413	-1.365	313.700	0.019
X	-1.211	-25.540	-16.250	95.140%	-0.178	-0.070	0.450	0.499	310.900	0.043
σ	1.792	6.667	4.795	5.689%	0.032	0.464	0.035	1.639	4.827	0.024
%RSD	148.000	26.110	29.500	5.980	18.070	665.200	7.757	328.200	1.552	55.010
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 1/ 40 22	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:48:32	-0.299	-1.952	0.017	0.107	0.147	-0.258	-0.011	-0.878	-0.965	-1.313
2 16:49:37	2.910	-0.368	0.041	0.067	0.090	-0.268	-0.050	-0.827	-1.083	-1.529
3 16:50:42	0.866	-2.302	-0.010	0.050	0.282	-0.232	-0.079	-0.750	-0.856	-1.445
X	1.159	-1.541	0.016	0.075	0.173	-0.253	-0.047	-0.818	-0.968	-1.429
σ	1.624	1.030	0.025	0.029	0.098	0.019	0.034	0.065	0.113	0.109
%RSD	140.200	66.860	157.300	39.150	56.930	7.423	72.460	7.891	11.710	7.620
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 1 4 40 00	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:48:32	0.195	10.760	0.180	0.000	0.000	0.304	0.042	94.422%	0.851	0.930
2 16:49:37	0.046	10.640	0.006	0.000	0.000	0.162	0.059	97.775%	0.836	0.896
3 16:50:42	-0.105	9.950	-0.274	0.000	0.000	0.129	0.008	103.718%	0.623	0.681
X	0.046	10.450	-0.029	0.000	0.000	0.198	0.036	98.638%	0.770	0.836
σ	0.150	0.438	0.229	0.000	0.000	0.093	0.026	4.708%	0.127	0.135
%RSD	328.000	4.187	780.700	0.000	0.000	46.840	72.210	4.773	16.520	16.170
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
T	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:48:32	0.872	93.940%	-0.284	2.819	0.265	0.096	2.857	0.007	0.237	97.502%
2 16:49:37	0.919	94.669%	-0.043	3.214	0.247	0.066	3.234	0.011	0.242	98.022%
3 16:50:42	0.622	103.960%	0.002	3.490	0.247	0.091	3.551	-0.004	0.221	104.449%
X	0.804	97.523%	-0.109	3.174	0.253	0.084	3.214	0.005	0.233	99.991%
σ	0.160	5.587%	0.154	0.337	0.010	0.016	0.347	0.008	0.011	3.870%
%RSD	19.830	5.728	141.700	10.630	4.140	19.060	10.810	175.000	4.711	3.870
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:48:32	0.366	2.549	2.564	0.022	102.283%	102.255%	0.205	0.077	0.111	0.078
2 16:49:37	0.554	2.391	2.523	0.046	101.153%	103.065%	0.172	0.055	0.102	0.070
3 16:50:42	0.707	2.679	2.725	-0.010	108.165%	108.297%	0.166	0.041	0.078	0.041
Х	0.542	2.539	2.604	0.019	103.867%	104.539%	0.181	0.058	0.097	0.063
σ	0.171	0.144	0.107	0.028	3.765%	3.280%	0.021	0.018	0.017	0.019
%RSD	31.540	5.680	4.106	145.900	3.625	3.137	11.460	31.290	17.510	30.470
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 16:48:32	0.025	107.069%	0.000	0.000						
2 16:49:37	0.019	104.961%	0.000	0.000						
3 16:50:42	-0.006	112.185%	0.000	0.000						
X	0.012	108.072%	0.000	0.000						
σ	0.016	3.715%	0.000	0.000						
%RSD	130.100	3.438	0.000	0.000						

mp55425-mb1 11/2/2010 16:51:10

User Pre-dilution: 1										
Run Time	e 6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:52:15	99.434%	0.006	3.776	3.500	0.000	-3.845	-0.443	-0.035	0.635	<u> </u>
2 16:53:2	97.940%	0.003	3.866	3.281	0.000	-1.749	-0.067	0.342	0.864	<u>т 0.000</u>
3 16:54:20	98.121%	0.003	3.317	3.213	0.000	-3.815	-0.555	0.103	0.666	<u>т 0.000</u>
X	98.498%	0.004	3.653	3.332	0.000	-3.136	-0.355	0.137	0.722	<u>т 0.000</u>
σ	0.815%	0.002	0.295	0.150	0.000	1.201	0.255	0.191	0.124	т 0.000
%RSD	0.828	50.260	8.069	4.506	0.000	38.310	71.910	139.800	17.180	<u>т 0.000</u>
Run Time		43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
itan inii	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:52:15		-23.980	-15.150	100.085%	-0.070	-0.319	0.244	-1.638	264.800	0.018
2 16:53:2	=	-20.210	-14.560	96.673%	-0.204	0.130	0.263	1.269	260.900	0.026
	=				-0.204	0.130	0.264	1.379		0.020
	_	-24.500	-15.350	98.824%					252.300	
X	-0.858	-22.900	-15.020	98.527%	-0.134	0.022	0.257	0.337	259.300	0.022
σ	1.126	2.342	0.412	1.726%	0.067	0.302	0.011	1.711	6.407	0.004
%RSD	131.300	10.230	2.745	1.751	50.270	1355.000	4.258	508.000	2.470	17.170
Run Time		57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:52:15		-3.201	-0.019	0.106	0.218	-0.252	-0.038	-0.201	-0.383	-0.917
2 16:53:2		-3.226	-0.009	0.084	0.134	-0.248	-0.029	-0.017	-0.206	-0.766
3 16:54:20	-0.059	-3.290	-0.012	0.064	0.129	-0.284	-0.073	-0.123	-0.250	-0.875
X	0.152	-3.239	-0.013	0.085	0.160	-0.261	-0.047	-0.113	-0.280	-0.853
σ	1.331	0.046	0.005	0.021	0.050	0.020	0.023	0.092	0.092	0.078
%RSD	878.900	1.406	39.050	24.760	31.420	7.607	49.680	81.150	32.840	9.172
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:52:15	-0.052	5.397	-0.160	0.000	0.000	0.095	0.006	104.653%	-0.404	-0.425
2 16:53:2	-0.084	5.511	-0.120	0.000	0.000	0.007	0.014	101.836%	-0.301	-0.196
3 16:54:20	0.019	4.817	-0.062	0.000	0.000	0.006	0.006	103.957%	-0.188	-0.107
X	-0.039	5.242	-0.114	0.000	0.000	0.036	0.009	103.482%	-0.298	-0.243
σ	0.052	0.372	0.049	0.000	0.000	0.051	0.005	1.467%	0.108	0.164
%RSD	133.800	7.095	43.230	0.000	0.000	141.800	54.670	1.418	36.350	67.630
Run Time	_,	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:52:15		104.727%	-0.329	0.465	0.265	0.036	0.589	-0.020	0.218	105.951%
2 16:53:2	=	101.967%	-0.602	0.544	0.288	0.119	0.660	-0.039	0.201	104.790%
3 16:54:20		103.694%	0.144	0.667	0.235	0.064	0.742	0.005	0.229	103.357%
X	-0.292	103.463%	-0.262	0.559	0.263	0.073	0.663	-0.018	0.216	104.699%
σ	0.125	1.394%	0.378	0.102	0.026	0.042	0.077	0.022	0.014	1.299%
%RSD	42.740	1.347	144.100	18.270	10.030	57.630	11.540	123.700	6.521	1.241
Run Time		121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
Kuii Iiiik	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:52:15	_	0.470	0.522	0.009	107.347%	107.822%	0.130	0.006	0.101	0.069
2 16:53:2		0.522	0.586	0.020	106.443%	106.271%	0.138	0.004	0.109	0.066
3 16:54:20	=	0.573	0.643	0.010	105.906%	105.260%	0.120	0.004	0.107	0.054
	0.030	0.522	0.584							
X				0.013	106.565%	106.451%	0.127	0.005	0.104	0.063
σ	0.026	0.052	0.061	0.006	0.728%	1.291%	0.005	0.001	0.004	0.008
%RSD	84.950	9.891	10.370	47.210	0.683	1.212	3.693	23.240	4.062	12.460
Run Time		209Bi	220Bkg	238U						
		ppb	ppb	ppb						
1 14.50.11	ppb	•	0.000	0.000						
1 16:52:19	0.017	111.346%	0.000	0.000						
2 16:53:2	0.017	111.346% 109.993%	0.000	0.000						
2 16:53:2° 3 16:54:20	0.017 0.019 0.014	111.346% 109.993% 110.982%	0.000 0.000	0.000 0.000						
2 16:53:2	0.017 0.019 0.014 0.017	111.346% 109.993% 110.982% 110.774%	0.000 0.000 0.000	0.000 0.000 0.000						
2 16:53:2° 3 16:54:20	0.017 0.019 0.014 0.017 0.003	111.346% 109.993% 110.982% 110.774% 0.700%	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000						
2 16:53:2° 3 16:54:20 x	0.017 0.019 0.014 0.017	111.346% 109.993% 110.982% 110.774%	0.000 0.000 0.000	0.000 0.000 0.000						

mp55425-lc1 11/2/2010 16:54:52

	-allution: 1.00		OD.	100	110	120	2211-	2514	2/14-	2741	2701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1	1/.55.57	ppb	ppb ppb	ppb	ppb	ppb	ppb ⊤531.200	ppb	ppb	ppb	ppb
	16:55:57	97.866% 99.409%	99.340 97.990	3.623 3.823	3.647 3.443	0.000		509.800	516.300	<u>1518.900</u>	<u>1 0.000</u>
2	16:57:02					0.000	<u>T 511.700</u>	494.200	516.900	<u>+ 519.800</u>	<u>1 0.000</u>
3	16:58:09	95.515%	98.560	3.645	3.215	0.000	<u> </u>	522.700	510.800	<u> </u>	<u>T 0.000</u>
X		97.597%	98.630	3.697	3.435	0.000	<u>т 527.500</u>	508.900	514.700	<u>т 521.800</u>	<u>т 0.000</u>
σ %RSD		1.961%	0.676	0.110	0.216	0.000	<u>т 14.290</u>	14.270	3.370	<u>† 4.153</u>	<u>т 0.000</u>
Run	Time	2.009 39K	0.686 43Ca	2.969 44Ca	6.295 45Sc	0.000 47Ti	<u>т 2.709</u> 51V	2.804 52Cr	0.655 53Cr	<u>т 0.796</u> 53СІ О	<u>⊤ 0.000</u> 55Mn
Kuii	Tillle	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:55:57	495.700	487.800	500.000	99.220%	-0.106	97.940	98.550	97.110	340.300	98.740
2	16:57:02	506.000	486.600	510.500	98.442%	-0.144	м 101.000	м 102.500	м 102.900	320.900	м 100.100
3	16:58:09	505.300	499.400	512.500	94.928%	-0.132	м 100.300	м 100.100	м 100.600	325.800	м 100.700
X		502.300	491.300	507.700	97.530%	-0.127	м 99.750	м 100.400	м 100.200	329.000	м 99.840
σ		5.752	7.090	6.696	2.287%	0.019	м 1.602	м 1.985	м 2.913	10.100	м 1.017
%RSD		1.145	1.443	1.319	2.345	15.010	м 1.606	м 1.977	м 2.907	3.069	м 1.019
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:55:57	<u>т 520.300</u>	505.500	м 100.800	м 101.500	94.390	м 101.300	97.270	98.040	96.240	97.510
2	16:57:02	<u>т 525.600</u>	523.200	м 101.300	99.250	98.720	96.810	98.920	99.220	96.500	м 101.700
3	16:58:09	<u>т 537.300</u>	533.300	м 101.900	м 100.100	м 100.000	98.280	м 101.500	м 100.000	м 100.000	м 101.200
X		<u>т 527.800</u>	520.600	м 101.300	м 100.300	м 97.710	м 98.780	м 99.250	м 99.090	м 97.590	м 100.200
σ		<u>т 8.708</u>	14.070	<u>м 0.571</u>	<u>м 1.142</u>	м 2.948	<u>м 2.265</u>	<u>м 2.157</u>	<u>м 0.998</u>	м 2.120	м 2.303
%RSD		<u>т 1.650</u>	2.703	м 0.564	м 1.139	<u>м 3.018</u>	м 2.293	м 2.173	м 1.007	м 2.173	м 2.299
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	4/ 55 53	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:55:57	96.430	м 203.600	м 191.300	0.000	0.000	м 191.400	0.031	103.140%	-0.307	-0.270
2	16:57:02	97.150	м 207.100	м 193.200	0.000	0.000	м 192.200	0.048	102.776%	-0.215	-0.096
3	16:58:09	97.800	м 208.400	м 194.500	0.000	0.000	м 193.500	0.056	100.917%	-0.019	0.043
X		97.130	м 206.400	м 193.000	0.000	0.000	м 192.400	0.045	102.278%	-0.180	-0.108
σ %RSD		0.686	м 2.476	м 1.582	0.000	0.000	<u>м 1.030</u>	0.013	1.192%	0.147	0.157
Run	Time	0.706 98Mo	<u>м 1.200</u> 103Rh	<u>м 0.820</u> 106Cd	0.000 107Ag	0.000 108Mo O	<u>м 0.535</u> 108Cd	28.380 109Ag	1.166 111Cd	81.640 114Cd	145.800 115In
Kuli	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:55:57	-0.292	103.764%	96.270	98.200	0.803	97.540	97.610	98.340	96.360	103.836%
2	16:57:02	-0.232	101.616%	100.000	98.670	0.432	95.310	98.190	99.350	96.400	105.527%
3	16:58:09	0.043	100.843%	97.490	99.430	0.663	96.580	98.880	98.540	98.030	102.077%
X		-0.160	102.074%	97.920	98.770	0.633	96.480	98.230	98.740	96.930	103.813%
σ		0.179	1.513%	1.898	0.624	0.187	1.119	0.633	0.533	0.955	1.725%
%RSD		111.600	1.482	1.938	0.632	29.580	1.160	0.645	0.540	0.985	1.661
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:55:57	0.049	м 102.700	м 102.100	97.510	107.572%	109.185%	97.730	м 100.700	99.560	99.570
2	16:57:02	0.115	м 101.300	м 101.900	96.480	107.940%	108.312%	м 102.200	м 102.100	99.590	м 101.300
3	16:58:09	0.130	м 103.600	м 104.000	97.870	106.184%	107.568%	98.930	м 101.600	м 101.100	м 100.500
Х		0.098	м 102.500	м 102.700	97.280	107.232%	108.355%	м 99.610	м 101.500	м 100.100	м 100.400
σ		0.043	<u>м 1.174</u>	м 1.137	0.723	0.926%	0.809%	м 2.294	м 0.722	м 0.897	<u>м 0.876</u>
%RSD		43.890	м 1.146	м 1.107	0.744	0.864	0.747	м 2.303	м 0.712	<u>м 0.896</u>	м 0.872
Run	Time	208Pb	209Bi	220Bkg	238U						
1	16.55.57	ppb	ppb	ppb	ppb						
1	16:55:57	98.880	111.224%	0.000	0.000						
3	16:57:02 16:58:09	м 100.300	110.181% 109.331%	0.000	0.000 0.000						
X	10.00.09	м 100.500 м 99.910	1109.331%	0.000	0.000						
		м 0.889	0.948%	0.000	0.000						
σ %RSD		<u>м 0.889</u> м 0.890	0.948%	0.000	0.000						
JONGO	I	w 0.070	0.000	0.000	0.000						

mp55425-s1 11/2/2010 16:58:34

User Pre-dilution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:59:40	93.300%	95.890	м 186.300	м 187.900	0.000	тм 45860.000	тм 16200.000	тм 16570.000	<u> 7529.200</u>	<u>т 0.000</u>
2 17:00:45	95.188%	94.320	м 182.100	м 198.300	0.000	тм 45460.000	тм 16400.000	тм 16390.000	<u> </u>	<u>т 0.000</u>
3 17:01:50	95.477%	93.790	м 189.100	м 185.600	0.000	тм 46510.000	тм 16220.000	тм 16440.000	<u> </u>	T 0.000
X	94.655%	94.670	м 185.900	м 190.600	0.000	тм 45940.000	тм 16270.000	тм 16470.000	т 529.500	т 0.000
σ	1.182%	1.091	м 3.540	м 6.790	0.000	тм 531.300	тм 112.000	тм 94.250	т 0.287	т 0.000
%RSD	1.249	1.153	<u>м 1.905</u>	м 3.562	0.000	тм 1.156	тм 0.688	тм 0.572	т 0.054	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
Kuii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:59:40	тм 6982.000	м 142200.000	тм 148900.000	100.188%	0.188	98.240	м 135.400	м 135.700	264.200	м 103.200
2 17:00:45	тм 7089.000	м 143000.000	тм 155900.000	99.188%	0.153	99.050	м 137.000	м 135.600	283.500	м 104.500
3 17:01:50	тм 7072.000	м 147300.000	тм 156000.000	97.111%	0.209	м 100.300	м 137.700	м 131.400	316.900	м 104.300
X	тм 7048.000	м 144200.000	тм 153600.000	98.829%	0.183	м 99.190	м 136.700	м 134.200	288.200	м 104.000
σ	_{TM} 57.290	м 2744.000	тм 4039.000	1.569%	0.028	м 1.031	м 1.194	м 2.437	26.650	м 0.688
%RSD	<u>тм 0.813</u>	<u>м 1.903</u>	тм 2.629	1.588	15.300	м 1.039	<u>м 0.873</u>	м 1.815	9.248	<u>м 0.661</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:59:40	<u> </u>	711.600	94.970	91.800	90.150	89.740	90.800	87.370	89.740	90.790
2 17:00:45	<u> 7 541.500</u>	718.100	93.860	90.500	92.340	89.610	90.610	87.820	88.410	90.090
3 17:01:50	<u> </u>	721.400	97.270	91.370	92.190	92.990	90.860	88.130	91.340	91.180
X	<u>т 540.700</u>	717.000	95.370	91.220	91.560	90.780	90.750	87.770	89.830	90.690
σ	т 5.389	5.031	1.737	0.666	1.220	1.918	0.132	0.382	1.467	0.552
%RSD	т 0.997	0.702	1.822	0.731	1.333	2.112	0.145	0.435	1.633	0.609
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:59:40	94.470	м 200.500	м 182.200	0.000	0.000	м 181.900	тм 606.000	100.764%	6.537	6.308
2 17:00:45	94.280	м 198.600	м 180.400	0.000	0.000	м 181.100	тм 604.300	104.219%	6.997	7.327
3 17:01:50	96.080	м 203.900	м 184.000	0.000	0.000	м 184.100	тм 606.700	101.345%	7.122	7.358
Х	94.940	м 201.000	м 182.200	0.000	0.000	м 182.400	тм 605.600	102.109%	6.885	6.998
σ	0.989	<u>м 201.000</u> м 2.681	<u>м 1.817</u>	0.000	0.000	м 1.533	тм 1.238	1.850%	0.308	0.597
%RSD	1.042	<u>м 2.00 г</u> м 1.334	м 0.997	0.000	0.000	<u>м 1.333</u> м 0.841	тм 0.205	1.812	4.473	8.535
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
Kuii Iiiile					ppb					
1 16:59:40	ppb 6.567	ppb 93.092%	ppb 9 5.150	ppb 98.180	0.881	ppb 96.890	ppb 95.690	ppb 95.560	ppb 93.690	ppb 97.916%
2 17:00:45	7.141	93.565%	98.710	97.570		96.720		97.190	94.510	99.484%
					0.643		96.550			
3 17:01:50	7.510	93.115%	94.090	98.230	0.990	97.310	96.760	98.010	95.140	98.680%
X	7.073	93.257%	95.980	97.990	0.838	96.970	96.330	96.920	94.450	98.694%
σ	0.475	0.267%	2.423	0.366	0.177	0.307	0.566	1.249	0.723	0.784%
%RSD	6.721	0.286	2.525	0.373	21.160	0.317	0.588	1.289	0.766	0.794
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:59:40	0.003	м 106.800	<u>м 106.400</u>	м 154.100	104.853%	105.629%	м 105.800	м 107.300	м 104.400	м 105.000
2 17:00:45	0.043	м 105.800	м 106.300	м 155.900	107.328%	107.528%	м 106.600	м 109.400	м 105.400	м 107.300
3 17:01:50	0.088	м 106.400	м 108.500	м 157.000	106.551%	108.420%	м 106.900	м 108.400	м 105.400	м 105.900
X	0.045	м 106.300	м 107.100	м 155.600	106.244%	107.192%	м 106.400	м 108.300	м 105.100	м 106.100
σ	0.042	м 0.515	м 1.237	м 1.470	1.266%	1.425%	м 0.589	м 1.078	м 0.578	<u>м 1.157</u>
%RSD	94.660	м 0.485	м 1.155	м 0.945	1.192	1.330	м 0.554	м 0.995	м 0.550	м 1.091
Run Time	208Pb	209Bi	220Bkg	238U			_	_	_	
	ppb	ppb	ppb	ppb						
1 16:59:40	м 104.800	99.550%	0.000	0.000						
2 17:00:45	м 105.700	101.135%	0.000	0.000						
3 17:01:50	м 105.300	101.809%	0.000	0.000						
X	м 105.200	100.831%	0.000	0.000						
	м 0.481	1.160%	0.000	0.000						
σ %RSD	<u>м 0.48 Т</u> м 0.45 7	1.160%	0.000	0.000						
70KJU	M U. 43 /	1, 10 1	0.000	0.000						

mp55425-s2 11/2/2010 17:02:16

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
- rtuil	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:03:21	91.833%	96.640	м 192.500	м 200.000	0.000	тм 47620.000	тм 16440.000	тм 16230.000	<u>т 537.200</u>	<u>т 0.000</u>
2 17:04:25	91.090%	95.880	м 188.700	м 201.500	0.000	тм 45810.000	тм 16330.000	тм 16330.000	т 524.600	т 0.000
3 17:05:29	91.886%	93.540	м 190.000	м 206.500	0.000	тм 45970.000	тм 16410.000	тм 16440.000	т 533.200	<u>т 0.000</u>
Х	91.603%	95.350	м 190.400	м 202.700	0.000	тм 46470.000	тм 16390.000	тм 16330.000	т 531.600	т 0.000
σ	0.445%	1.617	м 1.930	м 3.420	0.000	тм 1001.000	тм 59.570	тм 105.200	т 6.439	т 0.000
%RSD	0.486	1.696	м 1.014	м 1.688	0.000	тм 2.154	тм 0.363	тм 0.644	<u>т 1.211</u>	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:03:21	тм 7116.000	м 147600.000	тм 157300.000	94.816%	0.251	м 101.300	м 141.600	м 138.400	324.700	<u>м 106.900</u>
2 17:04:25	тм 6971.000	м 141500.000	тм 154300.000	97.552%	0.253	99.340	м 137.900	м 136.600	317.100	<u>м 103.700</u>
3 17:05:29	тм 7079.000	м 144000.000	тм 153200.000	98.323%	0.180	99.120	м 136.800	м 136.600	319.400	м 104.300
X	тм 7055.000	м 144400.000	тм 154900.000	96.897%	0.228	<u>м 99.910</u>	м 138.700	м 137.200	320.400	м 105.000
σ	_{тм} 75.100	м 3064.000	тм 2106.000	1.843%	0.042	м 1.183	<u>м 2.515</u>	<u>м 1.027</u>	3.883	м 1.669
%RSD	<u>тм 1.064</u>	м 2.122	<u>тм 1.359</u>	1.902	18.280	м 1.184	<u>м 1.813</u>	м 0.749	1.212	м 1.590
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 17.00.01	ppb	ppb	ppb 07.100	ppb	ppb	ppb	ppb	ppb	ppb	ppb 01 (40
1 17:03:21	<u>+ 560.100</u>	740.800	97.190	92.310	94.840	92.820	91.920	89.260	89.810	91.640
2 17:04:25	<u>⊤546.100</u>	714.200	97.300	92.450	87.570	91.590	91.940	87.570	88.890	89.550
3 17:05:29	T541.400	735.000	94.610	91.270	94.560	90.190	90.150	88.260	88.970	88.670
X	<u>т 549.200</u>	730.000	96.360	92.010	92.320	91.530	91.340	88.360	89.220	89.950
σ %RSD	<u> </u>	13.980	1.525	0.646	4.121	1.315	1.027	0.853	0.511	1.527
Run Time	<u>⊤1.777</u> 75As	1.915 77Se	1.582 78Se	0.702 79Br	4.463 81Br	1.436 82Se	1.125 88Sr	0.965 89Y	0.572 95Mo	1.698 97Mo
Kuii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:03:21	94.700	м 202.500	м 182.200	0.000	0.000	м 180.200	тм 592.400	102.375%	7.017	6.996
2 17:04:25	93.620	м 198.800	м 179.900	0.000	0.000	м 178.700	тм 591.200	103.346%	7.221	7.006
3 17:05:29	94.120	м 200.100	м 181.000	0.000	0.000	м 180.300	тм 593.300	103.504%	7.799	7.914
Х	94.140	м 200.500	м 181.000	0.000	0.000	м 179.700	тм 592.300	103.075%	7.346	7.306
σ	0.537	м 1.901	<u>м</u> 1.167	0.000	0.000	м 0.880	тм 1.038	0.611%	0.405	0.527
%RSD	0.570	м 0.948	м 0.645	0.000	0.000	м 0.490	тм 0.175	0.593	5.518	7.218
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:03:21	7.074	92.971%	99.330	96.750	0.579	96.550	95.940	97.150	94.450	97.827%
2 17:04:25	7.340	93.056%	94.580	95.810	0.757	94.410	95.440	95.080	93.750	99.495%
3 17:05:29	7.814	93.057%	92.970	95.740	0.987	96.120	95.840	96.060	94.250	99.550%
X	7.409	93.028%	95.630	96.100	0.774	95.690	95.740	96.090	94.150	98.957%
σ	0.375	0.050%	3.305	0.566	0.204	1.128	0.263	1.035	0.358	0.979%
%RSD	5.060	0.053	3.456	0.589	26.380	1.179	0.275	1.077	0.381	0.990
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
4 17 00 01	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:03:21	0.005	м 106.700	м 105.700	м 154.700	105.582%	106.503%	м 106.700	м 108.700	м 104.400	м 105.000
2 17:04:25	0.039	м 105.800	м 103.500	м 152.700	108.478%	108.734%	м 105.300	м 107.800	м 103.700	м 104.300
3 17:05:29	0.052	м 107.600	м 105.300	м 155.100	107.651%	109.958%	м 105.300	м 106.800	м 103.400	м 103.700
X	0.032	м 106.700	м 104.800	м 154.100	107.237%	108.399%	м 105.700	м 107.800	м 103.800	м 104.300
σ	0.024	м 0.899	м 1.195	м 1.297	1.492%	1.752%	м 0.790	м 0.971	м 0.542	м 0.66 <u>5</u>
Run Time	76.580 208Pb	<u>м 0.843</u> 209Ві	м 1.140	м 0.842	1.391	1.616	м 0.747	м 0.901	м 0.522	м 0.637
Run Time		ppb	220Bkg	238U						
1 17:03:21	ppb м 104.900	100.735%	ppb 0.000	ppb 0.000						
2 17:04:25	м 104.200	102.592%	0.000	0.000						
3 17:05:29	м 103.500	103.656%	0.000	0.000						
X	м 104.200	102.328%	0.000	0.000						
σ	м 0.738	1.478%	0.000	0.000						
%RSD	<u>м 0.738</u> м 0.708	1.445	0.000	0.000						
			5.526							

ja59191-6f 11/2/2010 17:05:54

User Pre-dilution: 1.										
Run Time		9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:07:00	=	0.106	м 190.400	м 201.400	0.000	тм 47390.000	тм 16160.000	тм 16240.000	4.267	<u>T 0.000</u>
2 17:08:05	92.845%	0.008	м 188.900	м 214.100	0.000	тм 47400.000	тм 15880.000	тм 15830.000	3.697	<u>T 0.000</u>
3 17:09:11	87.700%	0.022	м 205.500	м 215.800	0.000	тм 50630.000	тм 16940.000	тм 17150.000	4.316	<u>T 0.000</u>
X	91.454%	0.045	м 195.000	м 210.400	0.000	тм 48470.000	тм 16320.000	тм 16410.000	4.093	<u>т 0.000</u>
σ	3.287%	0.053	м 9.208	м 7.892	0.000	тм 1870.000	тм 553.000	тм 678.200	0.344	т 0.000
%RSD	3.595	117.800	м 4.723	м 3.751	0.000	тм 3.858	тм 3.388	тм 4.133	8.402	т 0.000
Run Time		43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:07:00		м 147300.000	тм 157400.000	101.180%	0.220	-0.197	39.020	37.950	277.000	6.446
2 17:08:05	=	м 143500.000	тм 152900.000	101.280%	0.100	-0.957	37.620	35.160	294.600	6.080
3 17:09:11		м 152500.000	тм 162800.000	97.867%	0.089	-0.281	40.110	41.070	294.800	6.466
х	тм 6666.000	м 147800.000	тм 157700.000	100.109%	0.137	-0.478	38.920	38.060	288.800	6.331
				1.943%	0.137	0.417		2.955		0.331
σ %RSD	тм 210.000	м 4490.000	тм 4960.000				1.252		10.200	
	тм 3.150	м 3.039	<u>тм 3.146</u>	1.940	53.420	87.120	3.218	7.765	3.532	3.434
Run Time		57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 17 07 00	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:07:00	=	220.700	-0.489	-0.750	0.674	0.690	0.958	3.244	4.327	3.331
2 17:08:05		215.500	-0.571	-0.758	0.744	0.654	0.814	2.685	3.570	3.217
3 17:09:11		217.200	-0.592	-0.789	0.587	0.639	0.811	3.167	4.588	3.572
X	22.660	217.800	-0.551	-0.766	0.668	0.661	0.861	3.032	4.162	3.373
σ	1.626	2.655	0.054	0.020	0.079	0.026	0.084	0.303	0.529	0.181
%RSD	7.177	1.219	9.846	2.668	11.820	3.949	9.764	10.000	12.710	5.378
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:07:00	0.331	22.000	3.391	0.000	0.000	4.096	тм 621.000	104.391%	6.942	7.369
2 17:08:05	0.164	22.340	2.954	0.000	0.000	3.560	тм 594.200	106.906%	7.128	7.258
3 17:09:11	0.321	23.700	3.126	0.000	0.000	3.602	тм 623.200	103.235%	8.255	8.242
X	0.272	22.680	3.157	0.000	0.000	3.753	тм 612.800	104.844%	7.442	7.623
σ	0.093	0.901	0.220	0.000	0.000	0.298	тм 16.120	1.877%	0.710	0.539
%RSD	34.300	3.974	6.978	0.000	0.000	7.940	<u>тм 2.631</u>	1.790	9.543	7.071
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:07:00	7.148	94.707%	-2.937	0.120	0.447	0.183	0.220	-0.065	0.234	99.480%
2 17:08:05	7.243	98.068%	-2.992	0.065	0.449	0.150	0.166	-0.124	0.130	102.152%
3 17:09:11	8.617	91.317%	-3.508	0.056	0.483	0.187	0.167	-0.168	0.124	98.941%
X	7.669	94.697%	-3.146	0.081	0.460	0.174	0.185	-0.119	0.163	100.191%
σ	0.822	3.376%	0.315	0.035	0.020	0.020	0.030	0.052	0.062	1.719%
%RSD	10.720	3.565	10.010	43.110	4.386	11.630	16.510	43.410	37.880	1.716
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:07:00	-0.001	1.769	1.818	56.510	108.548%	110.137%	0.394	0.272	0.300	0.265
2 17:08:05	-0.002	1.732	1.834	53.210	111.613%	112.045%	0.237	0.117	0.243	0.204
3 17:09:11	=	2.015	2.037	56.620	105.602%	106.724%	0.224	0.110	0.256	0.192
X	0.011	1.839	1.896	55.450	108.587%	109.636%	0.285	0.166	0.266	0.220
σ	0.022	0.154	0.122	1.939	3.006%	2.696%	0.094	0.092	0.030	0.039
%RSD	193.500	8.371	6.454	3.497	2.768	2.459	33.140	55.100	11.100	17.600
Run Time		209Bi	220Bkg	238U	2.700	2.107	33.170	55.150		.7.000
	ppb	ppb	ppb	ppb						
1 17:07:00		103.113%	0.000	0.000	1					
2 17:08:05		105.925%	0.000	0.000						
3 17:09:11	=	100.984%	0.000	0.000						
X	0.174	103.341%	0.000	0.000						
σ	0.040	2.479%	0.000	0.000						
%RSD	22.820	2.47978	0.000	0.000						
	22.020	2.377	0.000	0.000						

ja59191-6 11/2/2010 17:09:36

Dun Times	6Li	9Be	10B	11B	13C	23Na	25Mg	2/14	27AI	37CI
Run Time						· ·		26Mg	i	
1 17:10:42	ppb 91.447%	ppb 0.008	ррb м 187.700	ррb м 189.400	ppb 0.000	ррb тм 45060.000	ррb _{тм} 15250.000	ррb тм 15500.000	ppb 27.950	ррb <u>т 0.000</u>
2 17:11:47	91.447%	0.008	м 199.200	м 191.700	0.000	тм 46930.000	тм 15800.000	тм 15840.000	30.150	<u>1 0.000</u>
			<u></u>							
3 17:12:53	88.948%	0.005	м 183.500	м 209.100	0.000	тм 44530.000	тм 15680.000	тм 15550.000	29.140	<u>T 0.000</u>
X	90.775%	0.011	м 190.100	м 196.700	0.000	тм 45500.000	тм 15580.000	тм 15630.000	29.080	<u>т 0.000</u>
σ	1.601%	0.008	м 8.154	м 10.740	0.000	тм 1262.000	тм 287.800	тм 182.200	1.100	<u>т 0.000</u>
%RSD	1.763	74.440	м 4.289	м 5.460	0.000	тм 2.774	тм 1.848	тм 1.166	3.782	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
4 47 40 40	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:10:42	тм 6486.000	м 140200.000	тм 151500.000	98.684%	1.466	0.209	39.780	39.640	291.600	6.242
2 17:11:47	тм 6687.000	м 146800.000	тм 156800.000	94.858%	1.597	-0.450	41.640	40.790	307.700	6.554
3 17:12:53	тм 6483.000	м 144600.000	тм 151400.000	97.361%	1.544	-0.196	40.590	41.410	299.300	6.503
X	тм 6552.000	м 143900.000	тм 153200.000	96.968%	1.536	-0.146	40.670	40.620	299.500	6.433
σ	_{тм} 117.200	м 3348.000	тм 3100.000	1.943%	0.066	0.332	0.934	0.895	8.086	0.167
%RSD	<u>тм 1.789</u>	м 2.327	<u>тм 2.023</u>	2.004	4.302	228.000	2.298	2.204	2.699	2.603
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:10:42	77.820	268.600	-0.529	-0.744	0.633	1.361	1.606	3.976	5.346	4.276
2 17:11:47	82.910	267.500	-0.515	-0.696	0.684	1.551	1.706	4.264	5.362	4.855
3 17:12:53	77.790	267.500	-0.555	-0.702	0.646	1.414	1.746	4.018	4.845	4.570
X	79.510	267.900	-0.533	-0.714	0.654	1.442	1.686	4.086	5.184	4.567
σ	2.949	0.645	0.021	0.026	0.027	0.098	0.072	0.156	0.294	0.289
%RSD	3.709	0.241	3.854	3.672	4.063	6.814	4.260	3.818	5.673	6.334
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:10:42	0.174	23.580	2.692	0.000	0.000	3.264	тм 580.900	104.483%	6.392	6.514
2 17:11:47	0.156	24.580	3.068	0.000	0.000	3.437	тм 598.500	102.676%	6.738	6.994
3 17:12:53	0.009	25.070	2.978	0.000	0.000	3.372	тм 598.500	102.092%	6.883	6.967
X	0.113	24.410	2.913	0.000	0.000	3.358	тм 592.600	103.084%	6.671	6.825
σ	0.090	0.760	0.196	0.000	0.000	0.087	тм 10.150	1.247%	0.252	0.270
%RSD	79.950	3.115	6.745	0.000	0.000	2.606	<u>тм 1.712</u>	1.209	3.784	3.957
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:10:42	6.613	93.019%	-2.103	0.039	0.389	0.155	0.143	-0.052	0.179	98.981%
2 17:11:47	6.867	91.498%	-3.937	0.039	0.514	0.217	0.144	-0.161	0.117	98.309%
3 17:12:53	6.861	91.153%	-3.767	0.036	0.500	0.187	0.147	-0.180	0.133	98.303%
Х	6.780	91.890%	-3.269	0.038	0.468	0.187	0.144	-0.131	0.143	98.531%
σ	0.145	0.993%	1.013	0.002	0.069	0.031	0.002	0.069	0.032	0.389%
%RSD	2.134	1.080	30.990	4.724	14.700	16.560	1.514	52.970	22.320	0.395
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:10:42	0.005	1.425	1.464	54.160	108.131%	108.533%	0.163	0.045	0.487	0.432
2 17:11:47	0.037	1.436	1.544	54.810	105.930%	107.230%	0.167	0.047	0.506	0.485
3 17:12:53	0.035	1.503	1.474	55.160	107.178%	107.507%	0.162	0.038	0.483	0.429
Х	0.026	1.455	1.494	54.710	107.080%	107.757%	0.164	0.043	0.492	0.449
σ	0.018	0.042	0.044	0.506	1.104%	0.686%	0.003	0.004	0.012	0.032
%RSD	68.890	2.919	2.942	0.925	1.031	0.637	1.549	9.973	2.469	7.073
Run Time	208Pb	209Bi	220Bkg	238U				_		
,	ppb	ppb	ppb	ppb						
1 17:10:42	0.382	103.243%	0.000	0.000						
2 17:11:47	0.413	100.983%	0.000	0.000						
3 17:12:53	0.391	101.420%	0.000	0.000						
X	0.395	101.882%	0.000	0.000						
σ	0.016	1.199%	0.000	0.000						
%RSD	4.090	1.176	0.000	0.000						
	4.070	1.170	0.000	0.000						

ja59191-7 11/2/2010 17:13:19

User Pre-allution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:14:24	91.080%	0.016	11.210	11.420	0.000	49.370	16.000	17.430	3.132	<u>T 0.000</u>
2 17:15:29	91.979%	0.008	7.512	8.507	0.000	29.320	5.060	5.140	3.029	T 0.000
3 17:16:35	93.337%	0.004	6.809	6.978	0.000	21.520	2.777	3.439	2.708	T 0.000
X	92.132%	0.009	8.512	8.967	0.000	33.400	7.946	8.669	2.956	<u>т 0.000</u>
σ	1.136%	0.006	2.366	2.255	0.000	14.360	7.068	7.632	0.221	т 0.000
%RSD	1.233	68.540	27.800	25.140	0.000	43.000	88.960	88.040	7.488	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
itan iiiic	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:14:24	3.556	120.400	137.600	92.823%	-0.104	-0.665	0.617	-0.648	326.600	0.152
2 17:15:29	1.322	52.030	50.190	94.315%	-0.059	-0.314	0.541	0.425	322.900	0.132
3 17:16:35	0.032	20.160	35.030	93.849%	-0.090	-0.464	0.605	0.355	330.200	0.111
X	1.637	64.180	74.280	93.662%	-0.084	-0.481	0.588	0.044	326.600	0.130
σ	1.783	51.190	55.370	0.764%	0.023	0.176	0.041	0.600	3.639	0.021
%RSD	109.000	79.760	74.540	0.815	27.740	36.550	6.947	1362.000	1.114	16.060
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:14:24	6.667	2.802	0.013	0.175	0.341	0.291	0.443	0.453	0.162	-0.108
2 17:15:29	7.398	2.572	0.001	0.161	0.334	0.359	0.544	0.427	0.127	-0.408
3 17:16:35	5.540	1.706	0.004	0.085	0.254	0.255	0.548	0.412	0.024	-0.289
X	6.535	2.360	0.006	0.140	0.310	0.302	0.512	0.431	0.104	-0.269
σ	0.936	0.578	0.006	0.048	0.048	0.053	0.060	0.021	0.072	0.151
%RSD	14.320	24.490	94.480	34.260	15.520	17.440	11.700	4.764	68.880	56.250
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:14:24	-0.049	13.500	-0.125	0.000	0.000	0.047	0.474	98.520%	-0.118	-0.075
2 17:15:29	-0.030	13.290	-0.194	0.000	0.000	0.120	0.183	100.099%	-0.131	0.032
3 17:16:35	0.040	13.890	-0.176	0.000	0.000	0.025	0.111	98.074%	0.049	0.023
X	-0.013	13.560	-0.165	0.000	0.000	0.064	0.256	98.897%	-0.066	-0.007
σ	0.047	0.303	0.036	0.000	0.000	0.050	0.192	1.064%	0.101	0.059
%RSD	360.300	2.235	21.800	0.000	0.000	77.760	75.060	1.076	151.300	891.600
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:14:24	-0.089	99.520%	-0.218	0.023	0.259	0.065	0.130	0.002	0.231	101.242%
2 17:15:29	-0.032	97.368%	-0.673	0.013	0.291	0.094	0.125	-0.016	0.213	100.525%
3 17:16:35	0.033	97.575%	-0.215	0.019	0.261	0.094	0.121	-0.006	0.228	100.112%
Х	-0.029	98.154%	-0.368	0.018	0.270	0.084	0.125	-0.006	0.224	100.626%
σ	0.061									
%RSD		1 197%	0.263	0.005	0.018	0.017	0.004	0.009	0.009	0.572%
		1.187%	0.263 71.480	0.005	0.018	0.017	0.004	0.009	0.009	0.572%
Run Time	207.000	1.209	71.480	26.250	6.640	20.060	3.305	139.100	4.230	0.568
Run Time	207.000 118Sn	1.209 121Sb	71.480 123Sb	26.250 137Ba	6.640 159Tb	20.060 165Ho	3.305 203TI	139.100 205TI	4.230 206Pb	0.568 207Pb
	207.000 118Sn ppb	1.209 121Sb ppb	71.480 123Sb ppb	26.250 137Ba ppb	6.640 159Tb ppb	20.060 165Ho ppb	3.305 203TI ppb	139.100 205TI ppb	4.230 206Pb ppb	0.568 207Pb ppb
1 17:14:24	207.000 118Sn ppb 0.127	1.209 121Sb ppb 0.371	71.480 123Sb ppb 0.373	26.250 137Ba ppb 0.097	6.640 159Tb ppb 107.142%	20.060 165Ho ppb 107.467%	3.305 203TI ppb 0.143	139.100 205TI ppb 0.017	4.230 206Pb ppb 0.238	0.568 207Pb ppb 0.208
1 17:14:24 2 17:15:29	207.000 118Sn ppb 0.127 0.132	1.209 121Sb ppb 0.371 0.401	71.480 123Sb ppb 0.373 0.423	26.250 137Ba ppb 0.097 0.084	6.640 159Tb ppb 107.142% 105.154%	20.060 165Ho ppb 107.467% 105.824%	3.305 203TI ppb 0.143 0.132	205TI ppb 0.017 0.015	4.230 206Pb ppb 0.238 0.244	0.568 207Pb ppb 0.208 0.237
1 17:14:24 2 17:15:29 3 17:16:35	207.000 118Sn ppb 0.127 0.132 0.155	1.209 121Sb ppb 0.371 0.401 0.437	71.480 123Sb ppb 0.373 0.423 0.501	26.250 137Ba ppb 0.097 0.084 0.051	6.640 159Tb ppb 107.142% 105.154% 104.448%	20.060 165Ho ppb 107.467% 105.824% 104.643%	3.305 203TI ppb 0.143 0.132 0.133	205TI ppb 0.017 0.015 0.013	4.230 206Pb ppb 0.238 0.244 0.247	0.568 207Pb ppb 0.208 0.237 0.211
1 17:14:24 2 17:15:29 3 17:16:35 x	207.000 118Sn ppb 0.127 0.132 0.155 0.138	1.209 121Sb ppb 0.371 0.401 0.437 0.403	71.480 123Sb ppb 0.373 0.423 0.501 0.433	26.250 137Ba ppb 0.097 0.084 0.051 0.077	6.640 159Tb ppb 107.142% 105.154% 104.448% 105.581%	20.060 165Ho ppb 107.467% 105.824% 104.643% 105.978%	3.305 203TI ppb 0.143 0.132 0.133 0.136	139.100 205TI ppb 0.017 0.015 0.013 0.015	4.230 206Pb ppb 0.238 0.244 0.247 0.243	0.568 207Pb ppb 0.208 0.237 0.211 0.218
1 17:14:24 2 17:15:29 3 17:16:35	207.000 118Sn ppb 0.127 0.132 0.155 0.138 0.015	1.209 121Sb ppb 0.371 0.401 0.437 0.403 0.033	71.480 123Sb ppb 0.373 0.423 0.501 0.433 0.064	26.250 137Ba ppb 0.097 0.084 0.051 0.077 0.024	6.640 159Tb ppb 107.142% 105.154% 104.448% 105.581% 1.397%	20.060 165Ho ppb 107.467% 105.824% 104.643% 105.978% 1.418%	3.305 203TI ppb 0.143 0.132 0.133 0.136 0.006	139.100 205TI ppb 0.017 0.015 0.013 0.015 0.002	4.230 206Pb ppb 0.238 0.244 0.247 0.243 0.005	0.568 207Pb ppb 0.208 0.237 0.211 0.218 0.016
1 17:14:24 2 17:15:29 3 17:16:35 x σ %RSD	207.000 118Sn ppb 0.127 0.132 0.155 0.138 0.015 10.800	1.209 121Sb ppb 0.371 0.401 0.437 0.403 0.033 8.221	71.480 123Sb ppb 0.373 0.423 0.501 0.433 0.064 14.860	26.250 137Ba ppb 0.097 0.084 0.051 0.077 0.024 30.760	6.640 159Tb ppb 107.142% 105.154% 104.448% 105.581%	20.060 165Ho ppb 107.467% 105.824% 104.643% 105.978%	3.305 203TI ppb 0.143 0.132 0.133 0.136	139.100 205TI ppb 0.017 0.015 0.013 0.015	4.230 206Pb ppb 0.238 0.244 0.247 0.243	0.568 207Pb ppb 0.208 0.237 0.211 0.218
1 17:14:24 2 17:15:29 3 17:16:35	207.000 118Sn ppb 0.127 0.132 0.155 0.138 0.015 10.800 208Pb	1.209 121Sb ppb 0.371 0.401 0.437 0.403 0.033 8.221 209Bi	71.480 123Sb ppb 0.373 0.423 0.501 0.433 0.064 14.860 220Bkg	26.250 137Ba ppb 0.097 0.084 0.051 0.077 0.024 30.760 238U	6.640 159Tb ppb 107.142% 105.154% 104.448% 105.581% 1.397%	20.060 165Ho ppb 107.467% 105.824% 104.643% 105.978% 1.418%	3.305 203TI ppb 0.143 0.132 0.133 0.136 0.006	139.100 205TI ppb 0.017 0.015 0.013 0.015 0.002	4.230 206Pb ppb 0.238 0.244 0.247 0.243 0.005	0.568 207Pb ppb 0.208 0.237 0.211 0.218 0.016
1 17:14:24 2 17:15:29 3 17:16:35 x G %RSD Run Time	207.000 118Sn ppb 0.127 0.132 0.155 0.138 0.015 10.800 208Pb	1.209 121Sb ppb 0.371 0.401 0.437 0.403 0.033 8.221 209Bi ppb	71.480 123Sb ppb 0.373 0.423 0.501 0.433 0.064 14.860 220Bkg ppb	26.250 137Ba ppb 0.097 0.084 0.051 0.077 0.024 30.760 238U ppb	6.640 159Tb ppb 107.142% 105.154% 104.448% 105.581% 1.397%	20.060 165Ho ppb 107.467% 105.824% 104.643% 105.978% 1.418%	3.305 203TI ppb 0.143 0.132 0.133 0.136 0.006	139.100 205TI ppb 0.017 0.015 0.013 0.015 0.002	4.230 206Pb ppb 0.238 0.244 0.247 0.243 0.005	0.568 207Pb ppb 0.208 0.237 0.211 0.218 0.016
1 17:14:24 2 17:15:29 3 17:16:35 x	207.000 118Sn ppb 0.127 0.132 0.155 0.138 0.015 10.800 208Pb ppb 0.164	1.209 121Sb ppb 0.371 0.401 0.437 0.403 0.033 8.221 209Bi ppb 109.737%	71.480 123Sb ppb 0.373 0.423 0.501 0.433 0.064 14.860 220Bkg ppb 0.000	26.250 137Ba ppb 0.097 0.084 0.051 0.077 0.024 30.760 238U ppb 0.000	6.640 159Tb ppb 107.142% 105.154% 104.448% 105.581% 1.397%	20.060 165Ho ppb 107.467% 105.824% 104.643% 105.978% 1.418%	3.305 203TI ppb 0.143 0.132 0.133 0.136 0.006	139.100 205TI ppb 0.017 0.015 0.013 0.015 0.002	4.230 206Pb ppb 0.238 0.244 0.247 0.243 0.005	0.568 207Pb ppb 0.208 0.237 0.211 0.218 0.016
1 17:14:24 2 17:15:29 3 17:16:35 x G %RSD Run Time 1 17:14:24 2 17:15:29	207.000 118Sn ppb 0.127 0.132 0.155 0.138 0.015 10.800 208Pb ppb 0.164 0.174	1.209 121Sb ppb 0.371 0.401 0.437 0.403 0.033 8.221 209Bi ppb 109.737% 109.300%	71.480 123Sb ppb 0.373 0.423 0.501 0.433 0.064 14.860 220Bkg ppb 0.000 0.000	26.250 137Ba ppb 0.097 0.084 0.051 0.077 0.024 30.760 238U ppb 0.000 0.000	6.640 159Tb ppb 107.142% 105.154% 104.448% 105.581% 1.397%	20.060 165Ho ppb 107.467% 105.824% 104.643% 105.978% 1.418%	3.305 203TI ppb 0.143 0.132 0.133 0.136 0.006	139.100 205TI ppb 0.017 0.015 0.013 0.015 0.002	4.230 206Pb ppb 0.238 0.244 0.247 0.243 0.005	0.568 207Pb ppb 0.208 0.237 0.211 0.218 0.016
1 17:14:24 2 17:15:29 3 17:16:35	207.000 118Sn ppb 0.127 0.132 0.155 0.138 0.015 10.800 208Pb ppb 0.164 0.174 0.163	1.209 121Sb ppb 0.371 0.401 0.437 0.403 0.033 8.221 209Bi ppb 109.737% 109.300% 108.590%	71.480 123Sb ppb 0.373 0.423 0.501 0.433 0.064 14.860 220Bkg ppb 0.000 0.000 0.000	26.250 137Ba ppb 0.097 0.084 0.051 0.077 0.024 30.760 238U ppb 0.000 0.000 0.000	6.640 159Tb ppb 107.142% 105.154% 104.448% 105.581% 1.397%	20.060 165Ho ppb 107.467% 105.824% 104.643% 105.978% 1.418%	3.305 203TI ppb 0.143 0.132 0.133 0.136 0.006	139.100 205TI ppb 0.017 0.015 0.013 0.015 0.002	4.230 206Pb ppb 0.238 0.244 0.247 0.243 0.005	0.568 207Pb ppb 0.208 0.237 0.211 0.218 0.016
1 17:14:24 2 17:15:29 3 17:16:35 x	207.000 118Sn ppb 0.127 0.132 0.155 0.138 0.015 10.800 208Pb ppb 0.164 0.174 0.163 0.167	1.209 121Sb ppb 0.371 0.401 0.437 0.403 0.033 8.221 209Bi ppb 109.737% 109.300% 108.590% 109.209%	71.480 123Sb ppb 0.373 0.423 0.501 0.433 0.064 14.860 220Bkg ppb 0.000 0.000 0.000 0.000	26.250 137Ba ppb 0.097 0.084 0.051 0.077 0.024 30.760 238U ppb 0.000 0.000 0.000 0.000	6.640 159Tb ppb 107.142% 105.154% 104.448% 105.581% 1.397%	20.060 165Ho ppb 107.467% 105.824% 104.643% 105.978% 1.418%	3.305 203TI ppb 0.143 0.132 0.133 0.136 0.006	139.100 205TI ppb 0.017 0.015 0.013 0.015 0.002	4.230 206Pb ppb 0.238 0.244 0.247 0.243 0.005	0.568 207Pb ppb 0.208 0.237 0.211 0.218 0.016
1 17:14:24 2 17:15:29 3 17:16:35 x	207.000 118Sn ppb 0.127 0.132 0.155 0.138 0.015 10.800 208Pb ppb 0.164 0.174 0.163 0.167 0.006	1.209 121Sb ppb 0.371 0.401 0.437 0.403 0.033 8.221 209Bi ppb 109.737% 109.300% 108.590% 0.579%	71.480 123Sb ppb 0.373 0.423 0.501 0.433 0.064 14.860 220Bkg ppb 0.000 0.000 0.000 0.000 0.000 0.000	26.250 137Ba ppb 0.097 0.084 0.051 0.077 0.024 30.760 238U ppb 0.000 0.000 0.000 0.000 0.000	6.640 159Tb ppb 107.142% 105.154% 104.448% 105.581% 1.397%	20.060 165Ho ppb 107.467% 105.824% 104.643% 105.978% 1.418%	3.305 203TI ppb 0.143 0.132 0.133 0.136 0.006	139.100 205TI ppb 0.017 0.015 0.013 0.015 0.002	4.230 206Pb ppb 0.238 0.244 0.247 0.243 0.005	0.568 207Pb ppb 0.208 0.237 0.211 0.218 0.016
1 17:14:24 2 17:15:29 3 17:16:35 x G %RSD Run Time 1 17:14:24 2 17:15:29 3 17:16:35 x	207.000 118Sn ppb 0.127 0.132 0.155 0.138 0.015 10.800 208Pb ppb 0.164 0.174 0.163 0.167	1.209 121Sb ppb 0.371 0.401 0.437 0.403 0.033 8.221 209Bi ppb 109.737% 109.300% 108.590% 109.209%	71.480 123Sb ppb 0.373 0.423 0.501 0.433 0.064 14.860 220Bkg ppb 0.000 0.000 0.000 0.000	26.250 137Ba ppb 0.097 0.084 0.051 0.077 0.024 30.760 238U ppb 0.000 0.000 0.000 0.000	6.640 159Tb ppb 107.142% 105.154% 104.448% 105.581% 1.397%	20.060 165Ho ppb 107.467% 105.824% 104.643% 105.978% 1.418%	3.305 203TI ppb 0.143 0.132 0.133 0.136 0.006	139.100 205TI ppb 0.017 0.015 0.013 0.015 0.002	4.230 206Pb ppb 0.238 0.244 0.247 0.243 0.005	0.568 207Pb ppb 0.208 0.237 0.211 0.218 0.016

SAMPLECONF 11/2/2010 17:33:45

User Pre-dilution: 1.000										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb							
1 17:34:50	91.768%	0.085	4.333	4.237	0.000	-8.013	-0.398	-0.017	-0.329	<u>T 0.000</u>
2 17:35:55	92.714%	0.004	3.540	2.735	0.000	-8.712	-1.089	-0.730	-1.042	<u>T_0.000</u>
3 17:37:01	95.373%	0.007	3.195	2.567	0.000	-8.778	-1.192	-0.733	-1.119	<u>т 0.000</u>
X	93.285%	0.032	3.690	3.179	0.000	-8.501	-0.893	-0.493	-0.830	<u>т 0.000</u>
σ	1.869%	0.046	0.583	0.919	0.000	0.424	0.431	0.412	0.436	<u>т 0.000</u>
%RSD	2.004	143.100	15.810	28.910	0.000	4.986	48.320	83.560	52.480	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb							
1 17:34:50	-1.388	-30.510	-20.490	91.577%	-0.094	-0.010	0.437	-0.283	270.500	0.066
2 17:35:55	-1.247	-26.640	-20.800	92.427%	-0.145	-0.117	0.306	0.477	269.900	0.016
3 17:37:01	-0.445	-29.830	-21.330	92.108%	-0.161	-0.129	0.322	0.054	276.000	0.004
X	-1.026	-28.990	-20.870	92.037%	-0.133	-0.085	0.355	0.083	272.100	0.029
σ	0.509	2.066	0.423	0.429%	0.035	0.065	0.071	0.381	3.404	0.033
%RSD	49.560	7.125	2.026	0.466	26.090	76.700	20.080	460.500	1.251	114.800
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb							
1 17:34:50	0.297	-1.921	0.045	0.075	0.234	-0.229	-0.003	-0.770	-1.230	-1.450
2 17:35:55	0.206	-1.591	-0.009	0.107	0.159	-0.281	-0.069	-0.724	-1.070	-1.357
3 17:37:01	2.823	-2.137	-0.010	0.068	0.220	-0.234	-0.039	-0.825	-1.211	-1.499
Х	1.109	-1.883	0.008	0.083	0.204	-0.248	-0.037	-0.773	-1.170	-1.435
σ	1.485	0.275	0.032	0.021	0.040	0.029	0.033	0.051	0.088	0.072
%RSD	134.000	14.600	376.200	24.750	19.540	11.520	89.230	6.535	7.486	5.033
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb							
1 17:34:50	0.228	9.850	-0.099	0.000	0.000	0.198	0.044	96.040%	1.264	1.381
2 17:35:55	0.012	9.781	-0.177	0.000	0.000	0.065	-0.005	97.621%	1.102	1.163
3 17:37:01	0.038	10.040	-0.166	0.000	0.000	0.094	-0.015	94.751%	1.444	1.513
Х	0.093	9.891	-0.147	0.000	0.000	0.119	0.008	96.137%	1.270	1.352
σ	0.118	0.134	0.042	0.000	0.000	0.070	0.032	1.437%	0.171	0.177
%RSD	127.200	1.357	28.660	0.000	0.000	58.580	403.000	1.495	13.480	13.090
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
itan mile	ppb	ppb	ppb							
1 17:34:50	1.255	95.316%	-0.867	0.069	0.302	0.066	0.164	0.011	0.263	96.980%
2 17:35:55	1.186	94.030%	-0.015	0.026	0.245	0.066	0.133	0.011	0.239	97.071%
3 17:37:01	1.447	94.037%	-0.849	0.034	0.303	0.096	0.137	-0.052	0.182	95.783%
X	1.296	94.461%	-0.577	0.034	0.303	0.076	0.137	-0.032	0.102	96.611%
%RSD	0.136 10.460	0.741% 0.784	0.487 84.300	0.023 53.930	0.033 11.800	0.017 22.950	0.017 11.720	0.036 359.400	0.042 18.310	0.719% 0.744
Run Time	10.400 118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
Kuii IIIIe	ppb	ppb	ppb							
1 17:34:50	0.461	1.542	1.521	0.006	100.577%	101.947%	0.234	0.118	0.126	0.096
2 17:35:55	0.401	1.375	1.481	-0.005	100.877%	100.371%	0.234	0.056	0.120	0.036
3 17:37:01	0.811	1.531	1.531	-0.003	99.404%	99.935%	0.183	0.054	0.079	0.036
X	0.636	1.483	1.511	-0.011	100.285%	100.751%	0.199	0.076	0.096	0.059
σ	0.175	0.093	0.027	0.020	0.777%	1.058%	0.031	0.037	0.026	0.032
%RSD	27.560	6.303	1.757	183.000	0.775	1.050	15.470	48.230	26.930	54.500
Run Time	208Pb	209Bi	220Bkg	238U						
1 17:34:50	ppb 0.044	ppb 105.423%	ppb	0.000						
	0.044		0.000							
2 17:35:55	-0.004	103.504%	0.000	0.000						
3 17:37:01	-0.003	103.409%	0.000	0.000						
X	0.012	104.112%	0.000	0.000						
σ	0.027	1.136%	0.000	0.000						
%RSD	226.300	1.091	0.000	0.000						

CCV 11/2/2010 17:37:27

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:38:33	91.557%	49.810	50.530	53.650	0.000	495.700	515.400	500.800	т 533.400	⊤ 0.000
2 17:39:38	89.256%	51.230	55.950	58.680	0.000	514.000	542.800	525.700	T 555.300	т 0.000
3 17:40:43	92.733%	48.370	50.220	57.610	0.000	521.200	526.000	521.100	_T 542.500	<u>т 0.000</u>
X	91.182%	49.800	52.240	56.650	0.000	510.300	528.000	515.900	т 543.700	т 0.000
σ	1.768%	1.430	3.222	2.651	0.000	13.190	13.810	13.260	т 11.010	т 0.000
%RSD	1.939	2.871	6.169	4.680	0.000	2.584	2.615	2.570	т 2.024	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:38:33	502.900	537.600	513.900	92.950%	48.030	49.310	49.360	49.650	271.800	50.000
2 17:39:38	508.500	552.300	543.500	90.267%	51.810	52.060	52.420	54.030	251.100	51.830
3 17:40:43	510.600	551.300	519.800	92.429%	51.400	49.480	50.220	48.250	255.500	50.350
X	507.300	547.100	525.800	91.882%	50.410	50.280	50.670	50.640	259.500	50.730
σ	3.992	8.216	15.680	1.422%	2.072	1.539	1.578	3.017	10.930	0.970
%RSD	0.787	1.502	2.981	1.548	4.111	3.060	3.114	5.958	4.213	1.912
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:38:33	<u> </u>	537.100	49.840	49.390	48.690	50.170	49.050	47.750	48.760	48.930
2 17:39:38	<u> 7 55 1.600</u>	550.000	51.190	51.290	50.300	50.420	50.590	50.140	50.640	50.120
3 17:40:43	<u> 7537.100</u>	522.800	50.900	49.460	48.410	49.920	48.560	49.390	47.050	48.920
X	<u>т 540.400</u>	536.600	50.650	50.050	49.130	50.170	49.400	49.090	48.820	49.320
σ	<u>т 9.919</u>	13.610	0.711	1.076	1.021	0.249	1.061	1.225	1.796	0.687
%RSD	<u>т 1.835</u>	2.537	1.404	2.150	2.078	0.497	2.147	2.496	3.679	1.393
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 1 1 00 00	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:38:33	49.200	58.550	50.420	0.000	0.000	50.540	49.390	95.245%	49.650	49.530
2 17:39:38	49.870	59.640	50.860	0.000	0.000	51.690	50.940	95.438%	51.340	51.640
3 17:40:43	48.750	58.720	50.130	0.000	0.000	49.690	50.290	96.807%	50.790	50.610
X	49.280	58.970	50.470	0.000	0.000	50.640	50.210	95.830%	50.590	50.590
σ	0.564	0.587	0.369	0.000	0.000	0.999	0.777	0.851%	0.861	1.052
%RSD	1.144	0.996	0.732	0.000	0.000	1.973	1.547	0.888	1.701	2.080
Run Time	98Mo ppb	103Rh	106Cd ppb	107Ag ppb	108Mo O ppb	108Cd ppb	109Ag	111Cd	114Cd	115In
1 17:38:33	49.140	ppb 93.139%	49.400	49.910	0.371	47.480	ppb 49.680	ppb 49.580	ppb 48.810	ppb 98.293%
2 17:39:38	51.940	92.770%	52.700	50.920	0.549	53.140	51.100	52.120	50.990	96.170%
3 17:40:43	50.700	94.621%	51.100	49.750	0.444	50.260	49.400	51.060	49.930	97.166%
X	50.590	93.510%	51.060	50.190	0.455	50.290	50.060	50.920	49.910	97.210%
σ	1.404	0.980%	1.652	0.634	0.090	2.833	0.907	1.276	1.089	1.062%
%RSD	2.775	1.048	3.236	1.263	19.730	5.633	1.811	2.506	2.182	1.093
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:38:33	48.050	49.040	48.560	48.450	101.092%	100.324%	49.510	49.500	48.430	49.680
2 17:39:38	50.100	51.110	50.810	50.530	100.169%	99.822%	49.870	50.900	50.770	50.860
3 17:40:43	49.090	49.370	49.410	49.010	102.548%	100.647%	50.000	49.810	49.670	49.570
Х	49.080	49.840	49.590	49.330	101.270%	100.264%	49.790	50.070	49.620	50.040
σ	1.027	1.113	1.138	1.077	1.200%	0.416%	0.257	0.734	1.170	0.714
%RSD	2.092	2.234	2.295	2.183	1.185	0.415	0.516	1.465	2.358	1.428
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 17:38:33	48.760	105.337%	0.000	0.000						
2 17:39:38	50.310	104.009%	0.000	0.000						
3 17:40:43	49.270	106.012%	0.000	0.000						
X	49.440	105.119%	0.000	0.000						
σ	0.790	1.019%	0.000	0.000						
%RSD	1.598	0.969	0.000	0.000						

ccb 11/2/2010 17:41:09

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:42:14	96.679%	0.084	4.567	3.611	0.000	-8.499	-0.163	0.043	-0.178	т 0.000
2 17:43:19	97.227%	0.018	3.049	2.775	0.000	-8.734	-1.135	-0.658	-1.068	т 0.000
3 17:44:25	96.768%	0.007	2.943	2.428	0.000	-8.678	-1.210	-0.677	-1.075	т 0.000
X	96.891%	0.036	3.520	2.938	0.000	-8.637	-0.836	-0.431	-0.773	<u>т 0.000</u>
σ	0.294%	0.042	0.909	0.608	0.000	0.123	0.585	0.411	0.516	<u>т 0.000</u>
%RSD	0.303	114.200	25.820	20.690	0.000	1.424	69.920	95.330	66.700	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CIO	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:42:14	-2.349	-29.350	-20.110	96.294%	-0.047	-0.210	0.327	-1.462	244.000	0.072
2 17:43:19	-2.364	-31.030	-20.880	95.536%	-0.116	-0.669	0.256	-2.287	252.700	0.015
3 17:44:25	-2.754	-30.720	-21.330	96.284%	-0.141	-0.120	0.262	0.012	244.800	0.014
X	-2.489	-30.370	-20.770	96.038%	-0.101	-0.333	0.282	-1.245	247.200	0.033
σ	0.230	0.892	0.616	0.435%	0.049	0.294	0.039	1.165	4.863	0.033
%RSD	9.234	2.938	2.966	0.452	48.260	88.430	14.020	93.510	1.968	99.770
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 17.40.14	ppb 1.570	ppb	ppb 0.041	ppb	ppb	ppb	ppb	ppb 0.754	ppb 1 247	ppb
1 17:42:14 2 17:43:19	-1.568 -1.291	-2.622 -1.912	0.041 -0.007	0.089 0.095	0.178 0.139	-0.199 -0.285	0.015	-0.654 -0.754	-1.247 1.171	-1.320 -1.446
							-0.052		-1.171	
3 17:44:25	-0.536 -1.131	-2.246 -2.260	-0.012 0.007	0.053 0.079	0.083	-0.264 -0.249	-0.062 -0.033	-0.819	-1.381 -1.267	-1.541 -1.435
X					0.133			-0.742		
σ %RSD	0.534 47.210	0.355 15.710	0.029 396.900	0.023 29.120	0.047 35.660	0.045 18.040	0.042 128.200	0.083 11.240	0.106 8.388	0.111 7.706
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
itan iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:42:14	0.044	8.290	-0.190	0.000	0.000	0.174	0.042	99.468%	1.237	1.333
2 17:43:19	-0.048	8.616	-0.317	0.000	0.000	0.098	-0.009	98.683%	0.967	1.082
3 17:44:25	-0.023	8.825	-0.189	0.000	0.000	0.119	-0.008	97.263%	1.133	1.205
Х	-0.009	8.577	-0.232	0.000	0.000	0.130	0.008	98.472%	1.112	1.207
σ	0.047	0.269	0.073	0.000	0.000	0.039	0.029	1.117%	0.136	0.125
%RSD	531.200	3.140	31.640	0.000	0.000	30.170	347.000	1.135	12.240	10.380
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
[ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:42:14	1.287	99.897%	0.457	0.053	0.223	0.178	0.167	0.078	0.280	100.318%
2 17:43:19	1.091	96.684%	-0.604	0.033	0.289	0.124	0.131	-0.031	0.198	99.133%
3 17:44:25	1.259	97.067%	-0.395	0.034	0.270	0.065	0.137	-0.013	0.207	101.029%
X	1.212	97.883%	-0.181	0.040	0.260	0.122	0.145	0.011	0.228	100.160%
σ	0.106	1.755%	0.562	0.011	0.034	0.057	0.019	0.058	0.045	0.958%
%RSD	8.733	1.793	311.200	28.670	13.090	46.260	13.310	527.800	19.720	0.956
Run Time	118Sn ppb	121Sb ppb	123Sb ppb	137Ba ppb	159Tb ppb	165Ho ppb	203TI ppb	205TI ppb	206Pb ppb	207Pb ppb
1 17:42:14	0.463	1.504	1.590	0.022	103.914%	103.635%	0.251	0.108	0.120	0.088
2 17:43:19	0.603	1.425	1.406	-0.030	102.449%	102.950%	0.172	0.053	0.084	0.051
3 17:44:25	0.772	1.439	1.502	-0.019	102.795%	103.653%	0.174	0.050	0.086	0.050
X	0.613	1.456	1.499	-0.009	103.053%	103.413%	0.199	0.070	0.097	0.063
σ	0.155	0.042	0.092	0.027	0.766%	0.401%	0.045	0.032	0.020	0.022
%RSD	25.220	2.905	6.134	303.700	0.743	0.387	22.630	45.630	20.980	34.610
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 17:42:14	0.038	106.835%	0.000	0.000						
2 17:43:19	0.002	106.645%	0.000	0.000						
3 17:44:25	-0.001	105.953%	0.000	0.000						
X	0.013	106.478%	0.000	0.000						
σ	0.022	0.464%	0.000	0.000						
%RSD	0.022 166.800	0.464% 0.436	0.000 0.000	0.000 0.000						

Autotune report

Sequence name: 1] XSII Xt NO Screen(050310) Sequence version: 8/24/2010 09:33:16

Acquired at: 11/2/2010 08:55:32

Result : Passed

Stage	Analyte	Result
Define conditions for stage 1	115In	149326.42
Define conditions for stage 2	115In	158971.24
Define conditions for stage 2	156Ce O/140Ce	0.0119
	7Li	27320.99
	115In	158696.50
Define conditions for stage 3	238U	259172.45
	156Ce O/140Ce	0.0114
	138Ba++/138Ba	0.0293
	7Li	29190.12
	115In	176286.14
Define conditions for stage 4	238U	290897.55
	156Ce O/140Ce	0.0104
	138Ba++/138Ba	0.0276

Acquired at: 11/2/2010 12:53:04

Report name: 1] XSII Xt NO Screen(020310) [11/2/2010 10:27:26]

Mass Calibration verification

Acquisition parameters

Sweeps: 20 Dwell: 1.0 mSecs Point spacing: 0.01 amu

Peak width measured at 10% of the peak maximum

Analyte		Limits	Resi	ults	
Allalyte	Max. width	Min. width Max. error		Peak width	Peak error
7Li	0.85	0.65	0.10	0.71	0.04
24Mg	0.85	0.65	0.10	0.74	-0.00
25Mg	0.85	0.65	0.10	0.73	-0.00
26Mg	0.85	0.65	0.10	0.73	0.00
115In	0.85	0.65	0.10	0.81	0.01
206Pb	0.85	0.65	0.10	0.81	0.01
207Pb	0.85	0.65	0.10	0.84	0.02
208Pb	0.85	0.65	0.10	0.84	0.01
238U	0.85	0.65	0.10	0.84	0.03

Sample details

Acquired at : 11/2/2010 12:53:04

Report name : 1] XSII Xt NO Screen(020310) [11/2/2010 10:27:26]

Tune conditions

une conditi	ons		
Major		Minor	
Extraction	-121.6	Lens 3	-195.
Lens 1	-1208	Forward power	140
Lens 2	-80.0	Horizontal	6
Focus	16.1	Vertical	34
D1	-38.4	DA	-36.
D2	-140	Cool	13.
Pole Bias	0.2	Auxiliary	0.8
Hexapole Bias	-4.0	Sampling Depth	10
Nebuliser	0.90		

Global	Add. Gases	
Standard resolution	145	
High resolution	125	
Analogue Detector	2049	
PC Detector	3199	

Sensitivity and stability results

Acquisition parameters

Sweeps: 130

Run	Time	5Bkg	7Li	24Mg	25Mg	26Mg	56Ar O	59Co	138Ba++	101Bkg
Dw	ell (mSecs)	100.0	10.0	10.0	10.0	10.0	10.0	10.0	30.0	100.0
Limits	%RSD	-	5.0%	5.0%	5.0%	5.0%	-	-	-	-
LIIIIIII	Countrate	-	>15000	>1000	>1000	>1000	-	-	-	-
1	12:53:37	0.000	27605.697	128836.51	17842.107	20783.731	334798.08	68252.950	2850.447	0.000
2	12:54:51	0.000	27119.622	128203.04	17106.850	20584.818	337946.02	66086.260	2706.813	0.077
3	12:56:05	0.000	27378.858	133182.32	18348.498	21367.389	343580.67	67187.364	2751.442	0.000
4	12:57:19	0.000	28537.799	129939.74	17717.248	21340.403	330033.13	66690.649	2792.993	0.000
5	12:58:34	0.000	28715.280	133188.56	17983.154	21523.912	340026.08	68263.025	2849.421	0.077
X		0.000	27871.451	130670.03	17799.571	21120.050	337276.80	67296.050	2790.223	0.031
σ		0.00	713.19	2378.85	453.73	410.01	5156.55	960.81	62.45	0.04
%RSD	Ī	0.000	2.559	1.821	2.549	1.941	1.529	1.428	2.238	136.931

Run	Time	115In	138Ba	140Ce	156Ce O	204Pb	206Pb	207Pb	208Pb	220Bkg
Dw	ell (mSecs)	10.0	10.0	10.0	30.0	10.0	10.0	10.0	10.0	100.0
Limits	%RSD	5.0%	-	-	-	-	5.0%	5.0%	5.0%	-
LIIIIII	Countrate	>100000	-	-	-	=	>100	>100	>100	<1
1	12:53:37	146622.17	96592.755	143460.00	1495.508	2936.628	54815.533	46483.150	116875.73	0.000
2	12:54:51	144723.64	95757.060	140297.37	1510.125	2858.142	55222.601	45651.258	114656.97	0.000
3	12:56:05	146814.46	96167.513	140268.47	1492.943	2905.849	54030.857	45883.191	115529.45	0.000
4	12:57:19	148644.61	98437.772	141457.45	1573.726	2966.638	55862.648	46892.165	116062.33	0.077
5	12:58:34	149629.03	99087.854	143138.07	1527.308	3008.190	55264.392	47113.304	117461.67	0.077
X		147286.78	97208.591	141724.27	1519.922	2935.089	55039.206	46404.614	116117.23	0.031
σ		1908.16	1467.36	1519.72	33.05	57.27	676.24	629.59	1102.69	0.04
%RSD		1.296	1.509	1.072	2.174	1.951	1.229	1.357	0.950	136.931

Run	Time	238U
Dw	10.0	
Limits	%RSD	5.0%
LIIIIIIS	Countrate	>150000
1	12:53:37	237102.16
2	12:54:51	235028.57
3	12:56:05	236338.03
4	12:57:19	239293.86
5	12:58:34	243569.02
X		238266.33
σ		3344.06
%RSD		1.403

Ratio results

Run	Time	138Ba++/138Ba	115In/220Bkg	156Ce O/140Ce
Ra	itio limits	nits <0.0450 >10000		< 0.0200
1	12:53:37	0.030	INF	0.010
2	12:54:51	0.028	INF	0.011
		0.029	INF	0.011

3	12:56:05		
4	12:57:19	0.028	1932380.0
5	12:58:34	0.029	1945177.4
X		0.0287	1938778.7
σ		0.00	1061922.44
6RSD		1.7076	54.7728

Result: The performance report passed.

Aqueous Digestion Log MP Batch ID: MP 55425 ICP-MS DIGESTION METHOD: EPA 200.8

ICP-MS

Heating Method (circle one): Digestion Block

nealing Method (Circle One). Digestio	II Block
Method Blank ID:	MP55425 Prep Date: \\/\ \0
Lab Control/Spike Blank ID:	Start Time: 04:00 Start Temp: 4310=43Thermometer ID#: 143
Lab Control Source:	
	End Time: 15:00 End Temp: 94+6:44
DUP 1 Sample ID:	Acceptable temperature Ranges:
DUP 2 Sample ID:	EPA 200.8 90 to 95 deg. C
MS 1 Sample ID: JA 59191 - UF	
MS 2 Sample ID: JA59191-6F	

Note: Serial dilution s	hown for	QC trackin	ig only. No	t a separate dige	state.				
		Initial	Final	Acids Use	Spikes Used				
	Pres	Sample	Volume	Amount and	Added -		Added -		
Sample ID	Y/N	Volume	in ML Name		YorN	Amount and Name	Y or N	Comments	
MP 55425 -MB_L	Ŋ	50	50	1.0 ml of 1:1 HNO3	Ч				
MP 55425 -LC_				0.50 ml 1:1 HCL	4	0.25 ml Se (20 ppm), 0.25 ml CAL-1 6020, 0.10 ml min (200 ppm)	У		
MP 55425-s_1	4					0.25 ml Se (20 ppm), 0.25 ml CAL-1 6020, 0.10 ml min (200 ppm)	y	- 44,000	
MP 55425 -S 2						0.25 ml Se (20 ppm), 0.25 ml CAL-1 6020, 0.10 ml min (200 ppm)	\		
MP 55425-SD 1									
1 JA 59191-6 2 1 = 7							<u> </u>		
$\frac{2}{3}$ $\sqrt{-6F}$		1							
<u>4 T62490-2</u>									
5 T62494-1 6 1 -2	-		-		<u> </u>				
$\frac{6}{7}$ $\frac{-2}{-3}$			 						
8		1	1 1						
9									
10									
12		+	<u> </u>						
13									
114									
15 16					+		1		
17					 		1		
118						1/4	10		
19			<u> </u>		<u> </u>				
20	1			1	1000	111	/		

11/1/10 QC Reviewer: Analyst:

> Form AA018F-01 Rev. Date:01/15/10

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chromium, Hexavalent	GP55951/GN43587	0.0055	0.0	mg/l	0.0501	0.0506	101.1	90-110%

Associated Samples: Batch GP55951: JA59191-6, JA59191-6F, JA59191-7 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JA59191B
Account: HWINJM - Honeywell International Inc.
Project: HLANJPR: SA-5 Site 153, Langer

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Chromium, Hexavalent	GP55951/GN43587	JA59191-1	mg/l	0.0	0.0	0.0	0-20%

Associated Samples: Batch GP55951: JA59191-6, JA59191-6F, JA59191-7 (*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JA59191B
Account: HWINJM - Honeywell International Inc.
Project: HLANJPR: SA-5 Site 153, Langer

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chromium, Hexavalent	GP55951/GN43587	JA59191-1	mg/l	0.0	0.0501	0.030	59.9N(a)	85-115%

Associated Samples:

Batch GP55951: JA59191-6, JA59191-6F, JA59191-7

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (a) Spike recovery indicates possible matrix interference.

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: 610102001.TXT Date Analyzed: 10/20/10 Methods: SW846 7199 Run ID: GN43587

Analyst: BD

Parameters: Chromium, Hexavalent

07:37 0843587-STD2 1 STDB 07:48 0843587-STD3 1 STDB 07:59 0843587-STD3 1 STDC 08:00 0843587-STD3 1 STDD 08:17 0843587-STD3 1 STDD 08:17 0843587-CCV1 1 STDR 08:43 0843587-CCV1 1 CARCALLAR AND AND AND AND AND AND AND AND AND AND	Time	Sample Description	Dilution PS Factor Recov	Comments
07:53 GN43587-STD3 1 STDD 08:01 GN43587-STD5 1 STDB 08:12 GN43587-STD5 1 STDB 08:12 GN43587-CCB1 1 CREATED 08:23 GN43587-CCB1 1 CREATED CREATED 08:33 GPS5951-MB1 1 CREATED CREATED CREATED 08:41 GPS5951-B1 1 CREATED	07:37	GN43587-STD1	1	STDA
08:01 GN43587-STD4 1 STD8 08:09 GN43587-CCV1 1 08:17 GN43587-CCV1 1 08:28 GN43587-CCV1 1 08:38 GP5951-M31 1 08:48 GP5951-M31 1 08:49 GP5951-B1 1 08:49 GP5951-B1 1 09:03 JA59191-1 1 1 (sample used for QC only; not part of login JA59191B) 09:13 JA59191-1 1 (sample used for QC only; not part of login JA59191B) 09:21 JA59191-1F 1 (sample used for QC only; not part of login JA59191B) 09:22 JA59191-1F 1 (sample used for QC only; not part of login JA59191B) 09:37 GP5951-D1 1 09:48 GP5951-D1 1 10:48 GP5951-D2 1 10:40 GP5951-S1 1 10:40 GP5951-S1 1 10:40 GP5951-S2 1	07:45	GN43587-STD2	1	STDB
08:09 GN43587-STD5 1 STDE 08:17 GN43587-CCN1 1 08:28 GN43587-CCB1 1 08:33 GP55951-MB1 1 08:40 GP55951-MB1 1 08:47 GP55951-B1 1 09:08 7A59191-1 1 (sample used for QC only: not part of login JA59191B) 09:17 7A59191-1 1 (sample used for QC only: not part of login JA59191B) 09:28 7A59191-1F 1 (sample used for QC only: not part of login JA59191B) 09:29 7A59191-1F 1 (sample used for QC only: not part of login JA59191B) 09:30 7A5591-D1 1 (sample used for QC only: not part of login JA59191B) 09:40 7A5591-D2 1 (sample used for QC only: not part of login JA59191B) 09:50 7A5591-D2 1 (sample used for QC only: not part of login JA59191B) 09:50 7A5591-D2 1 (sample used for QC only: not part of login JA59191B) 09:50 7A5591-D2 1 (sample used for QC only: not part of login JA59191B) 09:50 7A5	07:53	GN43587-STD3	1	STDC
08:17	08:01	GN43587-STD4	1	STDD
08:28 GN43587-CCB1 1 08:38 GP55951-MB1 1 08:41 GP55951-MB1 1 08:49 GP55951-B1 1 09:05 JA59191-1 1 09:17 JA59191-1 1 09:21 JA59191-1 1 09:22 JA59191-1F 1 09:37 GP55951-D1 1 09:48 GP55951-D1 1 09:49 GP55951-D2 1 10:01 GP55951-D2 1 10:02 GP55951-D2 1 10:03 GP55951-S1 1 10:04 GP55951-S2 1 10:04 GP55951-S2 1 10:04 GP55951-S2 1 10:04 GP55951-S2 1 10:04 GP55951-S2 1 11:04 GP55951-S2 1 11:04 GP55951-S2 1 11:05 GN3587-CCB2 1 11:12 GN3587-CCB2 1 11:28 ZZZZZZ 1 11:40 ZZZ	08:09	GN43587-STD5	1	STDE
08:33 GP55951-MBI 1 08:44 GP55951-BI 1 08:47 GP55951-BI 1 08:47 GP55951-BI 1 09:48 JA59191-1 1 (sample used for QC only; not part of login JA59191B) 09:41 JA59191-1 1 (sample used for QC only; not part of login JA59191B) 09:42 JA59191-1P 1 (sample used for QC only; not part of login JA59191B) 09:43 JA59191-1P 1 (sample used for QC only; not part of login JA59191B) 09:43 JA59191-1P 1 (sample used for QC only; not part of login JA59191B) 09:44 JA59191-1P 1 (sample used for QC only; not part of login JA59191B) 09:45 JA59191-1P 1 (sample used for QC only; not part of login JA59191B) 09:45 JA55951-1P 1 (sample used for QC only; not part of login JA59191B) 09:45 JA55951-1P 1 (sample used for QC only; not part of login JA59191B) 09:45 JA55951-1P 1 (sample used for QC only; not part of login JA59191B) 09:59:1-Na 1 (sample used for QC o	08:17	GN43587-CCV1	1	
08:41 GP55951-MBI 1 08:49 GP55951-B1 1 08:57 GP55951-B1 1 09:05 JA59191-1 1 (sample used for QC only; not part of login JA59191B) 09:13 JA59191-1F 1 (sample used for QC only; not part of login JA59191B) 09:29 JA59191-1F 1 (sample used for QC only; not part of login JA59191B) 09:37 GP55951-D1 1 09:48 GP55951-D2 1 10:01 GP55951-D2 1 10:02 GP55951-D2 1 10:03 GP55951-S1 1 10:25 GP55951-S2 1 10:26 GP55951-S2 1 10:27 GP55951-S2 1 10:28 GP55951-S2 1 10:48 GP55951-S2 1 10:49 GP55951-S2 1 10:40 GP55951-S2 1 11:20 GR43587-CCV2 1 11:21 GR43587-CCV2 1 11:22 GR43587-CCV2 1 11:30 GR43587-CCV2 1	08:25	GN43587-CCB1	1	
08:49 GP55951-B1 1 08:57 GP55951-B1 1 09:05 JA59191-1 1 (sample used for QC only; not part of login JA59191B) 09:13 JA59191-1 1 (sample used for QC only; not part of login JA59191B) 09:21 JA59191-1F 1 (sample used for QC only; not part of login JA59191B) 09:32 JA59191-1F 1 (sample used for QC only; not part of login JA59191B) 09:43 GP55951-D1 1 09:45 GP55951-D2 1 10:01 GP55951-D2 1 10:02 GP55951-S2 1 10:03 GP55951-S2 1 10:04 GP55951-S2 1 10:04 GP55951-S2 1 10:04 GP55951-S2 1 10:04 GP55951-S2 1 11:04 GP55951-S2 1 11:04 GP55951-S2 1 11:12 GN43587-CCB2 1 11:22 GN43587-CCB2 1 11:23 ZZZZZZ 1 11:44 ZZZZZZ 1	08:33	GP55951-MB1	1	
08:57 GP55951-B1 1 09:05 JA59191-1 1 (sample used for QC only; not part of login JA59191B) 09:13 JA59191-1F 1 (sample used for QC only; not part of login JA59191B) 09:21 JA59191-1F 1 (sample used for QC only; not part of login JA59191B) 09:37 GP55951-D1 1 (sample used for QC only; not part of login JA59191B) 09:48 GP55951-D1 1 09:49 GP55951-D2 1 10:01 GP55951-D2 1 10:02 GP55951-S1 1 10:03 GP55951-S2 1 10:04 GP55951-S2 1 10:04 GP55951-S2 1 10:04 GP55951-S2 1 10:104 GP55951-S2 1 11:04 GP5951-S2 1 11:12 GN43587-CCW2 1 11:22 GN43587-CCW2 1 11:23 ZZZZZZ 1 11:44 ZZZZZZ 1	08:41	GP55951-MB1	1	
09:05 JA59191-1 1 (sample used for QC only; not part of login JA59191B) 09:13 JA59191-1F 1 (sample used for QC only; not part of login JA59191B) 09:24 JA59191-1F 1 (sample used for QC only; not part of login JA59191B) 09:37 GP55951-D1 1 09:45 GP55951-D2 1 10:01 GP55951-D2 1 10:02 GP55951-D2 1 10:17 GP55951-S2 1 10:25 GP55951-S2 1 10:40 GP55951-S2 1 10:40 GP55951-S2 1 10:41 GP55951-S2 1 10:42 GP55951-S2 1 10:43 GP55951-S2 1 11:44 GP55951-S2 1 11:26 GR43587-CCV2 1 11:28 ZZZZZZ 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	08:49	GP55951-B1	1	
09:13 JA59191-1F 1 (sample used for QC only; not part of login JA59191B) 09:21 JA59191-1F 1 (sample used for QC only; not part of login JA59191B) 09:37 GP55951-D1 1 (sample used for QC only; not part of login JA59191B) 09:45 GP55951-D1 1 09:53 GP55951-D2 1 10:01 GP55951-D2 1 10:02 GP55951-S1 1 10:17 GP55951-S2 1 10:40 GP55951-S2 1 10:40 GP55951-S1 1 10:40 GP55951-S2 1 11:04 GP55951-S2 1 11:12 GN43587-CCV2 1 11:28 ZZZZZZ 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1	08:57	GP55951-B1	1	
09:21 JA59191-1F	09:05	JA59191-1	1	(sample used for QC only; not part of login JA59191B)
09:29 JA59191-1F 1 (sample used for QC only; not part of login JA59191B) 09:37 GP55951-D1 1 09:53 GP55951-D2 1 10:01 GP55951-B2 1 10:02 GP55951-S1 1 10:25 GP55951-S2 1 10:40 GP55951-S2 1 10:40 GP55951-S1 1 10:40 GP55951-S2 1 10:40 GP55951-S2 1 10:40 GP55951-S2 1 11:40 GP55951-S2 1 11:20 GN43587-CCV2 1 11:21 GN43587-CCV2 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1 11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	09:13	JA59191-1	1	(sample used for QC only; not part of login JA59191B)
09:37 GP55951-D1 1 09:45 GP55951-D2 1 10:01 GP55951-D2 1 10:09 GP55951-S1 1 10:17 GP55951-S1 1 10:25 GP55951-S2 1 10:40 GP55951-S2 1 10:40 GP55951-S1 1 10:40 GP55951-S2 1 10:41 GP55951-S2 1 11:42 GP55951-S2 1 11:43 GP55951-S2 1 11:44 GP55951-S2 1 11:45 GP55951-S2 1 11:40 GP55951-S2 1 11:20 GN43587-CCV2 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1 11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	09:21	JA59191-1F	1	(sample used for QC only; not part of login JA59191B)
09:45 GP55951-D1 1 09:53 GP55951-D2 1 10:01 GP55951-D2 1 10:09 GP55951-S1 1 10:25 GP55951-S2 1 10:32 GP55951-S2 1 10:40 GP55951-S1 1 10:48 GP55951-S1 1 10:49 GP55951-S2 1 11:04 GP55951-S2 1 11:12 GN43587-CCV2 1 11:20 GN43587-CCB2 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	09:29	JA59191-1F	1	(sample used for QC only; not part of login JA59191B)
09:53 GP55951-D2 1 10:01 GP55951-D2 1 10:09 GP55951-S1 1 10:17 GP55951-S1 1 10:25 GP55951-S2 1 10:40 GP55951-S2 1 10:48 GP55951-S1 1 10:49 GP55951-S2 1 11:04 GP55951-S2 1 11:12 GN43587-CCV2 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	09:37	GP55951-D1	1	
10:01 GP55951-D2 1 10:09 GP55951-S1 1 10:17 GP55951-S2 1 10:32 GP55951-S2 1 10:40 GP55951-S1 1 10:48 GP55951-S1 1 10:56 GP55951-S2 1 11:04 GP55951-S2 1 11:12 GN43587-CCV2 1 11:20 GN43587-CCW2 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	09:45	GP55951-D1	1	
10:09 GP55951-S1 1 10:17 GP55951-S2 1 10:32 GP55951-S2 1 10:40 GP55951-S1 1 10:48 GP55951-S1 1 10:56 GP55951-S2 1 11:04 GP55951-S2 1 11:12 GN43587-CCV2 1 11:20 GN43587-CCB2 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	09:53	GP55951-D2	1	
10:17 GP55951-S1 1 10:25 GP55951-S2 1 10:32 GP55951-S2 1 10:40 GP55951-S1 1 10:56 GP55951-S2 1 11:04 GP55951-S2 1 11:12 GN43587-CCV2 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	10:01	GP55951-D2	1	
10:25 GP55951-S2 1 10:30 GP55951-S2 1 10:40 GP55951-S1 1 10:56 GP55951-S2 1 11:04 GP55951-S2 1 11:12 GN43587-CCV2 1 11:20 GN43587-CCB2 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	10:09	GP55951-S1	1	
10:32 GP55951-S2 1 10:40 GP55951-S1 1 10:48 GP55951-S1 1 11:04 GP55951-S2 1 11:04 GP55951-S2 1 11:12 GN43587-CCV2 1 11:20 GN43587-CCB2 1 11:28 ZZZZZZ 1 11:34 ZZZZZZ 1	10:17	GP55951-S1	1	
10:40 GP55951-S1 1 1 10:48 GP55951-S2 1 1 11:04 GP55951-S2 1 11:12 GN43587-CCV2 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	10:25	GP55951-S2	1	
10:48 GP55951-S1 1 10:56 GP55951-S2 1 11:04 GP55951-S2 1 11:12 GN43587-CCV2 1 11:20 GN43587-CCB2 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	10:32	GP55951-S2	1	
10:56 GP55951-S2 1 11:04 GP55951-S2 1 11:12 GN43587-CCV2 1 11:20 GN43587-CCB2 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	10:40	GP55951-S1	1	
11:04 GP55951-S2 1 11:12 GN43587-CCV2 1 11:20 GN43587-CCB2 1 11:28 ZZZZZZ 1 11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	10:48	GP55951-S1	1	
11:12 GN43587-CCV2 1 11:20 GN43587-CCB2 1 11:28 ZZZZZZZ 1 11:36 ZZZZZZZ 1 11:44 ZZZZZZZ 1	10:56	GP55951-S2	1	
11:20 GN43587-CCB2 1 11:28 ZZZZZZZ 1 11:36 ZZZZZZZ 1 11:44 ZZZZZZZ 1	11:04	GP55951-S2	1	
11:28 zzzzzz 1 11:36 zzzzzz 1 11:44 zzzzzz 1	11:12	GN43587-CCV2	1	
11:36 ZZZZZZ 1 11:44 ZZZZZZ 1	11:20	GN43587-CCB2	1	
11:44 ZZZZZZ 1	11:28	ZZZZZZ	1	
	11:36	ZZZZZZ	1	
11:52 ZZZZZZ 1	11:44	ZZZZZZ	1	
	11:52	ZZZZZZ	1	

Login Number: JA59191B

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

File ID: 610102001.TXT Date Analyzed: 10/20/10 Methods: SW846 7199 Run ID: GN43587

Analyst: BD

Parameters: Chromium, Hexavalent

Гime	Sample Description		Comments
12:00	ZZZZZZ	1	
12:08	ZZZZZZ	1	
12:16	ZZZZZZ	1	
12:23	ZZZZZZ	1	
12:31	ZZZZZZ	1	
12:39	ZZZZZZ	1	
12:47	ZZZZZZ	1	
12:55	ZZZZZZ	1	
13:03	ZZZZZZ	1	
13:11	ZZZZZZ	1	
13:19	ZZZZZZ	1	
13:27	ZZZZZZ	1	
13:35	JA59191-6	1	
13:43	JA59191-6	1	
13:50	JA59191-6F	1	
13:58	JA59191-6F	1	
14:06	GN43587-CCV3	1	
14:14	GN43587-CCB3	1	
14:22	JA59191-7	1	
14:30	JA59191-7	1	
14:38	GN43587-CCV4	1	
14:46	GN43587-CCB4	1	

Refer to raw data for calibration curve and standards.

134 of 214
ACCUTEST

ASSISTED LABORATORIES JA59191B

Instrument QC Summary Inorganics Analyses

Login Number: JA59191B Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 153, Langer

Sample Number	Parameter	Result	RL	IDL/MDL	True Value	% Recov.	QC Limits
GN43587-CCV1	Chromium, Hexavalent	0.26	0.0050	0.0022	.25	104.0	90-110
GN43587-CCB1	Chromium, Hexavalent	0.0022 U	0.0050	0.0022			
GN43587-CCV2	Chromium, Hexavalent	0.25	0.0050	0.0022	.25	100.0	90-110
GN43587-CCB2	Chromium, Hexavalent	0.0022 U	0.0050	0.0022			
GN43587-CCV3	Chromium, Hexavalent	0.25	0.0050	0.0022	.25	100.0	90-110
GN43587-CCB3	Chromium, Hexavalent	0.0022 U	0.0050	0.0022			
GN43587-CCV4	Chromium, Hexavalent	0.25	0.0050	0.0022	.25	100.0	90-110
GN43587-CCB4	Chromium, Hexavalent	0.0022 U	0.0050	0.0022			

^(!) Outside of QC limits

General Chemistry	
Raw Data	

1.0000

1.0000 1.0000 1.0000 1.0000 1.0000

0/20/2010 10:25:02 AM 0/20/2010 10:32:57 AM 0/20/2010 10:40:51 AM 0/20/2010 10:48:54 AM 0/20/2010 10:56:48 AM

-inished

nexachrome

-inished

nexachrome

23 hexachrome_ASDV
24 hexachrome_ASDV
1 hexachrome_ASDV
2 hexachrome_ASDV

Unknown

Jnknown

Jnknown

GP55951-S2 GP55951-S2 GP55951-S1 GP55951-S1 GP55951-S2

23 24 25 Finished Finished

3 hexachrome_ASDV

Jnknown

Jnknown

-inished

hexachrome hexachrome hexachrome

Page 1 of 3 Printed: 10/20/2010 2:54:47 9M 10/20/2010 10:25:50 AM by chemistry 10/20/2010 7:03:13 AM by chemistry 1.0000 1.0000 00001 1.0000 1.0000 1.0000 1.0000 1,0000 1.0000 1.0000 1.0000 1.0000 0000 1.0000 0000.1 1.0000 0000.1 0000 000 0000 Dil Factor 0000.1 1.0000 1.0000 1.0000 0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000 1.0000 Weight 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10/20/2010 10:01:14 AM 0/20/2010 10:09:08 AM 0/20/2010 10:17:31 AM Last Update: 0/20/2010 8:49:00 AM 10/20/2010 8:57:59 AM 10/20/2010 9:05:53 AM 10/20/2010 9:13:48 AM 0/20/2010 9:29:36 AM 10/20/2010 9:37:31 AM 10/20/2010 9:45:25 AM 10/20/2010 9:53:20 AM 0/20/2010 7:53:38 AM 10/20/2010 8:01:33 AM 0/20/2010 8:09:27 AM 10/20/2010 8:25:16 AM 0/20/2010 8:33:10 AM 10/20/2010 9:21:42 AM 0/20/2010 7:30:30 AM 0/20/2010 7:45:44 AM 10/20/2010 8:17:21 AM 10/20/2010 8:41:05 AM 0/20/2010 7:37:49 AM Created: Inj. Date/Time Finished Finished Finished Finished Finished Finished -inished Finished Finished -inished Finished Finished Finished Finished -inished -inished -inished -inished -inished Finished -inished Finished Status nexachrome nexachrome nexachrome hexachrome hexachrome hexachrome nexachrome exachrome exachrome exachrome nexachrome nexachrome nexachrome nexachrome nexachrome nexachrome hexachrome hexachrome hexachrome nexachrome hexachrome hexachrome Method 8 hexachrome_ASDV 9 hexachrome_ASDV 11 hexachrome_ASDV 12 hexachrome_ASDV 13 hexachrome_ASDV 14 hexachrome_ASDV 15 hexachrome_ASDV 16 hexachrome_ASDV 17 hexachrome_ASDV 18 hexachrome_ASDV 19 hexachrome_ASDV 20 hexachrome_ASDV 21 hexachrome_ASDV 22 hexachrome_ASDV 1 hexachrome_ASDV 2 hexachrome_ASDV 3 hexachrome_ASDV 4 hexachrome_ASDV 5 hexachrome_ASDV 6 hexachrome_ASDV 7 hexachrome_ASDV 10 hexachrome_ASDV Pos. Program Unknown Unknown Unknown Unknown Jnknown Jnknown Jnknown Jnknown Unknown Jnknown Jaknown Unknown Unknown Unknown Unknown Jnknown Jnknown Standard Standard Standard Standard Standard GP55951-MB1 GP55951-MB1 GP55951-D2 GP55951-D2 GP55951-D1 GP55951-D1 GP55951-S1 GP55951-B1 3P55951-S1 GP55951-B1 JA59191-1F JA59191-1F JA59191-1 JA59191-1 Accutest\2010\October blankconf STDD STDA STDC STDE NJCHMIC2 local င္ပ 800 No. Name 610102001 chemistry accutest 56 8 5 မွှ 9 12 5 4 ਨ 9 7 20 22 7 Datasource Sequence: Timebase: #Samples: Operator: Location: Title:

Sequence: Operator:	610102001 chemistry		Printed: 10/20/2010 2:54:48 PM
Title:			
Datasource:	NJCHMIC2_local		
Location:	Accutest\2010\October		
		Created:	10/20/2010 7:03:13 AM by chemistry
#Samples:	Per Per Per Per Per Per Per Per Per Per	_ast Update:	10/20/2010 10:25:50 AM by chemistry

Dil. Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Weight	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Inj. Date/Time	10/20/2010 11:04:43 AM	10/20/2010 11:12:37 AM	10/20/2010 11:20:41 AM	10/20/2010 11:28:35 AM	10/20/2010 11:36:31 AM	10/20/2010 11:44:25 AM	10/20/2010 11:52:19 AM	10/20/2010 12:00:14 PM	10/20/2010 12:08:09 PM	10/20/2010 12:16:03 PM	10/20/2010 12:23:57 PM	10/20/2010 12:31:51 PM	10/20/2010 12:39:46 PM	10/20/2010 12:47:41 PM	10/20/2010 12:55:35 PM	10/20/2010 1:03:30 PM	10/20/2010 1:11:24 PM	10/20/2010 1:19:18 PM	10/20/2010 1:27:12 PM	10/20/2010 1:35:07 PM	10/20/2010 1:43:02 PM	10/20/2010 1:50:56 PM	10/20/2010 1:58:51 PM	10/20/2010 2:06:45 PM	10/20/2010 2:14:40 PM	10/20/2010 2:22:34 PM	10/20/2010 2:30:28 PM
Status	Finished Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished																
Method	hexachrome hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome																
Pos. Program	4 hexachrome_ASDV	29 hexachrome_ASDV	30 hexachrome_ASDV	25 hexachrome_ASDV	26 hexachrome_ASDV	27 hexachrome_ASDV	28 hexachrome_ASDV	31 hexachrome_ASDV	32 hexachrome_ASDV	33 hexachrome_ASDV	34 hexachrome_ASDV	35 hexachrome_ASDV	36 hexachrome_ASDV	37 hexachrome_ASDV	38 hexachrome_ASDV	39 hexachrome_ASDV	40 hexachrome_ASDV	41 hexachrome_ASDV	42 hexachrome_ASDV	43 hexachrome_ASDV	44 hexachrome_ASDV	45 hexachrome_ASDV	46 hexachrome_ASDV	49 hexachrome_ASDV	50 hexachrome_ASDV	47 hexachrome_ASDV	48 hexachrome_ASDV
Type	Unknown Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown																
эте	GP55951-S2	CCV	CCB	JA59191-2	JA59191-2	JA59191-2F	JA59191-2F	JA59191-3	JA59191-3	JA59191-3F	JA59191-3F	JA59191-5	JA59191-5	JA59191-5F	JA59191-5F	JA59191-4	JA59191-4	JA59191-4F	JA59191-4F	JA59191-6	JA59191-6	JA59191-6F	JA59191-6F	CCV	CCB	JA59191-7	JA59191-7
No. Name	28	58	30	31	32	33	¥	35	36	37	38	39	40	4	42	43	4	45	46	47	48	49	20	51	52	53	75

(166959)
œ
80
d 2
B
9
30 SR
õ
9
Version
Ē
poratio
Ö
Dionex (
9
Chromeleo

Page 3 of 3 Printed: 10/20/2010 2:54:48 PM	10/20/2010 7:03:13 AM by chemistry 10/20/2010 10:25:50 AM by chemistry	<u>.</u> 0 0
Printed: 1	/20/2010 7:0: /20/2010 10:	Weight Dil. Factor 1.0000 1.0000 1.0000 1.0000
	0, 0,	
	Created: Last Update:	Inj. Date/Time 10/20/2010 2:38:23 PM 10/20/2010 2:46:20 PM
		Status Finished Finished
		Method hexachrome hexachrome
		Pos. Program 5 hexachrome_ASDV 6 hexachrome_ASDV
		Type Unknown Unknown
)01 y	NJCHMIC2_local Accutest\2010\October accutest 56	vame CCV CCB
610102001 chemistry	NJCHMIC Accutest accutest 56	No. Name 55 CC 56 CC
Sequence: Operator:	Title: Datasource: Location: Timebase: #Samples:	

Hexavalent Chromium pH Adjustment Log Method: SW846 7199 pH adj. start time: Matrix: AQ

pH adj. end time:

pH Adjust. Date: (D) 20 GN Batch ID:

		(martine)				
	(10=505)	Initial Sample	Final			
	GP55951	Volume	Volume	pH after		-
		(ml)	(ml)	buffer	Snike info	Comments
	Sample ID	(1111)		9.05		
	CCV		100	9.03	25mc	
	CCV					* *
	CCV					
	ccv					
	ССВ		100	9.06		
	ССВ					
LLE	ССВ					
bot#	ССВ					
7 51	MS JA 59 191-1	90	55	9.21	0.25 m	10 ppm fostule
	DUP 4	Ť	1	9.21		
, ,				908	0.25m	L 10 PPU Abosente
	SB	 		9.00	J -(/ J//	OFT SCALE
	PB		 	9.10	0.250	10 ppu thorough
10 82	1.5A59191-1E	 		 	10.92W	C 10than Apropria
10 De		 		19.18		
フ	3, JA59191-1		<u> </u>	9.19		
10	4. <u></u>			9.13		
3	5 JA = 9191 - 2			9.18	<u> </u>	
	62F			9.11		
3	7.7A59191-3		<u> </u>	19.15		
4	83F			9.10		
434343434	9. JA59191-5		1	9.160		
Ĭ	10.			a.10		
7	11JA59191 - 4			913		
LL	1246	+	 	9 13		
9	180A59191- G	 	-	1918		
न		+-	 	10185		
		 	+ +	910		Addblank
4	15/A59191-7	 	 	9.08	0.00	10 Poll floorlute
	16. SI permade	- \	 	904	0350	101100
	17. 82)	 y	1 4	19.09	D. OSML	COPM HOSOUR
	18.	ļ			<u> </u>	
	19.			<u> </u>	_	
	20.	<u> </u>				
	PS					
	DIL					
	DIL					
	Reagent Information	1:			and e	
			0 (/- 0 /	· 4 II - 1	" 010T-D	11-1-4

Form: GN-206 Rev. Date: 9/19/07

The second section of the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section in the second section is a second section of the second section is a second section in the second section is a second section in the second section is a second section in the second section is a second section in the second section is a second section in the second section is a second section in the second section is a second section in the second section is a second section in the second section is a second section in the second section is a second section in the second section is a second section in the second section is a second section in the second section is a second section in the second section is a section in the second section is a section in the second section is a second section in the second section is a section in the section is a section in the section is a section in the section in the section is a section in the section in the section is a section in the section in the section is a section in the section in the section is a section in the section in the section is a section in the section in the section in the section is a section in the section in the section is a section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section in the section in the section in the section in the

Analyst Mila Dela Date: 10

Z ACCUTEST.

GENERAL CHEMISTRY STANDARD PREPARATION LOG

Co Number	of Gr. Nulling Ways a
Ç	5 5
2	<u> </u>

							Final Conc			
			Stock volume of				of			
Intermediate	Stock used to	Stock	weight used with	Balance or		Final	Intermediate	Expiration		
Standard Description	prepare standard	concentration	units	Autopipet ID (*)	Diluent	Volume	(mg/l)	Date	Analyst	Date
10.0 mg/L Absolute	Absolute 042610	1000 mg/L	2:0 mL	٨	Dilution	200 mL	10.0 mg/L	4/26/2013	Q	080 0
1.0 mg/ L Absolute	10.0 mg/L Absolute	10 mg/L	20 mL	A	Water	200 mL	1.0 mg/L	4/26/2013		
	X									
10.0 ma/L Ultra	Ultra j00509	1000 mg/L	2.0 mL	A	Dilution	200 mL	10.0 mg/L	7/31/2015	7	-
					Water					,
	Intermediate or Stock	Intermediate	Intermediate or							
	used to prepare		Stock volume	Balance or		Final	ā	Expiration		
Standard Description	standard	concentration	used in ml	Autopipet ID (*)	Diluent	Volume	(mg/l)	Date	Analyst	Date
0.005 mal	1.0 mg/ L Absolute	1.0 mg/L	0.50 mL	У	Dilution		0.005 mgL	03000	3	<u> </u>
0.05 mg/L	1.0 mg/ L Absolute	1.0 mg/L	5.00 mL	A	Water		0.05 mg/L			-
0.100 mg/l	10.0 mg/L Absolute	10.0 mg/L	1.00 mL	A		100 mL	0.100 mg/l		_	
0.500 mg/L	10.0 mg/L Absolute	10.0 mg/L	5.00 mL	A		100 mL	0.500 mg/L			
								+		
						1		-		
0.250 mg/L - CCV	10 mg/L Ultra	10.0 mg/L	2.50 mL	A	Dilution	100 mL	0.250 mg/L	>	Ð	7
					Water					

of All Standords papared with Dillufin Weder pHed between gang 95 No futur pH adjustment necessary. * If Class A glass pipets are used, enter an A. For balances or autopipets, then enter the appropriate Accutest ID number.

Form: GN121-01 Rev. Date: 1/13/09

Reagent Information Log - XCR - 7199 AQ

Reagent	exp	Reagent # or Manufacturer/Lot
Calibration Source: Hexavalent Chromium, 1000 mg/L Stock	4/26/2013	Absolute Grade lot 042610
Calibration Checks: Hexavalent Chromium, 1000 mg/L Stock	_ 7/31/2015	Ultra lot J00509
Spiking Solution Source	4/26/2013	Absolute Grade lot 042610
Post-column reagent	01/12/01	GNE/0-20429-1CXCR
Eluent	8/22/11	GNE9-20100-ICKCR
Buffer Solution	<u> Jouln</u>	GNE8-25909-14/08
Dilution water	2/10/11	Grt10-20270-10X0R
Filter		WW LH 2175660960
	-	
-	_	
	_	

All standards and stocks were made as described in the SOP for this method (circle one): If no (N), see attached page for standards prep.

Form: GN087A-78 Rev. Date: 09/19/07

Tracking #: JA59191

ACCUTEST. Immediate Analysis Record

Date Generated	I: 10/19/2010	Sampling Date	/Time:	10/19/10	1307	Rcv'd in HT:	YES
Client Name:	MACTEC			# of Samples	:7	# of Bottles:	17
Locations:	ME 47,				Delv		
Comments:	-1, MS/MSD, FIELD F	ILTERED	CLISTA SACA NI ARRADA SACIFICADA ARRADA MINANDA	ALE PARAMENTAL METABLISM STOATS STORY	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · · · · · · · · · · · · · · · · · ·	
	quished from sample m	#A## 1991 ST ## 00	MATT		Date / Time:	10/19/2010 6:	55:14 PM
	ample Number	· ·		nalysis		Matrix	
	1-7 1F-6F	ALIA CINA CINA CINA CINA CINA CINA CINA CI		CR 7199 CR 7199		AQ AQ	
		BUDUTO In Ca	1		GP55	951	

Missing GF

Requested by:	Date/Time:		
The following samples have been depleted / broken:			
Relinquished by (Sample Mgt):	Rcv'd by (Lab):	Date/Time:	
Relinquished by (Lab):	Rcv'd by (Sample Mot):	Date/Time:	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	3.29	n.a.	0.000	0.000	54.92	n.a.	BMB
2	3.60	Cr-6	0.000	0.000	28.51	-0.0009	BMB [^]
3	3.93	n.a.	0.000	0.000	16.57	n.a.	BMB
Total:			0.000	0.000	100.00	-0.001	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

hexachrome/Integration

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	3.29	Cr-6	0.000	0.000	54.92	0.0011	вмв
2	3.60	n.a.	0.000	0.000	28.51	n.a.	BMB
3	3.93	n.a.	0.000	0.000	16.57	n.a.	BMB
Total:			0.000	0.000	100.00	0.001	

0106/ac/0100 QU

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

> 145 of 214 ACCUTEST JA59191B

Operator:chemistry Timebase:accutest Sequence:610102001

3 STDB			
Sample Name:	STDB	Injection Volume: Channel:	25.0 UV VIS 1
Vial Number: Sample Type:	3 standard	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 7:45	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	3.06	n.a.	0.000	0.000	5.64	n.a.	BMB
2	3.16	n.a.	0.000	0.000	4.59	n.a.	BMB
3	3.45	Cr-6	0.000	0.000	79.10	0.0049	BMB*
4	4.14	n.a.	0.000	0.000	5.98	n.a.	BMB
5	4.62	n.a.	0.000	0.000	4.70	n.a.	BMB
Total:			0.001	0.000	100.00	0.005	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

hexachrome/Integration

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min	•	AU	AU*min	%	ppm	
1	3.06	n.a.	0.000	0.000	7.89	n.a.	BMB
2	3.16	n.a.	0.000	0.000	6.43	n.a.	BMB
3	3.45	Cr-6	0.000	0.000	70.72	0.0041	BMB
4	4.14	n.a.	0.000	0.000	8.38	n.a.	BMB
5	4.62	n.a.	0.000	0.000	6.58	n.a.	BMB
Total:			0.001	0.000	100.00	0.004	

0106/01 08 IEG

hexachrome/Integration

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

Operator:chemistry Timebase:accutest Sequence:610102001

4 STDC			
Sample Name: Vial Number:	STDC	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 7:53	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		AU	AU*min	%	ppm	
1	2.92	n.a.	0.000	0.000	1.08	n.a.	ВМВ
2	3.46	Cr-6	0.003	0.000	96.55	0.0493	вм
3	3.74	n.a.	0.000	0.000	1.71	n.a.	MB
4	4.48	n.a.	0.000	0.000	0.66	n.a.	BMB
Total:			0.003	0.000	100.00	0.049	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

hexachrome/Integration

5 STDD			
Sample Name: Vial Number:	STDD 5	Injection Volume: Channel:	25.0 UV_VI\$_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 8:01	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	3.46	Cr-6	0.005	0.001	99.00	0.1021	BM *
2	3.82	n.a	0.000	0.000	1.00	n.a.	MB*
Total:			0.005	0.001	100.00	0.102	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	3.46	Cr-6	0.005	0.001	100.00	0.0999	BMB
Total:			0.005	0.001	100.00	0.100	

PDB BD 1912010

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

6 STDE			
Sample Name: Vial Number:	STDE 6	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	hexachrome ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 8:09	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.91	n.a.	0.000	0.000	0.09	n.a.	ВМВ
2	3.46	Cr-6	0.026	0.004	96.71	0.4997	BM
3	3.71	n.a.	0.001	0.000	3.06	n.a.	MB
4	4.23	n.a.	0.000	0.000	0.07	n.a.	BMB
5	4.44	n.a.	0.000	0.000	0.07	n.a.	BMB
Total:			0.028	0.005	100.00	0.500	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

6 STDE			
Sample Name: Vial Number:	STDE 6	Injection Volume: Channel:	25.0 UV VIS_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time: Run Time (min):	10/20/2010 8:09 5.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time min	Peak Name	Cal.Type	Points	Coeff.Det. %	Offset	Slope	Curve
1	2.91	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	3.46	Cr-6	LOff	5	99.9967	0.0000	0.0088	0.0000
3	3.71	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
4	4.23	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
5	4.44	n.a.	n.a.	n.a.	n.a.	n.a.	n.a	n.a.
Average:					99.9967	0.0000	0.0088	0.0000

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

hexachrome/Calibration(Batch)

7 CCV			
Sample Name: Vial Number:	CCV 7	Injection Volume: Channel:	25.0 UV VIS 1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 8:17	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	3.45	Cr-6	0.014	0.002	100.00	0.2577	BMB
Total:			0.014	0.002	100.00	0.258	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

Run Time (min):

5.00

Sample Amount:

1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.64	n.a.	0.000	0.000	25.35	n.a.	BMB
2	2.94	n.a.	0.000	0.000	30.05	n.a.	BMB
3	4.00	n.a.	0.000	0.000	19.80	n.a.	BMB
4	4.93	n.a.	0.000	0.000	24.80	n.a.	BMB
Total:			0.000	0.000	100.00	0.000	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

9 GP5595	9 GP55951-MB1					
Sample Name: Vial Number:	GP55951-MB1 9	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	10/20/2010 8:33	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	3.91	n.a.	0.000	0.000	34.84	n.a.	BMB
2	4.48	n.a.	0.000	0.000	6 <u>5</u> .16	n.a.	BMB
Total:			0.000	0.000	100.00	0.000	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

10 GP5595	1-MB1		
Sample Name: Vial Number:	GP55951-MB1 10	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 8:41	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.55	n.a.	0.000	0.000	18.86	n.a.	ВМВ
2	3.19	n.a.	0.000	0.000	47.29	n.a.	BMB
3	3.47	Cr-6	0.000	0.000	16.71	-0.0013	BMB
4	3.61	n.a.	0.000	0.000	17.14	n.a.	BMB
Total:			0.000	0.000	100.00	-0.001	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

11 GP5595	1-B1		
Sample Name: Vial Number:	GP55951-B1 11	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 8:49	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.70	n.a.	0.000	0.000	0.94	n.a.	BMB
2	2.95	n.a.	0.000	0.000	1.09	n.a.	BMB
3	3.45	Cr-6	0.002	0.000	91.31	0.0419	BM *
4	3.73	n.a.	0.000	0.000	2.89	n.a.	MB*
5	4.01	n.a.	0.000	0.000	1.08	n.a.	BMB
6	4.21	n.a.	0.000	0.000	0.87	n.a.	BMB
7	4.28	n.a.	0.000	0.000	0.82	n.a.	BMB
8	4.77	n.a.	0.000	0.000	0.99	_n.a.	BMB
Γotal:			0.003	0.000	100.00	0.042	

11 GP55951-B1					
Sample Name: Vial Number:	GP55951-B1 11	Injection Volume: Channel:	25.0 UV_VIS_1		
Sample Type:	unknown	Wavelength:	n.a.		
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.		
Quantif. Method:	hexachrome	Dilution Factor:	1.0000		
Recording Time:	10/20/2010 8:49	Sample Weight:	1.0000		
Run Time (min):	5.00	Sample Amount:	1.0000		

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.70	n.a.	0.000	0.000	1.08	n.a.	BMB
2	2.95	n.a.	0.000	0.000	1.25	n.a.	BMB
3	3.45	Cr-6	0.002	0.000	93.35	0.0372	BMB
4	4.01	n.a.	0.000	0.000	1.24	n.a.	BMB
5	4.21	n.a.	0.000	0.000	1.00	n.a.	BMB
6	4.28	n.a.	0.000	0.000	0.94	n.a.	BMB
7	4.77	n.a.	0.000	0.000	1.14	n.a.	BMB
Total:			0.003	0.000	100.00	0.037	

c. 10ep. 09 804

hexachrome/Integration

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.52	n.a.	0.000	0.000	1.15	n.a.	BMB
2	3.46	Cr-6	0.002	0.000	93.65	0.0460	ВМ
3	3.77	n.a.	0.000	0.000	1.52	n.a.	MB
4	3.88	n.a.	0.000	0.000	1.15	n.a.	BMB
5	4.06	n.a.	0.000	0.000	0.68	n.a.	BMB
6	4.60	n.a.	0.000	0.000	1.85	n.a.	BMB
Total:			0.003	0.000	100.00	0.046	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.86	n.a.	0.000	0.000	9.93	n.a.	BMB
2	3.15	n.a.	0.000	0.000	17.45	n.a.	вмв
3	3.21	n.a.	0.000	0.000	9.62	n.a.	BMB
4	3.37	Cr-6	0.000	0.000	12.45	-0.0011	BMB
5	3.55	n.a.	0.000	0.000	8.03	n.a.	BMB
6	3.73	n.a.	0.000	0.000	18.23	n.a.	BMB
7	4.27	n.a.	0.000	0.000	8.30	n.a.	BMB
8	4.77	n.a.	0.000	0.000	15.99	n.a.	вмв
Total:	•		0.001	0.000	100.00	-0.001	

14 JA5919	1-1		
Sample Name: Vial Number:	JA59191-1 14	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 9:13	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.70	n.a.	0.000	0.000	28.99	n.a.	BMB
2	3.12	n.a.	0.000	0.000	23.58	n.a.	₿MB
3	3.49	Cr-6	0.000	0.000	12.66	-0.0013	BMB
4	4.50	n.a.	0.000	0.000	13.00	n.a.	BMB
5	4.70	n.a.	0.000	0.000	21.77	n.a.	BMB
Total:			0.001	0.000	100.00	-0.001	

15 JA5919	1-1F		
Sample Name: Vial Number:	JA59191-1F 15	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 9:21	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU* <u>min</u>	Rel.Area %	Amount ppm	Туре
1	3.53	Cr-6	0.000	0.000	31.15	-0.0012	BMB
2	3.74	n.a.	0.000	0.000	37.86	n.a.	BMB
3	4.49	n.a	0.000	0.000	30.99	n.a.	вмв
Total:			0.000	0.000	100.00	-0.001	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

16 JA5919	1-1F		
Sample Name: Vial Number:	JA59191-1F 16	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 9:29	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.71	n.a.	0.000	0.000	20.50	n.a.	BMB
2	3.92	n.a.	0.000	0.000	14.41	n.a.	BMB
3	4.11	n.a.	0.000	0.000	26.19	n.a.	BMB
4	4.54	n.a	0.000	0.000	38.90	n.a.	вмв
Total:			0.000	0.000	100.00	0.000	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

17 GP5595	1-D1		
Sample Name:	GP55951-D1	Injection Volume:	25.0
Vial Number:	17	Channel:	UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 9:37	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.66	n.a.	0.000	0.000	9.84	n.a.	BMB
2	2.93	n.a.	0.000	0.000	8.16	n.a.	BMB
3	3.13	n.a.	0.000	0.000	24.26	n.a.	BMB
4	3.46	n.a.	0.000	0.000	9.94	n.a.	BMB
5	3.62	Cr-6	0.000	0.000	7.51	-0.0012	BMB
6	4.01	n.a.	0.000	0.000	12.67	n.a.	BMB
7	4.55	n.a.	0.000	0.000	6.63	n.a.	BMB
8	4.82	n.a.	0.000	0.000	10.12	n.a.	BMB
9	4.95	n.a <u>.</u>	0.000	0.000	10.88	n.a.	BM <u>B</u>
Total:			0.001	0.000	100.00	-0.001	

hexachrome/Integration

18 GP5595	1-D1		
Sample Name: Vial Number:	GP55951-D1 18	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 9:45	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	3.54	Cr-6	0.000	0.000	22.01	-0.0009	вмв
2	3.69	n.a.	0.000	0.000	21.49	n.a.	BMB
3	3.91	n.a.	0.000	0.000	11.00	n.a.	BMB
4	4.26	n.a.	0.000	0.000	14.59	n.a.	BMB
5	4.46	n.a.	0.000	0.000	14.09	n.a.	BMB
6	4.84	n.a.	0.000	0.000	16.81	n.a.	BMB
Total:			0.001	0.000	100.00	-0.001	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

19 GP5595	1-D2		
Sample Name: Vial Number:	GP55951-D2 19	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 9:53	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	3.00	n.a.	0.000	0.000	17.38	n.a.	ВМВ
2	3.42	Cr-6	0.000	0.000	21.42	-0.0010	BMB
3	4.31	n.a.	0.000	0.000	15.81	n.a.	BMB
4	4.67	n.a.	0.000	0.000	12.54	n.a.	BMB
5	4.76	n.a.	0.000	0.000	12.43	n.a.	BMB
6	4.84	n.a.	0.000	0.000	20.43	n.a.	BMB
Total:			0.001	0.000	100.00	-0.001	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.68	n.a.	0.000	0.000	14.10	n.a.	BMB
2	3.41	Cr-6	0.000	0.000	18.84	-0.0010	BMB
3	4.04	n.a.	0.000	0.000	15.93	n.a.	BMB
4	4.36	n.a.	0.000	0.000	23.48	n.a.	BMB
5	4.71	n.a.	0.000	0.000	16.28	n.a.	BMB
6	4.85	n.a.	0.000	0.000	11.36	n.a.	BMB
Total:			0.001	0.000	100.00	-0.001	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.59	n.a.	0.000	0.000	1.31	n.a.	вмв
2	3.05	n.a.	0.000	0.000	5.21	n.a.	вм
3	3.17	n.a.	0.000	0.000	3.01	n.a.	MB
4	3.45	Cr-6	0.001	0.000	86.28	0.0224	BMB*
5	3.88	n.a.	0.000	0.000	1.28	n.a.	BMB
6	3.94	n.a.	0.000	0.000	1.35	n.a.	BMB
7	4.90	n.a.	0.000	0.000	1.57	n.a.	BMB
Total:			0.002	0.000	100.00	0.022	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.59	n.a.	0.000	0.000	1.65	n.a.	вмв
2	3.05	n.a.	0.000	0.000	6.57	n.a.	BM
3	3.17	n.a.	0.000	0.000	3.79	n.a.	MB
4	3.45	Cr-6	0.001	0.000	82.70	0.0166	BMB
5	3.88	n.a.	0.000	0.000	1.61	n.a.	BMB
6	3.94	n.a.	0.000	0.000	1.71	n.a.	BMB
7	4.90	n.a.	0.000	0.000	1.97	n.a.	BMB
Total:			0.002	0.000	100.00	0.017	

PIT BD10 00 pour

hexachrome/Integration

22 GP5595	1-S1		
Sample Name: Vial Number:	GP55951-S1 22	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 10:17	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.76	n.a.	0.000	0.000	1.54	n.a.	BMB
2	3.45	Cr-6	0.001	0.000	98.46	0.0246	BMB*
Total:			0.001	0.000	100.00	0.025	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.76	n.a.	0.000	0.000	1.89	n.a.	вмв
2	3.45	Cr-6	0.001	0.000	98.11	0.0197	BMB
Total:			0.001	0.000	100.00	0.020	

P.F. BD10/20/2010

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.66	n.a.	0.000	0.000	2.54	n.a.	BMB
2	2.91	n.a.	0.000	0.000	3.38	n.a.	BMB
3	3.14	n.a.	0.000	0.000	4.43	n.a.	BMB
4	3.25	n.a.	0.000	0.000	2.40	n.a.	BMB
5	3.45	Cr-6	0.001	0.000	76.70	0.0108	BMB
6	3.68	n.a.	0.000	0.000	2.01	n.a.	Rd
7	4.29	n.a.	0.000	0.000	5.77	n.a.	BMB
8	4.71	n.a	0.000	0.000	2.77	n.a.	BMB
Fotal:			0.001	0.000	100.00	0.011	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	3.45	Cr-6	0.001	0.000	97.00	0.0111	BMB*
2	4.69	n.a.	0.000	0.000	3.00	n.a	вмв
Total:			0.001	0.000	100.00	0.011	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	3.45	Cr-6	0.001	0.000	95.57	0.0068	BMB
2	4.69	n.a.	0.000	0.000	4.43	n.a.	BMB
Total:			0.001	0.000	100.00	0.007	

Olaclado ay IId

hexachrome/Integration

25 GP55951-S1							
Sample Name: Vial Number:	GP55951-S1	Injection Volume: Channel:	25.0 UV_VIS_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.				
Quantif. Method:	hexachrome	Dilution Factor:	1.0000				
Recording Time:	10/20/2010 10:40	Sample Weight:	1.0000				
Run Time (min):	5.00	Sample Amount:	1.0000				

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	3.44	Cr-6	0.002	0.000	98.23	0.0274	BMB*
2	4.70	n.a.	0.000	0.000	1.77	n.a.	BMB
Total:			0.002	0.000	100.00	0.027	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

25 GP55951-S1							
Sample Name: Vial Number:	GP55951-S1	Injection Volume: Channel:	25.0 UV VIS 1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	hexachrome ASDV	Bandwidth:	n.a.				
Quantif. Method:	hexachrome	Dilution Factor:	1.0000				
Recording Time:	10/20/2010 10:40	Sample Weight:	1.0000				
Run Time (min):	5.00	Sample Amount:	1.0000				

No.	Ret.Time	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	3,44	Cr-6	0.001	0.000	94.37	0.0247	вмв
2	3.45	n.a.	0.000	0.000	3.75	n.a.	Rd
3	4.70	n.a.	0.000	0.000	1.88	n.a.	вмв
Total:			0.002	0.000	100.00	0.025	

O100/00/00 DE TITY

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.90	n.a.	0.000	0.000	1.76	n.a.	BMB
2	3.46	Cr-6	0.002	0.000	92.71	0.0273	BMB*
3	4.06	n.a.	0.000	0.000	2.09	n.a.	BMB
4	4.18	n.a.	0.000	0.000	1.85	n.a.	BMB
5	4.88	n.a.	0.000	0.000	1.59	n.a.	BMB
Total:			0.002	0.000	100.00	0.027	

Version 6.80 SR10 Build 2818 (166959) hexachrome/Integration

JA59191B

Chromeleon (c) Dionex 1996-2001

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Type
	min		AU	AU*min	%	ppm	
1	2.90	n.a.	0.000	0.000	1.81	n.a.	BMB
2	3.46	Cr-6	0.002	0.000	92.48	0.0264	BMB
3	4.06	n.a.	0.000	0.000	2.15	n.a.	BMB
4	4.18	n.a.	0.000	0.000	1.91	n.a.	BMB
5	4.88	n.a.	0.000	0.000	1.64	n.a.	BMB
Total:			0.002	0.000	100.00	0.026	

900 00 10 polo

hexachrome/Integration

27 GP55951-S2								
Sample Name: Vial Number:	GP55951-S2 3	Injection Volume: Channel:	25.0 UV_VIS_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	hexachrome ASDV	Bandwidth:	n.a.					
Quantif. Method:	hexachrome	Dilution Factor:	1.0000					
Recording Time:	10/20/2010 10:56	Sample Weight:	1.0000					
Run Time (min):	5.00	Sample Amount:	1.0000					

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.64	n.a.	0.000	0.000	3.00	n.a.	BMB
2	2.80	n.a.	0.000	0.000	3.88	n.a.	BMB
3	3.46	Cr-6	0.001	0.000	78.68	0.0129	BMB*
4	3.80	n.a.	0.000	0.000	2.05	n.a.	BMB
5	3.88	n.a.	0.000	0.000	3.86	n.a.	BMB
6	4.28	n.a.	0.000	0.000	3.89	n.a.	BMB
7	4.96	n.a	0.000	0.000	4.64	n.a.	BMB
Total:			0.002	0.000	100.00	0.013	

hexachrome/Integration

27 GP55951-S2						
Sample Name: Vial Number:	GP55951-S2 3	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	10/20/2010 10:56	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.64	n.a.	0.000	0.000	3.50	n.a.	BMB
2	2.80	n.a.	0.000	0.000	4.54	n.a.	BMB
3	3.46	Cr-6	0.001	0.000	75.09	0.0103	BMB
4	3.80	n.a.	0.000	0.000	2.39	n.a.	BMB
5	3.88	n.a.	0.000	0.000	4.51	n.a.	BMB
6	4.28	n.a.	0.000	0.000	4.55	n.a.	BMB
7	4.96	n.a	0.000	0.000	5.42	_n.a.	BMB
Total:			0.002	0.000	100.00	0.010	

28 GP55951-S2						
Sample Name: Vial Number:	GP55951-S2 4	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	10/20/2010 11:04	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	3.25	n.a.	0.000	0.000	2.13	n.a.	BMB
2	3.45	Cr-6	0.001	0.000	78.17	0.0117	BMB
3	3.97	n.a.	0.000	0.000	2.71	n.a.	BMB
4	4.08	n.a.	0.000	0.000	7.14	n.a.	BMB
5	4.31	n.a.	0.000	0.000	2.66	n.a.	BMB
6	4.48	n.a.	0.000	0.000	2.86	n.a.	BMB
7	4.92	n.a	0.000	0.000	4.33	n.a.	BMB_
Total:			0.002	0.000	100.00	0.012	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.71	n.a.	0.000	0.000	2.78	n.a.	BMB
2	3.45	Cr-6	0.001	0.000	89.63	0.0254	BMB
3	4.03	n.a.	0.000	0.000	2.00	n.a.	BMB
4	4.45	n.a.	0.000	0.000	2.59	n.a.	BMB
5	4.72	n.a.	0.000	0.000	3.00	n.a <u>.</u>	BMB
Total:			0.002	0.000	100.00	0.025	

PDB BD 10/00/0010

hexachrome/Integration

Operator:chemistry Timebase:accutest Sequence:610102001

29 CCV			
Sample Name: Vial Number:	CCV 29	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 11:12	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.63	n.a.	0.000	0.000	0.57	n.a.	BMB
2	3.45	Cr-6	0.013	0.002	97.74	0.2486	BMB
3	3.78	n.a.	0.000	0.000	0.18	n.a.	BMB
4	4.14	n.a.	0.000	0.000	0.17	n.a.	BMB
5	4.26	n.a.	0.001	0.000	1.34	n.a.	BMB
otal:			0.014	0.002	100.00	0.249	

hexachrome/Integration

30 CCB						
Sample Name: Vial Number:	CCB 30	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	10/20/2010 11:20	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.75	n.a.	0.000	0.000	12.15	n.a.	вмв
2	2.86	n.a.	0.000	0.000	21.42	n.a.	вмв
3	3.21	n.a.	0.000	0.000	11.84	n.a.	BMB
4	3.40	Cr-6	0.000	0.000	16.25	-0.0011	BMB
5	3.96	n.a.	0.000	0.000	19.11	n.a.	BMB
6	4.08	n.a	0.000	0.000	19.23	n.a.	BMB
Total:			0.001	0.000	100.00	-0.001	

JA59191-2

Operator:chemistry Timebase:accutest Sequence:610102001

25.0 Injection Volume: JA59191-2 Sample Name: UV_VIS_1 Channel: Vial Number: 25 Sample Type: unknown Wavelength: n.a. Bandwidth: Control Program: hexachrome_ASDV n.a. Dilution Factor: 1,0000 Quantif. Method: hexachrome Sample Weight: 1.0000 Recording Time: 10/20/2010 11:28 1.0000 Sample Amount: Run Time (min): 5.00

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	3.46	Cr-6	0.000	0.000	11.79	-0.0013	BMB
2	3.78	n.a.	0.000	0.000	19.90	n.a.	вмв
3	4.15	n.a.	0.000	0.000	24.67	n.a.	BMB
4	4.46	n.a.	0.000	0.000	20.14	n.a.	BMB
5	4.84	n.a.	0.000	0.000	23.51	n.a.	BMB
Total:			0.001	0.000	100.00	-0.001	

hexachrome/Integration

32 JA59191-2

Operator:chemistry Timebase:accutest Sequence:610102001

25.0 Sample Name: JA59191-2 Injection Volume: UV_VIS_1 Channel: Vial Number: 26 Wavelength: n.a. Sample Type: unknown Bandwidth: n.a. Control Program: hexachrome_ASDV Dilution Factor: 1.0000 Quantif. Method: hexachrome Sample Weight: 1.0000 Recording Time: 10/20/2010 11:36 1.0000 Sample Amount: Run Time (min): 5.00

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.57	n.a.	0.000	0.000	35.81	n.a.	BMB
2	3.44	n.a.	0.000	0.000	17.36	n.a.	BMB
3	3.54	Cr-6	0.000	0.000	23.89	-0.0011	BMB
4	3.91	n.a.	0.000	0.000	22.95	n.a.	BMB
Total:			0.000	0.000	100.00	-0.001	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

33 JA59191-2F								
Sample Name: Vial Number:	JA59191-2F 27	Injection Volume: Channel:	25.0 UV_VIS_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.					
Quantif. Method:	hexachrome	Dilution Factor:	1.0000					
Recording Time:	10/20/2010 11:44	Sample Weight:	1.0000					
Run Time (min):	5.00	Sample Amount:	1.0000					

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	3.09	n.a.	0.000	0.000	20.10	n.a.	BMB
2	3.95	n.a.	0.000	0.000	16.32	n.a.	BMB
3	4.13	n.a.	0.000	0.000	18.81	n.a.	BMB
4	4.30	n.a.	0.000	0.000	27.19	n.a.	BMB
5	4.53	n.a.	0.000	0.000	17.59	n.a.	BMB
Total:			0.001	0.000	100.00	0.000	

34 JA59191-2F							
Sample Name: Vial Number:	JA59191-2F 28	Injection Volume: Channel:	25.0 UV_VIS_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.				
Quantif. Method:	hexachrome	Dilution Factor:	1.0000				
Recording Time:	10/20/2010 11:52	Sample Weight:	1.0000				
Run Time (min):	5.00	Sample Amount:	1.0000				

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.83	n.a.	0.000	0.000	18.09	n.a.	вмв
2	3.69	n.a.	0.000	0.000	13.46	n.a.	BMB
3	4.60	n.a.	0.000	0.000	31.84	n.a.	BMB
4	4.72	n.a.	0.000	0.000	14.71	n.a.	BMB
5	4.78	n.a.	0.000	0.000	21.91	n.a.	BMB_
Total:			0.001	0.000	100.00	0.000	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.87	n.a.	0.000	0.000	53.36	n.a.	BMB
2	3.53	Cr-6	0.000	0.000	46.64	-0.0012	BMB
Total:			0.000	0.000	100.00	-0.001	

36 JA59191-3							
Sample Name: Vial Number:	JA59191-3 32	Injection Volume: Channel:	25.0 UV_VIS_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.				
Quantif. Method:	hexachrome	Dilution Factor:	1.0000				
Recording Time:	10/20/2010 12:08	Sample Weight:	1.0000				
Run Time (min):	5.00	Sample Amount:	1.0000				

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.91	n.a.	0.000	0.000	15.33	n.a.	BMB
2	3.04	n.a.	0.000	0.000	15.05	n.a.	BMB
3	3.73	n.a.	0.000	0.000	18.18	n.a.	₿MB
4	4.06	n.a.	0.000	0.000	18.28	n.a.	BMB
5	4.57	n.a.	0.000	0.000	15.12	n.a.	BMB
6	4.72	n.a.	0.000	0.000	18.04	n.a.	BMB
Total:	" "		0.001	0.000	100.00	0.000	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.63	n.a.	0.000	0.000	11.87	n.a.	вмв
2	2.97	n.a.	0.000	0.000	22.55	n.a.	BMB
3	3.31	Cr-6	0.000	0.000	32.05	-0.0006	BMB
4	3.57	n.a.	0.000	0.000	22.35	n.a.	BMB
5	3.88	n.a.	0.000	0.000	11.19	n.a.	BMB
Total:			0.001	0.000	100.00	-0.001	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.79	n,a.	0.000	0.000	9.26	n.a.	BMB
2	2.91	n.a.	0.000	0.000	10.91	n.a.	BMB
3	3.32	Cr-6	0.000	0.000	11.89	-0.0012	BMB
4	3.56	n.a.	0.000	0.000	21.68	n.a.	BMB
5	3.66	n.a.	0.000	0.000	11.66	n.a.	BMB
6	4.34	n.a.	0.000	0.000	10.20	n.a.	BMB
7	4.49	n.a.	0.000	0.000	8.91	n.a.	BMB
8	4.75	n.a.	0.000	0.000	15.48	n.a.	BMB
Total:			0.001	0.000	100.00	-0.001	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.82	n.a.	0.000	0.000	17.34	n.a.	вмв
2	3.54	Cr-6	0.000	0.000	11.25	-0.0009	вм
3	3.63	n.a.	0.000	0.000	9.76	n.a.	MB
4	4.00	n.a.	0.000	0.000	12.53	n.a.	BM
5	4.17	n.a.	0.000	0.000	10.94	n.a.	MB
6	4.37	n.a.	0.000	0.000	7.14	n.a.	BMB
7	4.57	n.a.	0.000	0.000	20.04	n.a.	BMB
8	4.84	n.a.	0.000	0.000	11.00	n.a.	BMB
Total:			0.001	0.000	100.00	-0.001	

40 JA59191-5						
Sample Name: Vial Number:	JA59191-5 36	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	10/20/2010 12:39	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.62	n.a.	0.000	0.000	20.42	n.a.	BMB
2	2.99	n.a.	0.000	0.000	7.96	n.a.	BMB
3	3.09	n.a.	0.000	0.000	13.60	n.a.	BMB
4	3.71	n.a.	0.000	0.000	13.27	n.a.	BMB
5	3.82	n.a.	0.000	0.000	14.88	n.a.	BMB
6	4.11	n.a.	0.000	0.000	13.01	n.a.	BMB
7	4.42	n.a.	0.000	0.000	8.40	n.a.	BMB
8	4.87	n.a.	0.000	0.000	8.47	n.a.	BMB
Total:			0.001	0.000	100.00	0.000	

41 JA59191-5F							
Sample Name: Vial Number:	JA59191-5F 37	Injection Volume: Channel:	25.0 UV_VIS_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.				
Quantif. Method:	hexachrome	Dilution Factor:	1.0000				
Recording Time:	10/20/2010 12:47	Sample Weight:	1.0000				
Run Time (min):	5.00	Sample Amount:	1.0000				

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	3.07	n.a.	0.000	0.000	21.50	n.a.	BMB
2	3.26	n.a.	0.000	0.000	20.54	n.a.	BMB
3	3.63	n.a.	0.000	0.000	16.91	n.a.	BMB
4	4.36	n.a.	0.000	0.000	41.05	n.a.	BMB
Total:			0.000	0.000	100.00	0.000	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.80	n.a.	0.000	0.000	14.60	n.a.	BMB
2	3.43	Cr-6	0.000	0.000	16.04	-0.0007	BMB
3	3.59	n.a.	0.000	0.000	12.64	n.a.	BMB
4	3.72	n.a.	0.000	0.000	17.97	n.a.	BMB
5	3.89	n,a.	0.000	0.000	8.60	n.a.	BM
6	3.99	n.a.	0.000	0.000	10.94	n.a.	MB
7	4.13	n.a.	0.000	0.000	12.32	n.a.	BMB
8	4.80	n.a.	0.000	0.000	6.89	n.a.	BMB
Total:			0.001	0.000	100.00	-0.001	

43 JA59191-4						
Sample Name: Vial Number:	JA59191-4 39	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	10/20/2010 13:03	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.64	n.a.	0.000	0.000	24.62	n.a.	BMB
2	3.55	Cr-6	0.000	0.000	14.68	-0.0011	BMB
3	3.94	n.a.	0.000	0.000	14.11	n.a.	BMB
4	4.14	n.a.	0.000	0.000	10.95	n.a.	BMB
5	4.54	n.a.	0.000	0.000	17.71	n.a.	BMB
6	4.69	n.a.	0.000	0.000	17.93	n.a.	BMB
Total:			0.001	0.000	100.00	-0.001	

44 JA59191-4						
Sample Name: Vial Number:	JA59191-4 40	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	10/20/2010 13:11	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.52	n.a.	0.000	0.000	10.81	n.a.	BMB
2	2.69	n.a.	0.000	0.000	14.24	n.a.	BMB
3	2.78	n.a.	0.000	0.000	14.76	n.a.	BMB
4	4.38	n.a.	0.000	0.000	23.74	n.a.	BMB
5	4.94	n.a.	0.000	0.000	36.45	n.a.	BMB
Total:			0.001	0.000	100.00	0.000	

45 JA59191-4F							
Sample Name: Vial Number:	JA59191-4F 41	Injection Volume: Channel:	25.0 UV_VIS_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	hexachrome ASDV	Bandwidth:	n.a.				
Quantif. Method:	hexachrome	Dilution Factor:	1.0000				
Recording Time:	10/20/2010 13:19	Sample Weight:	1.0000				
Run Time (min):	5.00	Sample Amount:	1.0000				

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.69	n.a.	0.000	0.000	9.40	n.a.	BMB
2	2.80	n.a.	0.000	0.000	15.14	n.a.	BMB
3	2.94	n.a.	0.000	0.000	15.23	n.a.	BMB
4	3.10	n.a.	0.000	0.000	18.22	n.a.	BMB
5	3.59	Cr-6	0.000	0.000	7.27	-0.0011	BMB
6	4.19	n.a.	0.000	0.000	19.77	n.a.	BMB
7	4.28	n.a.	0.000	0.000	6.14	n.a.	BMB
8	4.43	n.a.	0.000	0.000	8.83	n.a.	вмв
Total:			0.001	0.000	100.00	-0.001	

hexachrome/Integration

46 JA59191-4F							
Sample Name: Vial Number:	JA59191-4F 42	Injection Volume: Channel:	25.0 UV_VIS_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.				
Quantif. Method:	hexachrome	Dilution Factor:	1.0000				
Recording Time:	10/20/2010 13:27	Sample Weight:	1.0000				
Run Time (min):	5.00	Sample Amount:	1.0000				

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.67	n.a.	0.000	0.000	26.85	n.a.	BM
2	2.78	n.a.	0.000	0.000	11.05	n.a.	MB
3	3.07	n.a.	0.000	0.000	27.74	n.a.	BMB
4	3.65	n.a.	0.000	0.000	9.68	n.a.	BMB
5	4.33	n.a.	0.000	0.000	13.50	n.a.	BMB
6	4.41	n.a.	0.000	0.000	11.18	_n.a.	BMB_
Total:			0.001	0.000	100.00	0.000	

47 JA59191-6						
JA59191-6 43	Injection Volume: Channel:	25.0 UV_VIS_1				
unknown	Wavelength:	n.a.				
hexachrome_ASDV	Bandwidth:	n.a.				
hexachrome	Dilution Factor:	1.0000				
10/20/2010 13:35	Sample Weight:	1.0000 1.0000				
	JA59191-6 43 unknown hexachrome_ASDV hexachrome	JA59191-6 43 Unknown Hexachrome_ASDV Hexachrome 10/20/2010 13:35 Injection Volume: Channel: Wavelength: Bandwidth: Dilution Factor: Sample Weight:				

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.81	n.a.	0.000	0.000	5.90	n.a.	BMB
2	2.94	n.a.	0.000	0.000	4.16	n.a.	BMB
3	3.08	n.a.	0.000	0.000	1.10	n.a.	BMB
4	3.45	Cr-6	0.001	0.000	77.86	0.0254	BM
5	3.73	n.a.	0.000	0.000	2.06	n.a.	MB
6	4.51	n.a.	0.000	0.000	3.17	n.a.	BM
7	4.65	n.a.	0.000	0.000	1.90	n.a.	M
8	4.72	n.a.	0.000	0.000	2.37	n.a.	M
9	4.79	n.a.	0.000	0.000	1.46	n.a.	MB
Total:			0.003	0.000	100.00	0.025	

48 JA59191-6						
Sample Name: Vial Number:	JA59191-6 44	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	10/20/2010 13:43	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.71	n.a.	0.000	0.000	2.55	n.a.	BMB
2	3.45	Cr-6	0.001	0.000	90.51	0.0282	BMB*
3	4.03	n.a.	0.000	0.000	1.83	n.a.	BMB
4	4.45	n.a.	0.000	0.000	2.37	n.a.	BMB
5	4.72	n.a.	0.000	0.000	2.75	n.a.	BMB
Total:			0.002	0.000	100.00	0.028	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

49 JA59191-6F							
Sample Name: Vial Number:	JA59191-6F 45	Injection Volume: Channel:	25.0 UV_VIS_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.				
Quantif, Method:	hexachrome	Dilution Factor:	1.0000				
Recording Time:	10/20/2010 13:50	Sample Weight:	1.0000				
Run Time (min):	5.00	Sample Amount:	1.0000				

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
	2.99	n.a.	0.000	0.000	1.69	n.a.	ВМВ
2	2.99 3.15	n.a.	0.000	0.000	1.66	n.a.	BMB
3	3.25	n.a.	0.000	0.000	1.45	n.a.	BMB
4	3.45	Cr-6	0.001	0.000	80.76	0.0190	BMB*
5	3.91	n.a.	0.000	0.000	1.67	n.a.	BMB
6	4.14	n.a.	0.000	0.000	2.09	n.a.	BMB
7	4.26	n.a.	0.000	0.000	3.47	n.a.	BMB
8	4.37	n.a.	0.000	0.000	1.94	n.a.	BMB
9	4.60	n.a.	0.000	0.000	1.69	n.a.	BMB
10	4.77	n.a.	0.000	0.000	1.81	n.a.	BMB
11	4.92	n.a.	0.000	0.000	1.77	n.a.	BMB

hexachrome/Integration

Page 50-57 10/20/2010 2:55 PM

Total:	0.002	0.000	100.00	0.019

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

49 JA59191-6F						
Sample Name: Vial Number:	JA59191-6F 45	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time: Run Time (min):	10/20/2010 13:50 5.00	Sample Weight: Sample Amount:	1.0000 1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.99	n,a.	0.000	0.000	2.18	n.a.	вмв
2	3.15	n.a.	0.000	0.000	2.15	n.a.	BMB
3	3.25	n.a.	0.000	0.000	1.88	n.a.	BMB
4	3.45	Cr-6	0.001	0.000	75.12	0.0132	BMB
5	3.91	n.a.	0.000	0.000	2.16	n.a.	BMB
6	4.14	n.a.	0.000	0.000	2.70	n.a.	BMB
7	4.26	n.a.	0.000	0.000	4.49	n.a.	BMB
8	4.37	n.a.	0.000	0.000	2.51	n.a.	BMB
9	4.60	n.a.	0.000	0.000	2.18	n.a.	BMB
10	4.77	n.a.	0.000	0.000	2.34	n.a.	BMB
11	4.92	n.a.	0.000	0.000	2.29	n.a.	BMB

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

PDB BD 10/20/2010

Page 2-2 10/20/2010 1:59 PM

Total:	0.002	0.000	100.00	0.013

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

50 JA59191-6F							
Sample Name: Vial Number:	JA59191-6F 46	Injection Volume: Channel:	25.0 UV_VIS_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.				
Quantif. Method:	hexachrome	Dilution Factor:	1.0000				
Recording Time:	10/20/2010 13:58	Sample Weight:	1.0000				
Run Time (min):	5.00	Sample Amount:	1.0000				

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.55	n.a.	0.000	0.000	1.69	n.a.	BMB
2	2.80	n.a.	0.000	0.000	3.52	n.a.	BMB
3	3.46	Cr-6	0.001	0.000	84.18	0.0190	BMB*
4	3.82	n.a.	0.000	0.000	4.21	n.a.	BMB
5	3.99	n.a.	0.000	0.000	1.75	n.a.	BMB
6	4.08	n.a.	0.000	0.000	2.20	n.a.	вм
7	4.15	n.a.	0.000	0.000	2.45	n.a.	MB
Total:			0.002	0.000	100.00	0.019	

50 JA5919	50 JA59191-6F					
Sample Name: Vial Number:	JA59191-6F 46	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	10/20/2010 13:58	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.55	n.a.	0.000	0.000	2.06	n.a.	BMB
2	2.80	n.a.	0.000	0.000	4.28	n.a.	BMB
3	3.46	Cr-6	0.001	0.000	80.76	0.0146	BMB
4	3.82	n.a.	0.000	0.000	5.12	n.a.	BMB
5	3.99	n.a.	0.000	0.000	2.13	n.a.	вмв
6	4.08	n.a.	0.000	0.000	2.67	n.a.	BM
7	4.15	n.a.	0.000	0.000	2.98	n.a.	MB
Total:			0.002	0.000	100.00	0.015	
	,				(DIT BD	10/30/s

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm_	Type
1	2.96	n.a.	0.000	0.000	0.19	n.a.	BMB
2	3.05	n.a.	0.000	0.000	0.34	n.a.	BMB
3	3.45	Cr-6	0.013	0.002	99.25	0.2540	BMB
4	4.87	n.a.	0.000	0.000	0.22	n.a.	BMB
Total:			0.014	0.002	100.00	0.254	

52 CCB			
Sample Name: Vial Number:	CCB 50	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 14:14	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.64	n.a.	0.000	0.000	21.89	n.a.	вмв
2	3.52	Cr-6	0.000	0.000	18.52	-0.0010	BMB
3	4.02	n.a.	0.000	0.000	17.97	n.a.	BMB
4	4.10	n.a.	0.000	0.000	28.02	n.a.	BMB
5	4.73	n.a.	0.000	0.000	13.59	n.a.	<u>BMB</u>
Total:			0.001	0.000	100.00	-0.001	

53 JA59191-7				
Sample Name: Vial Number:	JA59191-7 47	Injection Volume: Channel:	25.0 UV_VIS_1	
Sample Type:	unknown	Wavelength:	n.a.	
Control Program:	hexachrome ASDV	Bandwidth:	n.a.	
Quantif. Method:	hexachrome	Dilution Factor:	1.0000	
Recording Time:	10/20/2010 14:22	Sample Weight:	1.0000	
Run Time (min):	5.00	Sample Amount:	1.0000	

No.	Ret.Time	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.53	n.a.	0.000	0.000	10.49	n.a.	BMB
2	2.78	n.a.	0.000	0.000	10.25	n.a.	BMB
3	2.86	n.a.	0.000	0.000	7.43	n.a.	BMB
4	3.47	Cr-6	0.000	0.000	10.07	-0.0010	BMB
5	3.77	n.a.	0.000	0.000	5.98	n.a.	BMB
6	3.92	n.a.	0.000	0.000	24.47	n.a.	BMB
7	4.15	n.a.	0.000	0.000	9.62	n.a.	BMB
8	4.71	n.a.	0.000	0.000	10.50	n.a.	BMB
9	4.89	n.a.	0.000	0.000	11.19	<u>n.a.</u>	BMB
Total:			0.001	0.000	100.00	-0.001	

54 JA59191-7				
Sample Name: Vial Number:	JA59191-7 48	Injection Volume: Channel:	25.0 UV_VIS_1	
Sample Type:	unknown	Wavelength:	n.a.	
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.	
Quantif. Method:	hexachrome	Dilution Factor:	1.0000	
Recording Time:	10/20/2010 14:30	Sample Weight:	1.0000	
Run Time (min):	5.00	Sample Amount:	1.0000	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.63	n.a.	0.000	0.000	6.91	n.a.	BMB
2	2.75	n.a.	0.000	0.000	11.41	n.a.	вмв
3	3.46	Cr-6	0.000	0.000	16.71	-0.0007	BMB
4	4,26	n.a.	0.000	0.000	45.88	n.a.	BMB
5	4.56	n.a.	0.000	0.000	10.24	n.a.	BMB
6	4.65	n.a.	0.000	0.000	8.85	n.a.	BMB
Total:			0.001	0.000	100.00	-0.001	

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.95	n.a.	0.000	0.000	0.18	n.a.	BMB
2	3.45	Cr-6	0.013	0.002	98.85	0.2474	BMB
3	3.91	n.a.	0.000	0.000	0.16	n.a.	BMB
4	4.05	n.a.	0.000	0.000	0.27	n.a.	ВМ
5	4.12	n.a.	0.000	0.000	0.30	n.a.	MB
6	4.21	n.a.	0.000	0.000	0.24	n.a.	BMB
Total:			0.014	0.002	100.00	0.247	

56 CCB			
Sample Name:	ССВ	Injection Volume:	25.0
Vial Number:	6	Channel:	UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	10/20/2010 14:46	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.72	n.a.	0.000	0.000	17.85	n.a.	вмв
2	3.10	n.a.	0.000	0.000	18.26	n.a.	BMB
3	3.59	Cr-6	0.000	0.000	18.78	-0.0007	BMB
4	3.80	n.a.	0.000	0.000	15.80	n.a.	BMB
5	3.98	n.a.	0.000	0.000	10.12	n.a.	BMB
6	4.23	n.a.	0.000	0.000	19.20	n.a.	BMB
Total:			0.001	0.000	100.00	-0.001	

hexachrome/Integration

06/01/11

Technical Report for

Honeywell International Inc.

HLANJPR: SA-5 Site 117, Jersey City, NJ

Accutest Job Number: JA74100

Sampling Date: 04/26/11

Report to:

Mactec

vhlieu@mactec.com

ATTN: Vanthuy Lieu

Total number of pages in report: 277

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

David N. Speis[↑] VP, Laboratory Director

Client Service contact: Marty Vitanza 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	
Section 3: Sample Results	5
3.1: JA74100-1: 117-MW-A14-042611	6
3.2: JA74100-1F: 117-MW-A14-042611F	8
3.3: JA74100-2: 117-FB-042611	10
Section 4: Misc. Forms	12
4.1: Chain of Custody	13
4.2: Sample Tracking Chronicle	15
4.3: Internal Chain of Custody	16
Section 5: Metals Analysis - QC Data Summaries	17
5.1: Inst QC MA26325: Cr	18
5.2: Prep QC MP58073: Cr	34
5.3: IDL and Linear Range Summaries	38
Section 6: Metals Analysis - Raw Data	40
6.1: Raw Data MA26325	
6.2: Prep Logs	176
Section 7: General Chemistry - QC Data Summaries	177
7.1: Method Blank and Spike Results Summary	178
7.2: Duplicate Results Summary	179
7.3: Matrix Spike Results Summary	180
7.4: Inst QC GN50164: Chromium, Hexavalent	
Section 8: General Chemistry - Raw Data	184

N

ယ

0

Sample Summary

Job No:

JA74100

Honeywell International Inc.

HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample	Collected			Matrix		Client	
Number	Date	Time By	Received	Code	Туре	Sample ID	
JA74100-1	04/26/11	11:47 BS	04/26/11	AQ	Ground Water	117-MW-A14-042611	
JA74100-1F	04/26/11	11:47 BS	04/26/11	AQ	Groundwater Filtered	117-MW-A14-042611F	
JA74100-2	04/26/11	12:20 BS	04/26/11	AQ	Field Blank Water	117-FB-042611	

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: Honeywell International Inc. Job No JA74100

Site: HLANJPR: SA-5 Site 117, Jersey City, NJ Report Date 5/13/2011 3:11:23 PM

On 04/26/2011, 2 Sample(s), 0 Trip Blank(s) and 1 Field Blank(s) were received at Accutest Laboratories at a temperature of 4.6 C. Samples were intact and properly preserved, unless noted below. An Accutest Job Number of JA74100 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals By Method EPA 200.8

Matrix: AQ Batch ID: MP58073

- All samples were digested within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JA74100-1MS, JA74100-1MSD were used as the QC samples for metals.

Wet Chemistry By Method SW846 7199

Matrix: AO Batch ID: GP58488

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JA74098-1DUP, JA74098-1MS were used as the QC samples for Chromium, Hexavalent.
- Matrix Spike Recovery(s) for Chromium, Hexavalent are outside control limits. Spike recovery indicates possible matrix interference.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Friday, May 13, 2011 Page 1 of 1

Sample Results
Report of Analysis

Report of Analysis Page 1 of 1

Client Sample ID: 117-MW-A14-042611

Lab Sample ID:JA74100-1Date Sampled:04/26/11Matrix:AQ - Ground WaterDate Received:04/26/11Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	43.7	4.0	ug/l	1	05/07/11	05/07/11 ND	EPA 200.8 ¹	EPA 200.8 ²

(1) Instrument QC Batch: MA26325(2) Prep QC Batch: MP58073

Page 1 of 1

Client Sample ID: 117-MW-A14-042611

Lab Sample ID:JA74100-1Date Sampled:04/26/11Matrix:AQ - Ground WaterDate Received:04/26/11Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	0.040	0.0055	mg/l	1	04/26/11 21:14	AE	SW846 7199

Page 1 of 1

Report of Analysis

Client Sample ID: 117-MW-A14-042611F

Lab Sample ID:JA74100-1FDate Sampled:04/26/11Matrix:AQ - Groundwater FilteredDate Received:04/26/11Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	43.6	4.0	ug/l	1	05/07/11	05/07/11 ND	EPA 200.8 ¹	EPA 200.8 ²

(1) Instrument QC Batch: MA26325(2) Prep QC Batch: MP58073

Client Sample ID: 117-MW-A14-042611F

Lab Sample ID:JA74100-1FDate Sampled:04/26/11Matrix:AQ - Groundwater FilteredDate Received:04/26/11Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Method
Chromium, Hexavalent	0.044	0.0055	mg/l	1	04/26/11 21:22	AE	SW846 7199

Page 1 of 1

Page 1 of 1

Client Sample ID: 117-FB-042611

Lab Sample ID:JA74100-2Date Sampled:04/26/11Matrix:AQ - Field Blank WaterDate Received:04/26/11Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Total Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Chromium	< 4.0	4.0	ug/l	1	05/07/11	05/07/11 ND	EPA 200.8 ¹	EPA 200.8 ²

(1) Instrument QC Batch: MA26325(2) Prep QC Batch: MP58073

Page 1 of 1

Client Sample ID: 117-FB-042611

Lab Sample ID:JA74100-2Date Sampled:04/26/11Matrix:AQ - Field Blank WaterDate Received:04/26/11Percent Solids:n/a

Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Chromium, Hexavalent	< 0.0055	0.0055	mg/l	1	04/26/11 21:54	1 AE	SW846 7199

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

	Last ID ACTD
Ì	PAGE 1 of 1
	Job No.
	4

Fresh	CUTEST Ponds Corporate Route 130,Dayton		-			Hor	еуи	ell	Ch	ain C	f Cus	tody	/ Ana	ılysis	Req	uest									AESI Ref: 3: COC#: 3: Lab Use Only	8439,43925 7287-042611
	29-0200 Phone, 7.				Privileged &	Confiden	tial	Y		-	Site N	ame:	HUDS	ONCO											Lab Proj#	
					EDD To: Agshust (MACTEC)					Lecat	ion of S	ite:	SA5, 3	Site 11	7									Lab ID A	CTD	
Clien	Contact: (name	co., addr	ess)		Sampler: B.Senna					W. C. T.		rvative												PAGE 1 of 1		
				d Consulting, Inc	P O #							0	0	0	2										Job No.	
	American Metr		Suite 113		Analysis Turn	around Time:						~	a	_												
	ilton, NJ 08619 ust@mactec.com				Standard - Rush Charges #				Y		MS H	719	Chromium	in in										- 1	BOS 30 77.20	
agsii	istornactec con				2 weeks -	cumonzen or						Įž.	Chi	hron	_						1					
Hard	Hardcopy Report To: See above						1	Ĭ	Fotal	Hexavalent Chromium	Total Chromium										What is in t	the Text File?				
Invoice To: Maria Kaouris - Honeywell PM 101						2 5	Š	olved Total	aval	Pro											over here.					
lnvoi	e To:			neywell PM 101 ristown, NJ 07962	Next Day -						ed a	몽	ssolv	Ě	Jal										Written and maintained	
2.11.00		Commen			Sample	Sample	Sample	Sample	Sample		Grab/Compo	lved	80	6612	8 Tc										by AESI	
		Samul	e Identific:	ation	Date	Time	Туре	Matrix	Purpose	# of Cont.	5	Dissolved CHROMIUM V1 (7199)	E200.B	EPA	E200.8										(Ver-3_7)	enesurgi@aol.o
		Start	End				2.7		- 64-35			T	<u> </u>	1										-	172411.285	
	ID	Depth (ft)	Depth (ft)	Field Sample ID		100	on. 4200					/an	7/30	L)ar	ng/L			1	1				1			SEE
Т	Location ID	(11)		rieiu Sampie ID	SHIPPING - TABL			100 mm	V		Units		3	3	ä	<u> </u>	_	-	\vdash	-	┼	├	\vdash	_	Lab Sample Nu	nbers
1	117-MW-A14	-/	F	117-MW-A14-042611	4/26/2011		GW	Water	REG	2	56	1		X	X						-	-	\vdash		// ·	$\overline{}$
2	117-MW-A14			117-MW-A14-042611F	4/26/2011	1147	GW	Water	REG	2	56	x	x					ļ			1_		\sqcup	_4	AMETIC	2,
3	117-QC	-2		117-FB-042611	4/26/2011	1220	BlkWater	Water	FB	2	grab	1		x	x								Ш		mE3	8
4																								1		/
5																										
6																								\exists		
7																		\vdash						\dashv		
8										.,		 		-0	D = {	:FI\	ED				 			\dashv	*	
						-				-	A	3	MPL /ED	E 3	API	PLIC	AB	E			+	-	\vdash	\dashv		
9					ļ					į	P F 9		/EU	n.,	-		ļ	ļ	ļ	ļ.,	ļ	ļ	1			
10											Ш			١.,	_		4		1							
11											1			17	1	0)	1	Þ 6	11					.		
12											\sqcap						/ *	٦	/ -/		+		ΠĪ			
	AL CHROM	E ANAL	YZED B	Y METHOD 200.8, HE	BY 7199		L		l	<u> </u>	Ц.		l				V	1		L				1		
Relin	uished by			Compan	MAC	TEC	Received by	1 1	1		4/	16/11	ر وطور/	mpany				Cond	ition		T		Custoc	dy Scal	s Intact	
Date/Time 422/11 1500 Tallillar			_	- <i>"</i>	Date	/Time		3/0	6/2009	12:30	Coole	r Temp	p.	47	2											
Relinquished by Company Received by				T		Co	mpany			-	Cond	ition		1, 6		Custoc	iy Seal	s Intact								
	Date/Time				1					Date	/Time					Coole	er Temp	٥.	t		 					
_		-		HNO3 ; [3 = H2SO4]; [4 = N:	L						<u> </u>							┖-			╄-		Ц_			

6N F83

JA74100: Chain of Custody

Page 1 of 2

Accutest Laboratories Sample Receipt Summary

CCUTEST LABORATORIES

Accutest Laboratories

V:732.329.0200

Accutest Job Number: JA74100 Client: Immediate Client Services Action Required: No Client Service Action Required at Login: Date / Time Received: 4/26/2011 **Delivery Method:** Nο Project: No. Coolers: Airbill #'s: Y or N Sample Integrity - Documentation **Cooler Security** Y or N Y or N П 3. COC Present: **√** 1. Custody Seals Present: ✓ 1. Sample labels present on bottles: ✓ 4. Smpl Dates/Time OK ✓ 2. Custody Seals Intact: ✓ 2. Container labeling complete: 3. Sample container label / COC agree: ✓ Cooler Temperature Y or N 1. Temp criteria achieved: Υ N or Sample Integrity - Condition 2. Cooler temp verification: Infared gun 1 1. Sample recvd within HT: 3. Cooler media: Ice (bag) 2. All containers accounted for: 1 **Quality Control Preservatio** Y or N N/A 3. Condition of sample: Intact 1. Trip Blank present / cooler: **√** Sample Integrity - Instructions or N N/A **✓** 2. Trip Blank listed on COC: 1 1. Analysis requested is clear: 3. Samples preserved properly: ✓ 2. Bottles received for unspecified tests ✓ 4. VOCs headspace free: 3. Sufficient volume recvd for analysis: **✓ ✓** 4. Compositing instructions clear: ✓ 5. Filtering instructions clear: ✓ Comments

2235 US Highway 130

F: 732.329.3499

JA74100: Chain of Custody

Page 2 of 2

Dayton, New Jersey

www/accutest.com

Internal Sample Tracking Chronicle

Honeywell International Inc.

Job No: JA74100

HLANJPR: SA-5 Site 117, Jersey City, NJ

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JA74100-1 117-MW-A	Collected: 26-APR-11 14-042611	11:47 By: BS	Receiv	ved: 26-APR-	-11 By:	
	SW846 7199 EPA 200.8	26-APR-11 21:14 07-MAY-11 22:30				XCR7199 CRMS
JA74100-2 117-FB-042	Collected: 26-APR-11 611	12:20 By: BS	Receiv	ved: 26-APR	-11 By:	
	SW846 7199 EPA 200.8	26-APR-11 21:54 07-MAY-11 22:34				XCR7199 CRMS
	Collected: 26-APR-11 14-042611F	11:47 By: BS	Receiv	ved: 26-APR	·11 By:	
	SSW846 7199 FEPA 200.8	26-APR-11 21:22 07-MAY-11 22:39		26-APR-11 07-MAY-11		XCR7199 CRMS

Accutest Internal Chain of Custody

Job Number: JA74100

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Received: 04/26/11

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JA74100-1.1	Secured Storage	Darshananben Patel	05/07/11 08:57	Retrieve from Storage
JA74100-1.1	Darshananben Patel	Secured Storage		Return to Storage
JA74100-1.1.1	Darshananben Patel	Metals Digestion		Digestate from JA74100-1.1
JA74100-1.1.1	Metals Digestion	Darshananben Patel	05/07/11 09:12	Digestate from JA74100-1.1
JA74100-1.1.1	Darshananben Patel	Metals Digestate Storage	05/07/11 09:12	Return to Storage
JA74100-1.3	Secured Storage	Airam Ejat	04/26/11 17:02	Retrieve from Storage
JA74100-1.3	Airam Ejat	Secured Storage	04/26/11 17:02	Return to Storage
JA74100-1.3	Secured Storage	Adam Scott	04/27/11 07:49	Retrieve from Storage
JA74100-1.3	Adam Scott	Airam Ejat	04/27/11 07:54	Custody Transfer
JA74100-1.3	Airam Ejat	Secured Storage		Return to Storage
JA74100-1F.2	Secured Storage	Darshananben Patel	05/07/11 08:57	Retrieve from Storage
JA74100-1F.2	Darshananben Patel	Secured Storage	05/07/11 12:28	Return to Storage
JA74100-1F.2.1	Darshananben Patel	Metals Digestion	05/07/11 09:11	Digestate from JA74100-1F.2
JA74100-1F.2.1	Metals Digestion	Darshananben Patel		Digestate from JA74100-1F.2
JA74100-1F.2.1	Darshananben Patel	Metals Digestate Storage	05/07/11 09:12	Return to Storage
JA74100-1F.4	Secured Storage	Airam Ejat	04/26/11 17:02	Retrieve from Storage
JA74100-1F.4	Airam Ejat	Secured Storage	04/26/11 17:02	Return to Storage
JA74100-1F.4	Secured Storage	Adam Scott	04/27/11 07:49	Retrieve from Storage
JA74100-1F.4	Adam Scott	Airam Ejat	04/27/11 07:54	Custody Transfer
JA74100-1F.4	Airam Ejat	Secured Storage	04/27/11 17:18	Return to Storage
JA74100-2.1	Secured Storage	Darshananben Patel	05/07/11 08:57	Retrieve from Storage
JA74100-2.1	Darshananben Patel	Secured Storage	05/07/11 12:28	Return to Storage
JA74100-2.1.1	Darshananben Patel	Metals Digestion	05/07/11 09:11	Digestate from JA74100-2.1
JA74100-2.1.1	Metals Digestion	Darshananben Patel		Digestate from JA74100-2.1
JA74100-2.1.1	Darshananben Patel	Metals Digestate Storage		Return to Storage
JA74100-2.2	Secured Storage	Airam Ejat	04/26/11 17:02	Retrieve from Storage
JA74100-2.2	Airam Ejat	Secured Storage		Return to Storage
JA74100-2.2	Secured Storage	Adam Scott		Retrieve from Storage
JA74100-2.2	Adam Scott	Airam Ejat		Custody Transfer
JA74100-2.2	Airam Ejat	Secured Storage	04/27/11 17:18	Return to Storage

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Instrument Runlogs
- Initial and Continuing Calibration Blanks
- Initial and Continuing Calibration Checks
- · High and Low Check Standards
- Interfering Element Check Standards
- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries
- IDL and Linear Range Summaries

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: X050711M2.CSV Analyst: ND

Date Analyzed: 05/07/11 Run ID: MA26325

Methods: EPA 200.8

Analyst: ND	
Parameters:	Cr

Time	Sample Description	Dilution PS Factor Recov	Comments
14:54	MA26325-STD1	1	STD1
14:58	MA26325-STD2	1	STD2
15:02	MA26325-STD3	1	STD3
15:07	MA26325-STD4	1	STD4
15:11	MA26325-STD5	1	STD5
15:15	MA26325-STD6	1	STD6
15:19	MA26325-STD7	1	STD7
15:24	MA26325-ICV1	1	
15:28	MA26325-ICB1	1	
15:32	MA26325-CRI1	1	
15:37	ZZZZZZ	1	
15:41	MA26325-CRIA1	1	
15:45	MA26325-CCV1	1	
15:50	MA26325-CCB1	1	
15:54	MP58043-MB1	1	
15:58	MP58043-LC1	1	
16:03	MP58043-S1	1	
16:07	MP58043-S2	1	
16:11	T74672-1F	1	(sample used for QC only; not part of login JA74100)
16:15	ZZZZZZ	1	
16:20	ZZZZZZ	1	
16:24	ZZZZZZ	1	
16:28	ZZZZZZ	1	
16:33	ZZZZZZ	1	
16:37	MA26325-CCV2	1	
16:41	MA26325-CCB2	1	
16:46	ZZZZZZ	1	
16:50	ZZZZZZ	1	
16:54	ZZZZZZ	1	
16:59	ZZZZZZ	1	
17:03	MP58044-MB1	1	Batch to reanalysis, Sc out on CCV, Ba all overrange.
17:07	MP58044-LC1	1	
17:11	MP58044-S1	1	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: X050711M2.CSV Analyst: ND Date Analyzed: 05/07/11 Run ID: MA26325 Methods: EPA 200.8

Time		Dilution PS Factor Recov	Comments
17:16	MP58044-S2	1	
17:20	T74672-14F	1	(sample used for QC only; not part of login JA74100)
17:24	ZZZZZZ	1	
17:29	MA26325-CCV3	1	Y and Sc out.
17:33	MA26325-CCB3	1	Y and Sc out.
17:37	ZZZZZZ	1	
17:42	ZZZZZZ	1	
17:46	ZZZZZZ	1	
17:50	ZZZZZZ	1	
17:54	ZZZZZZ	1	
17:59	ZZZZZZ	1	
18:03	ZZZZZZ	1	
18:07	ZZZZZZ	1	
18:12	MA26325-CCV4	1	
18:16	MA26325-CCB4	1	
18:20	MP58045-MB1	1	Batch to reanalysis for Ba, all overrange.
18:25	MP58045-LC1	1	
18:29	MP58045-S1	1	
18:33	MP58045-S2	1	
18:38	T74672-23F	1	(sample used for QC only; not part of login JA74100)
18:42	ZZZZZZ	1	
18:46	ZZZZZZ	1	
18:50	ZZZZZZ	1	
18:55	ZZZZZZ	1	
18:59	ZZZZZZ	1	
19:03	MA26325-CCV5	1	
19:08	MA26325-CCB5	1	
19:12	ZZZZZZ	1	
	ZZZZZZ		
	ZZZZZZ		
19:25	ZZZZZZ	1	
	MP58046-MB1		
19:33	MP58046-LC1	1	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: X050711M2.CSV Analyst: ND Date Analyzed: 05/07/11 Run ID: MA26325 Methods: EPA 200.8

Time	Sample Description	Dilution PS Factor Recov	Comments
19:38	MP58046-S1	1	
19:42	MP58046-S2	1	
19:46	T74672-33F	1	(sample used for QC only; not part of login JA74100)
19:51	ZZZZZZ	1	
19:55	MA26325-CCV6	1	
19:59	MA26325-CCB6	1	
20:04	ZZZZZZ	1	
20:08	ZZZZZZ	1	
20:12	ZZZZZZ	1	
20:17	ZZZZZZ	1	
20:21	ZZZZZZ	1	
20:25	ZZZZZZ	1	
20:29	ZZZZZZ	1	
20:34	ZZZZZZ	1	
20:38	MA26325-CCV7	1	
20:42	MA26325-CCB7	1	
20:47	MP58063-MB1	1	
20:51	MP58063-LC1	1	
20:55	MP58063-S1	1	
21:00	MP58063-S2	1	
21:04	JA74098-1	1	(sample used for QC only; not part of login JA74100)
21:08	MP58063-S3	1	
21:12	MP58063-S4	1	
21:17	JA74098-1F	1	(sample used for QC only; not part of login JA74100)
21:21	ZZZZZZ	1	
21:25	ZZZZZZ	1	
21:30	MA26325-CCV8	1	
21:34	MA26325-CCB8	1	
21:38	ZZZZZZ	1	
21:43	ZZZZZZ	1	
21:47	ZZZZZZ	1	
21:51	ZZZZZZ	1	
21:56	ZZZZZZ	1	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: X050711M2.CSV Date Analyzed: 05/07/11 Methods: EPA 200.8 Run ID: MA26325

Analyst: ND Parameters: Cr

---->

---->

Time	_	Dilution Factor		Comments
22:00	ZZZZZZ	1		
22:04	MP58073-MB1	1		
22:08	MP58073-LC1	1		
22:13	MP58073-S1	1		
22:17	MP58073-S2	1		
22:21	MA26325-CCV9	1		
22:26	MA26325-CCB9	1		
22:30	JA74100-1	1		
22:34	JA74100-2	1		
Last r	JA74100-1F reportable sample MA26325-CCV10	1 e/prep for 1	job JA7	4100
		1	4100	
	reportable CCB fo ZZZZZZ	or job JA/	4100	
22:56	ZZZZZZ	25		
23:00	ZZZZZZ	25		
23:04	ZZZZZZ	1		
23:09	ZZZZZZ	1		
23:17	ZZZZZZ	1		
23:22	ZZZZZZ	1		
23:26	ZZZZZZ	1		
23:30	ZZZZZZ	1		
23:35	MA26325-CCV11	1		
23:39	MA26325-CCB11	1		

Refer to raw data for calibration curve and standards.

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: X050711M2.CSV Analyst: ND Date Analyzed: 05/07/11 Run ID: MA26325 Methods: EPA 200.8

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4	Istd#5	Istd#6	Istd#7	Istd#8
14:54	MA26325-STD1	100	100	100	100	100	100	100	100
14:58	MA26325-STD2	102.51	101.3	101.54	101.66	101.7	101.37	101.22	101.4
15:02	MA26325-STD3	103.87	101.7	102.04	101.76	102.22	102.1	102.45	102.29
15:07	MA26325-STD4	101.94	98.76	99.63	99.6	99.47	100	100.35	101.14
15:11	MA26325-STD5	101.53	97.34	98.96	99.37	99.14	100.37	100.89	101.49
15:15	MA26325-STD6	100.15	96.49	98.17	98.02	98.86	100.25	100.59	101.86
15:19	MA26325-STD7	99.04	94.05	95.48	94.48	96.25	97.95	97.85	98.4
15:24	MA26325-ICV1	97.44	93.38	94.2	94.83	95.14	97.13	97.71	98.33
15:28	MA26325-ICB1	101.07	94.58	95.68	95.88	95.84	97.18	97.23	98.43
15:32	MA26325-CRI1	103.13	99.16	99.64	99.34	99.83	100.53	101.4	101.61
15:37	ZZZZZZ	104.08	100.01	100.65	100.2	100.25	101.07	101	101.04
15:41	MA26325-CRIA1	103.46	99.05	99.62	100.24	99.92	100.34	100.39	100.3
15:45	MA26325-CCV1	101.28	98.25	99.23	97.92	98.96	100.81	100.99	101.35
15:50	MA26325-CCB1	101.95	94.35	94.74	95.67	95.46	95.56	96.02	97.87
15:54	MP58043-MB1	101.71	97.52	97.61	97.69	97.63	98.51	98.4	98.9
15:58	MP58043-LC1	100.49	96.53	97.29	97.28	97.41	100.25	100.16	100.29
16:03	MP58043-S1	84.92	109.26	92.04	84.12	86.81	93.01	93.91	87.21
16:07	MP58043-S2	86.43	113.43	96.87	87.38	90.06	95.4	95.91	88.34
16:11	T74672-1F	88.28	117.09	98.96	89.88	91.63	95.29	96.13	88.35
16:15	ZZZZZZ	89.46	119.34	100.46	90.93	92.26	95.96	96.53	88.22
16:20	ZZZZZZ	91.03	121.57	101.68	91.88	93.59	96.92	97.07	88.93
16:24	ZZZZZZ	92.23	123.5	103.8	93.59	95.14	98.15	98.53	90.07
16:28	ZZZZZZ	87.03	120.79	100.77	89.57	91.07	95.31	95.31	84.72
16:33	ZZZZZZ	90.04	0 !	103.77	91.99	93.75	96.98	97.36	86.04
16:37	MA26325-CCV2	100.2	104.05	104.83	101.71	101.16	99.45	99.44	98.5
16:41	MA26325-CCB2	99.79	101.06	102.4	101.03	98.95	97.18	96.79	96.77
16:46	ZZZZZZ	87.94	124.95	103.29	91.53	92.98	96.96	97.05	85.72
16:50	ZZZZZZ	91.17	0 !	106.89	94.16	96.13	99.08	98.75	86.5
16:54	ZZZZZZ	88.44	0 !	114.31	99.66	100.95	101.78	101.61	87.84
16:59	ZZZZZZ	94.24	0 !	123.95	108.07	108	107.36	107.06	92.37
17:03	MP58044-MB1	112.53	124.4	120.46	117.86	114.05	107.99	107.48	105.17
17:07	MP58044-LC1	107.75	119.57	116.36	113.15	110.97	107.11	106.85	104.47
17:11	MP58044-S1	92.8	136.43 !	113.12	101.71	102.42	104.74	104.79	93.85

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: X050711M2.CSV Analyst: ND Date Analyzed: 05/07/11 Run ID: MA26325 Methods: EPA 200.8

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4	Istd#5	Istd#6	Istd#7	Istd#8
17:16	MP58044-S2	91.18	136.28 !	112.04	99.83	101.25	102.59	102.77	91.37
17:20	T74672-14F	93.42	137.58 !	113.73	101.44	103.06	104.07	104.41	93
17:24	ZZZZZZ	90.54	153.81 !	120.23	104.33	105.84	105.33	104.85	90.07
17:29	MA26325-CCV3	114.38	133.53 !	128.94 !	124.44	121	114.33	113.19	108.66
17:33	MA26325-CCB3	109.63	125.33 !	120.61	117.67	113.43	107.16	106.73	103.6
17:37	ZZZZZZ	93.15	160.42 !	125.61 !	109.16	110.07	109.44	108.91	92.37
17:42	ZZZZZZ	98.64	150.57 !	122.79	109.14	109.01	109.41	109.26	96.28
17:46	ZZZZZZ	98.62	149.64 !	122.91	108.72	109.34	109.53	108.99	96.15
17:50	ZZZZZZ	98.3	146.17 !	121.31	107.75	109.55	110.29	109.91	97.03
17:54	ZZZZZZ	93.31	135.01 !	113.4	101.16	103.57	104.97	105.78	93.51
17:59	ZZZZZZ	93.48	132.54 !	112.54	101.01	103.2	105.66	106.41	94.3
18:03	ZZZZZZ	94.16	132.72 !	112.23	100.6	102.52	105.45	105.89	93.74
18:07	ZZZZZZ	92.78	132.49 !	111.83	99.74	102.32	105.45	105.56	93.7
18:12	MA26325-CCV4	98.21	104.67	105.28	102.96	102.9	102.37	102.15	100.54
18:16	MA26325-CCB4	99.52	105.57	105.65	104.76	103.03	101.74	101.75	100.73
18:20	MP58045-MB1	100.81	109.28	106.86	105.62	104.19	102.84	102.33	101.57
18:25	MP58045-LC1	101.32	108.51	108.19	106.48	106.56	105.9	105.84	103.98
18:29	MP58045-S1	90.98	0 !	111.86	100.15	101.79	104.89	105.19	93.57
18:33	MP58045-S2	94.21	0 !	116.11	103.37	105.34	107.53	107.39	95.68
18:38	T74672-23F	94.66	0 !	116.5	103.58	104.52	106.69	106.89	94.75
18:42	ZZZZZZ	95.5	0 !	118.17	104.15	106.13	107.68	107.86	95.18
18:46	ZZZZZZ	97.05	0 !	119.6	106.25	108.13	109.35	109.39	96.09
18:50	ZZZZZZ	96.59	0 !	119.08	105.41	107.08	108.2	108.38	94.36
18:55	ZZZZZZ	91.73	0 !	116.06	102.37	104.3	105.52	105.23	90.76
18:59	ZZZZZZ	91.77	0 !	117.35	102.71	103.98	105.05	104.94	89.78
19:03	MA26325-CCV5	107.85	118.1	116.11	112.78	111.28	108.72	107.75	104.52
19:08	MA26325-CCB5	101.81	109.75	107.57	106.33	104.04	100.89	100.2	99.02
19:12	ZZZZZZ	92.17	0 !	117.98	103.64	105.34	107.37	107.15	91.86
19:16	ZZZZZZ	93.64	0 !	118.45	103.75	104.58	105.4	105.22	90.57
19:21	ZZZZZZ	93.48	0 !	119.55	104.48	105.38	105.72	106.4	90.63
19:25	ZZZZZZ	94.79	0 !	122.4	105.97	106.85	107.11	106.5	91.12
19:29	MP58046-MB1	108.32	118.98	116.79	113.63	111.11	106.55	105.93	103.49
19:33	MP58046-LC1	104.14	113.77	112.48	108.95	107.58	104.74	104.2	101.51

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: X050711M2.CSV Analyst: ND Date Analyzed: 05/07/11 Run ID: MA26325 Methods: EPA 200.8

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4	Istd#5	Istd#6	Istd#7	Istd#8
19:38	MP58046-S1	91.45	0 !	118.36	103.93	105.35	106.71	106.38	91.81
19:42	MP58046-S2	93.5	0 !	120.22	104.51	105.48	106.51	106.15	90.83
19:46	T74672-33F	94.55	0 !	121.3	105.74	106.99	106.91	106.31	91.09
19:51	ZZZZZZ	96.32	0 !	123.88	107.58	108.74	108.71	108.18	92.64
19:55	MA26325-CCV6	109.4	123	120.59	115.73	113.95	109.04	108.09	104.39
19:59	MA26325-CCB6	103.93	115.8	112.71	109.7	106.73	102.22	101.33	98.92
20:04	ZZZZZZ	95.11	104.75	103.54	97.43	98.68	98.03	97.91	93.02
20:08	ZZZZZZ	99.45	112.98	109.8	103.38	105.06	103.89	103.84	97.36
20:12	ZZZZZZ	98.04	106.74	104.46	99.24	100.51	100.46	99.94	94.4
20:17	ZZZZZZ	97.28	102.45	101	95.6	97.92	98.46	98.43	93.46
20:21	ZZZZZZ	83.73	122.7	103.3	91.24	93.87	97.34	98.1	86.39
20:25	ZZZZZZ	86.18	0 !	106.54	93.14	96.41	98.68	99.25	85.8
20:29	ZZZZZZ	86.99	0 !	108.65	94.86	97.07	98.82	99.51	85.82
20:34	ZZZZZZ	90.05	0 !	111.89	97.62	99.09	101.35	101.33	88.08
20:38	MA26325-CCV7	100.76	105.95	105.42	102.91	102.06	100.23	99.68	97.57
20:42	MA26325-CCB7	98	102.42	103	101.02	99.75	97.59	97.5	95.83
20:47	MP58063-MB1	94.81	98.45	98.88	97.61	95.88	95.63	95.35	94.46
20:51	MP58063-LC1	95.78	98.59	100.33	98.25	98.2	98.28	98.22	96.83
20:55	MP58063-S1	81.01	101.77	96.34	87.09	90.43	94.06	94.7	85.6
21:00	MP58063-S2	83.83	101.7	96.96	87.86	90.9	95.35	95.46	87.04
21:04	JA74098-1	82.44	97.59	92.87	84.03	86.7	91.51	91.86	84.1
21:08	MP58063-S3	80.53	96.18	92.24	82.93	86.29	90.98	91.64	83.68
21:12	MP58063-S4	81.52	95.22	91.06	82.61	85.63	90.46	91.01	83.62
21:17	JA74098-1F	78.86	93.27	88.4	80.15	83.09	88.02	88.79	81.69
21:21	ZZZZZZ	78.49	86.89	87.98	79.07	82.56	87.42	88.35	84.55
21:25	ZZZZZZ	77.71	90.45	87.4	78.84	82.64	87.87	88.55	81.07
21:30	MA26325-CCV8	88.46	85.99	88.84	86.94	88.07	89.64	89.83	91
21:34	MA26325-CCB8	89.61	88.43	90.05	89.33	88.93	89.27	89.43	88.78
21:38	ZZZZZZ	76.32	84.73	85.2	76.89	80.01	84.61	85.31	81.9
21:43	ZZZZZZ	77.71	88.75	85.47	77.53	81.17	86.54	87.14	80.15
21:47	ZZZZZZ	78.05	81.33	87.56	75.99	78.85	83.51	84.33	82.33
21:51	ZZZZZZ	78.82	82.31	83.22	77.96	81.5	86.1	86.76	84.41
21:56	ZZZZZZ	78.32	80.95	87.71	76.81	80.45	84.91	85.65	83.62

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: X050711M2.CSV Date Analyzed: 05/07/11 Methods: EPA 200.8 Run ID: MA26325

Analyst: ND Parameters: Cr

Time	Sample Description	Istd#1	Istd#2	Istd#3	Istd#4	Istd#5	Istd#6	Istd#7	Istd#8
22:00	ZZZZZZ	77.29	81.51	82.46	77.44	81.13	85.98	86.89	84.59
22:04	MP58073-MB1	84.72	83.02	86.02	85.73	86.26	88.15	88.77	89.75
22:08	MP58073-LC1	84.85	83.24	86.61	85.61	87.23	89.59	89.84	90.5
22:13	MP58073-S1	82.44	83.34	86.62	79.79	83.44	87.56	88.56	84.67
22:17	MP58073-S2	82.38	81.59	85.18	78.06	81.47	86.17	87.25	83.54
22:21	MA26325-CCV9	85.83	79.43	82.87	82.03	82.93	85.52	85.83	86.89
22:26	MA26325-CCB9	87.93	82.7	85.52	84.74	85.27	86.18	86.17	87.13
22:30	JA74100-1	81.74	80.69	83.3	76.8	80.1	84.07	84.96	81.08
22:34	JA74100-2	89.47	83.79	86.37	86.16	85.94	87.5	88.43	89.12
22:39	JA74100-1F	80.65	80.33	83.94	76.77	80.24	84.03	84.77	80.76
22:43	MA26325-CCV10	84.83	81.03	84.08	83.5	84.06	86.11	86.31	87.35
22:47	MA26325-CCB10	87.45	82.18	84.74	84.41	84.48	85.27	85.34	85.88
22:52	ZZZZZZ	76.42	81.87	78.59	73.96	77.02	81.93	82.99	79.71
22:56	ZZZZZZ	105.05	124.55	116.1	101.4	104.83	104.82	105.12	90.29
23:00	ZZZZZZ	118.73	0 !	0 !	113.92	115.82	110.9	110.69	92.42
23:04	ZZZZZZ	123.55	0 !	0 !	127.1 !	129.56 !	127.81 !	127.66 !	110.02
23:09	ZZZZZZ	104.53	124.27	118.89	105.72	108.22	107.96	108.08	98.47
23:17	ZZZZZZ	92.87	92.1	92.61	91.2	90.96	93.37	93.52	91.8
23:22	ZZZZZZ	91.04	89.97	90.82	89.73	89.86	92.8	93.1	91.09
23:26	ZZZZZZ	91.28	88.94	89.49	89.66	89.64	91.94	92.01	91.27
23:30	ZZZZZZ	89.41	88.39	89.62	88.55	88.99	92.2	91.96	90.95
23:35	MA26325-CCV11	90.73	90.68	92.49	90.74	90.84	91.73	91.81	92
23:39	MA26325-CCB11	90.17	89.59	91.43	90.34	89.65	88.89	89.32	89.36

^{! =} Outside limits.

Istd#	Parameter	Limits	
Istd#1	Lithium	60-125	왕
Istd#2	Scandium	60-125	8
Istd#3	Yttrium	60-125	용
Istd#4	Rhodium	60-125	용
Istd#5	Indium	60-125	용
Istd#6	Terbium	60-125	용
Istd#7	Holmium	60-125	용
Istd#8	Bismuth	60-125	용

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: X050711M2.CSV Date Analyzed: 05/07/11 Methods: EPA 200.8 QC Limits: result < RL Run ID: MA26325 Units: ug/l

Time: Sample ID:			15:28 ICB1		15:50 CCB1		16:41 CCB2		17:33 CCB3	
Metal	RL	IDL	raw	final	raw	final	raw	final	raw	final
Aluminum	50	1	anr							
Antimony	0.50	.17								
Arsenic	1.0	.096								
Barium	1.0	.034	anr							
Beryllium	0.50	.011								
Boron	5.0	.17								
Cadmium	0.50	.036								
Calcium	250	3.1								
Chromium	4.0	.052	0.18	<4.0	0.0040	<4.0	-0.023	<4.0	0.49	<4.0
Cobalt	0.50	.003								
Copper	4.0	.61	anr							
Iron	50	1.1								
Lead	0.50	.005	anr							
Magnesium	250	1.9								
Manganese	0.50	.01								
Molybdenum	1.0	.034								
Nickel	4.0	.03	anr							
Potassium	250	5.6								
Selenium	1.0	.067								
Silver	2.0	.01	anr							
Sodium	250	1.2								
Strontium	1.0	.007								
Thallium	0.50	.014								
Tin	1.0	.039								
Titanium	1.0	.14								
Uranium	1.0									
Vanadium	4.0	.24								
Zinc	4.0	.2	anr							

(*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA74100

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 05/07/11 File ID: X050711M2.CSV Methods: EPA 200.8 QC Limits: result < RL Run ID: MA26325 Units: ug/l

Time: Sample ID: Metal		IDL	18:16 CCB4 raw	final	19:08 CCB5 raw	final	19:59 CCB6 raw	final	20:42 CCB7 raw	final
Aluminum	50	1	anr		1					
Antimony	0.50	.17								
Arsenic	1.0	.096								
Barium	1.0	.034	anr							
Beryllium	0.50	.011								
Boron	5.0	.17								
Cadmium	0.50	.036								
Calcium	250	3.1								
Chromium	4.0	.052	0.017	<4.0	0.17	<4.0	0.074	<4.0	-0.23	<4.0
Cobalt	0.50	.003								
Copper	4.0	.61	anr							
Iron	50	1.1								
Lead	0.50	.005	anr							
Magnesium	250	1.9								
Manganese	0.50	.01								
Molybdenum	1.0	.034								
Nickel	4.0	.03	anr							
Potassium	250	5.6								
Selenium	1.0	.067								
Silver	2.0	.01	anr							
Sodium	250	1.2								
Strontium	1.0	.007								
Thallium	0.50	.014								
Tin	1.0	.039								
Titanium	1.0	.14								
Uranium	1.0									
Vanadium	4.0	.24								
Zinc	4.0	. 2	anr							

(*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 1 - Initial and Continuing Calibration Blanks

Login Number: JA74100

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 05/07/11 File ID: X050711M2.CSV Methods: EPA 200.8 QC Limits: result < RL Run ID: MA26325 Units: ug/l

Time: Sample ID:			21:34 CCB8		22:26 CCB9		22:47 CCB10	
Metal	RL	IDL	raw	final	raw	final	raw	final
Aluminum	50	1	anr					
Antimony	0.50	.17						
Arsenic	1.0	.096						
Barium	1.0	.034	anr					
Beryllium	0.50	.011						
Boron	5.0	.17						
Cadmium	0.50	.036						
Calcium	250	3.1						
Chromium	4.0	.052	0.0080	<4.0	0.066	<4.0	0.22	<4.0
Cobalt	0.50	.003						
Copper	4.0	.61	anr					
Iron	50	1.1						
Lead	0.50	.005	anr					
Magnesium	250	1.9						
Manganese	0.50	.01						
Molybdenum	1.0	.034						
Nickel	4.0	.03	anr					
Potassium	250	5.6						
Selenium	1.0	.067						
Silver	2.0	.01	anr					
Sodium	250	1.2						
Strontium	1.0	.007						
Thallium	0.50	.014						
Tin	1.0	.039						
Titanium	1.0	.14						
Uranium	1.0							
Vanadium	4.0	. 24						
Zinc	4.0	. 2	anr					

(*) Outside of QC limits (anr) Analyte not requested

> 28 of 277
> ACCUTEST JA74100

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 05/07/11 Methods: EPA 200.8 File ID: X050711M2.CSV QC Limits: 90 to 110 % Recovery Run ID: MA26325 Units: ug/l

Time: Sample ID: Metal		15:24 ICV1 Results	% Rec	CCV True	15:45 CCV1 Results	% Rec	CCV True	16:37 CCV2 Results	% Rec	
Aluminum	anr									
Antimony										
Arsenic										
Barium	anr									
Beryllium										
Boron										
Cadmium										
Calcium										
Chromium	60	61.2	102.0	50	48.4	96.8	50	49.9	99.8	
Cobalt										
Copper	anr									
Iron										
Lead	anr									
Magnesium										
Manganese										
Molybdenum										
Nickel	anr									
Potassium										
Selenium										
Silver	anr									
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Uranium										
Vanadium										
Zinc	anr									

(*) Outside of QC limits (anr) Analyte not requested

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: X050711M2.CSV QC Limits: 90 to 110 % Recovery Date Analyzed: 05/07/11 Run ID: MA26325 Methods: EPA 200.8 Units: ug/l

Time: Sample ID: Metal	CCV True	17:29 CCV3 Results	% Rec	CCV True	18:12 CCV4 Results	% Rec	CCV True	19:03 CCV5 Results	% Rec
Aluminum	anr								,
Antimony									
Arsenic									
Barium	anr								
Beryllium									
Boron									
Cadmium									
Calcium									
Chromium	50	49.0	98.0	50	50.5	101.0	50	48.7	97.4
Cobalt									
Copper	anr								
Iron									
Lead	anr								
Magnesium									
Manganese									
Molybdenum									
Nickel	anr								
Potassium									
Selenium									
Silver	anr								
Sodium									
Strontium									
Thallium									
Tin									
Titanium									
Uranium									
Vanadium									
Zinc	anr								

(*) Outside of QC limits (anr) Analyte not requested

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: X050711M2.CSV Date Analyzed: 05/07/11 Methods: EPA 200.8 QC Limits: 90 to 110 % Recovery Run ID: MA26325 Units: ug/l

QC HIMITED: 90					D- HHZOSE		onico: ug	<i>,</i> =		
Time: Sample ID: Metal	CCV True	19:55 CCV6 Results	% Rec	CCV True	20:38 CCV7 Results	% Rec	CCV True	21:30 CCV8 Results	% Rec	
Aluminum	anr									
Antimony										
Arsenic										
Barium	anr									
Beryllium										
Boron										
Cadmium										
Calcium										
Chromium	50	50.0	100.0	50	50.3	100.6	50	49.9	99.8	
Cobalt										
Copper	anr									
Iron										
Lead	anr									
Magnesium										
Manganese										
Molybdenum										
Nickel	anr									
Potassium										
Selenium										
Silver	anr									
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Uranium										
Vanadium										
Zinc	anr									

(*) Outside of QC limits (anr) Analyte not requested

CALIBRATION CHECK STANDARDS SUMMARY Initial and Continuing Calibration Checks

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: X050711M2.CSV Date Analyzed: 05/07/11 Methods: EPA 200.8 QC Limits: 90 to 110 % Recovery Run ID: MA26325 Units: ug/l

Time: Sample ID: Metal		22:21 CCV9 Results	% Rec	CCV True	22:43 CCV10 Results	% Rec
Aluminum	anr					
Antimony						
Arsenic						
Barium	anr					
Beryllium						
Boron						
Cadmium						
Calcium						
Chromium	50	50.2	100.4	50	48.1	96.2
Cobalt						
Copper	anr					
Iron						
Lead	anr					
Magnesium						
Manganese						
Molybdenum						
Nickel	anr					
Potassium						
Selenium						
Silver	anr					
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Uranium						
Vanadium						
Zinc	anr					

(*) Outside of QC limits
(anr) Analyte not requested

32 of 277
ACCUTEST.
JA74100
LABORATORIES

LOW CALIBRATION CHECK STANDARDS SUMMARY

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Date Analyzed: 05/07/11 Methods: EPA 200.8 File ID: X050711M2.CSV QC Limits: 50 to 150 % Recovery Run ID: MA26325 Units: ug/l

		RECOVERY			D. PHIZOSE		OHIL
Time: Sample ID: Metal		CRIA True	15:32 CRI1 Results	% Rec	15:41 CRIA1 Results	% Rec	
Aluminum	50	25	anr				
Antimony	0.50	0.25					
Arsenic	1.0	0.50					
Barium	1.0	0.50	anr				
Beryllium	0.50	0.25					
Boron	5.0	2.5					
Cadmium	0.50	0.25					
Calcium	250	125					
Chromium	4.0	2.0	3.8	95.0	1.9	95.0	
Cobalt	0.50	0.25					
Copper	4.0	2.0	anr				
Iron	50	25					
Lead	0.50	0.25	anr				
Magnesium	250	125					
Manganese	0.50	0.25					
Molybdenum	1.0	0.50					
Nickel	4.0	2.0	anr				
Potassium	250	125					
Selenium	1.0	0.50					
Silver	2.0	1.0	anr				
Sodium	250	125					
Strontium	1.0	0.50					
Thallium	0.50	0.25					
Tin	1.0	0.50					
Titanium	1.0	0.50					
Uranium	1.0	0.50					
Vanadium	4.0	2.0					
Zinc	4.0	2.0	anr				

(*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: JA74100

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP58073 Matrix Type: AQUEOUS Methods: EPA 200.8 Units: ug/l

Prep Date:

05/07/11

Metal	RL	IDL	MDL	MB raw	final
Aluminum	50	1	1.9		
Antimony	0.50	.17	.083		
Arsenic	1.0	.096	.12		
Barium	1.0	.034	.082		
Beryllium	0.50	.011	.13		
Boron	5.0	.17	.73		
Cadmium	0.50	.036	.051		
Calcium	250	3.1	20		
Chromium	4.0	.052	.072	-0.22	<4.0
Cobalt	0.50	.003	.024		
Copper	4.0	.61	.34		
Iron	50	1.1	2.5		
Lead	0.50	.005	.064		
Magnesium	250	1.9	3.3		
Manganese	0.50	.01	.047		
Molybdenum	1.0	.034	.042		
Nickel	4.0	.03	.074		
Potassium	250	5.6	9		
Selenium	1.0	.067	.14		
Silver	2.0	.01	.08		
Sodium	250	1.2	3.9		
Strontium	1.0	.007	.024		
Thallium	0.50	.014	.016		
Tin	1.0	.039	.029		
Titanium	1.0	.14	.12		
Uranium	1.0				
Vanadium	4.0	.24	.23		
Zinc	4.0	.2	.44		

Associated samples MP58073: JA74100-1, JA74100-2, JA74100-1F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\dot{\ }$

(anr) Analyte not requested

34 of 277
ACCUTESTS
A74100
LABORATORIES

JA74100

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP58073 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

05/07/11 Prep Date:

Metal	JA74100-1 Original MS	Spikelot MPXDW2 % :	Rec	QC Limits
Aluminum	anr			
Antimony				
Arsenic				
Barium	anr			
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium	43.7 145	100 10	1.3	70-130
Cobalt				
Copper	anr			
Iron				
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel	anr			
Potassium				
Selenium				
Silver	anr			
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Uranium				
Vanadium				
Zinc	anr			

Associated samples MP58073: JA74100-1, JA74100-2, JA74100-1F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

MATRIX SPIKE AND DUPLICATE RESULTS SUMMARY

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP58073 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

05/07/11

Metal	JA74100-1 Original MSD	Spikelot MPXDW2 % Rec	MSD RPD	QC Limit
Aluminum	anr			
Antimony				
Arsenic				
Barium	anr			
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium	43.7 142	100 98.3	2.1	17
Cobalt				
Copper	anr			
Iron				
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel	anr			
Potassium				
Selenium				
Silver	anr			
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Uranium				
Vanadium				
Zinc	anr			

Associated samples MP58073: JA74100-1, JA74100-2, JA74100-1F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

QC Batch ID: MP58073 Methods: EPA 200.8 Matrix Type: AQUEOUS Units: ug/l

Prep Date:

05/07/11

Metal	LCS Result	Spikelot MPXDW2	% Rec	QC Limits
Aluminum	anr			
Antimony				
Arsenic				
Barium	anr			
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium	104	100	104.0	85-115
Cobalt				
Copper	anr			
Iron				
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel	anr			
Potassium				
Selenium				
Silver	anr			
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Uranium				
Vanadium				
Zinc	anr			

Associated samples MP58073: JA74100-1, JA74100-2, JA74100-1F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\dot{\ }$ (anr) Analyte not requested

5.3

Instrument Detection Limits

Job Number: JA74100

Account: HWINJM Honeywell International Inc. **Project:** HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	IDL ug/l	
Aluminum	1.035	
Antimony	.166	
Arsenic	.096	
Barium	.034	
Beryllium	.011	
Boron	.166	
Cadmium	.036	
Calcium	3.055	
Chromium	.052	
Cobalt	.003	
Copper	.611	
Iron	1.114	
Lead	.005	
Magnesium	1.931	
Manganese	.01	
Molybdenum	.034	
Nickel	.03	
Potassium	5.643	
Selenium	.067	
Silver	.01	
Sodium	1.18	
Strontium	.007	
Thallium	.014	
Tin	.039	
Titanium	.144	
Vanadium	.241	
Zinc	.198	

The above applies to the following instrument runs: $MA26325\,$

5.3

Instrument Linear Ranges

Job Number: JA74100

Account: HWINJM Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Instrument ID: ICPMS1 **Effective Date:** 01/11/11

Analyte	Linear Range ug/l
Aluminum	100000
Antimony	500
Arsenic	500
Barium	500
Beryllium	500
Boron	500
Cadmium	500
Calcium	100000
Chromium	500
Cobalt	500
Copper	500
Iron	100000
Lead	500
Magnesium	100000
Manganese	500
Molybdenum	500
Nickel	500
Potassium	100000
Selenium	500
Silver	500
Sodium	100000
Strontium	500
Thallium	500
Tin	500
Titanium	500
Vanadium	500
Zinc	500

The above applies to the following instrument runs: $MA26325\,$

Metals Analysis								
Raw Data								

Sample List

	•						
No	Label	Туре	Weight	Rack	Row	Col	Height
1	std1 1	Fully Quant Standard	1.000	3	1	1	144
2	std2	Fully Quant Standard	1.000	3	1	2	144
3	std3	Fully Quant Standard	1.000	3	1	3	144
4	std4	Fully Quant Standard	1.000	3	1	4	144
5	std5	Fully Quant Standard	1.000	3	1	5	144
6	std6	Fully Quant Standard	1.000	3	1	6	144
7	std7	Fully Quant Standard	1.000	3	1	7	144
8 9	icv	Unknown	1.000	3	1 1	8	144
	icb	Unknown	1.000	0	1	2	144
10 11	cri criaconf	Unknown	1.000	0	1	10 9	144 144
12	criacom	Unknown Unknown	1.000 1.000	3	1	9	144
13	CCV	Unknown	1.000	0	1	1	144
14	CCB	Unknown	1.000	0	1	2	144
15	mp58043-mb1	Unknown	1.000	3	1	10	144
16	mp58043-lc1	Unknown	1.000	3	1	11	144
17	mp58043-s1	Unknown	1.000	3	1	12	144
18	mp58043-s2	Unknown	1.000	3	2	1	144
19	t74672-1f	Unknown	1.000	3	2	2	144
20	t74672-2f	Unknown	1.000	3	2	3	144
21	t74672-3f	Unknown	1.000	3	2	4	144
22	t74672-4f	Unknown	1.000	3	2	5	144
23	t74672-6f	Unknown	1.000	3	2	6	144
24	t74672-7f	Unknown	1.000	3	2	7	144
25	CCV	Unknown	1.000	0	1	3	144
26	ccb	Unknown	1.000	0	1	4	144
27	t74672-8f	Unknown	1.000	3	2	8	144
28	t74672-9f	Unknown	1.000	3	2	9	144
29	t74672-10f	Unknown	1.000	3	2	10	144
30	t74672-11f	Unknown	1.000	3	2	11	144
31	mp58044-mb1	Unknown	1.000	3	2	12	144
32	mp58044-lc1	Unknown	1.000	3	3	1	144
33	mp58044-s1	Unknown	1.000	3	3	2	144
34	mp58044-s2	Unknown	1.000	3	3	3	144
35	t74672-14f	Unknown	1.000	3	3	4	144
36	t74672-12f	Unknown	1.000	3	3	5	144
37	CCV	Unknown	1.000	0	1	1	144
38	ccb	Unknown	1.000	0	1	2	144
39	t74672-13f	Unknown	1.000	3	3	6	144
40	t74672-15f	Unknown	1.000	3	3	7	144
41	t74672-16f	Unknown	1.000	3	3	8	144
42	t74672-17f	Unknown	1.000	3	3	9	144
43	t74672-18f	Unknown	1.000	3	3	10	144
44 45	t74672-19f	Unknown	1.000 1.000	3	3	11	144 144
45 46	t74672-20f t74672-21f	Unknown	1.000	3	3 4	12 1	144
46 47	CCV	Unknown Unknown	1.000	0	1	1	144
48	ccb	Unknown	1.000	0	1	2	144
49	mp58045-mb1	Unknown	1.000	3	4	2	144
50	mp58045-lc1	Unknown	1.000	3	4	3	144
51	mp58045-s1	Unknown	1.000	3	4	4	144
52	mp58045-s2	Unknown	1.000	3	4	5	144
53	t74672-23f	Unknown	1.000	3	4	6	144
54	t74672-24f	Unknown	1.000	3	4	7	144
55	t74672-25f	Unknown	1.000	3	4	8	144
56	t74672-26f	Unknown	1.000	3	4	9	144
57	t74672-27f	Unknown	1.000	3	4	10	144
58	t74672-28f	Unknown	1.000	3	4	11	144
59	CCV	Unknown	1.000	0	1	1	144
60	ccb	Unknown	1.000	0	1	2	144
61	t74672-29f	Unknown	1.000	3	4	12	144
62	t74672-30f	Unknown	1.000	3	5	1	144
63	t74672-31f	Unknown	1.000	3	5	2	144
64	t74672-32f	Unknown	1.000	3	5	3	144
65	mp58046-mb1	Unknown	1.000	3	5	4	144
66	mp58046-lc1	Unknown	1.000	3	5	5	144
67	mp58046-s1	Unknown	1.000	3	5	6	144

68	mp58046-s2	Unknown	1.000	3	5	7	144
69	t74672-33f	Unknown	1.000	3	5	8	144
70	t74672-34f	Unknown	1.000	3	5	9	144
71	CCV	Unknown	1.000	0	1	3	144
72	ccb	Unknown	1.000	0	1	4	144
73	t74672-35f	Unknown	1.000	3	5	10	144
74	t74672-36f	Unknown	1.000	3	5	11	144
75	t74672-37f	Unknown	1.000	3	5	12	144
76	t74672-38f	Unknown	1.000	1	1	1	144
77	t74672-40f	Unknown	1.000	1	1	2	144
78	t74672-41f	Unknown	1.000	1	1	3	144
79	t74672-42f	Unknown	1.000	1	1	4	144
80	t74672-43f	Unknown	1.000	1	1	5	144
81	CCV	Unknown	1.000	0	1	3	144
82	ccb	Unknown	1.000	0	1	4	144
83	mp58063-mb1	Unknown	1.000	1	1	6	144
84	mp58063-lc1	Unknown	1.000	1	1	7	144
85	mp58063-s1	Unknown	1.000	1	1	8	144
86	mp58063-s2	Unknown	1.000	1	1	9	144
87	ja74098-1	Unknown	1.000	1	1	10	144
88	mp58063-s3	Unknown	1.000	1	1	11	144
89	mp58063-s4	Unknown	1.000	1	1	12	144
90	ja74098-1f	Unknown	1.000	1	2	1	144
91	ja74098-2	Unknown	1.000	1	2	2	144
92	ja74098-3	Unknown	1.000	1	2	3	144
93	CCV	Unknown	1.000	0	1	3	144
94	ccb	Unknown	1.000	0	1	4	144
95	ja74098-2f	Unknown	1.000	1	2	4	144
96	ja74098-3f	Unknown	1.000	1	2	5	144
97	ja74099-1	Unknown	1.000	1	2	6	144
98	ja74099-2	Unknown	1.000	1	2	7	144
99	ja74099-1f	Unknown	1.000	1	2	8	144
100	ja74099-2f	Unknown	1.000	1	2	9	144
101	mp58073-mb1	Unknown	1.000	1	2	10	144
102	mp58073-lc1	Unknown	1.000	1	2	11	144
103	mp58073-s1	Unknown	1.000	1	2	12	144
104	mp58073-s2	Unknown	1.000	1	3	1	144
105	CCV	Unknown	1.000	0	1	3	144
106	ccb	Unknown	1.000	0	1	4	144
107	ja74100-1	Unknown	1.000	1	3	2	144
108	ja74100-2	Unknown	1.000	1	3	3	144
109	ja74100-1f	Unknown	1.000	1	3	4	144
110	CCV	Unknown	1.000	0	1	1	144
111	ccb	Unknown	1.000	0	1	2	144
112	t74600-1	Unknown	1.000	1	3	5	144
113	t75033-2 df25	Unknown	25.000	1	3	6	144
114	t75038-1 df25	Unknown	25.000	1	3	7	144
115	t75047-1	Unknown	1.000	1	3	8 9	144
116	t75047-2	Unknown	1.000	1			144
117	sampleconf	Unknown	1.000	0	1	5	144
118	sampleconf	Unknown	1.000	0	1	5	144
119	sampleconf	Unknown	1.000	0	1	5	144
120	sampleconf	Unknown	1.000	0	1	5	144
121	CCV	Unknown	1.000	0	1	1	144
122	ccb	Unknown	1.000	0	1	2	144

Fully Quant Calibration

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.143	0.143	9.54	0.00
std2	0.500	0.824	0.324	640.34	64.80
std3	5.000	5.017	0.017	3375.04	0.34
std4	25.000	24.893	0.107	16337.39	0.43
std5	50.000	49.770	0.230	32561.76	0.46
std6	100.000	100.139	0.139	65411.53	0.14

10B FQ Block 1

Intercept CPS=104.369030 Intercept Conc=0.911872 Sensitivity=114.455776 Correlation Coeff=0.999965

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.296	0.296	70.52	0.00
std2	0.500	0.601	0.101	173.19	20.25
std3	5.000	4.917	0.083	667.17	1.66
std4	25.000	24.969	0.031	2962.18	0.13
std5	50.000	50.594	0.594	5895.18	1.19
std6	100.000	99.714	0.286	11517.25	0.29

11B FQ Block 1

Intercept CPS=361.325365 Intercept Conc=0.670527 Sensitivity=538.867910 Correlation Coeff=0.999988

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.085	0.085	315.43	0.00
std2	0.500	0.779	0.279	780.88	55.72
std3	5.000	5.003	0.003	3057.53	0.07
std4	25.000	24.912	0.088	13785.46	0.35
std5	50.000	49.742	0.258	27165.56	0.52

std6 100.000 100.150 0.150 54328.74 0.15

Intercept CPS=6927.182322 Intercept Conc=2.650919 Sensitivity=2613.125157 Correlation Coeff=0.999930

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	2.779	2.779	14188.55	0.00
std2	0.500	5.150	4.650	20384.91	930.01
std3	5.000	7.641	2.641	26894.48	52.82
std4	25.000	24.698	0.302	71464.99	1.21
std5	50.000	47.752	2.248	131708.65	4.50
std6	100.000	91.529	8.471	246104.14	8.47
std7	1000.000	1000.952	0.952	2622538.81	0.10

25Mg FQ Block 1

Intercept CPS=-71.435265 Intercept Conc=-0.301109 Sensitivity=237.240792 Correlation Coeff=0.999975

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.827	0.827	124.69	0.00
std2	0.500	3.585	3.085	779.06	616.99
std3	5.000	6.138	1.138	1384.80	22.76
std4	25.000	25.501	0.501	5978.51	2.01
std5	50.000	49.147	0.853	11588.29	1.71
std6	100.000	94.754	5.246	22408.11	5.25
std7	1000.000	1000.547	0.547	237299.24	0.05

26Mg FQ Block 1

Intercept CPS=-231.497865 Intercept Conc=-0.818871 Sensitivity=282.703651 Correlation Coeff=0.999970

 Label
 Defined
 Measured
 Error
 Mean CPS
 % Error

 std1 1
 0.000
 1.324
 1.324
 142.73
 0.00

27Al FQ Block 1

Intercept CPS=-3985.904283 Intercept Conc=-1.022596 Sensitivity=3897.827335 Correlation Coeff=0.999953

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	2.625	2.625	6246.88	0.00
std2	0.500	3.922	3.422	11299.99	684.33
std3	5.000	7.285	2.285	24409.08	45.70
std4	25.000	24.878	0.122	92985.99	0.49
std5	50.000	47.931	2.069	182842.15	4.14
std6	100.000	93.072	6.928	358794.24	6.93
std7	1000.000	1000.786	0.786	3896905.50	0.08

39K FQ Block 1

Intercept CPS=196979.885038 Intercept Conc=89.562395 Sensitivity=2199.359296 Correlation Coeff=0.999912

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	3.449	3.449	204564.81	0.00
std2	0.500	4.923	4.423	207807.72	884.64
std3	5.000	7.130	2.130	212662.37	42.61
std4	25.000	25.980	0.980	254118.19	3.92
std5	50.000	48.055	1.945	302670.69	3.89
std6	100.000	89.892	10.108	394685.10	10.11
std7	1000.000	1001.071	1.071	2398693.96	0.11

43Ca FQ Block 1

Intercept CPS=247.828111 Intercept Conc=25.658470 Sensitivity=9.658725 Correlation Coeff=0.999055

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-21.125	21.125	43.79	0.00
std2	0.500	3.217	2.717	278.90	543.47
std3	5.000	-10.738	15.738	144.11	314.76
std4	25.000	24.699	0.301	486.39	1.21
std5	50.000	60.905	10.905	836.09	21.81
std6	100.000	126.669	26.669	1471.29	26.67
std7	1000.000	996.873	3.127	9876.35	0.31

44Ca FQ Block 1

Intercept CPS=3360.008893 Intercept Conc=21.100733 Sensitivity=159.236596 Correlation Coeff=0.999670

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-14.182	14.182	1101.79	0.00
std2	0.500	8.473	7.973	4709.22	1594.60
std3	5.000	-2.799	7.799	2914.36	155.97
std4	25.000	20.763	4.237	6666.29	16.95
std5	50.000	59.212	9.212	12788.74	18.42
std6	100.000	110.391	10.391	20938.22	10.39
std7	1000.000	998.641	1.359	162380.25	0.14

47Ti FQ Block 1

Intercept CPS=250.913065 Intercept Conc=0.600959 Sensitivity=417.520923 Correlation Coeff=0.999860

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.503	0.503	40.84	0.00
std2	0.500	0.563	0.063	486.12	12.67
std3	5.000	4.574	0.426	2160.48	8.53

 std4
 25.000
 25.403
 0.403
 10857.38
 1.61

 std5
 50.000
 51.085
 1.085
 21580.09
 2.17

 std6
 100.000
 99.378
 0.622
 41743.10
 0.62

51V FQ Block 1

Intercept CPS=321.205333 Intercept Conc=0.051432 Sensitivity=6245.250312 Correlation Coeff=0.999982

Label	Defined	Measured	Error	Mean CPS	% Erro
std1 1	0.000	-0.080	0.080	-177.61	0.00
std2	0.500	0.893	0.393	5900.50	78.67
std3	5.000	4.815	0.185	30390.51	3.71
std4	25.000	24.741	0.259	154836.83	1.03
std5	50.000	50.117	0.117	313314.23	0.23
std6	100.000	100.013	0.013	624930.45	0.01

52Cr FQ Block 1

Intercept CPS=4430.906365 Intercept Conc=0.747909 Sensitivity=5924.394435 Correlation Coeff=0.999985

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.150	0.150	3540.07	0.00
std2	0.500	0.878	0.378	9632.93	75.61
std3	5.000	4.895	0.105	33429.68	2.10
std4	25.000	24.790	0.210	151294.92	0.84
std5	50.000	50.064	0.064	301027.88	0.13
std6	100.000	100.024	0.024	597013.15	0.02

53Cr FQ Block 1

Intercept CPS=147.650461 Intercept Conc=0.221139 Sensitivity=667.682925 Correlation Coeff=0.999935

 Label
 Defined
 Measured
 Error
 Mean CPS
 % Error

 std1 1
 0.000
 -0.296
 0.296
 -50.02
 0.00

55Mn FQ Block 1

Intercept CPS=1185.711441 Intercept Conc=0.136556 Sensitivity=8682.986593 Correlation Coeff=0.999976

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.104	0.104	279.56	0.00
std2	0.500	0.930	0.430	9262.12	86.03
std3	5.000	4.940	0.060	44082.49	1.19
std4	25.000	24.603	0.397	214815.32	1.59
std5	50.000	50.061	0.061	435866.95	0.12
std6	100.000	100.069	0.069	870086.91	0.07

56Fe FQ Block 1

Intercept CPS=179081.783657 Intercept Conc=40.532878 Sensitivity=4418.185734 Correlation Coeff=0.999902

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	2.275	2.275	189132.64	0.00
std2	0.500	4.679	4.179	199755.10	835.83
std3	5.000	8.964	3.964	218687.49	79.28
std4	25.000	26.442	1.442	295906.44	5.77
std5	50.000	47.579	2.421	389292.97	4.84
std6	100.000	89.442	10.558	574255.22	10.56
std7	1000.000	1001.119	1.119	4602210.88	0.11

Intercept CPS=1981.158193 Intercept Conc=10.656313 Sensitivity=185.914034 Correlation Coeff=0.999978

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	1.395	1.395	2240.47	0.00
std2	0.500	2.169	1.669	2384.47	333.87
std3	5.000	7.498	2.498	3375.08	49.95
std4	25.000	25.332	0.332	6690.65	1.33
std5	50.000	48.279	1.721	10956.97	3.44
std6	100.000	95.292	4.708	19697.29	4.71
std7	1000.000	1000.535	0.535	187994.70	0.05

59Co FQ Block 1

Intercept CPS=683.343750 Intercept Conc=0.097516 Sensitivity=7007.500528 Correlation Coeff=0.999983

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.094	0.094	25.54	0.00
std2	0.500	0.901	0.401	6999.75	80.28
std3	5.000	4.881	0.119	34886.72	2.38
std4	25.000	24.737	0.263	174028.24	1.05
std5	50.000	50.010	0.010	351125.54	0.02
std6	100.000	100.065	0.065	701888.11	0.06

60Ni FQ Block 1

Intercept CPS=525.538493 Intercept Conc=0.349729 Sensitivity=1502.701472 Correlation Coeff=0.999979

Label	Defined	Measured	Frror	Mean CPS	% Error
std1 1		-0.241	0.241	163.08	0.00
std2	0.500	0.830	0.330	1772.29	65.93
std3	5.000	4.824	0.176	7774.74	3.52
std4	25.000	24.893	0.107	37931.76	0.43

Intercept CPS=110.671231 Intercept Conc=0.491317 Sensitivity=225.254031 Correlation Coeff=0.999866

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.348	0.348	32.37	0.00
std2	0.500	0.613	0.113	248.86	22.70
std3	5.000	4.816	0.184	1195.44	3.69
std4	25.000	24.721	0.279	5679.23	1.12
std5	50.000	51.238	1.238	11652.14	2.48
std6	100.000	99.460	0.540	22514.34	0.54

63Cu FQ Block 1

Intercept CPS=1250.852926 Intercept Conc=0.325949 Sensitivity=3837.574452 Correlation Coeff=0.999985

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.244	0.244	315.24	0.00
std2	0.500	0.830	0.330	4434.18	65.90
std3	5.000	4.875	0.125	19958.55	2.50
std4	25.000	24.924	0.076	96896.92	0.31
std5	50.000	50.184	0.184	193836.65	0.37
std6	100.000	99.932	0.068	384745.77	0.07

65Cu FQ Block 1

Intercept CPS=696.890608 Intercept Conc=0.379121 Sensitivity=1838.172826 Correlation Coeff=0.999983

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.319	0.319	111.36	0.00
std2	0.500	0.794	0.294	2157.23	58.89

66Zn FQ Block 1

Intercept CPS=1327.802641 Intercept Conc=0.886851 Sensitivity=1497.211197 Correlation Coeff=0.999931

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.525	0.525	541.62	0.00
std2	0.500	1.018	0.518	2852.45	103.67
std3	5.000	4.819	0.181	8543.48	3.61
std4	25.000	24.826	0.174	38497.26	0.70
std5	50.000	50.623	0.623	77121.36	1.25
std6	100.000	99.738	0.262	150657.27	0.26

67Zn FQ Block 1

Intercept CPS=194.702443 Intercept Conc=0.822039 Sensitivity=236.853050 Correlation Coeff=0.999918

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.496	0.496	77.19	0.00
std2	0.500	1.031	0.531	438.84	106.16
std3	5.000	4.777	0.223	1326.07	4.47
std4	25.000	24.748	0.252	6056.45	1.01
std5	50.000	50.738	0.738	12212.06	1.48
std6	100.000	99.703	0.297	23809.57	0.30

68Zn FQ Block 1

Intercept CPS=1082.190935 Intercept Conc=1.008882 Sensitivity=1072.663510 Correlation Coeff=0.999879

Label Defined Measured Error Mean CPS % Error

75As FQ Block 1

Intercept CPS=380.028112 Intercept Conc=0.315090 Sensitivity=1206.095000 Correlation Coeff=0.999982

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.216	0.216	119.42	0.00
std2	0.500	0.767	0.267	1305.45	53.46
std3	5.000	4.873	0.127	6257.69	2.53
std4	25.000	24.873	0.127	30378.68	0.51
std5	50.000	50.332	0.332	61085.40	0.66
std6	100.000	99.871	0.129	120833.68	0.13

77Se FQ Block 1

Intercept CPS=2139.169008 Intercept Conc=29.740914 Sensitivity=71.926809 Correlation Coeff=0.999923

Label	Defined	Measured	Error	Mean CPS	% Erro
std1 1	0.000	-0.210	0.210	2124.07	0.00
std2	0.500	0.917	0.417	2205.12	83.39
std3	5.000	4.266	0.734	2446.02	14.68
std4	25.000	25.332	0.332	3961.21	1.33
std5	50.000	50.486	0.486	5770.50	0.97
std6	100.000	99.708	0.292	9310.88	0.29

Intercept CPS=1549.228820 Intercept Conc=6.519791 Sensitivity=237.619392 Correlation Coeff=0.999973

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.290	0.290	1480.42	0.00
std2	0.500	0.729	0.229	1722.41	45.76
std3	5.000	4.844	0.156	2700.29	3.12
std4	25.000	24.976	0.024	7484.08	0.09
std5	50.000	50.456	0.456	13538.45	0.91
std6	100.000	99.785	0.215	25260.03	0.22

82Se FQ Block 1

Intercept CPS=26.933741 Intercept Conc=0.267327 Sensitivity=100.751905 Correlation Coeff=0.999959

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.201	0.201	6.73	0.00
std2	0.500	0.794	0.294	106.90	58.73
std3	5.000	4.743	0.257	504.76	5.15
std4	25.000	24.809	0.191	2526.48	0.76
std5	50.000	50.592	0.592	5124.21	1.18
std6	100.000	99.763	0.237	10078.25	0.24

88Sr FQ Block 1

Intercept CPS=2075.064259 Intercept Conc=0.194459 Sensitivity=10670.958894 Correlation Coeff=0.999982

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.186	0.186	92.43	0.00
std2	0.500	0.872	0.372	11381.29	74.42
std3	5.000	4.796	0.204	53252.43	4.08
std4	25.000	25.147	0.147	270414.10	0.59
std5	50.000	49.799	0.201	533475.99	0.40

std6 100.000 100.072 0.072 1069942.21 0.07

Intercept CPS=617.628459 Intercept Conc=0.292321 Sensitivity=2112.844876 Correlation Coeff=0.999959

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.251	0.251	87.67	0.00
std2	0.500	0.766	0.266	2236.89	53.28
std3	5.000	4.527	0.473	10183.06	9.45
std4	25.000	25.409	0.409	54302.15	1.63
std5	50.000	50.257	0.257	106802.35	0.51
std6	100.000	99.792	0.208	211462.15	0.21

97Mo FQ Block 1

Intercept CPS=336.002821 Intercept Conc=0.251155 Sensitivity=1337.827902 Correlation Coeff=0.999974

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.212	0.212	52.35	0.00
std2	0.500	0.800	0.300	1406.79	60.08
std3	5.000	4.653	0.347	6560.57	6.95
std4	25.000	25.368	0.368	34274.67	1.47
std5	50.000	49.933	0.067	67138.22	0.13
std6	100.000	99.957	0.043	134061.36	0.04

98Mo FQ Block 1

Intercept CPS=634.009695 Intercept Conc=0.181182 Sensitivity=3499.297069 Correlation Coeff=0.999984

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.141	0.141	139.83	0.00
std2	0.500	0.816	0.316	3489.18	63.19
std3	5.000	4.682	0.318	17019.39	6.35

106Cd FQ Block 1

Intercept CPS=-444.966001 Intercept Conc=-3.063328 Sensitivity=145.255764 Correlation Coeff=0.999935

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.506	0.506	-518.53	0.00
std2	0.500	0.878	0.378	-317.41	75.63
std3	5.000	5.190	0.190	308.87	3.79
std4	25.000	24.548	0.452	3120.74	1.81
std5	50.000	50.578	0.578	6901.80	1.16
std6	100.000	99.813	0.187	14053.39	0.19

107Ag FQ Block 1

Intercept CPS=-1795.028062 Intercept Conc=-0.252985 Sensitivity=7095.397874 Correlation Coeff=0.999878

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.403	0.403	1064.56	0.00
std2	0.500	1.279	0.779	7276.84	155.71
std3	5.000	4.464	0.536	29881.87	10.71
std4	25.000	24.124	0.876	169371.69	3.51
std5	50.000	49.977	0.023	352810.12	0.05
std6	100.000	100.254	0.254	709544.07	0.25

108Cd FQ Block 1

Intercept CPS=10.585674 Intercept Conc=0.096000 Sensitivity=110.267696 Correlation Coeff=0.999865

 Label
 Defined
 Measured
 Error
 Mean CPS
 % Error

 std1 1
 0.000
 -0.088
 0.088
 0.93
 0.00

109Ag FQ Block 1

Intercept CPS=-2017.771869 Intercept Conc=-0.292511 Sensitivity=6898.098520 Correlation Coeff=0.999865

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.440	0.440	1019.32	0.00
std2	0.500	1.312	0.812	7033.89	162.44
std3	5.000	4.462	0.538	28761.89	10.76
std4	25.000	24.080	0.920	164089.35	3.68
std5	50.000	49.905	0.095	342232.38	0.19
std6	100.000	100.300	0.300	689863.33	0.30

111Cd FQ Block 1

Intercept CPS=-190.185926 Intercept Conc=-0.114663 Sensitivity=1658.647587 Correlation Coeff=0.999977

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.100	0.100	-355.93	0.00
std2	0.500	0.946	0.446	1378.89	89.20
std3	5.000	4.972	0.028	8056.50	0.56
std4	25.000	24.706	0.294	40788.41	1.18
std5	50.000	49.807	0.193	82421.42	0.39
std6	100 000	100 169	0.169	165955 49	0.17

114Cd FQ Block 1

Intercept CPS=-291.915871 Intercept Conc=-0.072862 Sensitivity=4006.448618 Correlation Coeff=0.999981

118Sn FQ Block 1

Intercept CPS=993.462274 Intercept Conc=0.241229 Sensitivity=4118.329388 Correlation Coeff=0.999975

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.177	0.177	262.52	0.00
std2	0.500	0.749	0.249	4079.05	49.85
std3	5.000	4.622	0.378	20028.61	7.56
std4	25.000	25.183	0.183	104706.72	0.73
std5	50.000	50.302	0.302	208154.04	0.60
std6	100.000	99.821	0.179	412088.28	0.18

121Sb FQ Block 1

Intercept CPS=867.175692 Intercept Conc=0.142087 Sensitivity=6103.120417 Correlation Coeff=0.999908

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.005	0.005	898.03	0.00
std2	0.500	0.973	0.473	6806.12	94.62
std3	5.000	4.462	0.538	28097.40	10.77
std4	25.000	24.525	0.475	150548.03	1.90
std5	50.000	50.783	0.783	310803.55	1.57
std6	100.000	99.752	0.248	609663.16	0.25

123Sb FQ Block 1 600000_T 400000 200000 30 40 70 0 10 20 50 60 80 90 100 Concentration

Intercept CPS=871.992134 Intercept Conc=0.185481 Sensitivity=4701.247899 Correlation Coeff=0.999903

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.033	0.033	718.74	0.00
std2	0.500	0.990	0.490	5524.58	97.93
std3	5.000	4.499	0.501	22023.97	10.02
std4	25.000	24.483	0.517	115972.61	2.07
std5	50.000	50.818	0.818	239778.93	1.64
std6	100.000	99.743	0.257	469788.36	0.26

137Ba FQ Block 1

Intercept CPS=413.522391 Intercept Conc=0.208766 Sensitivity=1980.793084 Correlation Coeff=0.999988

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.194	0.194	29.53	0.00
std2	0.500	0.855	0.355	2106.63	70.95
std3	5.000	4.942	0.058	10201.82	1.17
std4	25.000	24.874	0.126	49683.02	0.51
std5	50.000	49.982	0.018	99418.02	0.04
std6	100 000	100 042	0.042	198575 26	0.04

203TI FQ Block 1

Intercept CPS=-58.552869 Intercept Conc=-0.007411 Sensitivity=7901.020989 Correlation Coeff=0.999959

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	0.029	0.029	173.31	0.00
std2	0.500	0.985	0.485	7727.60	97.09
std3	5.000	4.954	0.046	39079.67	0.93
std4	25.000	24.393	0.607	192672.66	2.43
std5	50.000	49.974	0.026	394784.39	0.05

std6 100.000 100.165 0.165 791345.34 0.16

Intercept CPS=-4780.116610 Intercept Conc=-0.247054 Sensitivity=19348.473236 Correlation Coeff=0.999867

Label	Defined	Measured	Error	Mean CPS	% Erro
std1 1	0.000	0.265	0.265	340.51	0.00
std2	0.500	1.209	0.709	18612.83	141.81
std3	5.000	5.008	0.008	92109.23	0.15
std4	25.000	24.137	0.863	462227.16	3.45
std5	50.000	49.340	0.660	949879.62	1.32
std6	100.000	100.542	0.542	1940549.36	0.54

206Pb FQ Block 1

Intercept CPS=303.639936 Intercept Conc=0.049207 Sensitivity=6170.625301 Correlation Coeff=0.999974

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.041	0.041	52.29	0.00
std2	0.500	0.963	0.463	6245.54	92.59
std3	5.000	4.917	0.083	30644.92	1.66
std4	25.000	24.635	0.365	152317.50	1.46
std5	50.000	49.865	0.135	308003.16	0.27
std6	100.000	100.160	0.160	618356.29	0.16

207Pb FQ Block 1

Intercept CPS=251.890725 Intercept Conc=0.044079 Sensitivity=5714.543264 Correlation Coeff=0.999968

Label	Defined	Measured	Error	Mean CPS	% Error
std1 1	0.000	-0.039	0.039	31.26	0.00
std2	0.500	0.974	0.474	5817.07	94.77
std3	5.000	4.983	0.017	28729.23	0.33

 std4
 25.000
 24.546
 0.454
 140522.90
 1.81

 std5
 50.000
 49.846
 0.154
 285101.66
 0.31

 std6
 100.000
 100.189
 0.189
 572784.29
 0.19

208Pb FQ Block 1

Intercept CPS=-304.852732 Intercept Conc=-0.011866 Sensitivity=25690.840285 Correlation Coeff=0.999960

Label	Defined	Measured	Error	Mean CPS	% Erro
std1 1	0.000	0.019	0.019	184.89	0.00
std2	0.500	1.013	0.513	25721.79	102.61
std3	5.000	4.951	0.049	126887.64	0.98
std4	25.000	24.507	0.493	629308.10	1.97
std5	50.000	49.773	0.227	1278411.39	0.45
std6	100.000	100.236	0.236	2574853.76	0.24

Dilution Corrected Concentrations

std1 1 5/7/2011 14:54:11

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
itan mine	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:55:16	99.196%	-0.149	-0.183	0.002	0.000	2.787	0.773	1.316	2.707	<u>7 0.000</u>
2 14:56:22	101.701%	-0.145	-0.103	-0.133	0.000	2.719	0.884	1.388	2.619	т 0.000
			-0.358	-0.135	0.000		0.824		2.550	<u>T 0.000</u>
	99.102%	-0.136				2.830		1.268		
X	100.000%	-0.143	-0.296	-0.085	0.000	2.779	0.827	1.324	2.625	<u>т 0.000</u>
σ	1.474%	0.007	0.098	0.076	0.000	0.056	0.056	0.060	0.079	<u>т 0.000</u>
%RSD	1.474	4.746	33.150	89.010	0.000	2.023	6.721	4.564	3.001	T 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 14.55.17	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:55:16	3.954	-20.630	-14.610	100.032%	-0.532	-0.095	-0.151	-0.420	191.700	-0.104
2 14:56:22	3.031	-20.970	-13.770	100.874%	-0.445	-0.135	-0.169	-0.205	190.200	-0.103
3 14:57:27	3.361	-21.780	-14.170	99.094%	-0.532	-0.010	-0.130	-0.264	182.600	-0.107
X	3.449	-21.130	-14.180	100.000%	-0.503	-0.080	-0.150	-0.296	188.200	-0.104
σ	0.468	0.590	0.416	0.891%	0.050	0.063	0.020	0.111	4.879	0.002
%RSD	13.560	2.794	2.936	0.891	10.000	79.380	13.000	37.550	2.593	1.821
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:55:16	2.469	1.014	-0.094	-0.249	-0.352	-0.242	-0.312	-0.518	-0.399	-0.649
2 14:56:22	2.522	1.475	-0.094	-0.262	-0.341	-0.245	-0.324	-0.515	-0.561	-0.602
3 14:57:27	1.834	1.695	-0.093	-0.213	-0.350	-0.245	-0.319	-0.542	-0.528	-0.655
X	2.275	1.395	-0.094	-0.241	-0.348	-0.244	-0.319	-0.525	-0.496	-0.635
σ	0.383	0.347	0.000	0.025	0.006	0.002	0.006	0.015	0.085	0.029
%RSD	16.840	24.890	0.486	10.440	1.621	0.746	1.865	2.869	17.200	4.523
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:55:16	-0.230	0.168	-0.487	0.000	0.000	-0.225	-0.187	99.758%	-0.250	-0.208
2 14:56:22	-0.234	-0.456	-0.335	0.000	0.000	-0.190	-0.186	102.187%	-0.253	-0.212
3 14:57:27	-0.184	-0.342	-0.047	0.000	0.000	-0.187	-0.185	98.054%	-0.250	-0.216
X	-0.216	-0.210	-0.290	0.000	0.000	-0.201	-0.186	100.000%	-0.251	-0.212
σ	0.027	0.333	0.224	0.000	0.000	0.021	0.001	2.077%	0.002	0.004
%RSD	12.710	158.400	77.210	0.000	0.000	10.580	0.704	2.077	0.644	1.918
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:55:16	-0.135	99.410%	-0.186	0.399	0.211	-0.096	0.444	-0.082	-0.058	99.920%
2 14:56:22	-0.140	102.395%	-0.627	0.407	0.242	-0.071	0.444	-0.105	-0.080	101.818%
3 14:57:27	-0.149	98.194%	-0.706	0.403	0.245	-0.096	0.433	-0.113	-0.075	98.262%
X	-0.141	100.000%	-0.506	0.403	0.233	-0.088	0.440	-0.100	-0.071	100.000%
σ	0.007	2.162%	0.280	0.004	0.019	0.015	0.006	0.016	0.011	1.780%
%RSD	4.869	2.162	55.300	1.101	8.062	16.730	1.362	15.850	15.900	1.780
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	dqq	ppb	ppb	ppb	dqq	ppb	ppb	dqq	ppb	ppb
1 14:55:16	-0.176	0.008	-0.041	-0.187	99.043%	99.116%	0.031	0.265	-0.042	-0.038
2 14:56:22	-0.191	0.005	-0.040	-0.196	102.060%	102.089%	0.029	0.264	-0.039	-0.037
3 14:57:27	-0.166	0.002	-0.016	-0.199	98.898%	98.795%	0.028	0.265	-0.041	-0.042
X	-0.178	0.005	-0.033	-0.194	100.000%	100.000%	0.029	0.265	-0.041	-0.039
σ	0.013	0.003	0.014	0.006	1.785%	1.816%	0.002	0.001	0.001	0.003
%RSD	7.112	63.240	43.560	3.123	1.785	1.816	5.154	0.287	3.269	6.642
Run Time	208Pb	209Bi	220Bkg	238U	1.703	1.010	5.154	0.207	3.207	0.042
a.i iiiic	ppb	ppb	ppb	ppb						
1 14:55:16	0.019	99.741%	0.000	0.000	ı					
2 14:56:22	0.019	102.132%	0.000	0.000						
3 14:57:27	0.019	98.128%	0.000	0.000						
X	0.019	100.000%	0.000	0.000						
σ %RSD	0.001	2.015%	0.000	0.000						
70K3D	3.695	2.015	0.000	0.000						

std2 5/7/2011 14:58:29

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:59:35	101.370%	0.777	0.841	0.862	0.000	5.282	3.343	3.787	4.192	<u>7 0.000</u>
2 15:00:40	101.370%	0.777	0.479	0.692	0.000	5.208	3.863	4.264	3.855	<u>⊺ 0.000</u>
3 15:01:45	103.770%	0.919	0.484	0.782	0.000	4.960	3.549	3.916	3.717	<u>T 0.000</u>
X	102.512%	0.824	0.601	0.779	0.000	5.150	3.585	3.989	3.922	<u>т 0.000</u>
σ	1.204%	0.083	0.208	0.085	0.000	0.169	0.262	0.247	0.245	<u>т 0.000</u>
%RSD	1.174	10.010	34.530	10.880	0.000	3.272	7.308	6.183	6.234	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 14 50 05	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:59:35	6.937	2.111	8.791	98.948%	0.581	0.917	0.909	0.381	194.300	0.949
2 15:00:40	3.696	2.806	9.020	101.818%	0.555	0.927	0.862	0.814	188.800	0.948
3 15:01:45	4.137	4.736	7.608	103.133%	0.553	0.836	0.863	1.304	185.900	0.894
X	4.923	3.217	8.473	101.299%	0.563	0.893	0.878	0.833	189.600	0.930
σ	1.758	1.360	0.758	2.140%	0.016	0.050	0.027	0.462	4.257	0.031
%RSD	35.700	42.270	8.940	2.113	2.765	5.551	3.056	55.440	2.245	3.381
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:59:35	5.519	2.892	0.925	0.825	0.595	0.856	0.860	1.009	1.073	0.804
2 15:00:40	4.500	1.724	0.897	0.838	0.607	0.839	0.750	1.081	1.138	0.917
3 15:01:45	4.018	1.892	0.883	0.826	0.638	0.793	0.774	0.964	0.882	0.836
X	4.679	2.169	0.901	0.830	0.614	0.830	0.794	1.018	1.031	0.852
σ	0.766	0.631	0.021	0.007	0.022	0.032	0.058	0.059	0.133	0.058
%RSD	16.370	29.110	2.359	0.861	3.626	3.899	7.315	5.803	12.910	6.816
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:59:35	0.745	1.507	0.895	0.000	0.000	0.800	0.905	99.705%	0.829	0.904
2 15:00:40	0.796	0.971	0.658	0.000	0.000	0.840	0.867	101.301%	0.761	0.782
3 15:01:45	0.760	0.273	0.634	0.000	0.000	0.741	0.844	103.598%	0.709	0.715
X	0.767	0.917	0.729	0.000	0.000	0.794	0.872	101.535%	0.766	0.800
σ	0.026	0.619	0.144	0.000	0.000	0.050	0.031	1.957%	0.060	0.096
%RSD	3.447	67.510	19.800	0.000	0.000	6.317	3.533	1.927	7.806	12.010
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:59:35	0.847	99.899%	1.247	1.246	0.188	0.916	1.323	0.924	0.947	99.842%
2 15:00:40	0.832	100.914%	0.542	1.315	0.249	1.135	1.332	0.910	0.908	101.154%
3 15:01:45	0.768	104.178%	0.846	1.275	0.217	0.949	1.281	1.004	0.925	104.089%
X	0.816	101.664%	0.878	1.279	0.218	1.000	1.312	0.946	0.927	101.695%
σ	0.042	2.235%	0.353	0.034	0.030	0.118	0.027	0.051	0.020	2.175%
%RSD	5.122	2.199	40.230	2.691	13.980	11.830	2.094	5.390	2.152	2.138
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 14:59:35	0.780	1.048	1.041	0.859	99.866%	99.654%	0.971	1.222	0.945	0.984
2 15:00:40	0.792	0.940	0.997	0.878	100.575%	100.764%	1.010	1.229	1.001	0.992
3 15:01:45	0.676	0.931	0.931	0.827	103.674%	103.255%	0.975	1.176	0.943	0.945
X	0.749	0.973	0.990	0.855	101.372%	101.224%	0.986	1.209	0.963	0.974
σ	0.063	0.065	0.056	0.026	2.025%	1.844%	0.022	0.029	0.033	0.025
%RSD	8.463	6.715	5.619	3.013	1.998	1.822	2.185	2.393	3.439	2.573
Run Time	208Pb	209Bi	220Bkg	238U						
[ppb	ppb	ppb	ppb						
1 14:59:35	1.009	100.418%	0.000	0.000						
2 15:00:40	1.042	100.386%	0.000	0.000						
3 15:01:45	0.988	103.384%	0.000	0.000						
X	1.013	101.396%	0.000	0.000						
σ										
•	0.027	1.722%	0.000	0.000						
%RSD	0.027 2.705	1.722% 1.698	0.000 0.000	0.000						

std3 5/7/2011 15:02:47

User Pre-dilution: 1.000										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:03:52	102.777%	5.165	4.854	5.053	0.000	7.562	5.864	6.510	7.376	<u>T 0.000</u>
2 15:04:58	103.015%	5.061	5.007	4.937	0.000	7.693	6.149	6.802	7.300	<u>T 0.000</u>
3 15:06:03	105.825%	4.826	4.891	5.020	0.000	7.669	6.402	6.606	7.178	<u>т 0.000</u>
X	103.872%	5.017	4.917	5.003	0.000	7.641	6.138	6.639	7.285	<u>т 0.000</u>
σ	1.695%	0.174	0.080	0.060	0.000	0.070	0.269	0.149	0.100	т 0.000
%RSD	1.632	3.464	1.618	1.198	0.000	0.914	4.385	2.245	1.371	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:03:52	7.354	-9.004	-2.499	101.159%	4.676	4.727	4.914	5.040	192.300	4.992
2 15:04:58	5.872	-11.470	-2.769	102.083%	4.769	4.781	4.896	4.588	191.400	4.971
3 15:06:03	8.165	-11.740	-3.128	101.845%	4.276	4.936	4.874	4.661	189.100	4.858
										
X	7.130	-10.740	-2.799	101.695%	4.574	4.815	4.895	4.763	190.900	4.940
σ	1.163	1.508	0.315	0.480%	0.262	0.109	0.020	0.242	1.633	0.072
%RSD	16.300	14.040	11.270	0.472	5.721	2.256	0.413	5.089	0.855	1.460
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:03:52	9.120	8.490	4.841	4.846	4.933	4.911	4.822	4.820	5.156	4.728
2 15:04:58	8.916	6.820	4.940	4.709	4.999	4.908	4.988	4.823	4.646	4.793
3 15:06:03	8.856	7.183	4.862	4.917	4.516	4.807	4.813	4.815	4.527	4.626
X	8.964	7.498	4.881	4.824	4.816	4.875	4.874	4.819	4.777	4.716
σ	0.138	0.879	0.052	0.106	0.262	0.059	0.098	0.004	0.334	0.084
%RSD	1.544	11.720	1.074	2.194	5.433	1.215	2.016	0.079	6.997	1.777
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:03:52	4.929	4.476	4.924	0.000	0.000	4.775	4.777	101.438%	4.566	4.539
2 15:04:58	4.955	3.891	4.797	0.000	0.000	4.906	4.798	102.199%	4.578	4.705
3 15:06:03	4.736	4.431	4.811	0.000	0.000	4.547	4.813	102.482%	4.437	4.714
X	4.873	4.266	4.844	0.000	0.000	4.743	4.796	102.040%	4.527	4.653
σ	0.120	0.326	0.069	0.000	0.000	0.182	0.018	0.540%	0.078	0.098
%RSD	2.461	7.632	1.431	0.000	0.000	3.833	0.383	0.529	1.733	2.113
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:03:52	4.763	101.396%	5.366	4.462	0.143	4.130	4.471	4.938	4.941	102.318%
2 15:04:58	4.650	101.750%	5.401	4.456	0.196	4.927	4.464	4.975	4.871	102.686%
3 15:06:03	4.635	102.143%	4.802	4.476	0.218	4.683	4.451	5.002	4.784	101.656%
	4.682	101.763%	5.190	4.464	0.216	4.580	4.462	4.972	4.865	101.030%
X										
σ	0.070	0.374%	0.336	0.010	0.038	0.408	0.010	0.032	0.079	0.522%
%RSD	1.499	0.368	6.472	0.228	20.650	8.914	0.233	0.644	1.616	0.510
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
4 45 00 50	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:03:52	4.627	4.384	4.494	4.877	101.896%	102.118%	4.972	4.991	4.874	5.038
2 15:04:58	4.620	4.525	4.488	4.991	101.896%	102.403%	4.904	5.040	4.896	4.961
3 15:06:03	4.619	4.477	4.516	4.957	102.510%	102.826%	4.985	4.992	4.981	4.951
X	4.622	4.462	4.499	4.942	102.101%	102.449%	4.954	5.008	4.917	4.983
σ	0.004	0.072	0.015	0.058	0.355%	0.356%	0.043	0.028	0.056	0.048
%RSD	0.097	1.604	0.327	1.184	0.347	0.348	0.877	0.561	1.148	0.959
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 15:03:52	4.950	102.115%	0.000	0.000						
2 15:04:58	4.932	102.163%	0.000	0.000						
3 15:06:03	4.971	102.597%	0.000	0.000						
х	4.951	102.292%	0.000	0.000						
σ	0.020	0.266%	0.000	0.000						
%RSD	0.400	0.260	0.000	0.000						
	0.100	5.255	3.000	3.550						

std4 5/7/2011 15:07:05

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
itan mile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:08:11	103.472%	24.120	24.560	24.340	0.000	24.680	25.650	24.550	24.680	<u>⊤ 0.000</u>
2 15:09:16	102.758%	24.540	24.910	24.270	0.000	24.180	24.910	24.200	24.470	<u>⊤ 0.000</u>
3 15:10:21	99.594%	26.030	25.440	26.130	0.000	25.230	25.940	26.110	25.480	<u>⊤ 0.000</u>
X X	101.941%	24.890	24.970	24.910	0.000	24.700	25.500	24.950	24.880	<u>т 0.000</u>
	2.064%	1.003	0.442	1.057	0.000	0.530	0.531	1.019	0.532	<u>т 0.000</u>
σ %RSD										<u>т 0.000</u>
Run Time	2.024 39K	4.030 43Ca	1.769 44Ca	4.242 45Sc	0.000 47Ti	2.144 51V	2.081 52Cr	4.084 53Cr	2.138 53CI O	55Mn
Ruii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:08:11	26.450	19.950	20.450	98.326%	25.540	24.750	24.770	24.150	198.400	24.720
2 15:09:16	23.800	24.150	20.180	100.253%	25.120	24.300	24.200	25.160	192.000	24.140
3 15:10:21	27.680	30.000	21.660	97.707%	25.550	25.180	25.400	24.920	197.100	24.950
	25.980	24.700	20.760	98.762%	25.400	24.740	24.790	24.740	197.100	24.600
X	1.981	5.043	0.791		0.243	0.437	0.598	0.530		0.421
σ %RSD	7.627	20.420	3.810	1.327% 1.344	0.243	1.764	2.413	2.140	3.353 1.712	1.709
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
Kull Illile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:08:11	26.340	25.350	24.500	24.630	24.090	24.880	25.000	24.720	25.210	24.890
2 15:09:16	25.520	25.250	24.420	24.340	24.810	24.390	24.330	24.610	24.120	24.770
3 15:10:21	27.460	25.390	25.290	25.710	25.260	25.500	25.810	25.140	24.910	25.560
X	26.440	25.330	24.740	24.890	24.720	24.920	25.040	24.830	24.750	25.070
σ	0.974	0.071	0.482	0.723	0.593	0.558	0.741	0.277	0.564	0.424
%RSD	3.683	0.281	1.947	2.903	2.397	2.238	2.959	1.117	2.278	1.690
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:08:11	24.800	25.930	24.990	0.000	0.000	24.770	25.010	99.966%	25.200	25.190
2 15:09:16	24.410	24.340	24.370	0.000	0.000	24.600	24.810	100.611%	25.020	25.250
3 15:10:21	25.410	25.730	25.570	0.000	0.000	25.050	25.630	98.307%	26.010	25.670
X	24.870	25.330	24.980	0.000	0.000	24.810	25.150	99.628%	25.410	25.370
				0.000	0.000	0.225	0.427	1.189%	0.527	0.263
σ	0.501	0.863	0.599	0.000	0.000	0.225	0.427	1.10770		0.200
σ %RSD	0.501 2.015	0.863 3.406	0.599 2.399	0.000	0.000	0.225	1.698	1.193	2.074	1.035
%RSD Run Time	2.015	3.406 103Rh ppb	2.399 106Cd ppb	0.000 107Ag ppb	0.000	0.908	1.698	1.193	2.074	1.035 115In ppb
	2.015 98Mo	3.406 103Rh	2.399 106Cd ppb 24.500	0.000 107Ag ppb 24.170	0.000 108Mo O ppb 0.347	0.908 108Cd	1.698 109Ag	1.193 111Cd	2.074 114Cd	1.035 1151n ppb 99.064%
%RSD Run Time	2.015 98Mo ppb	3.406 103Rh ppb	2.399 106Cd ppb	0.000 107Ag ppb	0.000 108Mo O ppb	0.908 108Cd ppb	1.698 109Ag ppb	1.193 111Cd ppb	2.074 114Cd ppb	1.035 115In ppb
	2.015 98Mo ppb 25.110	3.406 103Rh ppb 99.512%	2.399 106Cd ppb 24.500	0.000 107Ag ppb 24.170	0.000 108Mo O ppb 0.347 0.252 0.282	0.908 108Cd ppb 25.030	1.698 109Ag ppb 23.970	1.193 111Cd ppb 24.770	2.074 114Cd ppb 24.540	1.035 115In ppb 99.064% 100.765% 98.587%
%RSD Run Time 1 15:08:11 2 15:09:16	2.015 98Mo ppb 25.110 24.650	3.406 103Rh ppb 99.512% 100.795%	2.399 106Cd ppb 24.500 24.540	0.000 107Ag ppb 24.170 23.820	0.000 108Mo O ppb 0.347 0.252	0.908 108Cd ppb 25.030 23.690	1.698 109Ag ppb 23.970 23.680	1.193 111Cd ppb 24.770 24.450	2.074 114Cd ppb 24.540 24.370	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472%
%RSD Run Time 1 15:08:11 2 15:09:16 3 15:10:21	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148%	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145%
%RSD Run Time 1 15:08:11 2 15:09:16 3 15:10:21 x σ %RSD	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151
%RSD Run Time 1 15:08:11 2 15:09:16 3 15:10:21 x σ	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203TI	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb
%RSD Run Time 1 15:08:11 2 15:09:16 3 15:10:21 X G %RSD Time	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203TI	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb
## RSD Run Time 1	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb 25.020	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb ppb 24.310	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb 24.300	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba ppb	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb 99.819%	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho ppb	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203TI ppb 24.330	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb 24.000	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb 24.400	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb ppb 24.640
## RSD Run Time 1	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb 25.020 24.890	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb ppb 24.310 24.060	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb 24.300 24.040	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba ppb 24.860 24.420	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb 99.819% 101.161%	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho ppb 100.155% 101.842%	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203TI ppb 24.330 24.230	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb 24.000 23.910	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb 24.400 24.460	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb ppb 24.640 24.300
## RSD Run Time 1	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb 25.020 24.890 25.640	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb ppb 24.310 24.060 25.200	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb 24.300 24.040 25.110	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba ppb 24.860 24.420 25.340	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb 99.819% 101.161% 99.023%	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho ppb 100.155% 101.842% 99.043%	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203T1 ppb 24.330 24.230 24.620	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb 24.000 23.910 24.500	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb 24.400 24.460 25.050	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb ppb 24.640 24.300 24.690
%RSD Run Time 1 15:08:11 2 15:09:16 3 15:10:21	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb 25.020 24.890 25.640 25.180	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb ppb 24.310 24.060 25.200 24.530	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb 24.300 24.040 25.110 24.480	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba ppb 24.860 24.420 25.340 24.870	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb 99.819% 101.161% 99.023% 100.001%	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho ppb 100.155% 101.842% 99.043% 100.347%	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203T1 ppb 24.330 24.230 24.620 24.390	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb 24.000 23.910 24.500 24.140	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb 24.400 24.460 25.050 24.640	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb ppb 24.640 24.300 24.690 24.550
## RSD Run Time 1	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb 25.020 24.890 25.640 25.180 0.402	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb ppb 24.310 24.060 25.200 24.530 0.596	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb 24.300 24.040 25.110 24.480 0.561	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba ppb 24.860 24.420 25.340 24.870 0.459	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb 99.819% 101.161% 99.023% 100.001% 1.081%	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho ppb 100.155% 101.842% 99.043% 100.347% 1.409%	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203T1 ppb 24.330 24.230 24.620 24.390 0.205	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb 24.000 23.910 24.500 24.140 0.316	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb 24.400 24.460 25.050 24.640 0.358	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb ppb 24.640 24.300 24.690 24.550 0.212
## RSD Run Time 1	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb 25.020 24.890 25.640 25.180 0.402 1.597	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb ppb 24.310 24.060 25.200 24.530 0.596 2.428	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb 24.300 24.040 25.110 24.480 0.561 2.291	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba ppb 24.860 24.420 25.340 24.870 0.459 1.846	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb 99.819% 101.161% 99.023% 100.001%	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho ppb 100.155% 101.842% 99.043% 100.347%	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203T1 ppb 24.330 24.230 24.620 24.390	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb 24.000 23.910 24.500 24.140	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb 24.400 24.460 25.050 24.640	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb ppb 24.640 24.300 24.690 24.550
## RSD Run Time 1	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb 25.020 24.890 25.640 25.180 0.402 1.597	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb ppb 24.310 24.060 25.200 24.530 0.596 2.428	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb 24.300 24.040 25.110 24.480 0.561 2.291	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba ppb 24.860 24.420 25.340 24.870 0.459 1.846 238U	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb 99.819% 101.161% 99.023% 100.001% 1.081%	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho ppb 100.155% 101.842% 99.043% 100.347% 1.409%	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203T1 ppb 24.330 24.230 24.620 24.390 0.205	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb 24.000 23.910 24.500 24.140 0.316	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb 24.400 24.460 25.050 24.640 0.358	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb ppb 24.640 24.300 24.690 24.550 0.212
## RSD Run Time 1	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb 25.020 24.890 25.640 25.180 0.402 1.597 208Pb ppb	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb ppb 24.310 24.060 25.200 24.530 0.596 2.428 209Bi ppb	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb 24.300 24.040 25.110 24.480 0.561 2.291 220Bkg ppb	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba ppb 24.860 24.420 25.340 24.870 0.459 1.846 238U ppb	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb 99.819% 101.161% 99.023% 100.001% 1.081%	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho ppb 100.155% 101.842% 99.043% 100.347% 1.409%	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203T1 ppb 24.330 24.230 24.620 24.390 0.205	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb 24.000 23.910 24.500 24.140 0.316	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb 24.400 24.460 25.050 24.640 0.358	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb ppb 24.640 24.300 24.690 24.550 0.212
## RSD Run Time 1	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb 25.020 24.890 25.640 25.180 0.402 1.597 208Pb ppb 24.450	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb ppb 24.310 24.060 25.200 24.530 0.596 2.428 209Bi ppb 100.579%	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb 24.300 24.040 25.110 24.480 0.561 2.291 220Bkg ppb 0.000	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba ppb 24.860 24.420 25.340 24.870 0.459 1.846 238U ppb	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb 99.819% 101.161% 99.023% 100.001% 1.081%	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho ppb 100.155% 101.842% 99.043% 100.347% 1.409%	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203T1 ppb 24.330 24.230 24.620 24.390 0.205	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb 24.000 23.910 24.500 24.140 0.316	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb 24.400 24.460 25.050 24.640 0.358	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb ppb 24.640 24.300 24.690 24.550 0.212
%RSD Run Time 1 15:08:11 2 15:09:16 3 15:10:21	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb 25.020 24.890 25.640 25.180 0.402 1.597 208Pb ppb 24.450 24.170	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb ppb 24.310 24.060 25.200 24.530 0.596 2.428 209Bi ppb 100.579% 102.152%	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb 24.300 24.040 25.110 24.480 0.561 2.291 220Bkg ppb 0.000 0.000	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba ppb 24.860 24.420 25.340 24.870 0.459 1.846 238U ppb 0.000 0.000	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb 99.819% 101.161% 99.023% 100.001% 1.081%	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho ppb 100.155% 101.842% 99.043% 100.347% 1.409%	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203T1 ppb 24.330 24.230 24.620 24.390 0.205	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb 24.000 23.910 24.500 24.140 0.316	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb 24.400 24.460 25.050 24.640 0.358	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb ppb 24.640 24.300 24.690 24.550 0.212
## RSD Run Time 1	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb 25.020 24.890 25.640 25.180 0.402 1.597 208Pb ppb 24.450 24.900	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb ppb 24.310 24.060 25.200 24.530 0.596 2.428 209Bi ppb 100.579% 102.152% 100.676%	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb 24.300 24.040 25.110 24.480 0.561 2.291 220Bkg ppb 0.000 0.000	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba ppb 24.860 24.420 25.340 24.870 0.459 1.846 238U ppb 0.000 0.000 0.000	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb 99.819% 101.161% 99.023% 100.001% 1.081%	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho ppb 100.155% 101.842% 99.043% 100.347% 1.409%	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203T1 ppb 24.330 24.230 24.620 24.390 0.205	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb 24.000 23.910 24.500 24.140 0.316	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb 24.400 24.460 25.050 24.640 0.358	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb ppb 24.640 24.300 24.690 24.550 0.212
## RSD Run Time 1 15:08:11 2 15:09:16 3 15:10:21 X G G G G G G G G G	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb 25.020 24.890 25.640 25.180 0.402 1.597 208Pb ppb 24.450 24.900 24.510	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb ppb 24.310 24.060 25.200 24.530 0.596 2.428 209Bi ppb 100.579% 102.152% 100.676% 101.136%	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb 24.300 24.040 25.110 24.480 0.561 2.291 220Bkg ppb 0.000 0.000 0.000	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba ppb 24.860 24.420 25.340 24.870 0.459 1.846 238U ppb 0.000 0.000 0.000	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb 99.819% 101.161% 99.023% 100.001% 1.081%	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho ppb 100.155% 101.842% 99.043% 100.347% 1.409%	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203T1 ppb 24.330 24.230 24.620 24.390 0.205	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb 24.000 23.910 24.500 24.140 0.316	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb 24.400 24.460 25.050 24.640 0.358	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb ppb 24.640 24.300 24.690 24.550 0.212
%RSD Run Time 1 15:08:11 2 15:09:16 3 15:10:21 x g %RSD Run Time 1 15:08:11 2 15:09:16 3 15:10:21 x g %RSD Run Time 1 15:08:11 2 15:09:16 3 15:10:21 x g %RSD Run Time	2.015 98Mo ppb 25.110 24.650 25.680 25.140 0.515 2.050 118Sn ppb 25.020 24.890 25.640 25.180 0.402 1.597 208Pb ppb 24.450 24.900	3.406 103Rh ppb 99.512% 100.795% 98.506% 99.604% 1.148% 1.152 121Sb ppb 24.310 24.060 25.200 24.530 0.596 2.428 209Bi ppb 100.579% 102.152% 100.676%	2.399 106Cd ppb 24.500 24.540 24.600 24.550 0.051 0.209 123Sb ppb 24.300 24.040 25.110 24.480 0.561 2.291 220Bkg ppb 0.000 0.000	0.000 107Ag ppb 24.170 23.820 24.380 24.120 0.285 1.182 137Ba ppb 24.860 24.420 25.340 24.870 0.459 1.846 238U ppb 0.000 0.000 0.000	0.000 108Mo O ppb 0.347 0.252 0.282 0.294 0.048 16.480 159Tb ppb 99.819% 101.161% 99.023% 100.001% 1.081%	0.908 108Cd ppb 25.030 23.690 24.180 24.300 0.678 2.792 165Ho ppb 100.155% 101.842% 99.043% 100.347% 1.409%	1.698 109Ag ppb 23.970 23.680 24.590 24.080 0.465 1.930 203T1 ppb 24.330 24.230 24.620 24.390 0.205	1.193 111Cd ppb 24.770 24.450 24.890 24.710 0.227 0.917 205TI ppb 24.000 23.910 24.500 24.140 0.316	2.074 114Cd ppb 24.540 24.370 25.290 24.730 0.485 1.963 206Pb ppb 24.400 24.460 25.050 24.640 0.358	1.035 1151n ppb 99.064% 100.765% 98.587% 99.472% 1.145% 1.151 207Pb ppb 24.640 24.300 24.690 24.550 0.212

std5 5/7/2011 15:11:24

Run Time 64.1 98e 108 118 113C 228M 258M 258M 226M 27A1 37C1	User Pre-dilution: 1.00	0									
1 51229	Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
\$\begin{array}{c c c c c c c c c c c c c c c c c c c		ppb	ppb	ppb	ppb		ppb		ppb		ppb
3 5:14 39	1 15:12:29	101.497%	50.400	48.910	49.770	0.000	47.610	50.270	49.560	47.950	<u>T 0.000</u>
X	2 15:13:34	100.990%	50.030	50.090	49.290	0.000	47.820	46.900	47.560	47.600	<u>T 0.000</u>
Control Con	3 15:14:39	102.090%	48.880	52.770	50.160	0.000	47.830	50.280	48.280	48.250	<u>T 0.000</u>
Number 0.542 1.591 3.910 0.882 0.000 0.262 3.968 2.085 0.674 1.0000	X	101.526%	49.770	50.590	49.740	0.000	47.750	49.150	48.460	47.930	<u>т 0.000</u>
No. Time 39K 43Ca 44Cs 45Sc 44Ti 51V 52Cr 53Cr 53Cl 55Kn 50Dl 15tl 52Dl 50	σ	0.550%	0.792	1.978	0.439	0.000	0.125	1.950	1.011	0.323	<u>т 0.000</u>
1 15 12 22	%RSD	0.542	1.591	3.910	0.882	0.000	0.262	3.968	2.085	0.674	<u>т 0.000</u>
1 15:12:29	Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
2 15:13:34		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
3 15:14:39	1 15:12:29	47.660	59.850	60.210	98.076%	50.930	50.140	50.050	49.690	196.600	49.920
A	2 15:13:34	47.310	55.570	58.830	97.811%	50.390	49.550	49.560	51.460	192.700	49.700
Description Company	3 15:14:39	49.190	67.290	58.600	96.143%	51.940	50.660	50.580	51.140	190.600	50.560
Name	X	48.060	60.910	59.210	97.344%	51.090	50.120	50.060	50.760	193.300	50.060
Time	σ	0.995	5.933	0.869	1.048%	0.786	0.558	0.513	0.946	3.061	0.444
Part Time 56Fe 57Fe 59Co 60Ni 62Ni 63Cu 65Cu 667n 677n 682n	%RSD	2.071	9.742	1.467	1.077	1.538	1.113	1.025	1.864	1.583	0.887
POB	Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
15:12:29		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
3 15:14:39 47.970 47.950 50.520 50.360 51.130 50.440 50.300 50.740 51.380 51.490 x	1 15:12:29	47.690	48.300	49.920	50.330	51.250	50.200	50.200		50.470	50.640
3 15:14:39 47.970	2 15:13:34	47.080	48.600	49.590			49.910		50.260		
X 47.580	3 15:14:39	47.970	47.950	50.520			50.440	50.300	50.740		
Color Col	X										
Name											
Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 97Mo ppb											
Pob Pob	Run Time						T T				
1 15:12:29 50.410 50.620 50.310 0.000 0.000 50.310 49.820 99.132% 50.760 50.180 2 15:13:34 49.900 50.640 50.200 0.000 0.000 50.440 49.460 99.170% 49.670 49.390 3 15:14:39 50.680 50.190 50.880 0.000 0.000 50.590 49.800 98.964% 50.260 49.930 σ	<u> </u>										
2 15:13:34	1 15:12:29										
3 15:14:39 50.680 50.190 50.850 0.000 0.000 51.030 50.120 98.589% 50.340 50.230 x 50.330 50.490 50.460 0.000 0.000 50.590 49.800 98.944% 50.260 49.930 0.397 0.255 0.350 0.000 0.000 0.000 0.758 0.665 0.328 1.098 0.498 0.4980 0.4980 0.4980 0.008 0.4980 0.49		49.900	50.640	50.200	0.000	0.000	50.440	49.460	99.170%	49.670	49.390
X 50.330 50.490 50.460 0.000 0.000 50.590 49.800 98.964% 50.260 49.930 σ											
0.397											
Number N											
Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In ppb											
Part Part											
1 15:12:29	Kun mine										
2 15:13:34 49.860 99.537% 49.380 49.570 0.608 52.080 49.390 49.570 49.200 100.187% 3 15:14:39 50.330 98.916% 50.950 50.430 0.347 49.860 50.250 50.050 50.480 98.388% x 50.040 99.368% 50.580 49.980 0.453 51.030 49.910 49.810 49.950 99.141% σ 0.257 0.395% 1.060 0.433 0.137 1.111 0.457 0.242 0.669 0.948% wssp 0.514 0.398 2.095 0.866 30.240 2.177 0.916 0.485 1.340 0.956 Run Time 118Sn 121Sb 123Sb 137Ba 1597b 165Ho 203Tl 206Pb 207Pb ppb "><th>1 15:12:29</th><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1 15:12:29		•								
3 15:14:39 50.330 98.916% 50.950 50.430 0.347 49.860 50.250 50.050 50.480 98.338% x											
X 50.040 99.368% 50.580 49.980 0.453 51.030 49.910 49.810 49.950 99.141% σ 0.257 0.395% 1.060 0.433 0.137 1.111 0.457 0.242 0.669 0.948% 9/885D 0.514 0.398 2.095 0.866 30.240 2.177 0.916 0.485 1.340 0.956 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb 1 15:12:29 50.350 50.660 50.990 50.980 99.98% 100.706% 49.950 49.260 49.910 49.840 2 15:13:34 49.490 50.170 50.140 48.940 101.059% 101.569% 50.040 49.460 49.600 49.480 3 15:14:39 51.070 51.520 51.330 50.020 100.128% 100.400% 49.930 49.290 50.090 50.220 X 50.300 50.780 50.820 49.980 100.365% 100.892% 49.970 49.340 49.870 49.850 σ 0.790 0.679 0.615 1.022 0.611% 0.606% 0.055 0.108 0.247 0.372 9/88D 1.571 1.338 1.209 2.045 0.608 0.601 0.111 0.220 0.494 0.746 Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb ppb 1 15:12:29 49.820 101.433% 0.000 0.000 2 15:13:34 49.560 101.365% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000 3											
σ 0.257 0.395% 1.060 0.433 0.137 1.111 0.457 0.242 0.669 0.948% %RSD 0.514 0.398 2.095 0.866 30.240 2.177 0.916 0.485 1.340 0.956 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb											
Nerso Ners											
Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb											
Ppb Ppb											
1 15:12:29 50.350 50.660 50.990 50.980 99.908% 100.706% 49.950 49.260 49.910 49.840 2 15:13:34 49.490 50.170 50.140 48.940 101.059% 101.569% 50.040 49.460 49.600 49.480 3 15:14:39 51.070 51.520 51.330 50.020 100.128% 100.400% 49.930 49.290 50.090 50.220 x 50.300 50.780 50.820 49.980 100.365% 100.892% 49.970 49.340 49.870 49.850 σ 0.790 0.679 0.615 1.022 0.611% 0.606% 0.055 0.108 0.247 0.372 %RSD 1.571 1.338 1.209 2.045 0.608 0.601 0.111 0.220 0.494 0.746 Run Time 208Pb 209Bi 220Bkg 238U 238U 238U 49.860 101.365% 0.000 0.000 0	11.01										
2 15:13:34 49.490 50.170 50.140 48.940 101.059% 101.569% 50.040 49.460 49.600 49.480 3 15:14:39 51.070 51.520 51.330 50.020 100.128% 100.400% 49.930 49.290 50.090 50.220 χ 50.300 50.780 50.820 49.980 100.365% 100.892% 49.970 49.340 49.870 49.850 σ 0.790 0.679 0.615 1.022 0.611% 0.606% 0.055 0.108 0.247 0.372 %RSD 1.571 1.338 1.209 2.045 0.608 0.601 0.111 0.220 0.494 0.746 Run Time 208Pb 209Bi 220Bkg 238U 238U 0.601 0.111 0.220 0.494 0.746 1 15:12:29 49.820 101.433% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	1 15:12:29	-									
3 15:14:39 51.070 51.520 51.330 50.020 100.128% 100.400% 49.930 49.290 50.090 50.220 x											
x 50.300 50.780 50.820 49.980 100.365% 100.892% 49.970 49.340 49.870 49.850 σ 0.790 0.679 0.615 1.022 0.611% 0.606% 0.055 0.108 0.247 0.372 %RSD 1.571 1.338 1.209 2.045 0.608 0.601 0.111 0.220 0.494 0.746 Run Time 208Pb 209Bi 220Bkg 238U > <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>											
σ 0.790 0.679 0.615 1.022 0.611% 0.606% 0.055 0.108 0.247 0.372 %RSD 1.571 1.338 1.209 2.045 0.608 0.601 0.111 0.220 0.494 0.746 Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb 1 15:12:29 49.820 101.433% 0.000 0.000 2 15:13:34 49.560 101.365% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000											
%RSD 1.571 1.338 1.209 2.045 0.608 0.601 0.111 0.220 0.494 0.746 Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb 1 15:12:29 49.820 101.433% 0.000 0.000 2 15:13:34 49.560 101.365% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000											
Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb 1 15:12:29 49.820 101.433% 0.000 0.000 2 15:13:34 49.560 101.365% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000											
ppb ppb ppb ppb 1 15:12:29 49.820 101.433% 0.000 0.000 2 15:13:34 49.560 101.365% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000						0.000	0.001	0.111	0.220	0.474	0.740
1 15:12:29 49.820 101.433% 0.000 0.000 2 15:13:34 49.560 101.365% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000	Time Time										
2 15:13:34 49.560 101.365% 0.000 0.000 3 15:14:39 49.940 101.656% 0.000 0.000	1 15:12:29										
3 15:14:39 49.940 101.656% 0.000 0.000											
17.770 101.10070 0.000											
0.193 0.152% 0.000 0.000		49 770	1()1 485%	1111111	11 11111						
0.007 0.000 0.000	σ %RSD	49.770 0.193 0.387	0.152% 0.150	0.000	0.000						

std6 5/7/2011 15:15:42

Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii	Tillle	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	15:16:47	101.232%	98.870	97.720	98.600	0.000	91.010	93.580	93.780	92.490	<u>т 0.000</u>
2	15:17:52	99.415%	м 100.700	м 102.700	м 101.100	0.000	92.050	96.810	95.150	93.470	<u>т 0.000</u>
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							
	15:18:57	99.799%	м 100.900	98.710	м 100.700	0.000	91.530	93.870	94.610	93.260	<u>T 0.000</u>
X		100.148%	м 100.100	м 99.710	м 100.100	0.000	91.530	94.750	94.510	93.070	<u>т 0.000</u>
σ		0.957%	м 1.099	м 2.638	<u>м 1.359</u>	0.000	0.523	1.787	0.689	0.519	<u>т 0.000</u>
%RSD	Ti	0.956	м 1.097	м 2.64 <u>5</u>	м 1.357	0.000	0.571	1.886	0.729	0.558	T 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1	15:16:47	ppb 87.460	ppb 117.500	ppb 1 111.700	ppb 97.549%	ppb 98.340	ppb 99.560	ppb 99.770	ppb 98.910	ppb 192.800	ррb м 100.200
	15:17:52										
		89.920	138.500	110.500	96.237%	м 100.800	м 100.300	м 100.200	м 100.700	190.400	м 100.200
=	15:18:57	92.300	124.000	108.900	95.695%	98.960	м 100.100	м 100.100	99.510	194.100	99.820
X		89.890	126.700	110.400	96.494%	м 99.380	м 100.000	м 100.000	м 99.690	192.400	м 100.100
σ		2.416	10.770	1.401	0.953%	м 1.298	м 0.409	<u>м 0.224</u>	м 0.888	1.899	м 0.213
%RSD	Ti	2.687	8.499	1.269	0.988	м 1.306	м 0.409	м 0.224	м 0.891	0.987	м 0.213
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1	15:16:47	ppb 88.760	ppb 95.530	ppb 99.750	ppb 99.020	ppb 97.850	ppb 99.490	ppb 99.510	ppb 98.230	ppb 98.880	ppb 98.350
2	15:17:52	90.290	94.530	99.750 м 100.400	99.020 м 100.500	м 101.900	99.490		96.230 м 100.700	99.860	
								м 100.200			м 100.400
	15:18:57	89.280	95.820	м 100.000	м 100.100	98.640	м 100.300	99.960	м 100.300	м 100.400	99.700
X		89.440	95.290	м 100.100	м 99.870	м 99.460	м 99.930	м 99.880	м 99.740	м 99.700	м 99.490
σ		0.780	0.680	м 0.345	м 0.760	м 2.141	м 0.422	м 0.336	м 1.328	<u>м 0.756</u>	м 1.055
%RSD	Ti	0.872	0.714	м 0.34 <u>5</u>	м 0.761	м 2.152	м 0.423	м 0.336	м 1.332	<u>м 0.758</u>	м 1.061
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1	15:16:47	ppb 99.800	ррb м 101.100	ppb 99.580	ppb 0.000	0.000	ppb 99.830	ppb м 100.200	ppb 98.415%	ррb м 100.600	ppb 99.940
3	15:17:52 15:18:57	99.930 99.880	98.770 99.290	99.890 99.880	0.000 0.000	0.000	99.350	<u>м 100.200</u> 99.820	98.376% 97.715%	99.230 99.510	99.820
	13.16.37			99.780		0.000	м 100.100				м 100.100
X		99.870	м 99.710	0.179	0.000 0.000	0.000	м 99.760	м 100.100	98.168%	м 99.790	м 99.960
%RSD		0.066 0.066	<u>м 1.204</u> м 1.208	0.179	0.000		м 0.38 <u>5</u>	м 0.221 м 0.220	0.394% 0.401	м 0.738 0.730	м 0.144 0.144
Run	Time	98Mo	<u>м 1.206</u> 103Rh	106Cd	107Ag	0.000 108Mo O	<u>м 0.386</u> 108Сd	<u>м 0.220</u> 109Ag	111Cd	м <u>0.739</u> 114Cd	<u>м 0.144</u> 115I n
Kuii	Time	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	15:16:47	м 100.600	97.827%	99.110	м 100.700	0.785	м 101.000	м 100.200	м 100.500	99.770	99.815%
	15:17:52	м 100.100	97.926%	м 100.600	м 100.100	0.642	м 100.400	м 100.200	99.680	м 100.300	99.215%
	15:17:52	99.160	98.306%	99.740	99.970	0.478	97.580	м 100.500	м 100.300	м 100.200	97.560%
X	10.10.07	м 99.960	98.020%	м 99.810	м 100.300	0.635	м 99.680	м 100.300	м 100.200	м 100.100	98.863%
σ		м 0.746	0.253%	м 0.744	м 0.363	0.154	м 1.838	м 0.173	м 0.431	м 0.291	1.168%
%RSD		<u>м 0.743</u> м 0.747	0.258	м 0.744 м 0.745	м 0.362	24.230	<u>м 1.836</u> м 1.844	м 0.173 м 0.172	м 0.431 м 0.431	м 0.291	1.182
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
11011		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	15:16:47	99.490	97.940	98.550	99.550	100.427%	100.444%	99.810	м 100.600	99.830	м 100.100
	15:17:52	99.390	м 100.500	99.540	м 100.200	100.010%	100.741%	м 100.000	м 100.000	99.760	99.900
	15:18:57	м 100.600	м 100.800	м 101.100	м 100.300	100.300%	100.598%	м 100.700	м 101.000	м 100.900	м 100.600
Х		м 99.820	м 99.750	м 99.740	м 100.000	100.245%	100.594%	м 100.200	м 100.500	м 100.200	м 100.200
σ		<u>м 0.655</u>	<u>м 1.575</u>	м 1.310	м 0.426	0.213%	0.149%	м 0.441	м 0.488	м 0.631	м 0.363
%RSD		<u>м 0.656</u>	<u>м 1.579</u>	<u>м 1.314</u>	<u>м 0.426</u>	0.213	0.147	<u>м 0.441</u> м 0.440	<u>м 0.485</u>	<u>м 0.630</u>	<u>м 0.362</u>
Run	Time	208Pb	209Bi	220Bkg	238U	0.210	0.110	0. 110	<u> 0. 100</u>	<u> 0.000</u>	<u> 5.002</u>
		ppb	ppb	ppb	ppb						
1	15:16:47	м 100.000	102.044%	0.000	0.000						
	15:17:52	м 100.000	102.264%	0.000	0.000						
	15:18:57	м 100.600	101.257%	0.000	0.000						
X		м 100.200	101.855%	0.000	0.000						
σ		м 0.353	0.530%	0.000	0.000						
%RSD		<u>м 0.353</u> м 0.352	0.520	0.000	0.000						
		<u></u>									

std7 5/7/2011 15:19:59

User Pre-dilution: 1.00		00.	100	110	120	221-	2514	2/14-	27.41	27.01
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
4 45 04 05	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:21:05	98.965%	-0.038	3.400	3.814	0.000	тм 1015.000	м 1017.000	м 1006.000	тм 1014.000	<u>T 0.000</u>
2 15:22:10	97.989%	-0.095	2.106	2.701	0.000	<u> 7999.700</u>	994.100	997.000	<u> 7 997.300</u>	<u>T 0.000</u>
3 15:23:15	100.154%	-0.123	2.250	1.780	0.000	<u> 7 988.200</u>	990.600	998.900	<u>⊤ 991.600</u>	<u>T 0.000</u>
X	99.036%	-0.085	2.585	2.765	0.000	тм 1001.000	м 1001.000	м_1001.000	тм 1001.000	<u>т 0.000</u>
σ	1.085%	0.043	0.710	1.018	0.000	<u>тм 13.420</u>	м 14.360	<u>м 4.720</u>	<u>тм 11.390</u>	<u>т 0.000</u>
%RSD	1.095	50.810	27.440	36.820	0.000	<u>тм 1.341</u>	<u>м 1.435</u>	<u>м 0.472</u>	<u>тм 1.139</u>	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:21:05	м 1000.000	м 1026.000	м 1012.000	93.820%	-0.120	0.155	0.367	0.469	167.300	0.185
2 15:22:10	тм 1009.000	963.500	978.400	94.460%	-0.377	-0.164	0.213	0.397	170.100	0.028
3 15:23:15	994.400	м 1001.000	м 1006.000	93.879%	-0.346	-0.168	0.118	0.435	172.400	0.005
X	тм 1001.000	м 996.900	м 998.600	94.053%	-0.281	-0.059	0.233	0.434	169.900	0.073
σ	_{TM} 7.181	м 31.380	м 17.870	0.354%	0.140	0.186	0.126	0.036	2.554	0.098
%RSD	<u>тм 0.717</u>	м 3.147	<u>м 1.789</u>	0.376	49.900	314.600	54.280	8.369	1.503	135.000
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:21:05	тм 1012.000	м 1009.000	0.092	0.036	0.019	1.480	1.486	0.879	0.949	0.892
2 15:22:10	<u> 7 992.300</u>	991.300	-0.062	-0.090	-0.237	1.259	1.103	0.683	1.146	0.729
3 15:23:15	<u> 7 999.300</u>	м 1001.000	-0.077	-0.117	-0.276	1.248	1.183	0.707	1.027	0.660
X	тм 1001.000	м 1001.000	-0.016	-0.057	-0.165	1.329	1.257	0.756	1.041	0.761
σ	тм 9.811	м 9.075	0.094	0.081	0.160	0.131	0.202	0.107	0.100	0.119
%RSD	тм 0.980	м 0.907	598.900	142.600	97.190	9.844	16.070	14.160	9.567	15.650
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:21:05	0.009	-3.033	-0.369	0.000	0.000	-0.035	0.356	95.580%	0.267	0.247
2 15:22:10	-0.174	-2.763	-0.556	0.000	0.000	-0.196	0.103	95.521%	0.026	0.122
3 15:23:15	-0.205	-2.689	-0.618	0.000	0.000	-0.241	0.026	95.344%	-0.065	0.019
X	-0.123	-2.828	-0.515	0.000	0.000	-0.158	0.161	95.482%	0.076	0.129
σ	0.116	0.181	0.130	0.000	0.000	0.108	0.173	0.123%	0.172	0.114
%RSD	93.710	6.410	25.210	0.000	0.000	68.580	106.900	0.128	225.100	88.450
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:21:05	0.321	94.114%	-0.195	0.462	0.222	0.068	0.526	0.018	0.062	96.448%
2 15:22:10	0.098	94.698%	-0.458	0.401	0.245	0.148	0.451	-0.083	-0.039	96.732%
3 15:23:15	0.057	94.628%	-0.753	0.398	0.253	-0.014	0.443	-0.109	-0.074	95.560%
X	0.159	94.480%	-0.468	0.420	0.240	0.067	0.473	-0.058	-0.017	96.247%
σ	0.142	0.319%	0.279	0.036	0.016	0.081	0.046	0.067	0.070	0.611%
%RSD	89.400	0.337	59.580	8.549	6.695	120.800	9.711	116.200	420.400	0.635
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:21:05	0.419	2.497	2.417	1.069	98.003%	97.560%	0.192	0.443	0.424	0.391
2 15:22:10	0.176	1.515	1.506	0.779	98.347%	98.147%	0.118	0.352	0.143	0.140
3 15:23:15	0.110	1.180	1.178	0.687	97.491%	97.832%	0.103	0.347	0.042	0.060
X	0.235	1.731	1.701	0.845	97.947%	97.846%	0.138	0.381	0.203	0.197
σ	0.163	0.684	0.642	0.199	0.431%	0.294%	0.048	0.054	0.198	0.173
%RSD	69.400	39.540	37.750	23.610	0.440	0.300	34.730	14.290	97.430	87.580
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 15:21:05	0.461	97.643%	0.000	0.000						
2 15:22:10	0.193	99.355%	0.000	0.000						
3 15:23:15	0.109	98.191%	0.000	0.000						
X	0.255	98.396%	0.000	0.000						
σ	0.184	0.874%	0.000	0.000						
%RSD	72.180	0.888	0.000	0.000						

icv 5/7/2011 15:24:18

User Pre-dilution: 1.00	0									
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:25:23	98.937%	60.080	57.470	58.470	0.000	411.900	393.900	392.400	60.780	<u> </u>
2 15:26:28	92.803%	59.860	57.450	57.510	0.000	419.100	402.900	396.700	<u> 7 67.550</u>	<u> </u>
3 15:27:33	100.572%	61.650	60.000	58.430	0.000	419.800	402.100	401.900	60.220	<u> 7 0.000</u>
X	97.437%	60.530	58.310	58.140	0.000	416.900	399.600	397.000	т 62.850	т 0.000
σ	4.096%	0.979	1.468	0.544	0.000	4.400	5.002	4.751	т 4.077	т 0.000
%RSD	4.204	1.617	2.519	0.937	0.000	1.055	1.252	1.197	<u>т 6.488</u>	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
ikun mile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:25:23	374.100	454.500	433.700	94.945%	60.240	58.640	59.910	60.480	184.100	59.070
2 15:26:28	390.700	460.700						62.840		
			436.600	89.627%	62.260	59.550	61.130		190.000	60.450
3 15:27:33	395.200	459.300	446.500	95.552%	60.790	60.790	62.690	63.820	188.000	61.210
X	386.700	458.200	438.900	93.375%	61.100	59.660	61.240	62.380	187.400	60.240
σ	11.150	3.258	6.691	3.260%	1.045	1.078	1.394	1.718	3.001	1.089
%RSD	2.884	0.711	1.524	3.491	1.710	1.806	2.275	2.754	1.601	1.807
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:25:23	386.900	402.000	58.510	58.630	59.230	59.300	58.400	59.590	57.700	60.300
2 15:26:28	398.700	414.900	59.630	59.420	60.490	60.560	60.210	59.930	61.140	61.280
3 15:27:33	409.000	421.200	60.850	61.390	60.860	60.940	61.110	61.940	61.250	62.910
X	398.200	412.700	59.670	59.810	60.190	60.270	59.900	60.480	60.030	61.500
σ	11.020	9.787	1.169	1.420	0.858	0.856	1.380	1.272	2.022	1.316
%RSD	2.767	2.371	1.959	2.374	1.426	1.420	2.303	2.103	3.368	2.139
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:25:23	59.140	59.960	59.270	0.000	0.000	59.940	60.000	95.999%	59.220	59.150
2 15:26:28	60.710	60.630	61.140	0.000	0.000	61.100	61.640	90.266%	60.450	59.740
3 15:27:33	61.680	61.570	61.620	0.000	0.000	60.540	61.900	96.325%	61.380	60.900
x	60.510	60.720	60.680	0.000	0.000	60.530	61.180	94.197%	60.350	59.930
σ	1.278	0.810	1.241	0.000	0.000	0.580	1.027	3.408%	1.080	0.888
%RSD										
	2.112	1.334	2.046	0.000	0.000	0.958	1.679	3.618	1.790	1.482
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
1 15:25:23	ppb	ppb 97.309%	ppb	ppb	ppb 0.394	ppb	ppb 59,070	ppb	ppb ppb	ppb 97.313%
	58.870		59.800	58.140	0.386	58.690	58.070	58.770	59.800	
2 15:26:28	60.290	91.203%	61.810	59.010	0.170	57.380	59.330	60.780	60.530	92.022%
3 15:27:33	60.860	95.976%	59.800	60.400	0.605	61.830	60.440	61.500	62.110	96.074%
X	60.010	94.830%	60.470	59.180	0.387	59.300	59.280	60.350	60.810	95.136%
σ	1.021	3.210%	1.162	1.139	0.217	2.287	1.184	1.416	1.183	2.767%
%RSD	1.701	3.386	1.921	1.925	56.120	3.857	1.997	2.346	1.946	2.909
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:25:23	61.280	61.000	61.250	59.280	99.006%	99.909%	60.180	60.180	61.290	56.390
2 15:26:28	62.340	62.300	62.000	60.610	93.814%	94.898%	61.110	60.870	63.140	57.250
3 15:27:33	64.490	64.000	63.520	62.080	98.571%	98.312%	62.080	61.970	64.990	58.710
X	62.710	62.430	62.250	60.660	97.130%	97.706%	61.120	61.010	63.140	57.450
σ	1.637	1.505	1.160	1.400	2.880%	2.560%	0.954	0.906	1.847	1.173
%RSD	2.610	2.410	1.863	2.308	2.965	2.620	1.561	1.485	2.926	2.042
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 15:25:23	58.920	100.528%	0.000	0.000						
2 15:26:28	59.950	95.063%	0.000	0.000						
3 15:27:33	61.610	99.402%	0.000	0.000						
X	60.160	98.331%	0.000	0.000						
σ	1.359	2.885%	0.000	0.000						
%RSD	2.259	2.934	0.000	0.000						

icb 5/7/2011 15:28:36

Division Times		OD -	100	110	120	221-	2514	2/14-	27.41	27.01
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 15 00 41	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:29:41	101.460%	0.219	6.760	6.337	0.000	7.144	3.362	3.463	5.094	<u>T 0.000</u>
2 15:30:46	99.442%	-0.118	6.139	5.744	0.000	6.281	1.151	1.806	4.674	<u>T 0.000</u>
3 15:31:52	102.317%	-0.141	4.897	5.402	0.000	5.991	0.804	1.551	4.594	<u>T 0.000</u>
X	101.073%	-0.013	5.932	5.828	0.000	6.472	1.772	2.273	4.787	<u>т 0.000</u>
σ	1.476%	0.202	0.949	0.473	0.000	0.600	1.388	1.038	0.269	<u>т 0.000</u>
%RSD	1.460	1545.000	15.990	8.112	0.000	9.268	78.320	45.670	5.617	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
4 45 00 44	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:29:41	1.312	-19.210	-10.580	96.057%	-0.167	0.051	0.442	0.835	178.300	0.293
2 15:30:46	5.966	-19.980	-13.050	93.409%	-0.506	0.018	0.083	0.276	185.700	-0.029
3 15:31:52	4.579	-18.780	-13.730	94.272%	-0.499	-0.257	0.006	-0.794	190.400	-0.073
X	3.952	-19.320	-12.450	94.579%	-0.391	-0.063	0.177	0.106	184.800	0.064
σ	2.389	0.605	1.657	1.350%	0.194	0.169	0.233	0.828	6.076	0.200
%RSD	60.460	3.128	13.310	1.428	49.640	269.400	131.300	782.900	3.288	312.300
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 15.20.41	ppb	ppb 4 200	ppb	ppb	ppb	ppb	ppb	ppb	ppb 0.07/	ppb
1 15:29:41	3.068	4.388	0.269	0.095	-0.059	0.123	0.044	-0.220	-0.076	-0.287
2 15:30:46	3.108	2.743	-0.021	-0.187	-0.234	-0.216	-0.247	-0.500	-0.475	-0.563
3 15:31:52	2.948	2.309	-0.060	-0.241	-0.384	-0.255	-0.307	-0.580	-0.440	-0.587
X	3.042	3.147	0.063	-0.111	-0.226	-0.116	-0.170	-0.433	-0.330	-0.479
σ	0.083	1.097	0.180	0.180	0.163	0.208	0.188	0.189	0.221	0.167
%RSD	2.734	34.850	286.900	162.100	72.180	179.700	110.600	43.700	66.980	34.840
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 15:29:41	ppb 0.210	ppb -2.618	ppb -0.486	ppb 0.000	ppb 0.000	ppb 0.064	ppb 0.293	ppb 97.877%	ppb 0.254	ppb 0.296
2 15:30:46	-0.182	-0.797	-0.460	0.000	0.000	-0.277	-0.065	94.119%	-0.078	-0.054
3 15:31:52	-0.182	-0.747	-0.300	0.000	0.000	-0.277	-0.003	95.036%	-0.078	-0.034
X	-0.056	-1.349	-0.351	0.000	0.000	-0.124	0.035	95.677%	0.016	0.038
σ	0.231	1.102	0.331	0.000	0.000	0.171	0.035	1.960%	0.208	0.036
%RSD	409.500	81.670	33.720	0.000	0.000	151.800	650.900	2.048	1330.000	595.200
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:29:41	0.369	98.175%	0.395	0.610	0.195	0.221	0.647	0.206	0.269	98.352%
2 15:30:46	0.031	94.369%	-0.202	0.418	0.216	-0.041	0.470	-0.034	-0.019	94.299%
3 15:31:52	-0.051	95.087%	-0.502	0.411	0.234	-0.069	0.446	-0.086	-0.060	94.864%
Х	0.117	95.877%	-0.103	0.480	0.215	0.037	0.521	0.029	0.063	95.838%
σ	0.223	2.022%	0.457	0.113	0.019	0.160	0.110	0.156	0.179	2.196%
%RSD	191.000	2.109	443.100	23.520	8.935	432.500	21.070	542.300	283.100	2.291
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:29:41	0.282	0.587	0.543	0.420	100.000%	100.273%	0.507	0.734	0.429	0.385
2 15:30:46	-0.072	0.346	0.290	0.054	95.482%	95.516%	0.297	0.522	0.075	0.077
3 15:31:52	-0.126	0.292	0.229	-0.044	96.069%	95.885%	0.317	0.541	0.019	0.016
X	0.028	0.408	0.354	0.143	97.184%	97.225%	0.374	0.599	0.174	0.159
σ	0.222	0.157	0.166	0.244	2.457%	2.646%	0.116	0.118	0.223	0.198
%RSD	788.100	38.410	47.010	170.500	2.528	2.722	31.070	19.650	127.700	124.100
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 15:29:41	0.454	100.272%	0.000	0.000						
2 15:30:46	0.138	97.441%	0.000	0.000						
3 15:31:52	0.073	97.572%	0.000	0.000						
X	0.221	98.428%	0.000	0.000						
σ	0.204	1.598%	0.000	0.000						
%RSD	92.070	1.624	0.000	0.000						

cri 5/7/2011 15:32:55

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kun mine	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:34:00	104.983%	0.436	5.198	5.998	0.000	221.400	220.600	219.500	44.920	⊤ 0.000
2 15:35:05	100.942%	0.386	6.264	6.479	0.000	237.500	242.900	239.800	48.060	⊤ 0.000
3 15:36:10	103.456%	0.318	5.367	5.898	0.000	229.900	231.600	233.000	46.720	<u>⊤ 0.000</u>
x	103.127%	0.310	5.610	6.125	0.000	229.600	231.700	230.800	46.560	<u>г 0.000</u>
	2.041%	0.380	0.573		0.000	8.041	11.130	10.330	1.575	<u>т 0.000</u> т 0.000
σ %RSD				0.311						<u>т 0.000</u>
Run Time	1.979 39K	15.610 43Ca	10.220 44Ca	5.073 45Sc	0.000 47Ti	3.503 51V	4.805 52Cr	4.477 53Cr	3.382 53CI O	55Mn
Ruii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:34:00	215.100	211.500	212.100	101.354%	0.601	3.818	3.684	4.351	171.000	0.413
2 15:35:05	236.200	221.200	229.400	97.128%	0.406	3.786	3.984	3.387	185.000	0.462
3 15:36:10	230.200	207.500	224.900	98.987%	0.400	3.788	3.842	4.875	178.100	0.436
<u> </u>	227.300	213.400	222.100	99.157%	0.422	3.864	3.837	4.204	178.000	0.437
X	10.930	7.020	8.967	2.118%	0.470	0.108	0.150	0.755	7.023	0.437
σ %RSD	4.812	3.290	4.037	2.11676	22.720	2.805	3.908	17.960	3.945	5.609
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
Kuii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:34:00	41.020	45.820	0.406	4.059	3.830	3.607	3.532	3.730	3.658	3.770
2 15:35:05	46.120	48.940	0.440	4.294	4.405	3.934	3.767	4.204	4.016	4.128
3 15:36:10	±63.440	46.350	0.433	4.097	4.335	3.866	3.707	3.939	4.006	3.927
	<u>т 50.190</u>	47.030	0.427	4.097	4.333	3.802	3.666	3.958	3.893	3.942
X										
σ %RSD	<u>т 11.750</u> т 23.410	1.670 3.551	0.018 4.184	0.126 3.042	0.314 7.484	0.173 4.536	0.121 3.304	0.238 6.007	0.204 5.230	0.179 4.544
Run Time	75As	77Se	78Se	79Br	7.464 81Br	82Se	88Sr	89Y	95Mo	97Mo
ixuii iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:34:00	0.714	-1.906	0.404	0.000	0.000	0.739	0.823	101.129%	0.749	0.879
2 15:35:05	0.936	-1.450	0.796	0.000	0.000	0.852	0.852	97.870%	0.825	0.833
3 15:36:10	0.772	-1.289	0.494	0.000	0.000	0.827	0.859	99.924%	0.835	0.888
X	0.808	-1.548	0.565	0.000	0.000	0.806	0.845	99.641%	0.803	0.867
σ	0.115	0.320	0.206	0.000	0.000	0.060	0.019	1.648%	0.047	0.030
%RSD	14.260	20.660	36.410	0.000	0.000	7.386	2.283	1.654	5.867	3.413
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:34:00	0.874	99.768%	0.015	2.490	0.239	0.499	2.493	0.396	0.433	100.891%
2 15:35:05	0.937	98.308%	-0.015	2.476	0.251	0.641	2.564	0.417	0.438	98.762%
3 15:36:10	0.922	99.947%	0.389	2.514	0.212	0.449	2.535	0.429	0.478	99.836%
X	0.911	99.341%	0.130	2.493	0.234	0.529	2.531	0.414	0.450	99.830%
σ	0.033	0.899%	0.225	0.019	0.020	0.100	0.036	0.017	0.025	1.064%
%RSD	3.632	0.905	173.400	0.753	8.635	18.810	1.410	4.086	5.505	1.066
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:34:00	0.945	0.721	0.632	0.857	101.646%	102.042%	0.555	0.778	0.506	0.455
2 15:35:05	0.973	0.733	0.666	0.910	99.887%	100.805%	0.575	0.793	0.494	0.456
3 15:36:10	0.977	0.699	0.631	0.895	100.068%	101.339%	0.568	0.793	0.511	0.469
X	0.965	0.718	0.643	0.887	100.534%	101.395%	0.566	0.788	0.504	0.460
σ	0.017	0.018	0.020	0.027	0.968%	0.620%	0.010	0.009	0.009	0.008
%RSD	1.782	2.444	3.139	3.080	0.963	0.612	1.837	1.087	1.687	1.696
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 15:34:00	0.534	102.400%	0.000	0.000						
2 15:35:05	0.548	101.056%	0.000	0.000						
3 15:36:10	0.549	101.380%	0.000	0.000						
X	0.544	101.612%	0.000	0.000						
σ	0.008	0.701%	0.000	0.000						
%RSD	1.558	0.690	0.000	0.000						

criaconf 5/7/2011 15:37:13

	dilution: 1.00		0.0	100	445	100	0011	0514	0/14	0741	0701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	15 20 10	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb 42.750	ppb
1	15:38:18	104.602%	0.384	5.405	6.145	0.000	214.000	218.600	216.900	43.750	<u>T 0.000</u>
2	15:39:24	101.980%	0.321	6.613	6.746	0.000	227.900	237.000	235.300	47.600	<u>T 0.000</u>
3	15:40:29	105.663%	0.383	5.692	6.201	0.000	215.000	224.700	219.400	44.290	<u> </u>
X		104.082%	0.363	5.903	6.364	0.000	219.000	226.800	223.900	45.210	<u>т 0.000</u>
σ		1.896%	0.036	0.631	0.332	0.000	7.764	9.383	9.968	2.088	<u>т 0.000</u>
%RSD		1.821	9.996	10.700	5.215	0.000	3.546	4.137	4.452	4.618	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	15 20 10	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	15:38:18	210.700	219.600	208.900	102.045%	0.405	3.741	3.574	3.680	166.300	0.422
2	15:39:24	228.000	229.600	227.600	97.599%	0.556	3.915	3.909	3.449	175.900	0.463
3	15:40:29	213.600	219.200	211.600	100.391%	0.509	4.156	3.641	5.200	162.900	0.423
X		217.400	222.800	216.000	100.012%	0.490	3.937	3.708	4.110	168.400	0.436
σ		9.271	5.906	10.130	2.248%	0.077	0.208	0.177	0.952	6.760	0.023
%RSD	1	4.264	2.651	4.690	2.247	15.740	5.292	4.781	23.150	4.015	5.365
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1	15.20.10	ppb	ppb	ppb	ppb 2.040	ppb 4.07.4	ppb	ppb	ppb	ppb	ppb
1	15:38:18	39.580	43.050	0.386	3.948	4.064	3.712	3.556	3.557	3.678	3.343
2	15:39:24	45.380	47.540	0.402	4.357	4.256	3.952	3.977	3.864	3.950	3.669
3	15:40:29	40.870	45.310	0.396	4.117	4.579	3.754	3.715	3.580	3.681	3.467
X		41.940	45.300	0.395	4.141	4.300	3.806	3.750	3.667	3.769	3.493
σ		3.046	2.245	800.0	0.205	0.260	0.128	0.213	0.171	0.156	0.164
%RSD	Ti	7.262	4.957	2.067	4.962	6.050	3.362	5.671	4.661	4.138	4.702
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1	15:38:18	ppb 0.875	ppb -3.916	ppb 0.163	ppb 0.000	ppb 0.000	ppb 0.739	ppb 0.814	ppb 101.694%	ppb 0.592	ppb 0.830
2	15:39:24	0.947	-2.701	0.632	0.000	0.000	0.754	0.883	98.086%	0.796	0.794
3	15:40:29	0.804	-3.613	0.032	0.000	0.000	0.754	0.883	102.165%	0.665	0.794
	13.40.29	0.804	-3.410	0.303	0.000	0.000	0.719	0.773	102.103%	0.684	0.703
X				0.303							
σ %RSD		0.072	0.632		0.000	0.000	0.048	0.054	2.232%	0.103	0.066
Run	Time	8.195 98Mo	18.540 103Rh	94.260 106Cd	0.000 107Ag	0.000 108Mo O	6.614 108Cd	6.610 109Ag	2.217 111Cd	15.120 114Cd	8.456 115I n
Kuii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	15:38:18	0.781	101.707%	0.673	2.450	0.193	0.440	2.447	0.395	0.439	101.248%
2	15:39:24	0.877	97.690%	0.600	2.543	0.206	0.566	2.565	0.454	0.483	98.067%
3	15:40:29	0.787	101.207%	-0.061	2.418	0.246	0.518	2.426	0.358	0.415	101.433%
X	13.40.27	0.815	100.201%	0.404	2.471	0.215	0.508	2.420	0.402	0.445	100.249%
σ		0.054	2.189%	0.404	0.065	0.028	0.064	0.075	0.048	0.034	1.892%
%RSD		6.625	2.185	99.980	2.635	12.820	12.520	3.032	12.050	7.728	1.888
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	dqq	ppb	ppb	ppb	ppb
1	15:38:18	1.359	0.727	0.688	0.866	102.502%	102.334%	0.536	0.767	0.519	0.440
2	15:39:24	1.639	0.762	0.728	0.938	97.999%	98.532%	0.569	0.774	0.541	0.485
3	15:40:29	1.377	0.697	0.642	0.860	102.701%	102.141%	0.521	0.755	0.523	0.466
X		1.458	0.729	0.686	0.888	101.068%	101.002%	0.542	0.765	0.528	0.464
σ		0.156	0.033	0.043	0.043	2.659%	2.142%	0.025	0.010	0.012	0.023
%RSD		10.720	4.509	6.336	4.867	2.631	2.121	4.518	1.271	2.194	4.869
Run	Time	208Pb	209Bi	220Bkg	238U				•		
		ppb	ppb	ppb	ppb						
1	15:38:18	0.530	101.836%	0.000	0.000						
2	15:39:24	0.560	99.085%	0.000	0.000						
3	15:40:29	0.536	102.183%	0.000	0.000						
X		0.542	101.035%	0.000	0.000						
σ		0.016	1.697%	0.000	0.000						
%RSD		2.921	1.680	0.000	0.000						

cria 5/7/2011 15:41:32

User Pre-dilution: 1.0			100	445	100	0011	0514	0/14	0741	07.01
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:42:37	100.737%	0.134	2.796	3.213	0.000	127.300	133.100	129.300	26.910	<u>т 0.000</u>
2 15:43:42	101.821%	0.136	2.614	2.928	0.000	127.800	131.200	130.600	27.230	<u>T 0.000</u>
3 15:44:47	107.818%	0.132	2.970	3.021	0.000	114.300	114.700	113.800	23.720	<u>т 0.000</u>
X	103.459%	0.134	2.793	3.054	0.000	123.100	126.300	124.600	25.950	<u>T 0.000</u>
σ	3.814%	0.002	0.178	0.145	0.000	7.648	10.140	9.300	1.943	<u>т 0.000</u>
%RSD	3.687	1.709	6.364	4.763	0.000	6.211	8.025	7.466	7.487	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:42:37	129.000	109.100	117.100	96.856%	-0.057	2.265	2.007	2.697	187.900	0.204
2 15:43:42	132.800	114.800	121.200	96.410%	0.102	2.101	2.055	2.107	195.300	0.212
3 15:44:47	112.700	108.200	103.400	103.888%	-0.067	1.939	1.755	1.981	178.600	0.151
	124.900	110.700	113.900	99.052%	-0.008	2.102	1.939	2.262	187.200	0.189
X	10.680	3.580	9.312		0.095	0.163	0.161	0.383	8.386	0.033
σ %RSD				4.195%						
	8.555	3.234	8.174	4.235	1230.000	7.763	8.303	16.920	4.479	17.530
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 15 40 07	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb 1,004	ppb
1 15:42:37	27.930	30.100	0.179	2.889	3.023	2.861	2.876	1.881	1.984	1.776
2 15:43:42	28.880	28.990	0.192	2.793	2.695	2.886	2.886	1.886	2.093	1.766
3 15:44:47	22.370	25.580	0.159	2.623	2.376	2.524	2.450	1.668	1.510	1.563
X	26.390	28.220	0.176	2.768	2.698	2.757	2.737	1.812	1.862	1.702
σ	3.517	2.354	0.017	0.135	0.324	0.202	0.249	0.125	0.310	0.120
%RSD	13.320	8.340	9.357	4.864	11.990	7.326	9.102	6.879	16.650	7.069
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:42:37	0.389	-0.317	0.215	0.000	0.000	0.300	0.368	97.494%	0.318	0.367
2 15:43:42	0.282	0.756	0.015	0.000	0.000	0.351	0.394	97.272%	0.276	0.434
3 15:44:47	0.211	-1.599	-0.323	0.000	0.000	0.207	0.316	104.097%	0.234	0.286
X	0.294	-0.386	-0.031	0.000	0.000	0.286	0.360	99.621%	0.276	0.362
σ	0.090	1.179	0.272	0.000	0.000	0.073	0.040	3.878%	0.042	0.074
%RSD	30.470	305.200	872.700	0.000	0.000	25.660	11.140	3.893	15.240	20.400
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:42:37	0.425	98.655%	0.172	1.556	0.205	0.142	1.570	0.253	0.209	97.107%
2 15:43:42	0.435	97.242%	-0.273	1.568	0.235	0.170	1.573	0.220	0.224	97.950%
3 15:44:47	0.335	104.809%	0.663	1.399	0.178	0.226	1.458	0.207	0.216	104.700%
X	0.398	100.235%	0.188	1.508	0.206	0.179	1.534	0.226	0.216	99.919%
σ	0.055	4.023%	0.468	0.094	0.028	0.043	0.066	0.024	0.008	4.162%
%RSD	13.810	4.014	249.700	6.241	13.760	23.780	4.273	10.480	3.501	4.165
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
-	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:42:37	0.403	0.377	0.329	0.381	98.737%	98.912%	0.317	0.538	0.279	0.244
2 15:43:42	0.366	0.377	0.361	0.368	97.151%	97.383%	0.307	0.548	0.281	0.241
3 15:44:47	=	0.292	0.254	0.334	105.128%	104.876%	0.280	0.514	0.236	0.237
X	0.359	0.349	0.315	0.361	100.338%	100.390%	0.301	0.534	0.266	0.241
σ	0.049	0.049	0.055	0.024	4.223%	3.959%	0.019	0.018	0.025	0.004
%RSD	13.690	13.960	17.560	6.615	4.209	3.944	6.227	3.293	9.574	1.461
Run Time	208Pb	209Bi	220Bkg	238U	207	3.7.1	3.227	3.270	,,,,,,	
	ppb	ppb	ppb	ppb						
1 15:42:37	0.308	98.673%	0.000	0.000						
2 15:43:42	0.315	97.750%	0.000	0.000						
3 15:44:47	=	104.476%	0.000	0.000						
X X	0.302	100.300%	0.000	0.000						
	0.302	3.646%	0.000	0.000						
σ %RSD		3.646%	0.000	0.000						
	5.553	3.033	0.000	0.000						

CCV 5/7/2011 15:45:50

Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	15:46:55	101.318%	50.560	46.650	49.150	0.000	440.500	465.900	463.100	448.300	<u>т 0.000</u>
2	15:48:01	102.621%	49.010	49.150	47.610	0.000	430.000	449.200	449.200	<u> 7445.400</u>	<u>T 0.000</u>
3	15:49:06	99.904%	50.070	51.380	49.500	0.000	443.800	465.200	468.100	447.000	<u>т 0.000</u>
X		101.281%	49.880	49.060	48.750	0.000	438.100	460.100	460.100	<u>т 446.900</u>	<u>т 0.000</u>
σ		1.359%	0.792	2.369	1.001	0.000	7.193	9.441	9.821	<u>т 1.442</u>	<u>т 0.000</u>
%RSD		1.342	1.587	4.829	2.054	0.000	1.642	2.052	2.135	<u>т 0.323</u>	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	15:46:55	447.000	482.300	471.500	98.475%	49.080	49.360	48.700	49.790	190.800	49.290
2	15:48:01	434.900	468.700	453.500	99.629%	48.020	47.370	47.300	47.310	192.600	47.610
3	15:49:06	451.800	492.400	469.700	96.655%	49.260	49.060	49.080	48.180	193.700	49.250
X		444.600	481.100	464.900	98.253%	48.790	48.590	48.360	48.430	192.400	48.720
σ		8.720	11.880	9.886	1.499%	0.675	1.073	0.941	1.256	1.466	0.961
%RSD		1.962	2.470	2.126	1.526	1.385	2.209	1.947	2.594	0.762	1.973
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	15:46:55	452.100	457.000	49.280	49.040	49.350	48.360	48.530	50.440	50.070	50.470
2	15:48:01	<u> 7 446.200</u>	443.300	47.510	47.720	48.460	46.210	46.780	48.570	48.250	48.960
3	15:49:06	450.400	463.400	49.070	49.180	48.700	48.220	48.270	50.110	50.260	50.910
X		т 449.600	454.600	48.620	48.650	48.830	47.600	47.860	49.710	49.530	50.110
σ		т 3.020	10.250	0.965	0.805	0.462	1.203	0.946	1.001	1.114	1.026
%RSD		<u>т 0.672</u>	2.254	1.984	1.654	0.947	2.527	1.977	2.015	2.249	2.047
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1	15.47.55	ppb	ppb	ppb 10.050	ppb	ppb	ppb	ppb	ppb	ppb F0.130	ppb
1	15:46:55	49.790	50.920	49.850	0.000	0.000	50.060	48.700	98.798%	50.130	49.410
2	15:48:01	48.130	48.580	47.880	0.000	0.000	47.990	47.740	100.219%	47.930	48.600
3	15:49:06	49.240	50.390	49.390	0.000	0.000	49.370	49.060	98.679%	49.690	49.560
X		49.050	49.960	49.040	0.000	0.000	49.140	48.500	99.232%	49.250	49.190
σ %RSD		0.844	1.223	1.033	0.000	0.000	1.054	0.681	0.856%	1.162	0.519
	Time	1.721 98Mo	2.448 103Rh	2.108 106Cd	0.000 107Ag	0.000 108Mo O	2.144 108Cd	1.405 109Ag	0.863 111Cd	2.360 114Cd	1.055 115I n
Run	Time	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	15:46:55	49.760	97.623%	51.120	48.910	0.312	49.350	48.740	49.180	49.220	99.338%
2	15:48:01	47.770	99.144%	46.350	47.570	0.660	49.960	47.490	47.570	47.440	100.183%
3	15:49:06	49.840	96.988%	49.890	49.210	0.499	51.000	48.930	49.820	49.590	97.343%
X	10.17.00	49.120	97.918%	49.120	48.560	0.491	50.100	48.390	48.860	48.750	98.955%
σ		1.172	1.108%	2.480	0.874	0.174	0.834	0.782	1.161	1.154	1.458%
%RSD		2.385	1.131	5.049	1.800	35.540	1.665	1.615	2.375	2.367	1.474
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	15:46:55	49.300	48.960	48.730	49.380	99.967%	100.793%	49.240	49.430	50.020	49.880
2	15:48:01	48.030	47.600	47.850	47.360	101.910%	102.096%	48.550	48.330	48.700	48.830
3	15:49:06	50.130	49.580	49.860	49.230	100.541%	100.068%	49.540	48.750	48.940	49.790
Х		49.150	48.710	48.810	48.660	100.806%	100.986%	49.110	48.840	49.220	49.500
σ		1.059	1.014	1.006	1.126	0.998%	1.028%	0.509	0.557	0.700	0.580
%RSD		2.154	2.081	2.062	2.315	0.990	1.018	1.036	1.140	1.422	1.172
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	15:46:55	49.800	100.556%	0.000	0.000						
2	15:48:01	48.620	102.377%	0.000	0.000						
3	15:49:06	49.230	101.105%	0.000	0.000						
Х		49.220	101.346%	0.000	0.000						
σ		0.594	0.934%	0.000	0.000						
%RSD		1.207	0.921	0.000	0.000						

CCB 5/7/2011 15:50:09

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
ixum mine	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:51:14	102.913%	-0.034	5.722	5.902	0.000	5.905	1.498	2.113	4.996	<u>т 0.000</u>
2 15:52:19	101.956%	-0.128	5.255	5.472	0.000	5.593	0.998	1.487	4.406	т 0.000
3 15:53:24	100.971%	-0.149	5.021	5.320	0.000	5.638	0.871	1.392	<u> 7 6.596</u>	<u>т 0.000</u>
X	101.947%	-0.103	5.333	5.564	0.000	5.712	1.122	1.664	<u>т 5.333</u>	<u>т 0.000</u>
σ	0.971%	0.061	0.357	0.302	0.000	0.169	0.331	0.392	<u>т 1.133</u>	т 0.000
%RSD	0.953	59.430	6.693	5.421	0.000	2.951	29.500	23.530	<u>т 21.250</u>	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
itan imie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:51:14	1.656	-19.740	-13.220	94.515%	-0.435	-0.058	0.081	0.051	186.200	0.001
2 15:52:19	1.293	-21.320	-13.220	95.042%	-0.515	-0.244	0.008	-1.223	189.400	-0.064
3 15:53:24	2.874	-21.880	-14.450	93.493%	-0.359	-0.019	-0.076	0.307	187.400	-0.087
Х	1.941	-20.980	-13.630	94.350%	-0.436	-0.107	0.004	-0.289	187.700	-0.050
σ	0.828	1.109	0.712	0.788%	0.078	0.120	0.079	0.820	1.627	0.046
%RSD	42.660	5.289	5.220	0.835	17.790	112.800	1827.000	284.100	0.867	91.740
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:51:14	1.351	1.339	-0.012	-0.125	-0.210	-0.189	-0.232	-0.428	-0.313	-0.590
2 15:52:19	1.274	1.908	-0.072	-0.222	-0.358	-0.250	-0.298	-0.518	-0.404	-0.604
3 15:53:24	1.807	1.442	-0.082	-0.248	-0.288	-0.260	-0.311	-0.512	-0.409	-0.639
Х	1.477	1.563	-0.055	-0.198	-0.285	-0.233	-0.280	-0.486	-0.376	-0.611
σ	0.288	0.303	0.038	0.065	0.074	0.038	0.043	0.050	0.054	0.025
%RSD	19.480	19.400	67.930	32.700	25.920	16.420	15.170	10.340	14.390	4.074
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:51:14	-0.117	-1.207	-0.458	0.000	0.000	-0.109	-0.013	95.156%	-0.094	-0.025
2 15:52:19	-0.229	-0.860	-0.528	0.000	0.000	-0.199	-0.120	95.526%	-0.167	-0.124
3 15:53:24	-0.188	-0.809	-0.383	0.000	0.000	-0.204	-0.151	93.533%	-0.210	-0.135
X	-0.178	-0.958	-0.456	0.000	0.000	-0.171	-0.095	94.739%	-0.157	-0.095
σ	0.056	0.217	0.073	0.000	0.000	0.053	0.072	1.060%	0.059	0.061
%RSD	31.690	22.610	15.900	0.000	0.000	31.170	76.040	1.119	37.560	64.290
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
4 45 54 44	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:51:14	0.018	96.949%	-0.331	0.424	0.226	-0.016	0.467	-0.042	-0.006	96.740%
2 15:52:19	-0.073	96.300%	-0.361	0.405	0.223	-0.096	0.425	-0.093	-0.053	96.316%
3 15:53:24	-0.077	93.770%	-0.399	0.383	0.227	-0.068	0.432	-0.087	-0.064	93.334%
X	-0.044	95.673%	-0.363	0.404	0.225	-0.060	0.442	-0.074	-0.041	95.463%
σ %RSD	0.054 122.300	1.680% 1.756	0.034 9.261	0.021 5.075	0.002 1.080	0.041 67.920	0.023 5.124	0.028 37.970	0.031 74.330	1.857% 1.945
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
Kun mine	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:51:14	-0.038	0.966	0.942	0.060	96.670%	97.642%	0.170	0.396	0.129	0.123
2 15:52:19	-0.112	0.628	0.540	-0.077	96.727%	97.020%	0.123	0.367	0.022	0.019
3 15:53:24	-0.139	0.464	0.463	-0.102	93.286%	93.395%	0.138	0.378	-0.011	-0.002
Х	-0.096	0.686	0.648	-0.040	95.561%	96.019%	0.144	0.380	0.047	0.047
σ	0.052	0.256	0.257	0.087	1.971%	2.294%	0.024	0.015	0.073	0.067
%RSD	54.560	37.340	39.690	218.500	2.062	2.389	16.590	3.830	156.800	143.700
Run Time	208Pb	209Bi	220Bkg	238U		,				
,	ppb	ppb	ppb	ppb						
1 15:51:14	0.180	98.971%	0.000	0.000						
2 15:52:19	0.080	99.347%	0.000	0.000						
3 15:53:24	0.053	95.295%	0.000	0.000						
Х	0.104	97.871%	0.000	0.000						
σ	0.067	2.239%	0.000	0.000						
%RSD	64.230	2.287	0.000	0.000						

mp58043-mb1 5/7/2011 15:54:27

user Pre-allution: 1.00	U									
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:55:33	101.088%	-0.140	0.132	0.282	0.000	4.400	1.580	1.883	2.729	<u> 7 0.000</u>
2 15:56:38	101.280%	-0.128	-0.122	0.206	0.000	4.056	1.598	2.019	2.657	T 0.000
3 15:57:43	102.759%	-0.137	0.015	0.222	0.000	4.029	1.570	1.714	2.601	T 0.000
	101.709%	-0.135	0.009	0.222	0.000	4.162	1.583	1.872	2.662	<u>т 0.000</u>
X										
σ	0.915%	0.007	0.127	0.040	0.000	0.207	0.014	0.153	0.064	<u>т 0.000</u>
%RSD	0.899	4.903	1454.000	16.820	0.000	4.969	0.888	8.149	2.415	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
4 45 55 00	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:55:33	5.147	-16.330	-7.995	94.876%	-0.550	-0.116	-0.102	-0.124	184.000	-0.073
2 15:56:38	4.112	-17.620	-8.798	99.282%	-0.532	-0.121	-0.125	0.120	176.100	-0.085
3 15:57:43	3.228	-13.360	-8.183	98.386%	-0.490	0.158	-0.097	1.291	176.100	-0.085
X	4.162	-15.770	-8.326	97.515%	-0.524	-0.026	-0.108	0.429	178.700	-0.081
σ	0.961	2.187	0.420	2.328%	0.031	0.160	0.015	0.756	4.550	0.007
%RSD	23.090	13.870	5.045	2.388	5.946	614.300	13.780	176.300	2.545	8.785
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:55:33	3.240	1.682	-0.093	-0.230	-0.371	0.126	0.092	-0.123	0.016	-0.294
2 15:56:38	1.876	2.234	-0.091	-0.208	-0.376	0.098	0.038	-0.169	0.091	-0.391
3 15:57:43	2.510	1.719	-0.091	-0.269	-0.195	0.093	0.077	-0.209	-0.161	-0.247
Х	2.542	1.878	-0.092	-0.236	-0.314	0.106	0.069	-0.167	-0.018	-0.311
σ	0.683	0.309	0.001	0.031	0.103	0.018	0.028	0.043	0.129	0.073
%RSD	26.850	16.420	1.332	13.100	32.790	16.710	40.710	25.800	714.400	23.650
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:55:33	-0.183	-1.310	-0.225	0.000	0.000	-0.235	-0.154	95.034%	-0.245	-0.220
2 15:56:38	-0.178	-2.243	-0.505	0.000	0.000	-0.196	-0.160	99.005%	-0.251	-0.197
3 15:57:43	-0.276	-1.751	-0.288	0.000	0.000	-0.233	-0.164	98.781%	-0.249	-0.217
X	-0.212	-1.768	-0.339	0.000	0.000	-0.221	-0.159	97.607%	-0.248	-0.211
σ	0.055	0.467	0.147	0.000	0.000	0.022	0.005	2.231%	0.003	0.012
%RSD	25.930	26.390	43.270	0.000	0.000	9.906	2.953	2.23176	1.210	5.728
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
Kuii Iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:55:33	-0.131	95.211%	-0.466	0.386	0.233	-0.042	0.427	-0.096	-0.066	95.185%
2 15:56:38	-0.136	99.397%	0.130	0.370	0.196	-0.018	0.416	-0.065	-0.043	99.433%
3 15:57:43	-0.139	98.474%	0.161		0.194	-0.017		-0.067	-0.043	98.271%
	-0.135	97.694%	-0.059	0.385 0.380	0.208		0.421 0.421	-0.007	-0.044	97.629%
X						-0.025				
σ	0.004	2.199%	0.353	0.009	0.022	0.014	0.006	0.017	0.013	2.196%
%RSD	2.800	2.251	603.600	2.439	10.580	54.830	1.323	23.070	24.860	2.249 207Pb
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	
1 15:55:33	ppb -0.171	ppb 0.254	ppb 0.220	ppb -0.127	ppb 96.149%	ppb 96.443%	ppb 0.046	ppb 0.280	ppb -0.033	ppb -0.026
2 15:56:38										
	-0.176	0.229	0.170	-0.126	99.259%	99.475%	0.037	0.274	-0.035	-0.027
	-0.174	0.232	0.160	-0.136	100.119%	99.267%	0.034	0.275	-0.034	-0.032
X	-0.173	0.238	0.183	-0.130	98.509%	98.395%	0.039	0.276	-0.034	-0.028
σ	0.003	0.014	0.032	0.005	2.089%	1.694%	0.006	0.003	0.001	0.003
%RSD	1.467	5.811	17.460	4.203	2.120	1.721	14.970	1.156	2.776	10.740
	208Pb	209Bi	220Bkg	238U						
Run Time	1									
	ppb	ppb	ppb	ppb						
1 15:55:33	0.030	96.467%	0.000	0.000						
1 15:55:33 2 15:56:38	0.030 0.028	96.467% 99.665%	0.000 0.000	0.000						
1 15:55:33 2 15:56:38 3 15:57:43	0.030 0.028 0.026	96.467% 99.665% 100.564%	0.000 0.000 0.000	0.000 0.000 0.000						
1 15:55:33 2 15:56:38 3 15:57:43 x	0.030 0.028 0.026 0.028	96.467% 99.665% 100.564% 98.899%	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000						
1 15:55:33 2 15:56:38 3 15:57:43 x σ	0.030 0.028 0.026 0.028 0.002	96.467% 99.665% 100.564% 98.899% 2.153%	0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000						
1 15:55:33 2 15:56:38 3 15:57:43 x	0.030 0.028 0.026 0.028	96.467% 99.665% 100.564% 98.899%	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000						

mp58043-lc1 5/7/2011 15:58:46

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii Iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:59:51	99.625%	м 107.800	-0.131	0.143	0.000	468.400	493.400	487.400	± 492.300	<u>т 0.000</u>
2 16:00:56	101.836%	м 107.600	-0.131	0.143	0.000	454.400	471.000	473.000	456.900	± 0.000
										· · · · · · · · · · · · · · · · · · ·
3 16:02:01	100.005%	м 103.200	-0.461	0.026	0.000	447.000	467.400	459.700	444.400	<u>T 0.000</u>
X	100.488%	м 104.500	-0.296	0.102	0.000	456.600	477.300	473.300	т 464.500	<u>т 0.000</u>
σ	1.182%	м 2.846	0.165	0.066	0.000	10.870	14.080	13.870	<u>T 24.840</u>	<u>т 0.000</u>
%RSD	1.176	м 2.722	55.710	64.330	0.000	2.381	2.950	2.930	<u>т 5.346</u>	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
4 45 50 51	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:59:51	469.300	459.700	485.500	95.121%	-0.529	м 107.400	м 107.300	м 108.600	222.900	м 108.000
2 16:00:56	452.700	462.200	468.700	96.985%	-0.516	м 102.000	м 101.400	м 100.900	214.400	м 102.600
3 16:02:01	444.900	451.800	450.800	97.472%	-0.503	99.350	98.690	99.510	203.800	98.970
X	455.600	457.900	468.300	96.526%	-0.516	м 102.900	м 102.500	м 103.000	213.700	м 103.200
σ	12.500	5.416	17.360	1.241%	0.013	<u>м 4.101</u>	м 4.399	м 4.894	9.584	м 4.542
%RSD	2.745	1.183	3.706	1.286	2.547	<u>м 3.985</u>	м 4.293	м 4.752	4.485	<u>м 4.401</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:59:51	491.000	496.900	м 107.500	м 105.500	м 108.700	м 106.900	м 106.400	м 108.600	м 107.400	м 107.300
2 16:00:56	462.500	472.500	м 101.700	м 100.800	м 101.500	м 100.200	м 100.200	м 101.800	м 100.900	м 101.800
3 16:02:01	445.600	459.300	97.790	97.150	96.160	97.670	97.140	м 100.200	98.270	99.070
X	466.400	476.200	м 102.300	м 101.100	м 102.100	м 101.600	м 101.200	м 103.600	м 102.200	м 102.700
σ	22.910	19.120	м 4.865	<u>м 4.168</u>	<u>м 6.279</u>	<u>м 4.751</u>	м 4.730	м 4.472	м 4.703	м 4.204
%RSD	4.913	4.014	<u>м 4.754</u>	м 4.121	<u>м 6.150</u>	м 4.678	м 4.671	м 4.319	м 4.603	м 4.093
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:59:51	м 109.100	м 221.300	м 214.400	0.000	0.000	м 211.200	-0.038	94.731%	-0.251	-0.211
2 16:00:56	м 103.700	м 206.200	м 202.500	0.000	0.000	м 201.900	-0.035	98.481%	-0.251	-0.216
3 16:02:01	м 100.800	м 203.300	м 197.000	0.000	0.000	м 198.100	-0.048	98.645%	-0.253	-0.225
X	м 104.500	м 210.200	м 204.600	0.000	0.000	м 203.700	-0.040	97.286%	-0.252	-0.217
σ	м 4.199	м 9.660	м 8.869	0.000	0.000	<u>м 6.776</u>	0.007	2.214%	0.001	0.007
%RSD	м 4.018	<u>м 4.595</u>	<u>м 4.335</u>	0.000	0.000	<u>м 3.326</u>	17.430	2.276	0.361	3.383
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:59:51	-0.134	94.722%	м 109.600	м 106.300	0.426	м 106.000	м 106.400	м 108.400	м 108.700	94.667%
2 16:00:56	-0.135	98.385%	м 102.200	м 100.400	0.380	98.380	м 100.600	м 101.400	м 102.300	98.389%
3 16:02:01	-0.134	98.737%	м 100.800	98.580	0.317	96.040	98.820	98.910	99.500	99.181%
X	-0.134	97.282%	м 104.200	м 101.700	0.374	м 100.100	м 101.900	м 102.900	м 103.500	97.412%
σ	0.000	2.223%	<u>м 4.748</u>	м 4.039	0.055	<u>м 5.206</u>	м 3.990	м.4.890	<u>м 4.725</u>	2.410%
%RSD	0.366	2.286	м 4.557	м 3.969	14.640	<u>м 5.199</u>	м 3.914	м 4.753	<u>м 4.565</u>	2.474
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 15:59:51	-0.170	м 112.000	м 112.400	м 108.600	97.379%	97.339%	м 107.100	м 108.300	м 108.200	м 108.200
2 16:00:56	-0.175	м 105.600	м 105.400	м 101.500	101.321%	101.053%	м 102.100	м 102.700	м 103.200	м 102.200
3 16:02:01	-0.181	м 103.000	м 102.500	99.120	102.049%	102.080%	м 100.800	м 101.800	м 101.300	м 100.400
X	-0.175	м 106.800	м 106.800	м 103.100	100.250%	100.157%	м 103.300	м 104.300	м 104.200	м 103.600
σ	0.005	м 4.644	м 5.094	м 4.936	2.513%	2.494%	м 3.358	м 3.537	м 3.574	<u>м 4.054</u>
%RSD	3.126	м 4.346	<u>м 4.771</u>	м 4.789	2.507	2.490	м 3.250	м 3.392	м 3.429	м 3.913
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 15:59:51	м 108.500	97.496%	0.000	0.000						
2 16:00:56	м 103.000	101.784%	0.000	0.000						
3 16:02:01	м 101.200	101.595%	0.000	0.000						
X	м 104.300	100.292%	0.000	0.000						
σ	м 3.804	2.423%	0.000	0.000						
%RSD	м 3.648	2.416	0.000	0.000						

mp58043-s1 5/7/2011 16:03:04

	-airution: 1.00										0701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:04:09	83.330%	м 118.700	м 218.600	м 225.600	0.000	тм 379900.000	тм 25550.000	тм 25140.000	<u>т 490.500</u>	<u>T 0.000</u>
2	16:05:14	85.903%	м 108.800	м 207.500	м 216.200	0.000	тм 361200.000	тм 24030.000	тм 23660.000	448.400	<u>T 0.000</u>
3	16:06:19	85.512%	м 114.000	м 218.900	м 230.400	0.000	тм 375000.000	тм 25150.000	тм 24880.000	473.700	<u> </u>
X		84.915%	м 113.800	м 215.000	м 224.100	0.000	тм 372000.000	тм 24910.000	тм 24560.000	<u>т 470.900</u>	<u>т 0.000</u>
σ		1.386%	м 4.929	м 6.503	м 7 .211	0.000	тм 9702.000	тм 786.500	тм 788.100	<u>т 21.180</u>	<u>т 0.000</u>
%RSD		1.633	м 4.330	м 3.025	м 3.218	0.000	<u>тм 2.608</u>	<u>тм 3.157</u>	<u>тм 3.209</u>	<u>т 4.499</u>	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:04:09	тм 4384.000	м 34580.000	тм 38060.000	106.991%	5.818	93.800	92.180	93.300	166.600	<u>тм 635.500</u>
2	16:05:14	тм 4226.000	м 32870.000	тм 36140.000	111.026%	4.993	88.670	86.280	87.880	171.300	тм 595.200
3	16:06:19	тм 4413.000	м 34770.000	тм 38040.000	109.749%	5.230	93.490	91.310	91.050	199.900	<u>тм 630.700</u>
X		тм 4341.000	м 34070.000	тм 37410.000	109.255%	5.347	91.990	89.920	90.740	179.300	<u>тм 620.500</u>
σ		тм 100.700	м 1041.000	тм 1103.000	2.063%	0.425	2.881	3.187	2.720	18.000	тм 22.030
%RSD		тм 2.320	м 3.056	тм 2.948	1.888	7.940	3.132	3.544	2.997	10.040	тм 3.551
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:04:09	тм 13820.000	м 15320.000	92.720	88.240	м 118.000	91.300	88.670	90.300	96.890	98.450
2	16:05:14	тм 12940.000	м 14450.000	87.830	83.700	м 117.700	86.700	84.100	85.230	93.310	91.360
3	16:06:19	тм 13730.000	м 15380.000	92.680	88.620	м 127.200	91.650	88.770	90.690	97.360	98.150
Х		тм 13490.000	м 15050.000	91.080	86.850	м 120.900	89.880	87.180	88.740	95.850	95.980
σ		тм 485.400	м 521.200	2.815	2.736	м 5.404	2.767	2.667	3.048	2.213	4.009
%RSD		тм 3.597	м 3.463	3.091	3.150	м 4.468	3.078	3.059	3.435	2.308	4.177
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:04:09	м 101.200	м 192.800	м 186.700	0.000	0.000	м 190.100	тм 448.700	90.183%	-0.199	-0.166
2	16:05:14	96.590	м 184.800	м 179.600	0.000	0.000	м 182.600	тм 428.900	93.744%	-0.199	-0.165
3	16:06:19	м 101.700	м 195.800	м 187.400	0.000	0.000	м 190.100	тм 446.700	92.185%	-0.183	-0.151
Х		м 99.830	м 191.100	м 184.600	0.000	0.000	м 187.600	тм 441.400	92.038%	-0.194	-0.161
σ		м 2.816	м 5.685	м 4.314	0.000	0.000	м 4.315	тм 10.880	1.785%	0.009	0.008
%RSD		м 2.821	м 2.974	м 2.337	0.000	0.000	м 2.300	тм 2.465	1.939	4.840	5.071
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:04:09	-0.096	82.255%	м 104.000	м 103.000	0.713	м 104.300	м 102.300	м 106.500	м 105.700	85.560%
2	16:05:14	-0.103	85.431%	м 100.400	98.960	0.839	м 102.900	97.870	м 100.900	м 100.600	88.008%
3	16:06:19	-0.091	84.663%	м 101.100	м 101.900	0.986	м 105.600	м 101.000	м 105.000	м 104.700	86.860%
X		-0.096	84.116%	м 101.800	м 101.300	0.846	м 104.300	м 100.400	м 104.100	м 103.700	86.809%
σ		0.006	1.657%	м 1.919	м 2.094	0.137	м 1.388	м 2.285	м 2.863	м 2.716	1.224%
%RSD		5.867	1.970	м 1.885	м 2.068	16.170	м 1.331	м 2.276	м 2.749	м 2.620	1.410
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:04:09	-0.190	м 115.300	м 114.400	м 453.600	91.544%	92.597%	м 109.100	м 109.900	м 111.000	м 111.700
2	16:05:14	-0.182	м 108.400	м 108.400	м 429.100	94.924%	95.584%	м 103.900	м 105.600	м 105.600	м 105.900
3	16:06:19	-0.195	м 113.400	м 112.900	м 450.900	92.562%	93.554%	м 107.800	м 109.000	м 109.000	м 110.200
Х		-0.189	м 112.400	м 111.900	м 444.500	93.010%	93.912%	м 107.000	м 108.200	м 108.600	м 109.300
σ		0.007	м 3.557	м 3.098	м 13.450	1.734%	1.525%	м 2.727	м 2.290	м 2.773	м 3.018
%RSD		3.590	м 3.164	м 2.768	м 3.026	1.864	1.624	м 2.549	м 2.117	м 2.555	м 2.761
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	16:04:09	м 111.800	85.704%	0.000	0.000						
2	16:05:14	м 106.200	88.751%	0.000	0.000						
3	16:06:19	м 110.000	87.179%	0.000	0.000						
X		м 109.300	87.211%	0.000	0.000						
σ		м 2.815	1.523%	0.000	0.000						
%RSD		м 2.575	1.747	0.000	0.000						
	•		•	-							

mp58043-s2 5/7/2011 16:07:22

	dilution: 1.00		0.0	400	445	100	001	0514	0/14	07.41	0701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	1/ 00 07	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:08:27	82.419%	м 119.800	м 232.400	м 235.400	0.000	тм 389700.000	тм 26300.000	тм 25880.000	<u>⊤516.500</u>	T 0.000
2	16:09:32	88.811%	м 108.500	м 213.000	м 220.500	0.000	тм 362900.000	тм 24360.000	тм 23920.000	<u>+473.300</u>	<u>T 0.000</u>
3	16:10:37	88.061%	м 108.000	м 215.800	м 220.900	0.000	тм 35 9000.000	тм 23690.000	тм 23350.000	<u> 1462.400</u>	<u>T 0.000</u>
X		86.430%	м 112.100	м 220.400	м 225.600	0.000	тм 370600.000	<u>тм 24780.000</u>	тм 24380.000	<u>т 484.100</u>	<u>т 0.000</u>
σ		3.494%	м 6.703	м 10.510	м 8.508	0.000	тм 16700.000	тм 1352.000	тм 1328.000	<u>т 28.640</u>	<u>т 0.000</u>
%RSD	I	4.043	м 5.980	м 4.767	м 3.771	0.000	тм 4.508	<u>тм 5.455</u>	тм 5.446	<u>⊤5.915</u>	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1	16:08:27	ррb тм 4515.000	ррb м 35780.000	ррb тм 39310.000	ppb 109.620%	ppb 5.539	ppb 96.350	ppb 93.950	ppb 93.790	ppb 216.400	ррb тм 652.000
_			· · · · · · · · · · · · · · · · · · ·							207.000	
2	16:09:32	тм 4345.000	м 33860.000	тм 37150.000	112.727%	5.246	91.010	88.130	88.620		тм 609.900
3	16:10:37	тм 4195.000	м 32270.000	тм 35490.000	117.945%	5.145	86.500	83.420	82.440	215.900	тм 583.700
X		тм 4352.000	м 33970.000	тм 37310.000	113.431%	5.310	91.290	88.500	88.290	213.100	тм 615.200
σ		тм 160.200	м 1756.000	тм 1913.000	4.207%	0.205	4.930	5.276	5.685	5.260	<u>тм 34.480</u>
%RSD	Ti	тм 3.683	<u>м 5.170</u>	<u>тм 5.125</u>	3.708	3.856	5.401	5.962	6.439	2.469	<u>тм 5.605</u>
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1	16:08:27	ppb	ppb	ppb 05,610	ppb 90.560	ppb 120.700	ppb	ppb 01 240	ppb 01 490	ppb ppb	ppb 99.170
2	16:08:27	тм 14160.000 тм 13230.000	тм 15700.000 тм 14600.000	95.610 89.720	90.560 84.920	<u>м 130.700</u> м 129.900	94.070 87.980	91.240 84.820	91.480 85.280	м 100.200 92.790	99.170
3					81.650			82.530	82.680	89.310	92.730 89.430
	16:10:37	тм 12630.000 тм 13340.000	тм 14010.000 тм 14770.000	86.280 90.540	81.650	<u>м 122.700</u> м 127.800	85.370 89.140	82.530 86.200	82.680	89.310 м 94.110	93.780
X											
σ %RSD		<u>тм 766.900</u> тм 5.749	<u>тм 857.400</u> тм 5.804	4.719 5.213	4.509 5.261	<u>м 4.427</u> м 3.464	4.464 5.008	4.515 5.238	4.521 5.228	<u>м 5.586</u> м 5.935	4.951 5.279
Run	Time	75As	77Se	78Se	79Br	<u>м 3.464</u> 81Вг	82Se	5.236 88Sr	3.226 89Y	95Mo	97Mo
Kuii	Tillie	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:08:27	м 103.600	м 205.900	м 190.900	0.000	0.000	м 193.700	тм 461.500	92.029%	-0.216	-0.138
2	16:09:32	96.340	м 187.800	м 177.100	0.000	0.000	м 179.200	тм 418.500	98.961%	-0.235	-0.191
3	16:10:37	94.120	м 183.900	м 175.300	0.000	0.000	м 176.200	тм 415.600	99.620%	-0.212	-0.167
Х		м 98.030	м 192.500	м 181.100	0.000	0.000	м 183.000	тм 431.900	96.870%	-0.221	-0.166
σ		м 4.983	м 11.750	м 8.562	0.000	0.000	м 9.400	тм 25.710	4.205%	0.012	0.027
%RSD		м 5.083	м 6.102	м 4.728	0.000	0.000	<u>м 5.136</u>	тм 5.952	4.341	5.633	16.100
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:08:27	-0.103	83.272%	м 109.400	м 104.600	0.562	м 107.200	м 103.900	м 107.500	м 108.300	86.480%
2	16:09:32	-0.104	88.329%	98.320	97.080	0.649	98.150	96.450	98.830	99.040	91.142%
3	16:10:37	-0.096	90.544%	94.840	95.210	0.608	94.440	94.410	96.620	97.070	92.557%
X		-0.101	87.382%	м 100.900	м 98.970	0.606	м 99.920	м 98.260	м 101.000	м 101.500	90.060%
σ		0.004	3.727%	м 7.623	<u>м 4.992</u>	0.044	м 6.538	<u>м 5.010</u>	<u>м 5.769</u>	<u>м 5.999</u>	3.180%
%RSD		4.359	4.265	м 7.558	<u>м 5.043</u>	7.236	<u>м 6.544</u>	м 5.099	м 5.712	<u>м 5.912</u>	3.531
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	1/ 00 07	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:08:27	-0.176	м 116.200	м 116.300	м 465.500	91.512%	92.096%	м 111.200	м 112.100	м 113.600	м 113.100
	16:09:32	-0.191	м 107.100	м 106.100	м 424.200	96.524%	97.333%	м 103.500	м 104.300	м 104.700	м 104.700
=	16:10:37	-0.190	м 104.900	м 104.200	м 418.400	98.161%	98.304%	м 101.500	м 101.800	м 102.500	м 101.600
X		-0.186	м 109.400	м 108.900	м 436.000	95.399%	95.911%	м 105.400	м 106.100	м 106.900	м 106.500
σ %RSD		0.009	м 6.009	<u>м 6.521</u> м 5.990	м 25.650	3.464%	3.339%	м 5.122	м 5.390 Б.091	<u>м 5.883</u>	м <u>5.964</u>
Run	Time	4.608 208Pb	<u>м 5.493</u> 209Ві	220Bkg	<u>м 5.883</u> 238U	3.632	3.482	м 4.860	м 5.081	м 5.501	м 5.601
IXUIT	Time	ppb	ppb	ppb	ppb						
1	16:08:27	м 114.000	84.888%	0.000	0.000						
=	16:09:32	м 105.100	89.284%	0.000	0.000						
3	16:10:37	м 102.400	90.846%	0.000	0.000						
X	.00.07	м 102.400 м 107.200	88.339%	0.000	0.000						
σ		м 6.081	3.090%	0.000	0.000						
%RSD		<u>м 5.673</u>	3.497	0.000	0.000						
				-							

t74672-1f 5/7/2011 16:11:40

Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:12:45	85.780%	0.203	м 226.900	м 231.500	0.000	тм 378600.000	тм 24830.000	тм 24430.000	9.085	<u> </u>
2	16:13:50	89.401%	0.087	м 220.100	м 223.000	0.000	тм 366700.000	тм 23970.000	тм 23610.000	7.644	<u>T 0.000</u>
3	16:14:55	89.666%	0.043	м 217.200	м 223.800	0.000	тм 365700.000	тм 23950.000	тм 23660.000	7.198	<u> </u>
X		88.282%	0.111	м 221.400	м 226.100	0.000	тм 370300.000	тм 24250.000	тм 23900.000	7.976	<u>т 0.000</u>
σ		2.171%	0.082	м 4.993	м 4.705	0.000	тм 7153.000	тм 504.300	тм 462.400	0.986	<u>т 0.000</u>
%RSD		2.460	73.980	м 2.255	м 2.081	0.000	тм 1.931	тм 2.080	<u>тм 1.935</u>	12.370	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:12:45	тм 3995.000	м 33960.000	тм 37440.000	114.419%	5.199	0.688	1.697	1.422	217.800	тм 530.400
2	16:13:50	тм 3922.000	м 33300.000	тм 36620.000	117.386%	5.207	0.522	1.427	0.813	220.200	тм 520.100
3	16:14:55	тм 3931.000	м 33030.000	тм 36420.000	119.451%	5.282	0.875	1.385	1.663	216.400	<u>тм 516.200</u>
X		тм 3949.000	м 33430.000	тм 36830.000	117.086%	5.230	0.695	1.503	1.299	218.100	<u>тм 522.200</u>
σ		тм 39.890	м 474.000	тм 540.400	2.530%	0.046	0.176	0.169	0.438	1.896	_{тм} 7.292
%RSD		<u>тм 1.010</u>	м 1.418	<u>тм 1.467</u>	2.160	0.874	25.380	11.270	33.710	0.869	<u>тм 1.396</u>
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:12:45	тм 13060.000	тм 14520.000	2.919	0.782	41.920	3.776	0.224	0.484	9.205	6.713
2	16:13:50	тм 12900.000	м 14490.000	2.758	0.801	42.660	3.784	0.088	0.335	9.240	6.330
3	16:14:55	тм 12810.000	м 14430.000	2.760	0.633	42.570	3.647	0.055	0.246	8.602	6.323
X		тм 12920.000	тм 14480.000	2.813	0.739	42.380	3.736	0.123	0.355	9.016	6.455
σ		тм 124.600	тм 46.300	0.092	0.092	0.404	0.077	0.090	0.120	0.359	0.223
%RSD	I	тм 0.964	тм 0.320	3.287	12.500	0.953	2.054	73.150	33.900	3.977	3.457
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1	16:12:45	ppb 0.945	ppb 8.577	ppb 0.605	ppb 0.000	0.000	ppb 1.240	ррb тм 441.300	ppb 97.280%	-0.220	ppb -0.195
3	16:13:50 16:14:55	0.862 0.635	8.451 9.431	0.206 0.123	0.000 0.000	0.000	1.162 1.068	<u>тм 431.500</u> тм 428.800	99.240% 100.346%	-0.230 -0.221	-0.190 -0.157
	10.14.55										
X		0.814	8.820	0.311	0.000	0.000	1.156	тм 433.900	98.955%	-0.223	-0.181
σ %RSD		0.160 19.680	0.533 6.044	0.258 82.750	0.000	0.000	0.086 7.465	<u>тм 6.533</u> тм 1.506	1.553% 1.569	0.006 2.474	0.021
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	11.580 115I n
Run	Tillic	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:12:45	-0.106	88.286%	-2.381	0.563	0.365	0.079	0.592	-0.002	0.055	90.026%
2	16:13:50	-0.116	90.103%	-2.515	0.420	0.371	0.046	0.474	-0.150	-0.076	92.138%
3	16:14:55	-0.106	91.241%	-3.003	0.421	0.403	0.045	0.462	-0.217	-0.128	92.732%
X		-0.109	89.877%	-2.633	0.468	0.380	0.057	0.509	-0.123	-0.049	91.632%
σ		0.006	1.491%	0.327	0.082	0.020	0.019	0.072	0.110	0.094	1.422%
%RSD		5.475	1.659	12.430	17.620	5.392	33.530	14.110	89.380	190.400	1.552
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:12:45	-0.192	0.402	0.349	м 330.100	93.608%	94.494%	0.488	0.721	0.250	0.243
2	16:13:50	-0.177	0.253	0.198	м 324.800	95.883%	97.068%	0.323	0.552	0.092	0.089
3	16:14:55	-0.184	0.209	0.198	м 325.200	96.368%	96.812%	0.321	0.567	0.057	0.055
X		-0.184	0.288	0.248	м 326.700	95.286%	96.125%	0.377	0.613	0.133	0.129
σ		0.007	0.101	0.087	м 2.953	1.474%	1.418%	0.096	0.093	0.103	0.100
%RSD		3.981	35.140	35.060	м 0.904	1.547	1.475	25.390	15.200	77.060	77.730
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	16:12:45	0.302	87.438%	0.000	0.000						
2	16:13:50	0.144	88.902%	0.000	0.000						
3	16:14:55	0.113	88.713%	0.000	0.000						
X		0.186	88.351%	0.000	0.000						
σ		0.101	0.796%	0.000	0.000						
%RSD		54.240	0.901	0.000	0.000						

t74672-2f 5/7/2011 16:15:58

The column The		lution: 1.00		OD a	100	110	120	22No	2EMa	2/14~	2741	2701
Tell 18-17-02 18-18-02 18-18-02 12-18-02 12-18-02 12-18-02 18	Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
2 0.15 0.88 95 41% 0.003 w201800 w201800 w227,000 w2378,0000 w2278,0000	1 1	16 : 17 : 02										
3 16-19-13 90 48-9% 0.000 2221.000 221.700 221.700 221.700 221.7000 22280.000 22280.000 1.6287 1.000 1.												
No. Ps.												· · · · · · · · · · · · · · · · · · ·
Sept	-	10.19.13										
No. No.						· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·
No. Time 90												
1 1617/33	_	Time										
1 16-17-03 m 299-900 m 238-80.000 m 238-50.000 m 16-10-98 5-577 0.623 1 406 0.927 238-000 m 238-2000 3 3 61-19-13 m 238-2000	T.G.I.		-									
2 16-18-08 m.400-000 m.3150.000 m	1 1	16:17:03										
3 6-19-13 mac/00-000 m						118.714%						
x m3957.000												
Color				·								
No. No.												
Time												
Pob Po	Run	Time										
1 16:17:03			i i		1		ì		1			
3 16:19:13	1 1	16:17:03		м 14980.000			· · · · · · · · · · · · · · · · · · ·					
No. March	2 1	16:18:08		тм 13030.000	2.460	2.385	41.560	3.215	-0.067	1.456	8.979	6.810
	3 1	16:19:13	тм 13040.000	тм 14420.000	2.593	2.473	46.220	3.646	-0.026	1.679	9.710	7.963
NSSD	Х		тм 12720.000	тм 14140.000	2.601	2.513	43.530	3.462	-0.042	1.600	9.711	7.746
NSSD	σ		тм 781.700	тм 1003.000	0.144	0.152	2.413	0.223	0.022	0.124	0.733	0.849
Ppb Ppb	%RSD											
1 16:17:03 0.560 11 800 0.343 0.000 0.000 0.796	Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
2 16:18:08 0.582 9.898 0.354 0.000 0.000 0.794 m/401800 101.707% -0.229 -0.202 3 16:19:13 0.777 12.540 0.149 0.000 0.000 0.893 m/441.100 101.386% -0.223 -0.175 x			ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
3 16:19:13 0.777 12:540 0.149 0.000 0.000 0.893 \frac{n.444.100}{n.444.100} 101.386% -0.223 -0.175 x 0.640 11.410 0.282 0.000 0.000 0.828 \frac{n.442.200}{n.432.200} 100.455% -0.220 -0.187 0.120 1.365 0.115 0.000 0.000 0.056 \frac{n.45.560}{n.46.560} 1.897% 0.011 0.014 0.014 0.014 0.015 0.000 0.000 0.000 0.795 \frac{n.45.560}{n.46.145} 1.888 4.969 7.517 0.000	1 1	16:17:03	0.560	11.800	0.343	0.000	0.000	0.796	тм 450.800	98.273%	-0.207	-0.182
X	2 1	16:18:08	0.582	9.898	0.354	0.000	0.000	0.794	тм 401.800	101.707%	-0.229	-0.202
Resign 1.365 0.115 0.000 0.000 0.056 m. 26.560 1.897% 0.011 0.014	3 1	16:19:13	0.777	12.540	0.149	0.000	0.000	0.893	тм 444.100	101.386%	-0.223	-0.175
Nation 18	X		0.640	11.410	0.282	0.000	0.000	0.828	тм 432.200	100.455%	-0.220	-0.187
Run Time 98Mo 103Rh 106Cd 107Ag 108Mo 0 108Cd 109Ag 111Cd 114Cd 115In	σ		0.120	1.365	0.115	0.000	0.000	0.056	тм 26.560	1.897%	0.011	0.014
Pob Pob	%RSD		18.680	11.960	40.850	0.000	0.000	6.795	<u>тм 6.145</u>	1.888	4.969	7.517
1 16:17:03 -0.121 88.645% -1.337 0.371 0.285 -0.096 0.422 -0.138 -0.091 91.044% 2 16:18:08 -0.112 92.185% -2.203 0.374 0.350 0.016 0.410 -0.200 -0.144 92.424% 3 16:19:13 -0.118 91.966% -2.298 0.371 0.355 0.016 0.403 -0.213 -0.146 93.322% α 0.005 1.983% 0.530 0.002 0.039 0.065 0.010 0.040 0.031 1.147% α 0.005 1.983% 0.530 0.002 0.039 0.065 0.010 0.040 0.031 1.147% α 0.005 1.983% 0.530 0.002 0.039 0.065 0.010 0.040 0.031 1.147% α 0.005 1.983% 0.530 0.002 0.039 0.065 0.010 0.040 0.031 1.147% α 0.005 1.983% 0.530 0.002 0.039 0.065 0.010 0.040 0.031 1.147% α 0.001 1.185 1.218b 1.238b 1.378a 1.597b 1.65Ho 2.03Ti 2.05Ti 2.06Pb 2.07Pb α 0.001 0.134 0.100 0.337.600 94.382% 95.526% 0.100 0.331 -0.004 0.016 2 16:18:08 -0.202 0.118 0.088 0.333.800 96.404% 96.984% 0.080 0.312 0.004 -0.005 3 16:19:13 -0.195 0.126 0.122 0.1335.200 97.096% 97.088% 0.070 0.311 0.001 0.000 α 0.003 0.008 0.017 0.1888b 1.410% 0.874% 0.015 0.011 0.004 0.011 α 0.003 0.008 0.017 0.1888b 1.410% 0.874% 0.015 0.011 0.004 0.011 α 0.003 0.008 0.017 0.000 0.000 α 0.004 0.005 0.006 0.000 0.000 α 0.005 0.006 0.000 0.000 0.000 α 0.006 0.006 0.000 0.000 0.000 α 0.006 0.005 0.000 0.000 0.000 α 0.006 0.000	Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag		114Cd	115I n
2 16:18:08 -0.112 92.185% -2.203 0.374 0.350 0.016 0.410 -0.200 -0.144 92.424% 3 16:19:13 -0.118 91.966% -2.298 0.371 0.355 0.016 0.403 -0.213 -0.146 93.322% x			•									
3 16:19:13 -0.118 91.966% -2.298 0.371 0.355 0.016 0.403 -0.213 -0.146 93.322%												
X -0.117 90.932% -1.946 0.372 0.330 -0.021 0.412 -0.184 -0.127 92.263%	2 1	16:18:08	-0.112	92.185%	-2.203	0.374	0.350	0.016	0.410	-0.200	-0.144	92.424%
σ 0.005 1.983% 0.530 0.002 0.039 0.065 0.010 0.040 0.031 1.147% %RSD 3.872 2.181 27.230 0.582 11.910 305.100 2.355 21.720 24.670 1.244 Run Time 1185n 1218b 1238b 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb /td> <td>16:19:13</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-0.146</td> <td></td>	3 1	16:19:13									-0.146	
Name	X		-0.117	90.932%	-1.946	0.372	0.330	-0.021	0.412	-0.184	-0.127	92.263%
Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb	σ							0.065		0.040	0.031	
Ppb Ppb												
1 16:17:03 -0.201 0.134 0.100 м37.600 94.382% 95.526% 0.100 0.331 -0.004 0.016 2 16:18:08 -0.202 0.118 0.088 м303.800 96.404% 96.984% 0.080 0.312 0.004 -0.005 3 16:19:13 -0.195 0.126 0.122 м335.200 97.096% 97.088% 0.070 0.311 0.001 0.000 x -0.199 0.126 0.103 м325.500 95.961% 96.532% 0.083 0.318 0.000 0.004 σ 0.003 0.008 0.017 м18.880 1.410% 0.874% 0.015 0.011 0.004 0.011 %RSD 1.742 6.328 16.180 м5.799 1.469 0.905 18.280 3.601 2519.000 304.800 Run Time 208Pb 209Bi 220Bkg 238U 238U 238U 238U 238U 2480 2480 2480 <td< td=""><td>Run</td><td>Time</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Run	Time										
2 16:18:08 -0.202 0.118 0.088 м 303.800 96.404% 96.984% 0.080 0.312 0.004 -0.005 3 16:19:13 -0.195 0.126 0.122 м 335.200 97.096% 97.088% 0.070 0.311 0.001 0.000 x -0.199 0.126 0.103 м 325.500 95.961% 96.532% 0.083 0.318 0.000 0.004 σ 0.003 0.008 0.017 м 18.880 1.410% 0.874% 0.015 0.011 0.004 0.011 γκενο 1.742 6.328 16.180 м 5.799 1.469 0.905 18.280 3.601 2519.000 304.800 Run Time 208Pb 209Bi 220Bkg 238U 238U 1.469 0.905 18.280 3.601 2519.000 304.800 1 16:17:03 0.064 87.250% 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000		17.17.00										
3 16:19:13 -0.195 0.126 0.122 \(\text{m} \) 335.200 97.096% 97.088% 0.070 0.311 0.001 0.000 x												
X -0.199 0.126 0.103 M 325.500 95.961% 96.532% 0.083 0.318 0.000 0.004 σ 0.003 0.008 0.017 M 18.880 1.410% 0.874% 0.015 0.011 0.004 0.011 %CRSD 1.742 6.328 16.180 M 5.799 1.469 0.905 18.280 3.601 2519.000 304.800 Run Time 208Pb 209Bi 220Bkg 238U												
σ 0.003 0.008 0.017 M 18.880 1.410% 0.874% 0.015 0.011 0.004 0.011 %RSD 1.742 6.328 16.180 M 5.799 1.469 0.905 18.280 3.601 2519.000 304.800 Run Time 208Pb 209Bi 220Bkg 238U 238U 238U 238U 240		16:19:13										
Name	==											
Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb 1 16:17:03 0.064 87.250% 0.000 0.000 2 16:18:08 0.058 88.219% 0.000 0.000 3 16:19:13 0.059 89.193% 0.000 0.000 x 0.060 88.220% 0.000 0.000 σ 0.003 0.971% 0.000 0.000												
ppb ppb ppb ppb ppb 1 16:17:03 0.064 87.250% 0.000 0.000 2 16:18:08 0.058 88.219% 0.000 0.000 3 16:19:13 0.059 89.193% 0.000 0.000 x 0.060 88.220% 0.000 0.000 σ 0.003 0.971% 0.000 0.000	_	Time - 1					1.469	0.905	18.280	3.601	2519.000	304.800
1 16:17:03 0.064 87.250% 0.000 0.000 2 16:18:08 0.058 88.219% 0.000 0.000 3 16:19:13 0.059 89.193% 0.000 0.000 x 0.060 88.220% 0.000 0.000 σ 0.003 0.971% 0.000 0.000	Kun	rime	· ·									
2 16:18:08 0.058 88.219% 0.000 0.000 3 16:19:13 0.059 89.193% 0.000 0.000 x 0.060 88.220% 0.000 0.000 σ 0.003 0.971% 0.000 0.000	1 1	16:17:03										
3 16:19:13 0.059 89.193% 0.000 0.000 x 0.060 88.220% 0.000 0.000 σ 0.003 0.971% 0.000 0.000												
x 0.060 88.220% 0.000 0.000 σ 0.003 0.971% 0.000 0.000												
σ 0.003 0.971% 0.000 0.000		10:19:13										
3.014 1.101 0.000 0.000												
	/oK3D		3.014	1.101	0.000	0.000						

t74672-3f 5/7/2011 16:20:16

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Rull Illile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:21:21	90.428%	0.032	м 216.000	м 224.300	0.000	тм 368700.000	тм 24390.000	тм 23920.000	5.515	<u>7 0.000</u>
2 16:22:26	92.010%	-0.046	м 218.700	м 219.900	0.000	тм 367200.000	тм 23960.000	тм 23670.000	5.314	T 0.000
										·
3 16:23:31	90.654%	0.041	м 225.800	м 222.100	0.000	тм 367300.000	тм 24200.000	тм 23770.000	5.192	<u>T 0.000</u>
X	91.030%	0.009	м 220.200	м 222.100	0.000	тм 367700.000	тм 24180.000	тм 23790.000	5.340	<u>т 0.000</u>
σ	0.855%	0.048	м 5.089	м 2.179	0.000	<u>тм 818.700</u>	тм 214.500	тм 122.700	0.163	<u>т 0.000</u>
%RSD	0.940	519.700	м 2.311	<u>м 0.981</u>	0.000	тм 0.223	<u>тм 0.887</u>	тм 0.516	3.053	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
4 4/ 04 04	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:21:21	тм 3946.000	м 33470.000	тм 36980.000	120.179%	5.122	0.372	1.328	0.752	256.500	тм 529.000
2 16:22:26	тм 3950.000	м 33600.000	тм 36830.000	120.971%	4.985	0.706	1.318	1.771	254.600	тм 522.400
3 16:23:31	тм 3908.000	м 33010.000	тм 36180.000	123.566%	5.229	0.723	1.292	1.606	252.000	<u>тм 513.700</u>
X	тм 3934.000	м 33360.000	тм 36660.000	121.572%	5.112	0.601	1.313	1.376	254.400	<u>тм 521.700</u>
σ	тм 23.400	м 308.400	тм 425.700	1.772%	0.122	0.198	0.019	0.547	2.271	<u>тм 7.670</u>
%RSD	<u>тм 0.595</u>	м 0.925	<u>тм 1.161</u>	1.457	2.389	32.930	1.452	39.740	0.893	<u>тм 1.470</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:21:21	тм 13120.000	тм 14520.000	2.656	0.679	38.410	3.376	0.027	0.208	9.225	6.535
2 16:22:26	тм 12990.000	тм 14330.000	2.635	0.720	40.520	3.414	0.024	0.217	9.609	6.412
3 16:23:31	тм 12820.000	м 14370.000	2.565	0.721	41.060	3.302	-0.006	0.232	9.150	6.614
X	тм 12980.000	тм 14410.000	2.619	0.707	40.000	3.364	0.015	0.219	9.328	6.520
σ	тм 147.900	тм 101.800	0.048	0.024	1.401	0.057	0.018	0.012	0.246	0.102
%RSD	<u>тм 1.140</u>	<u>тм 0.707</u>	1.817	3.351	3.504	1.692	120.700	5.550	2.640	1.559
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:21:21	0.733	13.450	0.142	0.000	0.000	0.959	тм 437.900	100.376%	-0.229	-0.186
2 16:22:26	0.692	14.420	0.265	0.000	0.000	0.897	тм 431.900	101.811%	-0.227	-0.196
3 16:23:31	0.661	14.650	0.205	0.000	0.000	0.867	тм 427.900	102.864%	-0.224	-0.172
X	0.695	14.170	0.204	0.000	0.000	0.907	тм 432.600	101.684%	-0.227	-0.184
σ	0.036	0.637	0.061	0.000	0.000	0.047	<u>тм 5.041</u>	1.249%	0.003	0.012
%RSD	5.239	4.496	30.000	0.000	0.000	5.173	<u>тм 1.165</u>	1.228	1.176	6.410
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:21:21	-0.126	90.638%	-2.769	0.376	0.386	0.018	0.416	-0.237	-0.165	91.770%
2 16:22:26	-0.118	91.874%	-2.882	0.364	0.400	0.127	0.406	-0.251	-0.169	94.061%
3 16:23:31	-0.121	93.123%	-1.620	0.376	0.313	0.042	0.404	-0.173	-0.116	94.938%
X	-0.121	91.878%	-2.424	0.372	0.366	0.062	0.409	-0.220	-0.150	93.590%
σ	0.004	1.243%	0.698	0.007	0.047	0.058	0.006	0.041	0.030	1.636%
%RSD	3.231	1.352	28.810	1.836	12.800	92.320	1.540	18.790	19.850	1.748
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:21:21	-0.192	0.129	0.119	м 333.600	95.928%	95.433%	0.055	0.298	0.006	0.017
2 16:22:26	-0.197	0.123	0.081	м 327.600	97.315%	97.139%	0.043	0.288	-0.001	-0.002
3 16:23:31	-0.187	0.129	0.071	м 325.600	97.528%	98.622%	0.048	0.285	0.015	0.002
X	-0.192	0.127	0.090	м 329.000	96.924%	97.065%	0.049	0.290	0.007	0.006
σ	0.005	0.003	0.025	<u>м 4.161</u>	0.869%	1.596%	0.006	0.007	0.008	0.010
%RSD	2.556	2.596	28.050	<u>м 1.265</u>	0.897	1.644	11.670	2.272	117.600	167.800
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 16:21:21	0.066	88.392%	0.000	0.000						
2 16:22:26	0.058	89.346%	0.000	0.000						
3 16:23:31	0.064	89.056%	0.000	0.000						
X	0.063	88.931%	0.000	0.000						
σ	0.004	0.489%	0.000	0.000						
%RSD	6.733	0.550	0.000	0.000						

t74672-4f 5/7/2011 16:24:34

Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
IXUIT	Time	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:25:39	92.461%	0.023	м 214.300	м 216.700	0.000	тм 355500.000	тм 23120.000	тм 22810.000	5.289	± 0.000
2	16:26:45	94.189%	0.007	м 221.000	м 221.100	0.000	тм 361500.000	тм 23750.000	тм 23330.000	5.328	⊤ 0.000
3	16:27:50	90.049%	0.004	м 226.800	м 225.300	0.000	тм 369500.000	тм 24340.000	тм 23880.000	5.383	T 0.000
X	10.27.30	92.233%	0.004	м 220.700	м 221.000	0.000	тм 362200.000	тм 23730.000	тм 23340.000	5.333	<u>т 0.000</u>
		2.079%	0.011	м 6.287	м 4.260	0.000	тм 7028.000	тм 611.000	тм 534.300	0.047	<u>т 0.000</u>
σ %RSD		2.07478	92.170	<u>м 0.287</u> м 2.849	<u>м 4.200</u> м 1.927	0.000	<u>тм 1.940</u>	тм 2.574	тм 2.289	0.888	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
Kun	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:25:39	тм 3812.000	м 32110.000	тм 35390.000	123.993%	4.925	0.708	1.232	1.196	252.600	тм 501.300
2	16:26:45	тм 3913.000	м 33430.000	тм 36920.000	122.803%	4.995	0.671	1.442	1.351	260.300	тм 525.800
3	16:27:50	тм 3960.000	м 32940.000	тм 36600.000	123.707%	5.642	0.614	1.377	0.910	264.300	тм 521.400
X	10.27.00	тм 3895.000	м 32830.000	тм 36300.000	123.501%	5.188	0.664	1.350	1.153	259.000	тм 516.100
σ		тм 75.310	м 666.700	тм 809.000	0.621%	0.395	0.048	0.107	0.224	5.942	тм 13.070
%RSD		тм 1.934	м 2.031	тм 2.228	0.503	7.620	7.178	7.949	19.410	2.294	тм 2.532
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
Run	Time	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:25:39	тм 12140.000	м 13610.000	2.379	0.661	33.960	3.503	0.400	0.102	7.882	6.287
2	16:26:45	тм 12860.000	м 14400.000	2.582	0.671	36.570	3.630	0.461	0.091	9.431	6.414
3	16:27:50	тм 12720.000	м 14270.000	2.560	0.743	39.360	3.588	0.358	0.078	9.581	6.583
X		тм 12570.000	м 14090.000	2.507	0.691	36.630	3.574	0.406	0.090	8.965	6.428
σ		тм 376.300	м 425.800	0.111	0.045	2.700	0.065	0.052	0.012	0.941	0.148
%RSD		тм 2.993	м 3.021	4.433	6.502	7.372	1.811	12.810	12.990	10.500	2.309
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:25:39	0.581	13.220	-0.039	0.000	0.000	0.729	тм 411.900	104.917%	-0.211	-0.175
2	16:26:45	0.635	15.380	0.086	0.000	0.000	0.869	тм 434.100	102.178%	-0.226	-0.171
3	16:27:50	0.694	14.860	0.161	0.000	0.000	0.816	тм 425.100	104.316%	-0.229	-0.186
Х		0.637	14.490	0.070	0.000	0.000	0.804	тм 423.700	103.804%	-0.222	-0.178
σ		0.056	1.130	0.101	0.000	0.000	0.071	тм 11.190	1.440%	0.009	0.008
%RSD		8.840	7.799	145.000	0.000	0.000	8.814	тм 2.640	1.387	4.209	4.296
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:25:39	-0.108	94.258%	-2.660	0.375	0.378	0.013	0.409	-0.233	-0.161	96.028%
2	16:26:45	-0.118	92.194%	-2.224	0.370	0.360	0.154	0.412	-0.211	-0.145	94.512%
3	16:27:50	-0.103	94.316%	-2.953	0.362	0.400	0.041	0.409	-0.255	-0.178	94.892%
X		-0.110	93.589%	-2.613	0.369	0.379	0.070	0.410	-0.233	-0.162	95.144%
σ		0.007	1.208%	0.367	0.007	0.020	0.075	0.002	0.022	0.016	0.789%
%RSD		6.793	1.291	14.040	1.802	5.350	107.600	0.471	9.339	10.110	0.829
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:25:39	-0.189	0.091	0.034	м 311.600	99.493%	99.707%	0.029	0.272	-0.002	0.005
	16:26:45	-0.197	0.086	0.074	м 326.700	97.306%	97.798%	0.037	0.273	-0.001	-0.011
3	16:27:50	-0.187	0.081	0.046	м 324.400	97.663%	98.078%	0.042	0.269	0.002	0.002
X		-0.191	0.086	0.051	м 320.900	98.154%	98.527%	0.036	0.271	-0.000	-0.001
σ		0.006	0.005	0.021	м 8.102	1.173%	1.031%	0.006	0.002	0.002	0.009
%RSD		2.991	5.996	40.030	м 2.525	1.195	1.046	17.840	0.797	693.500	627.300
Run	Time	208Pb	209Bi	220Bkg	238U						
	1/ 05 00	ppb	ppb	ppb	ppb						
1	16:25:39	0.058	91.029%	0.000	0.000						
2	16:26:45	0.058	89.283%	0.000	0.000						
3	16:27:50	0.061	89.892%	0.000	0.000						
X		0.059	90.068%	0.000	0.000						
σ		0.002	0.886%	0.000	0.000						
%RSD		2.710	0.984	0.000	0.000						

t74672-6f 5/7/2011 16:28:53

User Pre-dilution:		/1:	ODe	100	110	120	2210	2FM~	2/14~	27.41	2701
Run Tim	ie	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 16:29:5	58 86.0	ppb 400/	-0.028	ррb м 268.500	ррb м 277.200	ppb 0.000	ррb тм 539200.000	ррb тм 76250.000	ррb тм 75180.000	ppb 4.572	ppb <u>⊤ 0.000</u>
2 16:31:0			-0.028	м 270.500	м 277.200	0.000	тм 540500.000	тм 76700.000	тм 75150.000	4.572	<u>1 0.000</u> ⊤ 0.000
					м 279.600				тм 73870.000		·
			-0.060	м 271.900		0.000	тм 533100.000	тм 74800.000		4.508	<u>T 0.000</u>
X	87.0		-0.038	м 270.300	м 278.800	0.000	тм 537600.000	тм 75910.000	тм 74730.000	4.536	<u>т 0.000</u>
σ		23%	0.020	м 1.704	м 1.401	0.000	тм 3925.000	тм 988.100	тм 747.000	0.033	<u>т 0.000</u>
%RSD		.060	51.670	м 0.630	м 0.503	0.000	тм 0.730	<u>тм 1.302</u>	<u>тм 1.000</u>	0.721	<u>T 0.000</u>
Run Tim	ie	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 16:29:5	58 TM 8233	ppb	ррb м 93580.000	ррb тм 101500.000	ppb 119.072%	ppb 4.235	ppb 0.685	ppb 0.356	ppb 0.732	ppb 179.100	ррb тм 1971.000
2 16:31:0	_		м 94610.000	тм 102200.000	119.288%	4.233	0.599	0.301	1.347	173.000	тм 1991.000
3 16:32:0			м 90990.000		124.008%	4.898	0.399	0.301	1.212	163.500	тм 1929.000
				тм 98920.000							
X	тм 8237		м 93060.000	тм 100900.000	120.789%	4.677	0.678	0.307	1.097	171.900	тм 1963.000
σ %RSD	<u>тм 110</u>		м 1863.000	тм 1735.000	2.790%	0.382	0.077	0.047	0.323	7.847	<u>тм 31.310</u>
		.340	<u>м 2.002</u>	тм 1.720	2.309	8.176	11.280	15.170	29.440	4.566	<u>тм 1.594</u>
Run Tim	ie s	6Fe ppb	57Fe ppb	59Co ppb	60Ni ppb	62Ni ppb	63Cu ppb	65Cu ppb	66Zn ppb	67Zn ppb	68Zn
1 16:29:5	58 тм 25100	• • •	<u>тм 28100.000</u>	0.838	-0.297	81.630	7.189	0.789	0.420	28.520	ppb 21.500
2 16:31:0			тм 28510.000	0.851	-0.297	м 102.800	7.109 8.424	0.769	0.420	30.310	21.300
3 16:32:0	_		тм 27470.000	0.828	-0.362	м 102.800	8.538	0.796	0.364	29.100	21.490
									0.476		21.400
X	тм 25040		тм 28030.000	0.839	-0.325	м 97.930	8.051	0.767		29.310	
σ %RSD	тм 443		тм 522.400	0.012	0.033	м 14.490	0.748	0.046	0.046	0.915	0.162
Run Tim		.769 '5As	<u>тм 1.864</u> 77Se	1.402 78Se	10.180 79Br	<u>м 14.800</u> 81Br	9.294 82Se	6.014 88Sr	10.870 89Y	3.123 95Mo	0.758 97Mo
Ruii IIII	ie ,	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:29:5	58 ().531	16.970	0.073	0.000	0.000	1.467	тм 1193.000	99.585%	-0.250	-0.210
2 16:31:0).399	16.760	0.223	0.000	0.000	0.897	тм 1197.000	99.943%	-0.241	-0.187
3 16:32:0	_).488	14.750	-0.062	0.000	0.000	0.963	тм 1162.000	102.775%	-0.241	-0.107
).473	16.160	0.078	0.000	0.000	1.109	тм 1184.000	102.773%	-0.247	-0.201
σ		0.473	1.224	0.078	0.000	0.000	0.312	тм 18.920	1.748%	0.005	0.012
%RSD		1.300	7.575	182.700	0.000	0.000	28.130	<u>тм 1.598</u>	1.746%	2.126	6.120
Run Tim		8Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
Kun I III	7	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:29:5	58 -0).131	88.872%	-6.699	0.379	0.637	-0.038	0.410	-0.479	-0.325	90.461%
2 16:31:0	=).128	88.904%	-7.311	0.378	0.674	-0.067	0.404	-0.514	-0.341	90.513%
3 16:32:0).142	90.923%	-7.137	0.366	0.667	-0.011	0.410	-0.500	-0.337	92.249%
X		0.134	89.566%	-7.049	0.374	0.659	-0.039	0.408	-0.498	-0.334	91.074%
σ		0.008	1.175%	0.315	0.007	0.020	0.028	0.003	0.018	0.009	1.018%
%RSD		5.646	1.312	4.474	1.944	3.034	72.370	0.800	3.576	2.575	1.118
Run Tim		8Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:29:5	58 -0).166	0.069	0.028	тм 1161.000	94.410%	94.784%	0.028	0.269	-0.023	-0.023
2 16:31:0		.195	0.043	0.018	тм 1170.000	95.037%	94.239%	0.026	0.265	-0.026	-0.021
3 16:32:0	_	.182	0.063	-0.006	тм 1143.000	96.482%	96.917%	0.023	0.266	-0.012	-0.028
Х).181	0.058	0.013	тм 1158.000	95.310%	95.313%	0.026	0.267	-0.020	-0.024
σ		0.015	0.014	0.018	тм 13.880	1.062%	1.415%	0.003	0.002	0.008	0.004
%RSD		3.267	23.420	131.800	тм 1.199	1.115	1.485	10.010	0.783	37.240	15.300
Run Tim		8Pb	209Bi	220Bkg	238U			-			
		ppb	ppb	ppb	ppb						
1 16:29:5	58 (0.036	83.916%	0.000	0.000	•					
2 16:31:0)3 (0.035	84.642%	0.000	0.000						
3 16:32:0)8 (0.037	85.600%	0.000	0.000						
Х		0.036	84.719%	0.000	0.000						
σ	(0.001	0.845%	0.000	0.000						
%RSD		2.787	0.997	0.000	0.000						

t74672-7f 5/7/2011 16:33:11

user Pre-allution:	1.000	,									
Run Tir	me	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:34:	:16	87.782%	-0.019	м 284.700	м 289.300	0.000	тм 573200.000	тм 80880.000	тм 80270.000	<u>⊤7.693</u>	<u> 7 0.000</u>
2 16:35:	:22	93.034%	-0.031	м 263.200	м 272.800	0.000	тм 546400.000	тм 77140.000	тм 76270.000	<u> ⊤ 6.854</u>	T 0.000
3 16:36:	26	89.293%	-0.002	м 283.200	м 291.200	0.000	тм 580000.000	тм 82100.000	тм 80960.000	4.966	т 0.000
Х		90.037%	-0.017	м 277.000	м 284.500	0.000	тм 566500.000	тм 80040.000	тм 79170.000	т 6.504	<u>т 0.000</u>
		2.704%	0.015	м 12.030		0.000	тм 17780.000	тм 2584.000	тм 2535.000		т 0.000
σ %RSD					м 10.120					<u>т 1.397</u>	
		3.003	86.250	м 4.343	м 3.559	0.000	тм 3.139	тм 3.228	тм 3.202	<u>T21.470</u>	<u>T 0.000</u>
Run Tir	me	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
4 4/ 0/	1	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:34:		тм 10060.000	м 110400.000	тм 121000.000	0.000	6.076	0.791	0.610	1.383	202.200	тм 2311.000
2 16:35:		тм 9712.000	м 106000.000	тм 115700.000	0.000	5.946	0.455	0.526	0.379	201.900	тм 2238.000
3 16:36:	:26	тм 10250.000	м 112700.000	тм 123300.000	0.000	6.308	0.417	0.630	0.315	208.200	тм 2376.000
X		тм 10010.000	м 109700.000	тм 120000.000	0.000	6.110	0.554	0.589	0.692	204.100	тм 2308.000
σ		тм 273.600	м 3376.000	тм 3873.000	0.000	0.183	0.206	0.055	0.599	3.518	тм 68.960
%RSD		тм 2.734	м 3.077	тм 3.228	0.000	2.998	37.200	9.376	86.550	1.723	тм 2.987
Run Tir	me	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
-		ppb	ppb	ppb	dqq	ppb	ppb	ppb	dqq	ppb	ppb
1 16:34:	:16	тм 29080.000	тм 32570.000	1.519	-0.009	м 129.800	9.245	0.705	1.776	32.970	24.330
2 16:35:		тм 28220.000	тм 31540.000	1.476	-0.104	м 136.100	9.820	0.635	1.629	31.320	24.100
3 16:36:		тм 29880.000	тм 33320.000	1.529	-0.025	м 146.200	10.660	0.765	1.761	33.840	25.070
X X	.20	тм 29060.000	тм 32480.000	1.508	-0.025	м 137.400	9.908	0.703	1.722	32.710	24.500
σ		тм 826.600	тм 897.200	0.028	0.051	м 8.240	0.711	0.065	0.081	1.280	0.505
%RSD		тм 2.845	тм 2.762	1.869	110.700	м <u>5.999</u>	7.179	9.269	4.682	3.912	2.063
Run Tir	me	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:34:		0.567	17.200	0.422	0.000	0.000	0.814	тм 1108.000	103.039%	-0.183	-0.148
2 16:35:	:22	0.457	16.930	0.648	0.000	0.000	0.735	тм 1091.000	104.750%	-0.173	-0.157
3 16:36:	:26	0.475	18.340	0.921	0.000	0.000	0.466	тм 1134.000	103.521%	-0.169	-0.163
X		0.500	17.490	0.663	0.000	0.000	0.672	тм 1111.000	103.770%	-0.175	-0.156
σ		0.059	0.751	0.250	0.000	0.000	0.183	тм 21.620	0.882%	0.007	0.007
%RSD		11.740	4.295	37.680	0.000	0.000	27.170	тм 1.947	0.850	4.143	4.651
Run Tir	me	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:34:	:16	-0.104	90.667%	-6.888	0.352	0.659	0.130	0.412	-0.482	-0.320	93.178%
2 16:35:		-0.109	93.253%	-5.958	0.356	0.598	0.097	0.399	-0.436	-0.281	94.440%
3 16:36:		-0.084	92.057%	-5.606	0.362	0.577	0.128	0.403	-0.410	-0.262	93.618%
	.20	-0.004	91.992%	-6.151	0.356	0.612	0.118	0.405	-0.410	-0.288	93.745%
X											
σ		0.013	1.294%	0.662	0.005	0.043	0.018	0.007	0.036	0.030	0.641%
%RSD	г	13.210	1.407	10.770	1.433	6.971	15.330	1.625	8.176	10.300	0.684
Run Tir	me	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
4 4 4 4 4 4	1/	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:34:		-0.205	0.079	0.049	тм 1090.000	96.453%	96.954%	0.022	0.263	0.028	0.014
2 16:35:		-0.191	0.063	0.033		97.882%	98.526%	0.027	0.264	0.020	0.019
3 16:36:	:26	-0.190	0.087	0.069	тм 1100.000	96.596%	96.601%	0.026	0.262	0.008	0.018
X		-0.195	0.076	0.050	тм 1084.000	96.977%	97.360%	0.025	0.263	0.019	0.017
σ		0.008	0.013	0.018	тм 19.270	0.787%	1.025%	0.002	0.001	0.010	0.003
%RSD		4.259	16.520	35.680	<u>тм 1.777</u>	0.811	1.053	8.717	0.352	52.280	15.610
Run Tir	me	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1 16:34:	:16	0.077	85.018%	0.000	0.000	•					
2 16:35:		0.074	87.041%	0.000	0.000						
3 16:36:		0.072	86.074%	0.000	0.000						
X 10.30.	.20	0.072	86.044%	0.000	0.000						
σ		0.002	1.012%	0.000	0.000						
%RSD		2.814	1.176	0.000	0.000						

ccv 5/7/2011 16:37:29

	-dilution: 1.00		OD -	100	110	120	221-	2514	2/14-:	0741	2701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1	16:38:35	ppb 101.942%	ppb 53.920	ppb 56.840	ppb 57.720	ppb 0.000	ppb <u>™ 1283.000</u>	ppb 541.700	ppb 541.400	ppb 476.300	ррb <u>т 0.000</u>
2	16:39:40	99.212%	54.000	56.350	55.480	0.000	T 763.900	487.800	487.900	479.000	<u>⊤ 0.000</u>
3							599.700				
	16:40:45	99.435%	53.890	53.070	55.380	0.000		473.000	474.000 501.100	474.500	<u>T 0.000</u>
X		100.196%	53.930	55.420	56.190	0.000	тм 882.200	500.800		476.600	<u>т 0.000</u>
σ		1.516%	0.059	2.046	1.321	0.000	тм 356.600	36.190	35.590	2.313	<u>т 0.000</u>
%RSD	Time o	1.513	0.110	3.692 44Ca	2.351	0.000	тм 40.430	7.227	7.102	0.485	<u>T 0.000</u>
Run	Time	39K	43Ca	-	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1	16:38:35	ppb 459.400	ppb 601.400	ppb 585.300	ppb 105.667%	ppb 5 0.320	ppb 50.260	ppb 49.590	ppb 50.000	ppb 184.800	ppb 52.080
2	16:39:40	455.400	527.100	508.200	103.007%	49.950		50.110			50.290
3	16:40:45	455.400	500.100	486.700	104.124%	49.950	50.570 49.890	50.110	51.260 48.750	181.000 199.200	49.740
	10.40.43										
X		454.700	542.900	526.700	104.048%	49.880	50.240	49.900	50.000	188.300	50.700
σ %RSD		5.159	52.460	51.890	1.659%	0.469	0.342	0.272	1.255	9.637	1.221
	Time	1.135	9.664	9.851	1.594	0.940	0.680	0.546	2.510	5.117	2.409
Run	rime	56Fe	57Fe	59Co ppb	60Ni ppb	62Ni ppb	63Cu	65Cu	66Zn	67Zn ppb	68Zn
1	16:38:35	ppb	ppb 5 14.400	50.300	50.640	92.810	ppb 51.760	ppb 50.180	ppb 49.930	48.920	ppb 50.160
2	16:39:40	<u>+ 476.200</u>	494.200	50.530	50.730	72.040	51.110	49.350	49.620	51.120	51.020
3	16:40:45	<u>1470.200</u> <u>1467.500</u>	480.100	50.080	50.730	62.290	50.150	49.330	49.570	49.100	50.700
	10.40.43	<u>т 481.200</u>	496.200	50.300	50.770	75.710	51.000	49.620	49.710	49.710	50.700
X											
σ %RSD		<u>т 16.800</u> т 3.491	17.250 3.476	0.224 0.445	0.147	15.590	0.813	0.484 0.975	0.198	1.227 2.467	0.432 0.853
Run	Time	75As	77Se	78Se	0.290 79Br	20.590 81Br	1.594 82Se	88Sr	0.399 89Y	95Mo	97Mo
Kuii	Tillle	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:38:35	51.100	53.920	50.910	0.000	0.000	50.460	50.960	106.698%	49.520	49.470
2	16:39:40	51.310	54.560	51.860	0.000	0.000	51.270	50.030	104.090%	50.090	50.150
3	16:40:45	51.190	52.980	51.170	0.000	0.000	50.420	49.700	103.685%	49.980	50.070
X	10110110	51.200	53.820	51.310	0.000	0.000	50.720	50.230	104.825%	49.860	49.900
σ		0.103	0.796	0.491	0.000	0.000	0.481	0.654	1.635%	0.300	0.372
%RSD		0.200	1.479	0.471	0.000	0.000	0.948	1.302	1.560	0.602	0.745
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
Run	Time	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:38:35	50.050	103.142%	48.780	49.090	0.451	49.330	48.790	49.770	49.680	102.526%
2	16:39:40	50.360	101.793%	51.990	49.550	0.174	48.400	49.080	50.140	49.830	100.590%
3	16:40:45	49.960	100.185%	48.590	49.370	0.376	48.020	48.970	49.310	49.710	100.354%
X		50.120	101.707%	49.790	49.340	0.334	48.580	48.940	49.740	49.740	101.157%
σ		0.208	1.481%	1.913	0.231	0.143	0.677	0.147	0.413	0.079	1.192%
%RSD		0.416	1.456	3.841	0.468	42.940	1.394	0.300	0.831	0.160	1.178
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:38:35	49.280	48.530	48.900	51.610	100.738%	100.856%	49.620	49.090	49.630	49.610
2	16:39:40	49.760	49.530	49.610	51.250	98.800%	99.501%	50.000	49.560	50.210	49.840
3	16:40:45	49.380	49.270	49.500	50.340	98.797%	97.976%	50.050	49.850	50.680	50.370
X		49.470	49.110	49.340	51.060	99.445%	99.444%	49.890	49.500	50.170	49.940
σ		0.251	0.519	0.382	0.656	1.120%	1.441%	0.232	0.388	0.528	0.392
%RSD		0.507	1.056	0.773	1.285	1.126	1.449	0.465	0.784	1.052	0.786
Run	Time	208Pb	209Bi	220Bkg	238U						
	[ppb	ppb	ppb	ppb						
1	16:38:35	49.540	99.832%	0.000	0.000						
2	16:39:40	50.090	98.544%	0.000	0.000						
3	16:40:45	50.280	97.116%	0.000	0.000						
X		49.970	98.497%	0.000	0.000						
σ		0.386	1.359%	0.000	0.000						
%RSD		0.772	1.379	0.000	0.000						

ccb 5/7/2011 16:41:48

User Pre-dilution: 1.00					100			0/11		0701
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:42:53	98.510%	-0.047	3.368	3.949	0.000	68.310	8.197	8.538	3.266	<u>т 0.000</u>
2 16:43:58	101.396%	-0.115	2.973	3.063	0.000	40.340	4.647	4.960	2.321	<u>т 0.000</u>
3 16:45:04	99.476%	-0.127	3.020	2.621	0.000	30.430	3.192	3.485	2.205	<u>T 0.000</u>
X	99.794%	-0.096	3.120	3.211	0.000	46.360	5.345	5.661	2.597	<u>т 0.000</u>
σ	1.469%	0.043	0.215	0.676	0.000	19.640	2.575	2.598	0.582	<u>т 0.000</u>
%RSD	1.472	44.980	6.903	21.060	0.000	42.370	48.160	45.900	22.390	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:42:53	-0.804	-9.848	-4.509	99.200%	-0.394	-0.022	0.006	0.166	196.500	0.195
2 16:43:58	-3.046	-16.720	-9.432	102.605%	-0.528	0.241	-0.038	0.497	192.100	0.032
3 16:45:04	-1.139	-18.360	-11.290	101.384%	-0.533	0.122	-0.037	-0.360	205.600	-0.018
Х	-1.663	-14.970	-8.411	101.063%	-0.485	0.114	-0.023	0.101	198.100	0.069
σ	1.209	4.514	3.504	1.725%	0.079	0.131	0.025	0.432	6.925	0.111
%RSD	72.710	30.150	41.660	1.707	16.250	115.700	107.500	428.000	3.496	160.800
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	dqq	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:42:53	8.561	11.900	0.014	-0.060	3.748	-0.002	-0.222	-0.368	-0.375	-0.504
2 16:43:58	4.890	8.240	-0.057	-0.173	2.699	-0.131	-0.297	-0.494	-0.415	-0.590
3 16:45:04	5.273	8.462	-0.071	-0.185	1.504	-0.171	-0.320	-0.503	-0.135	-0.630
Х	6.241	9.534	-0.038	-0.139	2.650	-0.101	-0.279	-0.455	-0.308	-0.575
σ	2.018	2.051	0.045	0.069	1.123	0.088	0.051	0.075	0.151	0.064
%RSD	32.330	21.510	119.700	49.700	42.380	87.420	18.310	16.520	49.090	11.140
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
itan ime	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:42:53	-0.173	2.797	-0.126	0.000	0.000	-0.027	0.089	100.318%	-0.077	-0.038
2 16:43:58	-0.144	1.539	-0.223	0.000	0.000	-0.235	-0.069	104.615%	-0.178	-0.117
3 16:45:04	-0.122	2.430	-0.291	0.000	0.000	-0.209	-0.114	102.274%	-0.219	-0.154
X	-0.122	2.255	-0.214	0.000	0.000	-0.157	-0.031	102.402%	-0.158	-0.103
σ	0.026	0.647	0.083	0.000	0.000	0.113	0.106		0.073	0.060
%RSD								2.151%		
	17.490	28.690	38.860 106Cd	0.000	0.000 108Mo O	72.240 108Cd	339.900	2.101	46.070 114Cd	57.900
Run Time	98Mo	103Rh		107Ag			109Ag	111Cd		115In
1 16:42:53	ppb 0.034	ppb 99.790%	ppb 0.250	ppb 0.470	ppb 0.187	-0.043	ppb 0.489	ppb 0.025	ppb 0.040	ppb 96.873%
2 16:43:58	-0.081	102.394%	-0.652	0.470	0.167	0.006	0.436	-0.080	-0.063	100.725%
3 16:45:04	-0.084	102.37476	-0.578	0.382	0.249	-0.070	0.403	-0.094	-0.069	99.249%
		100.902%	-0.327	0.362	0.239	-0.076	0.443	-0.050	-0.031	98.949%
X	-0.043									
σ %RSD	0.067	1.307% 1.293	0.501	0.051 12.290	0.033	0.039	0.044 9.898	0.065	0.061	1.944% 1.964
Run Time	155.500 118Sn	1.293 121Sb	153.400 123Sb	12.290 137Ba	14.720 159Tb	107.500 165Ho	9.898 203TI	130.500 205TI	198.100 206Pb	207Pb
Ruii IIIIle	ppb	1213b ppb	ppb	ррb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:42:53	-0.055	0.891	0.841	0.239	95.764%	95.706%	0.183	0.404	0.134	0.116
2 16:43:58				0.239						
3 16:43:58	-0.141 -0.149	0.510 0.401	0.502 0.374	-0.039	99.389% 96.388%	98.598% 96.074%	0.106 0.087	0.343 0.333	0.013 -0.022	0.021 -0.002
X	-0.115	0.601	0.573	0.076	97.180%	96.793%	0.126	0.360	0.041	0.045
σ %RSD	0.052	0.257	0.242	0.145	1.938%	1.574%	0.051	0.038	0.082	0.062
	45.430	42.790	42.210	191.400	1.994	1.626	40.550	10.690	197.500	138.400
Run Time	208Pb	209Bi	220Bkg	238U						
1 16:42:53	ppb 	ppb	ppb	ppb 0.000						
	0.179	96.373%	0.000							
2 16:43:58	0.077	97.712%	0.000	0.000						
3 16:45:04	0.048	96.209%	0.000	0.000						
Х	0.101	96.765%	0.000	0.000						
σ	0.069	0.824%	0.000	0.000						
%RSD	68.050	0.852	0.000	0.000						

t74672-8f 5/7/2011 16:46:07

User Pre-dilution: 1.00	00									
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:47:12	86.872%	0.015	м 263.500	м 273.000	0.000	тм 519900.000	тм 72030.000	тм 71030.000	<u>⊤ 9.916</u>	т 0.000
2 16:48:17	87.141%	0.034	м 275.100	м 280.900	0.000	тм 529000.000	тм 73550.000	тм 72600.000	7.192	т 0.000
3 16:49:22	89.796%	-0.072	м 271.000	м 275.500	0.000	тм 518400.000	тм 72320.000	тм 71120.000	6.401	т 0.000
X	87.936%	-0.008	м 269.900	м 276.400	0.000	тм 522400.000	тм 72630.000	тм 71590.000	т 7.836	т 0.000
	1.616%	0.056					тм 807.600	тм 882.400		<u>т 0.000</u>
σ %RSD			м 5.907	<u>м 4.044</u>	0.000	тм 5749.000			<u>T 1.844</u>	
	1.838	715.100	м 2.189	<u>м 1.463</u>	0.000	<u>тм 1.100</u>	<u>тм 1.112</u>	тм 1.233	T 23.530	<u>T 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 1/ 47 10	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:47:12	тм 8008.000	м 84 990.000	тм 92870.000	122.696%	4.227	0.669	0.419	1.243	142.400	тм 1864.000
2 16:48:17	тм 8141.000	м 87 190.000	тм 94830.000	124.574%	4.908	0.536	0.293	0.690	147.400	тм 1912.000
3 16:49:22	тм 8004.000	м 85470.000	тм 92730.000	127.583%	4.627	0.769	0.294	0.858	143.200	<u>тм 1889.000</u>
X	тм 8051.000	м 85890.000	тм 93480.000	124.951%	4.588	0.658	0.335	0.930	144.300	<u>тм 1889.000</u>
σ	тм 77.990	м 1156.000	тм 1176.000	2.465%	0.342	0.117	0.073	0.283	2.696	тм 24.290
%RSD	тм 0.969	м 1.346	тм 1.258	1.973	7.461	17.760	21.660	30.450	1.868	тм 1.286
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	dqq	dqq	dqq	ppb	dqq	dqq	ppb	ppb
1 16:47:12	тм 23690.000	тм 26510.000	0.879	-0.362	73.820	6.094	0.258	0.222	26.790	19.420
2 16:48:17	тм 24360.000	тм 27350.000	0.919	-0.280	92.900	7.276	0.307	0.154	28.360	20.820
3 16:49:22	тм 24120.000	тм 27000.000	0.922	-0.276	м 102.800	7.668	0.293	0.168	27.560	20.430
X 10.49.22	тм 24060.000	тм 26960.000	0.922	-0.276	м 89.860	7.000	0.293	0.181	27.570	20.430
σ	тм 342.000	тм 420.000	0.024	0.049	м 14.750	0.820	0.025	0.036	0.784	0.726
%RSD	<u>тм 1.422</u>	<u>тм 1.558</u>	2.603	15.900	<u>м 16.410</u>	11.690	8.806	19.710	2.842	3.588
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:47:12	0.570	9.905	0.033	0.000	0.000	1.400	тм 1100.000	102.812%	-0.204	-0.162
2 16:48:17	0.668	11.170	0.201	0.000	0.000	1.275	тм 1139.000	102.474%	-0.221	-0.168
3 16:49:22	0.564	11.300	0.255	0.000	0.000	0.858	тм 1121.000	104.575%	-0.215	-0.183
Х	0.601	10.790	0.163	0.000	0.000	1.178	тм 1120.000	103.287%	-0.213	-0.171
σ	0.059	0.769	0.116	0.000	0.000	0.284	тм 19.550	1.128%	0.009	0.011
%RSD	9.747	7.130	71.090	0.000	0.000	24.090	тм 1.746	1.092	4.152	6.340
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
itan inno	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:47:12	-0.117	91.439%	-6.067	0.363	0.609	0.157	0.400	-0.450	-0.304	93.008%
2 16:48:17	-0.120	90.419%	-7.353	0.366	0.679	-0.039	0.402	-0.515	-0.346	91.913%
3 16:49:22	-0.130	92.732%	-7.257	0.376	0.681	0.071	0.397	-0.514	-0.349	94.008%
X	-0.122	91.530%	-6.892	0.368	0.656	0.063	0.400	-0.493	-0.333	92.976%
σ	0.007	1.159%	0.716	0.007	0.041	0.098	0.002	0.037	0.025	1.048%
%RSD	5.491	1.266	10.390	1.844	6.217	156.300	0.565	7.592	7.585	1.127
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 16:47:12	-0.178	0.293	0.243	тм 1082.000	97.272%	96.772%	0.033	0.275	-0.010	-0.004
2 16:48:17	-0.179	0.239	0.237	тм 1125.000	96.099%	96.511%	0.033	0.272	-0.015	-0.018
3 16:49:22	-0.181	0.191	0.169	тм 1107.000	97.507%	97.879%	0.029	0.266	-0.020	-0.002
Х	-0.179	0.241	0.216	тм 1105.000	96.959%	97.054%	0.032	0.271	-0.015	-0.008
σ	0.001	0.051	0.041	тм 21.310	0.754%	0.726%	0.003	0.004	0.005	0.009
%RSD	0.823	21.130	18.980	тм 1.928	0.75478	0.748	8.011	1.639	34.350	108.000
Run Time	208Pb	209Bi	220Bkg	238U	5.776	0.740	0.011	1.039	JJJU	100.000
Kun j mile										
1 14.47.10	ppb 0.054	ppb 86.083%	ppb	ppb 0.000						
1 16:47:12			0.000	0.000						
2 16:48:17	0.043	84.763%	0.000	0.000						
3 16:49:22	0.043	86.317%	0.000	0.000						
X	0.047	85.721%	0.000	0.000						
σ	0.006	0.838%	0.000	0.000						
%RSD	13.480	0.977	0.000	0.000						

t74672-9f 5/7/2011 16:50:25

User Pre-	-allution: 1.00	10			,	,					
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:51:30	89.208%	-0.016	м 286.400	м 294.200	0.000	тм 606000.000	тм 86460.000	<u>тм 85840.000</u>	5.337	<u> </u>
2	16:52:35	91.650%	-0.029	м 282.400	м 290.000	0.000	тм 597100.000	тм 85010.000	тм 84140.000	5.147	<u>T 0.000</u>
3	16:53:40	92.641%	-0.050	м 282.500	м 285.200	0.000	тм 590800.000	тм 84660.000	тм 83740.000	5.176	<u>т 0.000</u>
X		91.166%	-0.032	м 283.800	м 289.800	0.000	тм 597900.000	тм 85380.000	тм 84580.000	5.220	т 0.000
σ		1.767%	0.017	м 2.291	м 4.529	0.000	тм 7625.000	тм 956.700	тм 1112.000	0.102	т 0.000
%RSD	i	1.938	52.970	м 0.807	м 1.563	0.000	тм 1.275	тм 1.121	тм 1.315	1.954	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:51:30	тм 10610.000	м 119900.000	тм 130900.000	0.000	6.632	0.520	0.564	-0.093	199.700	тм 2452.000
2	16:52:35	тм 10520.000	м 118900.000	тм 130100.000	0.000	6.617	0.710	0.553	0.527	196.500	тм 2438.000
3	16:53:40	тм 10550.000	м 118300.000	тм 129100.000	0.000	6.395	0.840	0.490	0.935	189.300	тм 2428.000
	10.55.40	·									
X		тм 10560.000	м 119000.000	тм 130100.000	0.000	6.548	0.690	0.535	0.457	195.200	<u>тм 2440.000</u>
σ		тм 42.910	м 818.800	тм 906.600	0.000	0.133	0.161	0.040	0.518	5.324	<u>тм 12.100</u>
%RSD		<u>тм 0.406</u>	<u>м 0.688</u>	тм 0.697	0.000	2.028	23.360	7.463	113.300	2.728	<u>тм 0.496</u>
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:51:30	тм 31300.000	тм 34860.000	1.130	-0.078	м 134.100	9.899	0.417	1.524	33.660	25.760
2	16:52:35	тм 31170.000	тм 34690.000	1.065	-0.028	м 146.800	10.210	0.464	1.570	36.140	26.370
3	16:53:40	тм 30970.000	тм 34450.000	1.025	0.055	м 151.600	10.530	0.452	1.527	33.820	25.680
X		тм 31150.000	тм 34670.000	1.073	-0.017	м 144.200	10.210	0.444	1.540	34.540	25.940
σ		тм 162.400	тм 204.800	0.053	0.067	<u>м 9.069</u>	0.315	0.025	0.026	1.390	0.379
%RSD		<u>тм 0.521</u>	<u>тм 0.591</u>	4.945	397.200	м 6.290	3.084	5.572	1.676	4.026	1.461
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:51:30	0.651	18.230	0.844	0.000	0.000	0.893	тм 1179.000	105.825%	-0.244	-0.190
2	16:52:35	0.355	19.690	0.667	0.000	0.000	0.610	тм 1177.000	106.485%	-0.219	-0.193
3	16:53:40	0.609	18.150	0.872	0.000	0.000	0.827	тм 1161.000	108.356%	-0.224	-0.194
X		0.538	18.690	0.794	0.000	0.000	0.777	тм 1172.000	106.889%	-0.229	-0.192
σ		0.160	0.865	0.111	0.000	0.000	0.148	тм 9.846	1.313%	0.013	0.002
%RSD		29.780	4.627	14.020	0.000	0.000	19.020	тм 0.840	1.228	5.805	0.965
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:51:30	-0.126	93.088%	-6.591	0.364	0.642	0.152	0.404	-0.475	-0.318	95.507%
2	16:52:35	-0.121	94.022%	-6.479	0.357	0.633	0.123	0.399	-0.472	-0.319	95.935%
3	16:53:40	-0.126	95.365%	-7.466	0.369	0.716	0.390	0.400	-0.550	-0.374	96.940%
X		-0.124	94.159%	-6.845	0.363	0.664	0.221	0.401	-0.499	-0.337	96.127%
σ		0.003	1.145%	0.540	0.006	0.046	0.147	0.003	0.044	0.032	0.736%
%RSD		2.026	1.216	7.895	1.678	6.861	66.170	0.684	8.866	9.427	0.766
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:51:30	-0.172	0.168	0.106	тм 1156.000	98.807%	98.224%	0.025	0.265	-0.024	-0.023
2	16:52:35	-0.169	0.163	0.115	тм 1150.000	99.036%	98.410%	0.024	0.265	-0.029	-0.020
3	16:53:40	-0.181	0.125	0.099	тм 1147.000	99.398%	99.609%	0.028	0.262	-0.024	-0.023
X		-0.174	0.152	0.107	тм 1151.000	99.080%	98.747%	0.026	0.264	-0.026	-0.022
σ		0.006	0.023	0.008	тм 4.860	0.298%	0.752%	0.002	0.002	0.003	0.002
%RSD		3.451	15.450	7.727	тм 0.422	0.301	0.761	8.849	0.615	11.280	7.676
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	16:51:30	0.036	85.837%	0.000	0.000	1					
2	16:52:35	0.035	87.277%	0.000	0.000						
3	16:53:40	0.036	86.372%	0.000	0.000						
X		0.036	86.495%	0.000	0.000						
σ		0.000	0.728%	0.000	0.000						
%RSD		0.402	0.72878	0.000	0.000						
	ı	0.102	0.012	0.000	0.000						

t74672-10f 5/7/2011 16:54:43

	-dilution: 1.00										
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:55:48	85.581%	-0.107	м 172.700	м 180.300	0.000	тм 692800.000	тм 73000.000	тм 72410.000	4.817	<u>T 0.000</u>
2	16:56:53	88.192%	-0.079	м 170.900	м 179.500	0.000	тм 693900.000	тм 73680.000	тм 73240.000	5.049	<u> </u>
3	16:57:58	91.533%	-0.087	м 176.000	м 178.200	0.000	тм 684400.000	тм 72930.000	тм 72260.000	4.867	<u> </u>
X		88.435%	-0.091	м 173.200	м 179.300	0.000	тм 690300.000	тм 73200.000	тм 72640.000	4.911	<u>т 0.000</u>
σ		2.984%	0.015	м 2.581	м 1.036	0.000	тм 5200.000	тм 417.200	тм 524.800	0.122	т 0.000
%RSD		3.374	15.950	м 1.490	м 0.578	0.000	тм 0.753	тм 0.570	тм 0.723	2.490	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:55:48	тм 6676.000	м 100000.000	тм 110900.000	0.000	4.557	-0.063	0.043	0.083	107.500	тм 17540.000
2	16:56:53	тм 6824.000	м 102300.000	тм 112600.000	0.000	4.221	0.050	0.050	0.769	97.450	тм 17770.000
3	16:57:58	тм 6796.000	м 102100.000	тм 113200.000	0.000	4.882	-0.022	0.026	-0.096	94.420	тм 17790.000
X		тм 6765.000	м 101500.000	тм 112200.000	0.000	4.553	-0.012	0.040	0.252	99.810	тм 17700.000
σ		тм 78.410	м 1272.000	тм 1220.000	0.000	0.331	0.057	0.012	0.457	6.874	тм 141.700
%RSD		тм 1.159	м 1.254	тм 1.087	0.000	7.266	490.100	31.380	181.300	6.888	тм 0.801
Run	Time	56Fe	<u>м 1.254</u> 57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
Ruii	Tille										
1	16:55:48	ррb тм 275600.000	ррb тм 312800.000	ppb -0.166	ppb 0.055	ррb м 103.600	ppb 9.301	ppb 1.210	ppb 1.535	ppb 68.820	ppb 50.670
2	16:55:48	тм 280400.000	тм 316900.000	-0.169	0.055		10.570	1.210	1.619	69.380	50.670
						м 126.100					
3	16:57:58	тм 279400.000	тм 317400.000	-0.161	0.377	м 151.900	11.660	1.227	1.624	68.920	51.400
X		тм 278500.000	тм 315700.000	-0.165	0.266	м 127.200	10.510	1.227	1.593	69.040	51.030
σ		тм 2567.000	тм 2531.000	0.004	0.182	м 24.140	1.182	0.017	0.050	0.299	0.368
%RSD		тм 0.922	тм 0.802	2.640	68.710	м 18.980	11.240	1.388	3.144	0.433	0.721
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1	1/ 55 40	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
<u> </u>	16:55:48	0.807	8.082	1.159	0.000	0.000	1.909	тм 1044.000	110.556%	-0.164	-0.168
2	16:56:53	0.736	8.285	1.330	0.000	0.000	1.800	тм 1042.000	114.929%	-0.177	-0.174
3	16:57:58	0.684	8.977	1.492	0.000	0.000	1.609	тм 1043.000	117.430%	-0.175	-0.186
Х		0.742	8.448	1.327	0.000	0.000	1.773	тм 1043.000	114.305%	-0.172	-0.176
σ		0.062	0.469	0.166	0.000	0.000	0.152	<u>тм 1.035</u>	3.479%	0.007	0.009
%RSD		8.319	5.551	12.540	0.000	0.000	8.568	<u>тм 0.099</u>	3.044	4.038	5.248
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:55:48	-0.129	97.050%	-6.761	0.376	0.642	-0.043	0.402	-0.486	-0.325	97.573%
2	16:56:53	-0.127	99.788%	-6.470	0.356	0.632	0.111	0.398	-0.465	-0.319	101.257%
3	16:57:58	-0.123	102.127%	-6.208	0.360	0.611	0.055	0.404	-0.450	-0.304	104.012%
X		-0.126	99.655%	-6.480	0.364	0.628	0.041	0.401	-0.467	-0.316	100.947%
σ		0.003	2.541%	0.277	0.010	0.016	0.078	0.003	0.018	0.011	3.230%
%RSD		2.245	2.550	4.268	2.867	2.480	189.500	0.704	3.789	3.480	3.200
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	16:55:48	-0.187	0.082	0.048	тм 2132.000	99.994%	99.530%	0.064	0.303	0.009	0.012
	16:56:53	-0.197	0.086	0.049	тм 2148.000	102.054%	101.729%	0.062	0.303	0.019	0.014
3	16:57:58	-0.195	0.086	0.029	тм 2145.000	103.289%	103.581%	0.062	0.303	0.009	0.008
Х		-0.193	0.085	0.042	тм 2142.000	101.779%	101.613%	0.063	0.303	0.012	0.011
σ		0.005	0.003	0.011	тм 8.274	1.664%	2.028%	0.001	0.000	0.006	0.003
%RSD		2.771	3.059	26.560	<u>тм 0.386</u>	1.635	1.996	1.443	0.082	46.530	27.860
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	16:55:48	0.069	86.560%	0.000	0.000						
2	16:56:53	0.072	88.027%	0.000	0.000						
3	16:57:58	0.068	88.920%	0.000	0.000						
Х		0.070	87.836%	0.000	0.000						
σ		0.002	1.192%	0.000	0.000						
%RSD		2.856	1.357	0.000	0.000						

t74672-11f 5/7/2011 16:59:01

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Run Time								J		
1 17:00:06	ppb 92.688%	ppb -0.097	ррb м 172.700	ррb м 177.700	0.000	ррb тм 688500.000	ррb тм 73850.000	ppb ™ 72940.000	ppb	ppb <u>⊤ 0.000</u>
	93.382%	-0.097	· · · · · · · · · · · · · · · · · · ·						3.693 3.837	
			м 171.400	м 175.800	0.000	тм 689300.000	тм 72880.000	тм 72240.000		<u>T 0.000</u>
3 17:02:16	96.640%	-0.086	м 166.700	м 170.100	0.000	тм 667200.000	тм 70750.000	тм 69910.000	3.504	<u>T 0.000</u>
X	94.237%	-0.092	м 170.300	м 174.500	0.000	тм 681700.000	тм 72490.000	тм 71700.000	3.678	<u>т 0.000</u>
σ	2.110%	0.006	м 3.149	м 3.931	0.000	тм 12560.000	<u>тм 1587.000</u>	тм 1590.000	0.167	<u>т 0.000</u>
%RSD	2.239	6.043	<u>м 1.849</u>	<u>м 2.253</u>	0.000	<u>тм 1.842</u>	<u>тм 2.189</u>	<u>тм 2.217</u>	4.548	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:00:06	тм 6843.000	м 104000.000	тм 114800.000	0.000	4.786	0.034	0.160	0.663	87.550	тм 17970.000
2 17:01:11	<u>тм 6802.000</u>	м 102800.000	тм 114300.000	0.000	4.707	-0.039	0.142	0.589	87.770	тм 18000.000
3 17:02:16	<u>тм 6678.000</u>	м 99960.000	тм 110800.000	0.000	4.693	0.014	0.130	1.202	85.150	тм 17440.000
X	<u>тм 6775.000</u>	м 102200.000	тм 113300.000	0.000	4.729	0.003	0.144	0.818	86.820	тм 17800.000
σ	тм 86.100	м 2054.000	_{TM} 2170.000	0.000	0.050	0.038	0.015	0.335	1.454	тм 318.400
%RSD	<u>тм 1.271</u>	м 2.010	<u>тм 1.915</u>	0.000	1.056	1153.000	10.530	40.960	1.675	<u>тм 1.789</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:00:06	тм 282700.000	тм 320900.000	-0.153	0.440	м 170.100	12.080	0.592	1.016	68.710	53.470
2 17:01:11	тм 283100.000	тм 320000.000	-0.146	0.598	м 181.700	12.660	0.640	0.996	71.370	51.850
3 17:02:16	тм 273800.000	тм 311300.000	-0.169	0.560	м 184.900	12.880	0.593	1.026	67.270	51.200
X	тм 279800.000	тм 317400.000	-0.156	0.533	м 178.900	12.540	0.608	1.013	69.120	52.170
σ	тм 5248.000	тм 5304.000	0.012	0.082	м 7.804	0.413	0.028	0.015	2.082	1.169
%RSD	тм 1.875	тм 1.671	7.702	15.440	м 4.362	3.292	4.544	1.520	3.012	2.240
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:00:06	0.638	8.410	1.783	0.000	0.000	1.458	тм 1047.000	121.736%	-0.181	-0.156
2 17:01:11	0.618	8.919	1.798	0.000	0.000	1.435	тм 1032.000	123.699%	-0.177	-0.182
3 17:02:16	0.607	8.376	1.691	0.000	0.000	1.428	тм 1010.000	126.418%	-0.177	-0.175
X	0.621	8.568	1.758	0.000	0.000	1.440	тм 1030.000	123.951%	-0.178	-0.171
σ	0.016	0.304	0.058	0.000	0.000	0.016	тм 18.400	2.351%	0.002	0.013
%RSD	2.531	3.552	3.294	0.000	0.000	1.107	тм 1.787	1.897	1.348	7.888
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
itan mile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:00:06	-0.127	105.596%	-6.967	0.374	0.673	0.199	0.408	-0.515	-0.348	105.020%
2 17:01:11	-0.128	107.857%	-6.942	0.377	0.656	-0.000	0.398	-0.499	-0.336	108.871%
3 17:02:16	-0.140	110.762%	-7.222	0.360	0.684	0.115	0.399	-0.521	-0.358	110.108%
X X	-0.132	108.072%	-7.044	0.370	0.671	0.105	0.402	-0.512	-0.347	108.000%
σ	0.008	2.590%	0.155	0.009	0.014	0.100	0.005	0.012 2.276	0.011	2.654%
Run Time	5.771	2.396 121Sb	2.198 123Sb	2.322	2.092 159Tb	95.670	1.342 203TI		3.184 206Pb	2.457 207Pb
Run Time	118Sn			137Ba		165Ho		205TI		
1 17:00:06	ppb -0.204	ppb 0.051	ppb 0.009	ррb тм 2183.000	ppb 104.685%	ppb 105.095%	ppb 0.021	ppb 0.263	-0.026	-0.019
2 17:01:11										
	-0.208	0.037 0.030	-0.002	TM 2125.000	107.769%	107.144% 108.938%	0.026	0.262	-0.029	-0.022 -0.028
3 17:02:16	-0.216		-0.010	тм 2080.000	109.617%		0.022	0.263	-0.031	
X	-0.209	0.040	-0.001	тм 2129.000	107.357%	107.059%	0.023	0.263	-0.028	-0.023
σ	0.006	0.011	0.010	<u>тм 51.650</u>	2.492%	1.923%	0.002	0.000	0.003	0.004
%RSD	3.014	27.190	1031.000	<u>тм 2.426</u>	2.321	1.796	10.640	0.168	9.256	19.180
Run Time	208Pb	209Bi	220Bkg	238U						
1 17 00 01	ppb	ppb	ppb	ppb						
1 17:00:06	0.034	91.096%	0.000	0.000						
2 17:01:11	0.034	92.345%	0.000	0.000						
3 17:02:16	0.031	93.660%	0.000	0.000						
X	0.033	92.367%	0.000	0.000						
σ	0.002	1.282%	0.000	0.000						
%RSD	4.735	1.388	0.000	0.000						

mp58044-mb1 5/7/2011 17:03:19

	dilution: 1.00		ODe	100	110	120	22No	OFM.	2/14~	27.41	27.01
Run	Time	6Li ppb	9Be ppb	10B ppb	11B ppb	13C ppb	23Na ppb	25Mg ppb	26Mg ppb	27AI ppb	37CI ppb
1	17:04:24	113.061%	-0.127	4.614	5.354	0.000	тм 1215.000	84.540	87.700	2.653	<u>7 0.000</u>
2	17:05:29	111.432%	-0.127	3.653	3.902	0.000	449.400	29.740	29.340	2.606	<u>T 0.000</u>
3	17:06:34	113.106%	-0.134	2.592	3.053	0.000	239.300	14.100	15.190	2.569	<u>т 0.000</u>
	17.00.34	112.533%	-0.146	3.620	4.103	0.000	тм 634.400	42.800	44.080	2.610	<u>т 0.000</u>
X											
σ %RSD		0.954% 0.848	0.010 7.123	1.011	1.163	0.000	тм 513.300	36.990	38.440 87.200	0.042 1.621	<u>т 0.000</u>
Run	Time	39K	43Ca	27.930 44Ca	28.350 45Sc	47Ti	<u>тм 80.910</u> 51V	86.430 52Cr	53Cr	53CI O	<u>т 0.000</u> 55Мп
IXUIT	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:04:24	10.710	111.800	122.500	126.432%	0.087	-0.768	0.130	-1.126	313.000	20.900
2	17:05:29	3.046	36.000	34.330	124.532%	0.153	-0.395	0.157	0.692	357.100	6.707
3	17:06:34	0.987	8.848	13.510	124.332%	-0.024	-0.785	0.181	0.072	385.800	3.068
	17.00.34	4.915	52.220	56.780	124.400%	0.072	-0.649	0.156	-0.094	352.000	10.220
X		5.123	53.370	57.870	2.101%	0.072	0.220	0.136	0.933	36.660	9.421
σ %RSD		104.300	102.200			123.600			995.700		9.421
Run	Time	56Fe	57Fe	101.900 59Co	1.689 60Ni	62Ni	33.910 63Cu	16.150 65Cu	66Zn	10.420 67Zn	68Zn
Kuii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:04:24	± 456.300	447.000	-0.088	0.362	м 128.800	5.311	-0.019	0.111	0.638	0.109
2	17:05:29	154.900	169.500	-0.086	0.302	97.910	4.048	-0.019	0.085	0.514	-0.101
3	17:06:34	85.040	95.770	-0.088	0.177	73.720	2.988	-0.050	0.064	0.579	-0.082
X	17.00.34	т 232.100	237.400	-0.087	0.113	м 100.100	4.116	-0.036	0.087	0.577	-0.025
								0.016			
σ %RSD		<u>т 197.300</u> т 85.010	185.200 78.010	0.001 1.239	0.126 55.740	<u>м 27.610</u> м 27.570	1.163 28.260	44.030	0.024 27.350	0.062 10.790	0.116 464.800
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
IXUIT	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:04:24	-0.216	9.170	0.934	0.000	0.000	-0.807	1.198	123.097%	-0.241	-0.214
2	17:05:29	-0.319	10.300	0.540	0.000	0.000	-0.688	0.323	119.411%	-0.248	-0.210
3	17:06:34	-0.273	9.475	0.561	0.000	0.000	-0.674	0.054	118.870%	-0.246	-0.193
X		-0.269	9.647	0.678	0.000	0.000	-0.723	0.525	120.459%	-0.245	-0.206
σ		0.052	0.583	0.222	0.000	0.000	0.073	0.598	2.300%	0.003	0.011
%RSD		19.220	6.044	32.710	0.000	0.000	10.130	113.900	1.909	1.385	5.452
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
- rtuii		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:04:24	-0.137	120.418%	-0.868	0.368	0.257	-0.096	0.401	-0.126	-0.088	116.693%
2	17:05:29	-0.133	116.932%	0.603	0.364	0.161	-0.096	0.402	-0.035	-0.025	113.132%
3	17:06:34	-0.135	116.225%	0.267	0.353	0.186	-0.051	0.404	-0.053	-0.041	112.333%
X		-0.135	117.859%	0.000	0.362	0.201	-0.081	0.402	-0.071	-0.051	114.053%
σ		0.002	2.245%	0.771	0.008	0.050	0.026	0.002	0.048	0.033	2.321%
%RSD		1.266	1.905	156100.000	2.119	24.760	32.270	0.478	67.710	64.250	2.035
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:04:24	-0.186	0.016	-0.032	3.322	109.422%	109.700%	0.018	0.257	-0.027	-0.024
2	17:05:29	-0.190	0.008	-0.025	0.994	107.319%	106.091%	0.017	0.256	-0.028	-0.023
3	17:06:34	-0.189	0.028	-0.020	0.407	107.227%	106.661%	0.015	0.256	-0.031	-0.025
X		-0.188	0.017	-0.026	1.574	107.989%	107.484%	0.017	0.256	-0.029	-0.024
σ		0.002	0.010	0.006	1.542	1.241%	1.940%	0.002	0.001	0.002	0.001
%RSD		1.030	58.850	23.400	97.960	1.150	1.805	11.120	0.199	6.384	3.850
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	17:04:24	0.032	105.807%	0.000	0.000						
2	17:05:29	0.032	105.030%	0.000	0.000						
3	17:06:34	0.030	104.661%	0.000	0.000						
X		0.032	105.166%	0.000	0.000						
σ		0.001	0.585%	0.000	0.000						
%RSD		3.344	0.556	0.000	0.000						

mp58044-lc1 5/7/2011 17:07:37

User Pre-dilution: 1.00					1					1
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:08:42	107.343%	м 109.100	2.357	2.251	0.000	588.400	489.000	488.000	<u>⊤ 521.700</u>	<u> </u>
2 17:09:47	109.835%	м 102.300	1.896	1.946	0.000	534.600	457.700	455.500	464.700	<u>T 0.000</u>
3 17:10:52	106.079%	м 110.000	1.795	1.907	0.000	542.200	486.100	487.800	503.700	<u> </u>
X	107.752%	м 107.100	2.016	2.034	0.000	555.100	477.600	477.100	<u>т 496.700</u>	<u>т 0.000</u>
σ	1.911%	м 4.166	0.299	0.188	0.000	29.110	17.310	18.660	<u>т 29.130</u>	т 0.000
%RSD	1.774	м 3.889	14.860	9.263	0.000	5.245	3.625	3.911	<u>т 5.864</u>	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:08:42	472.100	455.000	480.200	119.171%	-0.521	м 107.300	м 106.700	м 106.800	313.700	м 106.800
2 17:09:47	445.400	427.700	430.800	124.055%	-0.479	96.720	96.130	95.200	259.000	96.670
3 17:10:52	479.200	479.200	477.300	115.468%	-0.500	м 106.800	м 106.700	м 105.400	233.300	м 105.900
X	465.600	453.900	462.700	119.565%	-0.500	м 103.600	м 103.200	м 102.500	268.700	м 103.100
σ	17.790	25.760	27.720	4.307%	0.021	м 5.952	м 6.125	м 6.333	41.070	м 5.603
%RSD	3.821	5.675	5.991	3.602	4.103	м 5.745	м 5.935	м 6.181	15.290	м 5.434
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	dqq	dqq	dqq	ppb	ppb	dqq	dqq	ppb
1 17:08:42	_⊥ 530.800	529.900	м 108.100	м 108.700	м 151.200	м 109.700	м 107.700	м 106.600	м 106.600	м 106.200
2 17:09:47	T 470.500	472.400	98.360	98.670	м 128.500	99.260	98.660	96.900	95.550	97.160
3 17:10:52	± 512.700	519.100	м 108.200	м 108.600	м 132.400	м 108.900	м 107.800	м 106.700	м 104.100	м 106.900
X	т 504.700	507.100	м 104.900	м 105.300	м 137.300	м 105.900	м 104.700	м 103.400	м 102.100	м 103.400
σ	т 30.940	30.570	м 5.643	м 5.750	м 12.130	м 5.798	м 5.250	м 5.610	м 5.801	м 5.413
%RSD	т 6.131	6.027	<u>м 5.381</u>	м 5.460	<u>м 8.831</u>	м 5.473	<u>м 5.233</u>	м 5.427	<u>м 5.682</u>	м 5.235
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:08:42	м 109.800	м 223.800	м 212.200	0.000	0.000	м 209.900	-0.100	115.525%	-0.259	-0.231
2 17:09:47	м 100.200	м 205.800	м 196.300	0.000	0.000	м 192.400	-0.127	120.238%	-0.271	-0.226
3 17:10:52	м 109.600	м 220.100	м 212.100	0.000	0.000	м 210.800	-0.139	113.321%	-0.268	-0.234
X	м 106.500	м 216.500	м 206.800	0.000	0.000	м 204.400	-0.122	116.362%	-0.266	-0.230
σ	м 5.481	м 9.525	м 9.114	0.000	0.000	м 10.360	0.020	3.533%	0.006	0.004
%RSD	<u>м 5.401</u> м <u>5.144</u>	м 4.399	<u>м 7.114</u> м 4.406	0.000	0.000	<u>м 10.300</u> м 5.070	16.430	3.037	2.283	1.772
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
itan iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:08:42	-0.165	112.243%	м 103.000	м 103.900	0.445	м 100.400	м 104.400	м 104.700	м 104.800	109.662%
2 17:09:47	-0.166	116.519%	95.000	97.070	0.456	92.960	97.220	95.610	96.140	114.531%
3 17:10:52	-0.153	110.683%	м 100.900	м 103.000	0.605	м 100.600	м 103.000	м 102.600	м 103.200	108.713%
X	-0.161	113.148%	м 99.630	м 101.300	0.502	м 98.020	м 101.500	м 101.000	м 101.400	110.969%
σ	0.008	3.021%	<u>м 4.151</u>	м 3.713	0.089	м 4.377	м 3.792	м 4.769	м 4.613	3.121%
%RSD	4.652	2.670	<u>м 4.151</u> м 4.167	<u>м 3.664</u>	17.820	м 4.465	<u>м 3.772</u> м 3.735	м 4.723	<u>м 4.513</u> м 4.550	2.813
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:08:42	-0.211	м 108.100	м 107.700	м 106.700	105.755%	105.306%	м 104.700	м 105.700	м 106.000	м 105.700
2 17:09:47	-0.211	98.720	98.610	98.260	110.414%	110.173%	99.280	м 100.100	98.140	98.440
3 17:10:52	-0.204	м 107.100	м 106.800	м 105.400	105.157%	105.061%	м 104.800	м 105.500	м 104.900	м 104.800
X	-0.209	м 104.600	м 104.400	м 103.400	107.109%	106.847%	м 102.900	м 103.800	м 103.000	м 103.000
σ	0.004	<u>м 10 1.360</u> м <u>5.153</u>	м 5.018	<u>м 4.527</u>	2.878%	2.883%	м 3.141	м 3.179	м 4.243	м 3.969
%RSD	1.853	<u>м 3. 133</u> м 4.924	<u>м 3.010</u> м 4.807	м 4.377	2.687	2.698	<u>м 3.14 т</u> м 3.052	м 3.064	<u>м 4.243</u> м 4.120	<u>м 3. 40 4</u> <u>м 3.853</u>
Run Time	208Pb	209Bi	220Bkg	238U	2.007	2.070	<u>M 3.032</u>	M 3.004	<u>M 4.120</u>	м 3.033
nan nine	ppb	ppb	ppb	ppb						
1 17:08:42	м 105.800	103.447%	0.000	0.000						
2 17:09:47	98.560	106.667%	0.000	0.000						
3 17:10:52	м 105.000	103.308%	0.000	0.000						
X X	м 103.000	103.300%	0.000	0.000						
	м 3.977	1.900%	0.000	0.000						
σ %RSD	<u>м 3.977</u> м 3.856	1.900%	0.000	0.000						
757.55	w 3.030	1.019	0.000	0.000						

mp58044-s1 5/7/2011 17:11:54

	allution: 1.00		00 -	100	110	120	2211-	OEM-	2/14=	2741	2701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1	17.12.00	ppb	ppb	ppb	ppb	ppb	ppb	ppb ™ 50030.000	ррb тм 49110.000	ppb	ppb
	17:13:00	91.133%	м 113.100	м 225.000	м 232.100	0.000	TM 382200.000			469.100	<u>T 0.000</u>
2	17:14:05	93.894%	м 107.300	м 219.100	м 222.200		тм 368100.000	тм 47750.000	тм 47060.000	449.600	<u>T 0.000</u>
3	17:15:10	93.372%	м 113.600	м 230.700	м 232.400	0.000	тм 386100.000	тм 50580.000	тм 49850.000	476.800	<u>T 0.000</u>
X		92.800%	м 111.400	м 224.900	м 228.900	0.000	тм 378800.000	тм 49450.000	тм 48670.000	465.200	<u>т 0.000</u>
σ %RSD		1.467%	м 3.536	м 5.773	м 5.824	0.000	тм 9421.000	тм 1504.000	тм 1444.000	14.050	<u>т 0.000</u>
Run	Time	1.581 39K	<u>м 3.175</u> 43Са	<u>м 2.567</u> 44Са	<u>м 2.544</u> 45Sc	0.000 47Ti	<u>тм 2.487</u> 51V	<u>тм 3.042</u> 52Сг	<u>тм 2.967</u> 53Сr	3.021 53CI O	<u>т 0.000</u> 55Мп
Run	Tillie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:13:00	тм 9188.000	м 43170.000	тм 47600.000	133.618%	6.028	90.750	87.690	88.400	128.400	тм 2111.000
2	17:14:05	тм 8943.000	м 41290.000	тм 45770.000	138.536%	5.525	86.460	83.930	84.600	143.300	тм 2027.000
3	17:15:10	тм 9291.000	м 43620.000	тм 48220.000	137.132%	5.936	92.880	89.360	92.190	139.400	тм 2157.000
Х		тм 9141.000	м 42690.000	тм 47200.000	136.429%	5.830	90.030	86.990	88.400	137.000	тм 2098.000
σ		тм 178.800	м 1236.000	тм 1277.000	2.533%	0.268	3.275	2.784	3.797	7.716	тм 65.800
%RSD		тм 1.956	м 2.895	тм 2.705	1.857	4.596	3.637	3.200	4.295	5.630	тм 3.136
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	Ì	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:13:00	тм 17450.000	тм 19520.000	88.560	85.880	м 124.400	88.670	85.680	85.800	м 101.300	99.940
2	17:14:05	тм 16820.000	тм 18710.000	84.760	83.010	м 120.400	85.740	82.110	83.320	97.910	96.580
3	17:15:10	тм 17920.000	тм 19950.000	90.370	88.380	м 127.800	90.550	87.920	87.860	м 104.800	м 102.500
X		тм 17400.000	тм 19390.000	87.900	85.760	м 124.200	88.320	85.240	85.660	м 101.300	м 99.680
σ		тм 551.800	тм 630.000	2.863	2.687	м 3.701	2.425	2.930	2.272	м 3.445	м 2.982
%RSD		<u>тм 3.172</u>	<u>тм 3.249</u>	3.257	3.133	м 2.980	2.746	3.438	2.652	м 3.400	м 2.991
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:13:00	97.940	м 182.600	м 179.100	0.000	0.000	м 179.700	<u>тм 635.100</u>	110.732%	-0.191	-0.163
2	17:14:05	94.110	м 175.000	м 171.400	0.000	0.000	м 173.300	<u>тм 604.300</u>	115.928%	-0.205	-0.163
3	17:15:10	м 100.100	м 185.500	м 181.300	0.000	0.000	м 182.700	<u>тм 648.400</u>	112.684%	-0.201	-0.163
X		м 97.390	м 181.000	м 177.300	0.000	0.000	м 178.600	<u>тм 629.300</u>	113.115%	-0.199	-0.163
σ		м 3.047	<u>м 5.414</u>	м 5.233	0.000	0.000	м 4.819	тм 22.600	2.625%	0.007	0.000
%RSD		м 3.129	м 2.991	м 2.952	0.000	0.000	м 2.698	<u>тм 3.591</u>	2.320	3.548	0.181
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
1	17:13:00	-0.096	ppb 99.855%	ppb	ppb 97.290	ppb 0.725	ppb	ppb 96.850	ppb 98.830	ppb 98.710	ppb 100.254%
2	17:13:00	-0.096	103.313%	97.200 92.210	93.230	0.725	98.610 92.050	92.360	92.870	93.190	100.254%
	17:14:03	-0.072	101.975%	96.160	98.680	0.674	96.980	97.500	м 100.500	99.050	101.706%
X	17.13.10	-0.075	101.773%	95.190	96.400	0.669	95.880	95.570	м 100.300	96.980	101.700%
		0.011	1.744%	2.631	2.832	0.058	3.419	2.803	м 4.013	3.287	2.603%
σ %RSD		12.620	1.714	2.764	2.938	8.705	3.566	2.933	<u>м 4.013</u> м 4.119	3.389	2.542
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:13:00	-0.196	м 107.300	м 107.400	тм 768.400	102.474%	102.522%	м 103.900	м 103.800	м 104.200	м 104.700
2	17:14:05	-0.191	м 100.800	м 100.900	тм 728.400	107.474%	107.154%	99.360	м 100.000	м 100.300	99.730
3	17:15:10	-0.200	м 108.200	м 108.500	тм 773.200	104.266%	104.691%	м 105.300	м 106.700	м 105.800	м 106.100
Х		-0.196	м 105.500	м 105.600	тм 756.700	104.738%	104.789%	м 102.800	м 103.500	м 103.400	м 103.500
σ		0.005	м 4.054	м 4.112	тм 24.580	2.533%	2.317%	м 3.093	м 3.319	м 2.789	м 3.372
%RSD		2.357	м 3.845	м 3.894	тм 3.248	2.418	2.212	м 3.007	м 3.206	м 2.697	м 3.257
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	17:13:00	м 104.800	92.693%	0.000	0.000						
	17:14:05	м 100.300	95.832%	0.000	0.000						
3	17:15:10	м 106.500	93.009%	0.000	0.000						
Х		м 103.900	93.845%	0.000	0.000						
σ		м 3.187	1.728%	0.000	0.000						
%RSD		м 3.068	1.842	0.000	0.000						

mp58044-s2 5/7/2011 17:16:12

	-allution: 1.00										0.701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:17:17	86.621%	м 114.200	м 231.100	м 233.400	0.000	тм 384100.000	тм 50400.000	тм 49810.000	<u> 7 493.100</u>	<u>T 0.000</u>
2	17:18:22	93.113%	м 115.200	м 228.400	м 233.300	0.000	тм 386900.000	тм 51210.000	тм 50420.000	485.900	<u>T 0.000</u>
3	17:19:27	93.808%	м 113.700	м 227.000	м 234.800	0.000	тм 382000.000	тм 50420.000	тм 49560.000	472.900	<u> </u>
X		91.181%	м 114.300	м 228.900	м 233.800	0.000	тм 384300.000	тм 50680.000	тм 49930.000	<u>т 484.000</u>	<u>т 0.000</u>
σ		3.964%	м 0.768	м 2.088	<u>м 0.831</u>	0.000	тм 2464.000	тм 461.900	тм 439.400	<u>т 10.230</u>	<u>т 0.000</u>
%RSD		4.348	м 0.671	м 0.912	<u>м 0.355</u>	0.000	<u>тм 0.641</u>	<u>тм 0.911</u>	тм 0.880	<u>т 2.115</u>	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:17:17	тм 9246.000	м 43520.000	тм 47880.000	130.629%	5.894	91.610	88.410	89.370	147.400	тм 2134.000
2	17:18:22	тм 9358.000	м 44170.000	тм 48760.000	138.225%	6.409	93.590	90.490	92.030	151.400	тм 2165.000
3	17:19:27	тм 9239.000	м 43210.000	тм 47880.000	139.999%	6.101	92.570	89.180	90.020	147.000	тм 2135.000
X		тм 9281.000	м 43630.000	тм 48170.000	136.284%	6.135	92.590	89.360	90.470	148.600	тм 2144.000
σ		тм 66.890	м 488.400	тм 505.400	4.977%	0.259	0.992	1.049	1.386	2.426	тм 17.370
%RSD		тм 0.721	м 1.119	тм 1.049	3.652	4.225	1.071	1.174	1.532	1.632	тм 0.810
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:17:17	тм 17770.000	тм 19620.000	88.920	86.390	м 129.100	89.760	87.350	86.210	м 104.700	м 100.000
2	17:18:22	тм 18120.000	тм 20110.000	91.110	88.130	м 127.500	91.400	88.880	88.950	м 107.600	м 103.400
3	17:19:27	тм 17820.000	тм 19650.000	89.250	86.710	м 121.600	88.950	86.430	86.560	м 101.500	98.270
X		тм 17900.000	тм 19790.000	89.760	87.080	м 126.100	90.040	87.550	87.240	м 104.600	м 100.600
σ		тм 192.100	тм 279.100	1.182	0.927	м 3.961	1.250	1.235	1.491	м 3.040	м 2.603
%RSD		тм 1.073	тм 1.410	1.317	1.065	м 3.142	1.388	1.410	1.709	м 2.906	м 2.589
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:17:17	98.870	м 186.200	м 179.200	0.000	0.000	м 178.600	тм 640.800	106.511%	-0.200	-0.178
2	17:18:22	м 101.500	м 192.200	м 184.400	0.000	0.000	м 185.200	тм 649.300	113.772%	-0.189	-0.149
3	17:19:27	98.980	м 187.200	м 180.400	0.000	0.000	м 180.800	тм 635.600	115.847%	-0.199	-0.158
Х		м 99.770	м 188.600	м 181.300	0.000	0.000	м 181.500	тм 641.900	112.043%	-0.196	-0.162
σ		м 1.460	м 3.232	м 2.699	0.000	0.000	м 3.334	тм 6.943	4.902%	0.006	0.015
%RSD		м 1.464	<u>м 1.714</u>	м 1.489	0.000	0.000	м 1.836	тм 1.082	4.375	3.173	9.273
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:17:17	-0.099	95.175%	95.530	97.540	0.705	96.540	97.190	98.470	98.370	96.968%
2	17:18:22	-0.090	101.931%	98.650	99.250	0.624	98.510	98.370	м 101.400	м 101.100	102.265%
3	17:19:27	-0.091	102.390%	96.350	98.010	0.819	98.920	97.490	98.480	98.410	104.526%
Х		-0.093	99.832%	96.840	98.270	0.716	97.990	97.680	м 99.460	м 99.290	101.253%
σ		0.005	4.040%	1.613	0.882	0.098	1.276	0.615	<u>ж</u> 1.712	м 1.549	3.879%
%RSD		5.016	4.047	1.666	0.897	13.680	1.302	0.630	<u>м 1.712</u> м 1.721	м 1.560	3.831
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:17:17	-0.190	м 107.100	м 106.600	тм 763.200	98.667%	98.385%	м 104.700	м 105.000	м 106.300	м 105.500
	17:18:22	-0.194	м 110.000	м 109.900	тм 787.700	103.082%	103.938%	м 107.000	м 107.600	м 107.300	м 108.200
	17:19:27	-0.190	м 107.300	м 106.800	тм 765.900	106.031%	105.983%	м 105.000	м 105.500	м 105.800	м 105.800
X		-0.192	м 108.100	м 107.800	тм 772.300	102.593%	102.769%	м 105.500	м 106.000	м 106.500	м 106.500
σ		0.003	м 1.605	<u>м 1.867</u>	тм 13.420	3.706%	3.931%	<u>м 100.300</u> м 1.275	<u>м 1.341</u>	м 0.733	<u>м 100.330</u> м 1.470
%RSD		1.352	<u>м 1.484</u>	<u>м 1.732</u>	тм 1.737	3.613	3.826	<u>м 1.273</u> м 1.208	<u>м 1.34 г</u> <u>м 1.265</u>	м 0.688	<u>м 1.470</u> м 1.380
Run	Time	208Pb	209Bi	220Bkg	238U	3.013	3.020	<u>M 1.200</u>	<u>M 1.203</u>	M 0.000	<u>M 1.300</u>
Kuii	Tillio	ppb	ppb	ppb	ppb						
1	17:17:17	м 105.900	87.679%	0.000	0.000						
2	17:18:22	м 103.700	92.663%	0.000	0.000						
3	17:19:27	м 105.100	93.779%	0.000	0.000						
X	11.17.21	м 105. 700 м 106.700	91.374%	0.000	0.000						
				0.000							
σ %RSD		м 1.263 м 1.184	3.248% 3.555	0.000	0.000 0.000						
76K3D		м 1.184	3.005	0.000	0.000						

t74672-14f 5/7/2011 17:20:30

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii Iiiile	ppb	ppb				ppb	ppb	ppb		ppb
1 17:21:35	94.248%	0.260	ррb м 229.500	ррb м 235.800	ppb 0.000	тм 390700.000	тм 51440.000	тм 50540.000	ppb 7.860	<u>т 0.000</u>
2 17:22:40	94.101%	0.265	м 234.700	м 238.800	0.000	тм 385600.000	тм 50510.000	тм 49770.000	6.416	<u>т 0.000</u>
										·
3 17:23:45	91.900%	0.014	м 244.900	м 243.200	0.000	тм 397500.000	тм 52050.000	тм 51170.000	6.274	<u>T 0.000</u>
X	93.416%	0.113	м 236.400	м 239.300	0.000	тм 391300.000	тм 51330.000	тм 50490.000	6.850	<u>т 0.000</u>
σ	1.316%	0.130	м 7.831	м 3.714	0.000	<u>тм 5980.000</u>	тм 774.100	тм 702.800	0.878	<u>т 0.000</u>
%RSD	1.408	115.000	м 3.313	<u>м 1.552</u>	0.000	<u>тм 1.528</u>	<u>тм 1.508</u>	тм 1.392	12.810	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 17 01 05	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:21:35	тм 9133.000	м 44520.000	тм 49680.000	135.941%	6.360	1.119	1.683	2.732	152.000	тм 2132.000
2 17:22:40	тм 9011.000	м 43230.000	тм 48100.000	139.471%	5.974	0.818	1.408	1.932	155.600	тм 2068.000
3 17:23:45	тм 9194.000	м 44390.000	тм 49270.000	137.329%	6.143	0.926	1.345	1.717	158.400	тм 2109.000
X	тм 9112.000	м 44050.000	тм 49020.000	137.580%	6.159	0.954	1.479	2.127	155.400	тм 2103.000
σ	тм 93.010	м 713.400	_{TM} 815.300	1.779%	0.194	0.153	0.180	0.535	3.234	_{TM} 32.510
%RSD	<u>тм 1.021</u>	м 1.620	<u>тм 1.663</u>	1.293	3.146	16.000	12.170	25.150	2.082	<u>тм 1.546</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 1 2 2 2 2	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:21:35	тм 18030.000	тм 20000.000	1.637	1.018	35.560	3.700	0.417	1.090	19.190	14.300
2 17:22:40	тм 17420.000	тм 19340.000	1.420	0.790	33.020	3.314	0.180	0.704	17.580	13.200
3 17:23:45	тм 17820.000	тм 19750.000	1.439	0.737	31.470	3.346	0.194	0.780	18.010	13.640
X	тм 17760.000	тм 19700.000	1.499	0.848	33.350	3.453	0.264	0.858	18.260	13.710
σ	тм 307.400	тм 333.900	0.120	0.149	2.065	0.214	0.133	0.204	0.830	0.554
%RSD	<u>тм 1.731</u>	<u>тм 1.695</u>	8.033	17.560	6.192	6.206	50.330	23.830	4.547	4.037
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:21:35	0.707	6.041	1.141	0.000	0.000	1.060	тм 674.200	111.558%	-0.157	-0.139
2 17:22:40	0.645	4.300	0.715	0.000	0.000	0.793	<u>тм 645.900</u>	115.149%	-0.190	-0.124
3 17:23:45	0.695	4.441	0.603	0.000	0.000	0.892	тм 654.800	114.472%	-0.155	-0.139
X	0.683	4.927	0.819	0.000	0.000	0.915	тм 658.300	113.726%	-0.168	-0.134
σ	0.033	0.967	0.284	0.000	0.000	0.135	<u>тм 14.420</u>	1.908%	0.019	0.008
%RSD	4.825	19.620	34.610	0.000	0.000	14.800	<u>тм 2.191</u>	1.678	11.590	6.258
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:21:35	-0.074	99.892%	-2.967	0.557	0.425	0.393	0.565	-0.079	0.030	101.849%
2 17:22:40	-0.076	102.933%	-3.726	0.382	0.459	0.179	0.421	-0.265	-0.166	104.298%
3 17:23:45	-0.065	101.488%	-3.087	0.375	0.413	0.107	0.411	-0.246	-0.156	103.043%
X	-0.072	101.438%	-3.260	0.438	0.432	0.226	0.466	-0.197	-0.097	103.064%
σ	0.006	1.521%	0.408	0.103	0.024	0.149	0.086	0.102	0.111	1.225%
%RSD	7.829	1.499	12.530	23.570	5.612	65.650	18.480	52.030	113.900	1.188
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:21:35	-0.182	0.329	0.275	м 658.300	102.200%	102.834%	0.547	0.780	0.223	0.211
2 17:22:40	-0.192	0.109	0.081	м 637.300	105.348%	106.164%	0.334	0.572	0.029	0.022
3 17:23:45	-0.178	0.074	0.039	м 647.500	104.658%	104.232%	0.348	0.585	0.001	0.008
X	-0.184	0.171	0.132	м 647.700	104.069%	104.410%	0.410	0.646	0.084	0.080
σ	0.007	0.138	0.126	<u>м 10.510</u>	1.655%	1.672%	0.120	0.117	0.121	0.113
%RSD	3.931	80.880	95.670	<u>м 1.623</u>	1.590	1.602	29.180	18.050	143.400	141.000
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 17:21:35	0.274	92.057%	0.000	0.000						
2 17:22:40	0.085	93.187%	0.000	0.000						
3 17:23:45	0.059	93.748%	0.000	0.000						
X	0.139	92.997%	0.000	0.000						
σ	0.117	0.861%	0.000	0.000						
%RSD	84.150	0.926	0.000	0.000						

t74672-12f 5/7/2011 17:24:48

User Pre-	-allution: 1.00	10									
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:25:53	89.980%	0.064	м 160.200	м 163.800	0.000	тм 577800.000	тм 60280.000	тм 59210.000	9.327	<u>T 0.000</u>
2	17:26:58	88.992%	0.095	м 176.600	м 175.700	0.000	тм 615900.000	тм 65480.000	тм 63850.000	9.981	<u>T 0.000</u>
3	17:28:03	92.661%	0.057	м 168.100	м 168.800	0.000	тм 591800.000	тм 61990.000	тм 60440.000	9.582	т 0.000
X		90.544%	0.072	м 168.300	м 169.400	0.000	тм 595200.000	тм 62590.000	тм 61160.000	9.630	<u>т 0.000</u>
σ		1.898%	0.020	м 8.204	м 6.009	0.000	тм 19280.000	тм 2649.000	тм 2402.000	0.330	<u>т 0.000</u>
%RSD		2.097	27.830	м 4.874	м 3.547	0.000	тм 3.239	тм 4.233	тм 3.927	3.426	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:25:53	тм 4811.000	м 68060.000	тм 74750.000	149.920%	2.937	0.105	0.010	0.334	62.960	тм 12820.000
2	17:26:58	тм 5086.000	тм 82710.000	тм 80700.000	151.752%	2.963	0.068	-0.006	-0.054	64.570	тм 13970.000
3	17:28:03	тм 4866.000	м 69360.000	тм 76250.000	159.755%	2.836	0.140	-0.004	0.259	60.310	тм 13060.000
X		тм 4921.000	тм 73380.000	тм 77230.000	153.809%	2.912	0.104	-0.000	0.180	62.610	тм 13280.000
σ		тм 145.400	тм 8111.000	тм 3092.000	5.230%	0.067	0.036	0.008	0.206	2.148	тм 606.400
%RSD		тм 2.954	тм 11.050	тм 4.003	3.400	2.307	34.780	7197.000	114.500	3.431	тм 4.565
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
IXUII	Time	dqq	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:25:53	тм 204700.000	тм 232300.000	0.032	0.353	36.190	4.833	0.586	1.047	53.950	40.360
2	17:26:58	тм 223700.000	тм 253500.000	-0.008	0.248	45.460	5.660	0.565	1.165	59.640	44.710
3	17:28:03	тм 209000.000	тм 236900.000	0.044	0.441	55.300	5.911	0.571	1.083	58.160	42.390
X	17.20.03	тм 212500.000	тм 240900.000	0.023	0.348	45.650	5.468	0.574	1.098	57.250	42.490
				0.023	0.097	9.556	0.564	0.011		2.950	2.178
σ %RSD		<u>тм 9974.000</u> тм 4.694	тм 11110.000	119.800					0.061		
Run	Time	<u>тм 4.694</u> 75Аs	<u>тм 4.612</u> 77Se	78Se	27.880 79Br	20.930 81Br	10.320 82Se	1.893 88Sr	5.510 89Y	5.152 95Mo	5.127 97Mo
Rull	Time		ppb	ppb	ppb	ppb	ppb	ppb	ppb		
1	17:25:53	ppb 0.914	3.193	0.888	0.000	0.000	2.554	тм 1007.000	118.889%	-0.179	ppb -0.199
									117.577%		
3	17:26:58	1.062 0.868	5.422 4.809	1.523 1.266	0.000	0.000	2.635 2.201	тм 1091.000		-0.197 -0.167	-0.164 -0.169
	17:28:03							тм 1019.000	124.208%		
X		0.948	4.474	1.226	0.000	0.000	2.464	тм 1039.000	120.225%	-0.181	-0.177
σ		0.101	1.151	0.320	0.000	0.000	0.231	тм 45.520	3.512%	0.015	0.019
%RSD		10.680	25.730	26.080	0.000	0.000	9.364	тм 4.381	2.921	8.388	10.560
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	17.05.50	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:25:53	-0.142	103.811%	-5.489	0.539	0.567	0.078	0.561	-0.220	-0.101	105.131%
2	17:26:58	-0.136	102.113%	-5.224	0.529	0.555	0.156	0.564	-0.231	-0.083	103.627%
3	17:28:03	-0.127	107.060%	-5.911	0.512	0.592	0.048	0.574	-0.259	-0.116	108.764%
X		-0.135	104.328%	-5.542	0.527	0.571	0.094	0.566	-0.237	-0.100	105.841%
σ		0.008	2.514%	0.346	0.014	0.019	0.056	0.007	0.020	0.016	2.641%
%RSD		5.703	2.409	6.250	2.585	3.301	59.280	1.176	8.521	16.510	2.495
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:25:53	-0.161	0.197	0.143	тм 2097.000	105.223%	105.765%	0.273	0.515	0.201	0.173
	17:26:58	-0.162	0.226		тм 2271.000	102.421%	101.053%	0.289	0.511	0.210	0.218
3	17:28:03	-0.163	0.201	0.147	тм 2124.000	108.336%	107.735%	0.261	0.491	0.217	0.201
X		-0.162	0.208	0.154	тм 2164.000	105.327%	104.851%	0.274	0.506	0.209	0.198
σ		0.001	0.016	0.016	тм 93.530	2.959%	3.434%	0.014	0.013	0.008	0.023
%RSD		0.644	7.619	10.460	тм 4.321	2.809	3.275	5.061	2.589	3.861	11.480
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	17:25:53	0.248	90.465%	0.000	0.000						
2	17:26:58	0.269	87.308%	0.000	0.000						
3	17:28:03	0.261	92.421%	0.000	0.000						
X		0.259	90.065%	0.000	0.000						
σ		0.011	2.580%	0.000	0.000						
%RSD		4.089	2.864	0.000	0.000						

ccv 5/7/2011 17:29:07

Time 6LI 98e 108 118 13C 23Na 25Na 26Na 26Na 27Na 37Cl
17.30:13 117.606%
2 17:31:18 113.818% 52.920 53.590 52.990 0.000 1859.300 490.200 491.900 1495.000 10.000 3 17:32:23 111.727% 52.990 51.220 53.960 0.000 1664.800 473.900 477.900 479.100 10.000 x
3 17:32:23 111.727% 52.090 51.220 53.960 0.000 1664.800 473.900 477.900 479.100 10.0000 1.0000 2.00000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0
X 114.384% 51.180 52.030 52.570 0.000 1047.000 494.900 497.100 1477.700 10.000
Run Time S6Fe S7Fe S9Co 60Ni 62Ni 63Cu 65Cu 66Cn 67Zn 68Zn 7133131 7133223 7133131 725500 7255
Run Time 39K 43Ca 44Ca 45Sc 47Ti 51V 52Cr 53Cr 53Cl 55Kln 55Kln 50D
Run Time 39K 43Ca 44Ca 45Sc 47Ti 51V 52Cr 53Cr 53Cl 55Mn ppb
Page Page
1 17:30:13
17:31:18
3 17:32:23 455.900 500.500 488.700 131.385% 49.640 49.570 49.550 50.100 290.500 51.990 x
X
Section 12.000 46.750 45.760 3.931% 2.862 1.910 2.092 2.769 18.040 9.170
Name Section Sectio
Ppb Ppb
1 17:30:13 1925.100 929.700 47.240 47.500 90.970 49.090 47.020 46.480 48.560 46.760 2 17:31:18 1645.700 638.500 51.400 51.210 87.990 52.980 50.840 50.740 51.030 50.950 3 17:32:23 1556.600 548.800 50.120 50.500 79.580 50.880 50.250 49.560 49.640 50.000 x 1709.100 705.700 49.580 49.740 86.180 50.980 49.370 48.920 49.750 49.240 σ 1192.300 199.100 2.131 1.971 5.909 1.950 2.056 2.201 1.236 2.197 %RSD 127.110 28.220 4.298 3.963 6.856 3.824 4.164 4.498 2.485 4.462 Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 97Mo
2 17:31:18 τ645.700 638.500 51.400 51.210 87.990 52.980 50.840 50.740 51.030 50.950 3 17:32:23 τ556.600 548.800 50.120 50.500 79.580 50.880 50.250 49.560 49.640 50.000 X τ709.100 705.700 49.580 49.740 86.180 50.980 49.370 48.920 49.750 49.240 σ τ192.300 199.100 2.131 1.971 5.909 1.950 2.056 2.201 1.236 2.197 %RSD τ27.110 28.220 4.298 3.963 6.856 3.824 4.164 4.498 2.485 4.462 Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 97Mo 1 17:30:13 47.920 53.790 48.410 0.000 0.000 46.300 46.770 134.330% 45.840 46.500
3 17:32:23 1556.600 548.800 50.120 50.500 79.580 50.880 50.250 49.560 49.640 50.000
X 1709.100 705.700 49.580 49.740 86.180 50.980 49.370 48.920 49.750 49.240 σ 1192.300 199.100 2.131 1.971 5.909 1.950 2.056 2.201 1.236 2.197 √ (8RSD) 1.27.110 28.220 4.298 3.963 6.856 3.824 4.164 4.498 2.485 4.462 Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 97Mo γ ρpb ppb
σ 1192.300 199.100 2.131 1.971 5.909 1.950 2.056 2.201 1.236 2.197 %RSD 1.27.110 28.220 4.298 3.963 6.856 3.824 4.164 4.498 2.485 4.462 Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 97Mo ppb
%RSD 127.110 28.220 4.298 3.963 6.856 3.824 4.164 4.498 2.485 4.462 Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 97Mo 9pb ppb <
Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 97Mo 1 17:30:13 47.920 53.790 48.410 0.000 0.000 46.300 46.770 134.330% 45.840 46.500 2 17:31:18 52.300 60.480 52.820 0.000 0.000 50.760 50.380 125.844% 50.440 50.060 3 17:32:23 51.200 58.740 51.390 0.000 0.000 50.100 48.950 126.641% 49.090 49.180 x 50.470 57.670 50.870 0.000 0.000 49.050 48.700 128.938% 48.460 48.580 σ 2.278 3.470 2.251 0.000 0.000 2.408 1.816 4.687% 2.361 1.855 %RSD 4.514 6.018 4.425 0.000 0.000 4.908 3.729 3.635 4.872 3.818 Run
ppb ppb
1 17:30:13 47.920 53.790 48.410 0.000 0.000 46.300 46.770 134.330% 45.840 46.500 2 17:31:18 52.300 60.480 52.820 0.000 0.000 50.760 50.380 125.844% 50.440 50.060 3 17:32:23 51.200 58.740 51.390 0.000 0.000 50.100 48.950 126.641% 49.090 49.180 χ 50.470 57.670 50.870 0.000 0.000 49.050 48.700 128.938% 48.460 48.580 σ 2.278 3.470 2.251 0.000 0.000 2.408 1.816 4.687% 2.361 1.855 %RSD 4.514 6.018 4.425 0.000 0.000 4.908 3.729 3.635 4.872 3.818 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In
2 17:31:18 52.300 60.480 52.820 0.000 0.000 50.760 50.380 125.844% 50.440 50.060 3 17:32:23 51.200 58.740 51.390 0.000 0.000 50.100 48.950 126.641% 49.090 49.180 x 50.470 57.670 50.870 0.000 0.000 49.050 48.700 128.938% 48.460 48.580 σ 2.278 3.470 2.251 0.000 0.000 2.408 1.816 4.687% 2.361 1.855 %RSD 4.514 6.018 4.425 0.000 0.000 4.908 3.729 3.635 4.872 3.818 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In
3 17:32:23 51.200 58.740 51.390 0.000 0.000 50.100 48.950 126.641% 49.090 49.180 x 50.470 57.670 50.870 0.000 0.000 49.050 48.700 128.938% 48.460 48.580 σ 2.278 3.470 2.251 0.000 0.000 2.408 1.816 4.687% 2.361 1.855 %RSD 4.514 6.018 4.425 0.000 0.000 4.908 3.729 3.635 4.872 3.818 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In
X 50.470 57.670 50.870 0.000 0.000 49.050 48.700 128.938% 48.460 48.580 σ 2.278 3.470 2.251 0.000 0.000 2.408 1.816 4.687% 2.361 1.855 %RSD 4.514 6.018 4.425 0.000 0.000 4.908 3.729 3.635 4.872 3.818 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In
σ 2.278 3.470 2.251 0.000 0.000 2.408 1.816 4.687% 2.361 1.855 %RSD 4.514 6.018 4.425 0.000 0.000 4.908 3.729 3.635 4.872 3.818 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In
%RSD 4.514 6.018 4.425 0.000 0.000 4.908 3.729 3.635 4.872 3.818 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In
Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In
լ ինուլ ինուլ ինուլ ինուլ ինուլ ինուլ ինուլ ինուլ ինուլ ինուլ ինուլ
1 17:30:13 45.840 129.150% 44.210 46.030 0.408 44.610 45.770 45.660 44.970 124.852%
2 17:31:18 50.480 122.372% 47.610 48.790 0.302 46.230 48.980 48.950 49.320 119.041%
3 17:32:23 49.240 121.805% 47.770 48.390 0.398 47.740 48.440 47.980 48.470 119.119%
x 48.520 124.442% 46.530 47.730 0.370 46.190 47.730 47.530 47.590 121.004%
σ 2.401 4.087% 2.010 1.494 0.059 1.566 1.721 1.691 2.306 3.333%
%RSD 4.948 3.284 4.319 3.129 15.940 3.390 3.605 3.557 4.847 2.755
Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb
ppb ppb ppb ppb ppb ppb ppb ppb ppb
1 17:30:13 45.220 44.780 45.000 50.940 117.222% 116.524% 46.610 46.230 46.410 45.950
2 17:31:18 49.340 49.030 49.090 52.400 113.153% 112.009% 50.400 49.980 50.430 50.380
3 17:32:23 49.050 49.140 48.890 50.540 112.602% 111.032% 50.160 49.620 49.970 49.990
x 47.870 47.650 47.660 51.290 114.326% 113.188% 49.050 48.610 48.930 48.770
σ 2.302 2.489 2.304 0.979 2.523% 2.929% 2.124 2.067 2.200 2.450
%RSD 4.809 5.223 4.834 1.909 2.207 2.588 4.329 4.252 4.495 5.023
Run Time 208Pb 209Bi 220Bkg 238U
ppb ppb ppb ppb
1 17:30:13 46.090 112.432% 0.000 0.000
2 17:31:18 50.260 107.070% 0.000 0.000
1
3 17:32:23 49.850 106.474% 0.000 0.000
x 48.730 108.659% 0.000 0.000

ccb 5/7/2011 17:33:26

Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:34:31	111.002%	-0.033	3.203	3.645	0.000	83.370	6.171	6.445	3.525	<u>7 0.000</u>
2	17:35:36	110.403%	-0.033	2.907	2.862	0.000	65.640	4.010	4.394	2.630	<u>T 0.000</u>
3	17:36:41	107.483%	-0.110	2.062	2.369	0.000	58.640	3.493	4.086	2.385	<u>T 0.000</u>
X		109.629%	-0.079	2.724	2.959	0.000	69.220	4.558	4.975	2.847	<u>т 0.000</u>
σ		1.883%	0.041	0.592	0.643	0.000	12.750	1.421	1.282	0.600	<u>т 0.000</u>
%RSD	T'	1.718	51.700	21.740	21.750	0.000	18.420	31.170	25.770	21.080	<u>T 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CIO	55Mn
1	17:34:31	ppb 0.287	ppb -17.760	ppb -8.934	ppb 124.422%	ppb -0.375	ppb -0.308	ppb 0.570	ppb -0.239	ppb 293.600	ppb 0.936
2	17:35:36			-11.390							
		-0.597	-18.530		125.409%	-0.492	-0.312	0.447	0.195	299.000 301.700	0.483
3	17:36:41	0.130	-18.090	-11.600	126.151%	-0.498	-0.266	0.453	0.627		0.338
X		-0.060	-18.130	-10.640	125.327%	-0.455	-0.295	0.490	0.195	298.100	0.586
σ		0.472	0.386	1.483	0.867%	0.069	0.025	0.069	0.433	4.159	0.312
%RSD		785.000	2.129	13.940	0.692	15.190	8.558	14.170	222.600	1.395	53.240
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1	17:34:31	ppb 30.510	ppb	ppb 0.049	ppb -0.013	ppb 19.590	ppb 0.404	ppb 0.190	ppb 0.408	ppb 0.017	-0.507
2	17:34:31	21.390	34.460	-0.057	-0.013		0.694 0.470	-0.189	-0.408 -0.429		-0.507
			24.560			17.280		-0.291		-0.254	
3	17:36:41	16.690	20.440	-0.074	-0.157	14.250	0.332	-0.316	-0.493	-0.020	-0.603
X		22.870	26.490	-0.027	-0.098	17.040	0.499	-0.265	-0.443	-0.086	-0.569
σ		7.026	7.205	0.066	0.076	2.676	0.183	0.068	0.044	0.147	0.054
%RSD	T'	30.730	27.200	242.500	77.190	15.710	36.590	25.440	9.986	171.200	9.439
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1	17:34:31	ppb -0.299	ppb 8.792	ppb 0.900	ppb 0.000	ppb 0.000	ppb -0.127	ppb 0.067	ppb 120.080%	ppb -0.018	ppb 0.010
3	17:35:36 17:36:41	-0.130 -0.215	7.374 7.673	0.726 0.819	0.000 0.000	0.000	-0.237 -0.181	-0.076 -0.123	121.017% 120.729%	-0.167 -0.206	-0.131 -0.133
	17.30.41		7.073	0.815	0.000	0.000					-0.133
X		-0.215 0.084	0.748	0.015	0.000	0.000	-0.182 0.055	-0.044 0.099	120.609%	-0.131 0.099	0.082
σ %RSD		39.270	9.408	10.680	0.000	0.000	30.430	225.600	0.480% 0.398	75.930	96.830
Run	Time	98Mo	103Rh	10.080	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
Kun	Tillie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:34:31	0.050	117.491%	-0.237	0.473	0.225	0.038	0.488	0.030	0.043	113.442%
2	17:35:36	-0.060	118.018%	0.230	0.373	0.189	-0.051	0.420	-0.012	-0.005	113.313%
3	17:36:41	-0.106	117.489%	-0.470	0.366	0.233	-0.074	0.412	-0.093	-0.049	113.539%
X	17.30.41	-0.038	117.467%	-0.159	0.404	0.215	-0.029	0.440	-0.025	-0.004	113.431%
σ		0.080	0.305%	0.356	0.060	0.024	0.059	0.042	0.062	0.046	0.114%
%RSD		207.400	0.30378	224.500	14.900	10.940	205.000	9.456	248.800	1184.000	0.100
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
- rturi		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:34:31	-0.037	0.894	0.844	0.250	107.064%	106.733%	0.225	0.450	0.141	0.156
	17:35:36	-0.126	0.515	0.486	0.040	107.541%	106.704%	0.134	0.358	0.022	0.023
3	17:36:41	-0.157	0.390	0.302	-0.053	106.864%	106.765%	0.124	0.354	-0.018	-0.003
Х		-0.107	0.600	0.544	0.079	107.156%	106.734%	0.161	0.387	0.049	0.059
σ		0.063	0.263	0.276	0.155	0.348%	0.030%	0.056	0.054	0.082	0.085
%RSD		58.600	43.790	50.690	196.800	0.325	0.028	34.600	13.920	169.900	145.400
Run	Time	208Pb	209Bi	220Bkg	238U	0.020	0.020	0.1.000	101720	1071700	7.707.700
		ppb	ppb	ppb	ppb						
1	17:34:31	0.203	102.740%	0.000	0.000						
2	17:35:36	0.080	103.890%	0.000	0.000						
3	17:36:41	0.051	104.166%	0.000	0.000						
X		0.111	103.599%	0.000	0.000						
σ		0.080	0.756%	0.000	0.000						
%RSD		72.400	0.730	0.000	0.000						
	1	,255	0.700	5.555	0.000						

t74672-13f 5/7/2011 17:37:45

	-airution: 1.00										
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:38:50	92.860%	-0.108	м 156.100	м 156.500	0.000	тм 570600.000	тм 59960.000	тм 58460.000	5.349	<u>T 0.000</u>
2	17:39:56	92.952%	-0.053	м 155.500	м 160.900	0.000	тм 579700.000	тм 60950.000	тм 59950.000	4.201	<u>T 0.000</u>
3	17:41:01	93.630%	-0.081	м 159.500	м 160.500	0.000	тм 580700.000	тм 61010.000	тм 59640.000	4.004	<u> </u>
Х		93.148%	-0.080	м 157.000	м 159.300	0.000	тм 577000.000	тм 60640.000	тм 59350.000	4.518	<u>т 0.000</u>
σ		0.420%	0.027	м 2.158	м 2.438	0.000	тм 5550.000	тм 590.200	тм 784.300	0.726	<u>т 0.000</u>
%RSD		0.451	33.940	м 1.374	м 1.531	0.000	тм 0.962	тм 0.973	тм 1.322	16.080	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:38:50	тм 4731.000	м 67370.000	тм 74340.000	156.240%	4.029	0.028	-0.005	0.630	57.260	тм 12760.000
2	17:39:56	тм 4823.000	м 68690.000	тм 75460.000	160.037%	2.884	0.021	-0.154	0.347	57.370	тм 12930.000
3	17:41:01	тм 4802.000	м 67580.000	тм 74340.000	164.986%	2.778	0.094	-0.188	0.565	54.780	тм 12740.000
	17.41.01										
X		тм 4786.000	м 67880.000	тм 74710.000	160.421%	3.230	0.047	-0.116	0.514	56.470	тм 12810.000
σ		тм 48.260	м 711.100	тм 645.100	4.386%	0.693	0.040	0.097	0.148	1.464	тм 105.900
%RSD		тм 1.008	м 1.048	<u>тм 0.864</u>	2.734	21.470	84.730	84.090	28.860	2.593	тм 0.827
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	47.00.50	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:38:50	тм 204900.000	тм 231400.000	-0.108	0.121	30.470	4.345	0.217	0.625	54.930	41.090
2	17:39:56	тм 207800.000	тм 235100.000	-0.093	0.168	36.030	4.652	0.259	0.743	55.130	41.780
3	17:41:01	тм 204800.000	тм 232500.000	-0.120	0.204	37.280	4.905	0.211	0.725	55.760	41.850
X		тм 205900.000	тм 233000.000	-0.107	0.165	34.590	4.634	0.229	0.698	55.270	41.570
σ		тм 1691.000	тм 1890.000	0.013	0.042	3.629	0.280	0.026	0.064	0.434	0.421
%RSD		тм 0.821	тм 0.811	12.600	25.300	10.490	6.048	11.220	9.157	0.786	1.013
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:38:50	0.826	2.564	0.820	0.000	0.000	1.918	тм 994.600	122.992%	-0.167	-0.118
2	17:39:56	0.661	4.418	1.003	0.000	0.000	2.156	тм 1000.000	125.971%	-0.179	-0.140
3	17:41:01	0.691	4.476	1.161	0.000	0.000	1.929	тм 993.900	127.866%	-0.192	-0.162
X		0.726	3.819	0.995	0.000	0.000	2.001	тм 996.200	125.609%	-0.180	-0.140
σ		0.088	1.087	0.171	0.000	0.000	0.134	тм 3.331	2.457%	0.012	0.022
%RSD		12.130	28.460	17.160	0.000	0.000	6.705	тм 0.334	1.956	6.916	15.950
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:38:50	-0.120	107.373%	-5.751	0.347	0.574	-0.072	0.395	-0.412	-0.277	108.119%
2	17:39:56	-0.106	108.932%	-6.777	0.358	0.647	0.023	0.396	-0.478	-0.327	109.740%
3	17:41:01	-0.121	111.187%	-6.080	0.342	0.601	0.020	0.388	-0.443	-0.300	112.343%
X		-0.115	109.164%	-6.203	0.349	0.607	-0.010	0.393	-0.444	-0.301	110.067%
σ		0.008	1.917%	0.524	0.008	0.037	0.054	0.004	0.033	0.025	2.131%
%RSD		7.365	1.756	8.443	2.288	6.079	550.400	1.037	7.400	8.184	1.936
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:38:50	-0.191	0.235	0.258	тм 2074.000	108.496%	108.237%	0.046	0.284	-0.005	-0.005
	17:39:56	-0.179	0.179	0.160	тм 2089.000	109.030%	108.574%	0.040	0.281	-0.015	-0.013
		-0.186	0.179	0.100	тм 2083.000	110.805%	109.925%	0.044	0.279	-0.013	-0.022
X	17.11.01	-0.185	0.181	0.175	тм 2082.000	109.444%	108.912%	0.044	0.281	-0.013	-0.013
σ		0.006	0.054	0.173	тм 7.492	1.209%	0.893%	0.003		0.007	0.008
%RSD		3.404	29.840	43.970	<u>тм 0.360</u>	1.209%	0.820	6.806	0.002 0.872	50.960	63.160
Run	Time	208Pb	209Bi	220Bkg	238U	1.105	0.620	0.000	0.672	30.700	03.100
IXUII	Tillie	ppb	ppb	ppb	ppb						
1	17:38:50	0.052	92.013%	0.000	0.000	Ī					
2		0.032	92.309%	0.000	0.000						
3	17:41:01	0.039	92.785%	0.000	0.000						
X		0.044	92.369%	0.000	0.000						
σ		0.007	0.389%	0.000	0.000						
%RSD		14.890	0.421	0.000	0.000						

t74672-15f 5/7/2011 17:42:04

Run	dilution: 1.00-	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:43:09	99.976%	-0.030	м 215.600	м 223.400	0.000	тм 366900.000	тм 47210.000	тм 46260.000	± 7.820	<u>⊤ 0.000</u>
2	17:44:15	98.436%	-0.006	м 228.600	м 232.300	0.000	тм 384300.000	тм 49880.000	тм 49000.000	6.151	<u>т 0.000</u>
3	17:45:20	97.509%	-0.035	м 231.900	м 237.000	0.000	тм 381700.000	тм 49390.000	тм 48500.000	5.920	т 0.000
X		98.640%	-0.024	м 225.400	м 230.900	0.000	тм 377600.000	тм 48830.000	тм 47920.000	т 6.630	т 0.000
σ		1.246%	0.016	м 8.576	м 6.941	0.000	тм 9360.000	тм 1421.000	тм 1461.000	т 1.037	т 0.000
%RSD		1.263	65.430	м 3.806	м 3.006	0.000	тм 2.479	тм 2.910	тм 3.049	т 15.640	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:43:09	тм 8489.000	м 39750.000	тм 44250.000	154.771%	5.619	0.444	1.261	0.686	207.000	тм 1917.000
2	17:44:15	тм 8946.000	м 42940.000	тм 47710.000	148.109%	6.120	0.537	1.399	1.334	215.500	тм 2053.000
3	17:45:20	тм 8835.000	м 42440.000	тм 47220.000	148.822%	6.296	0.455	1.411	1.379	211.800	тм 2039.000
X		тм 8757.000	м 41710.000	тм 46400.000	150.567%	6.012	0.479	1.357	1.133	211.400	тм 2003.000
σ		тм 238.200	м 1718.000	тм 1872.000	3.658%	0.351	0.051	0.083	0.388	4.261	тм 74.780
%RSD		тм 2.720	<u>м 4.118</u>	<u>тм 4.035</u>	2.430	5.837	10.610	6.135	34.250	2.015	<u>тм 3.734</u>
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:43:09	тм 16340.000	тм 18070.000	1.624	0.713	42.830	3.746	0.061	0.829	17.100	12.900
2	17:44:15	тм 17550.000	тм 19350.000	1.746	0.891	47.540	4.020	0.144	0.973	19.160	13.590
3	17:45:20	тм 17350.000	тм 19140.000	1.752	0.790	47.570	3.912	0.090	1.017	18.150	13.450
X		тм 17080.000	тм 18850.000	1.707	0.798	45.980	3.893	0.098	0.940	18.140	13.310
σ		тм 645.500	тм 685.000	0.072	0.089	2.727	0.138	0.042	0.098	1.027	0.362
%RSD Run	Time	<u>тм 3.779</u> 75As	<u>тм 3.633</u> 77Se	4.231 78Se	11.190 79Br	5.932 81Br	3.541 82Se	42.910 88Sr	10.440 89Y	5.663 95Mo	2.719 97Mo
Rull	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:43:09	0.561	7.850	0.747	0.000	0.000	0.486	<u>тм 593.400</u>	125.815%	-0.156	-0.127
2	17:44:15	0.428	9.418	0.845	0.000	0.000	0.486	тм 633.500	121.564%	-0.149	-0.112
3	17:45:20	0.410	9.121	0.880	0.000	0.000	0.582	тм 633.100	120.999%	-0.145	-0.080
X	17110120	0.466	8.796	0.824	0.000	0.000	0.518	тм 620.000	122.793%	-0.150	-0.106
σ		0.083	0.833	0.069	0.000	0.000	0.055	тм 23.040	2.633%	0.006	0.024
%RSD		17.730	9.465	8.370	0.000	0.000	10.690	тм 3.716	2.144	3.926	22.690
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:43:09	-0.055	111.368%	-3.270	0.343	0.422	0.044	0.392	-0.277	-0.186	110.772%
2	17:44:15	-0.037	107.642%	-3.169	0.341	0.415	0.048	0.385	-0.258	-0.176	107.964%
3	17:45:20	-0.057	108.401%	-3.113	0.362	0.408	-0.000	0.388	-0.262	-0.174	108.287%
X		-0.050	109.137%	-3.184	0.349	0.415	0.031	0.388	-0.266	-0.179	109.008%
σ		0.011	1.969%	0.079	0.011	0.007	0.027	0.004	0.010	0.006	1.536%
%RSD		22.200	1.804	2.491	3.248	1.631	87.870	1.005	3.709	3.576	1.409
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:43:09	-0.191	0.146	0.094	м 584.000	111.181%	111.243%	0.036	0.270	-0.013	-0.007
	17:44:15	-0.194	0.118	0.098	м 622.600	108.431%	107.200%	0.034	0.269	-0.007	-0.004
3	17:45:20	-0.188	0.127	0.078	м 617.400	108.612%	109.327%	0.030	0.271	-0.015	0.010
X		-0.191	0.130	0.090	м 608.000	109.408%	109.257%	0.033	0.270	-0.012	-0.000
σ		0.003	0.014	0.011	м 20.950	1.538%	2.022%	0.003	0.001	0.004	0.009
%RSD	Time o	1.655	10.980	11.810	м 3.447	1.406	1.851	8.961	0.474	35.260	3232.000
Run	Time	208Pb ppb	209Bi ppb	220Bkg ppb	238U ppb						
1	17:43:09	0.049	98.612%	0.000	0.000						
	17:44:15	0.053	94.870%	0.000	0.000						
3	17:45:20	0.055	95.343%	0.000	0.000						
X		0.052	96.275%	0.000	0.000						
σ		0.003	2.038%	0.000	0.000						
%RSD		5.224	2.117	0.000	0.000						
				-							

t74672-16f 5/7/2011 17:46:22

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
itan mine	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:47:28	98.445%	-0.015	м 225.100	м 229.700	0.000	тм 382400.000	тм 49840.000	тм 48880.000	7.004	<u>⊤ 0.000</u>
2 17:48:32	99.640%	0.048	м 228.200	м 227.900	0.000	тм 378000.000	тм 49120.000	тм 48090.000	6.655	т 0.000
3 17:49:37	97.782%	0.008	м 238.500	м 241.400	0.000	тм 391500.000	тм 51290.000	тм 50210.000	6.943	<u>т 0.000</u>
X X	98.622%	0.014	м 230.600	м 233.000	0.000	тм 384000.000	тм 50080.000	тм 49060.000	6.867	<u>т 0.000</u>
σ	0.942%	0.014	м 7.014	м 7.336	0.000	тм 6900.000	тм 1106.000	тм 1073.000	0.186	<u>г 0.000</u> т 0.000
%RSD	0.94276	232.500	<u>м 7.014</u> м 3.041	м 7.330 м 3.149	0.000	тм 1.797	тм 2.208	тм 2.187	2.712	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
Kuii IIIIle	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:47:28	тм 8992.000	м 43220.000	тм 48330.000	147.808%	6.345	0.678	1.410	1.755	194.700	тм 2085.000
2 17:48:32	тм 8786.000	м 41860.000	тм 46800.000	151.962%	5.883	0.753	1.318	1.894	190.300	тм 2027.000
3 17:49:37	тм 9170.000	м 44220.000	тм 49120.000	149.143%	6.116	0.771	1.396	1.745	193.700	тм 2111.000
X	тм 8983.000	м 43100.000	тм 48080.000	149.637%	6.115	0.734	1.375	1.798	192.900	тм 2075.000
σ	тм 192.500	м 43 100.000	тм 1180.000	2.121%	0.113	0.049	0.049	0.083	2.309	тм 42.850
%RSD	тм 2.144	м 2.743	тм 2.454	1.417	3.775	6.723	3.589	4.632	1.197	тм 2.065
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
Kun mine	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:47:28	тм 17760.000	тм 19470.000	1.500	0.705	44.580	3.888	0.238	0.599	18.280	13.090
2 17:48:32	тм 17250.000	тм 18860.000	1.489	0.649	38.530	3.678	0.204	0.563	17.900	13.110
3 17:49:37	тм 18010.000	тм 19670.000	1.535	0.710	37.590	3.748	0.262	0.564	18.540	13.380
X	тм 17670.000	тм 19330.000	1.508	0.688	40.230	3.771	0.234	0.576	18.240	13.190
σ	тм 387.500	тм 423.100	0.024	0.034	3.796	0.107	0.029	0.020	0.322	0.159
%RSD	тм 2.193	тм 2.188	1.603	4.928	9.436	2.835	12.490	3.487	1.763	1.201
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:47:28	0.609	6.549	0.970	0.000	0.000	0.688	тм 636.900	122.578%	-0.206	-0.151
2 17:48:32	0.555	6.798	0.801	0.000	0.000	0.810	тм 625.000	124.047%	-0.200	-0.159
3 17:49:37	0.433	8.437	1.074	0.000	0.000	0.853	тм 653.800	122.098%	-0.191	-0.144
X	0.532	7.261	0.948	0.000	0.000	0.784	тм 638.600	122.907%	-0.199	-0.152
σ	0.090	1.026	0.138	0.000	0.000	0.085	тм 14.470	1.016%	0.008	0.007
%RSD	16.850	14.120	14.530	0.000	0.000	10.900	тм 2.267	0.826	3.808	4.808
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:47:28	-0.090	107.429%	-3.048	0.354	0.412	0.121	0.394	-0.268	-0.180	107.877%
2 17:48:32	-0.089	110.205%	-3.500	0.361	0.429	-0.049	0.386	-0.289	-0.188	111.113%
3 17:49:37	-0.095	108.521%	-3.814	0.358	0.457	0.047	0.391	-0.310	-0.207	109.038%
X	-0.091	108.718%	-3.454	0.358	0.433	0.040	0.390	-0.289	-0.192	109.343%
σ	0.003	1.398%	0.385	0.003	0.022	0.085	0.004	0.021	0.014	1.640%
%RSD	3.585	1.286	11.150	0.951	5.199	215.500	1.024	7.259	7.372	1.499
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:47:28	-0.197	0.060	0.001	<u>тм 668.700</u>	108.328%	108.261%	0.028	0.269	-0.014	-0.018
2 17:48:32	-0.190	0.052	-0.009	м 619.100	111.323%	110.780%	0.027	0.265	-0.023	-0.014
3 17:49:37	-0.198	0.044	0.009	<u>тм 674.100</u>	108.950%	107.918%	0.026	0.266	-0.017	-0.017
X	-0.195	0.052	0.001	<u>тм 654.000</u>	109.534%	108.986%	0.027	0.267	-0.018	-0.016
σ	0.004	0.008	0.009	тм 30.290	1.581%	1.563%	0.001	0.002	0.005	0.002
%RSD	2.203	15.160	1445.000	<u>тм 4.631</u>	1.443	1.434	4.211	0.776	26.070	14.180
Run Time	208Pb	209Bi	220Bkg	238U						
1 17.47.00	ppb 0.041	ppb	ppb	ppb						
1 17:47:28	0.041	95.628%	0.000	0.000						
2 17:48:32	0.039	97.653%	0.000	0.000						
3 17:49:37	0.039	95.177%	0.000	0.000						
X	0.040	96.153%	0.000	0.000						
σ	0.001	1.319%	0.000	0.000						
%RSD	2.750	1.372	0.000	0.000						

t74672-17f 5/7/2011 17:50:40

Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii	Tille	ppb	ppb			ppb	ppb	ppb	ppb		ppb
1	17:51:45	99.435%	0.018	ррb м 219.300	ррb м 220.100	0.000	тм 367600.000	тм 47350.000	тм 46650.000	ppb <u>⊤8.696</u>	<u>7 0.000</u>
2	17:52:50	99.267%	-0.003	м 221.200	м 228.600	0.000	тм 376300.000	тм 48940.000	тм 48210.000	5.599	<u>T 0.000</u>
									· ·		
3	17:53:55	96.190% 98.297%	0.006	м 236.600	м 238.700	0.000	тм 388700.000 тм 377500.000	тм 50730.000	тм 49830.000 тм 48230.000	<u>⊤8.750</u>	<u>T 0.000</u>
X			0.007	м 225.700	м 229.100	0.000		тм 49010.000		<u> </u>	<u>т 0.000</u>
σ		1.827%	0.011	м 9.455	м 9.349	0.000	тм 10580.000	тм 1693.000	тм 1589.000	<u>т 1.804</u>	<u>т 0.000</u>
%RSD	Time o	1.859	146.700	м 4.189	м 4.080	0.000	<u>тм 2.803</u>	<u>тм 3.455</u>	<u>тм 3.295</u>	T 23.480	<u>T 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V ppb	52Cr	53Cr ppb	53CI O	55Mn ppb
1	17:51:45	ррb тм 8675.000	ррb м 41320.000	ррb тм 46100.000	ppb 147.489%	ppb 5.911	0.734	ppb 1.217	1.344	ppb 185.300	тм 1965.000
2	17:52:50	тм 8964.000	м 42610.000	тм 47640.000	146.183%	6.277	0.722	1.325	1.489	186.700	тм 2050.000
3	17:53:55	тм 9131.000	м 44000.000	тм 48970.000	144.846%	5.844	0.722	1.308	2.240	185.700	тм 2100.000
	17.55.55		· ·								
Х		тм 8923.000	м 42640.000	тм 47570.000	146.173%	6.011	0.778	1.283	1.691	185.900	тм 2038.000
%RSD		<u>тм 230.700</u>	м 1341.000	тм 1434.000	1.321%	0.233 3.881	0.087	0.058 4.530	0.481	0.693	<u>тм 67.970</u>
Run	Time	<u>тм 2.585</u> 56Fe	<u>м 3.144</u> 57Fe	<u>тм 3.015</u> 59Со	0.904 60Ni	62Ni	11.170 63Cu	4.530 65Cu	28.440 66Zn	0.373 67Zn	<u>тм 3.335</u> 68Zn
Rull	Time	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:51:45	тм 16820.000	тм 18550.000	1.381	0.630	31.580	3.229	0.111	0.584	16.710	12.610
2	17:52:50	тм 17540.000	тм 19250.000	1.398	0.579	31.930	3.231	0.123	0.601	17.950	13.220
3	17:53:55	тм 18080.000	тм 19780.000	1.478	0.659	30.210	3.234	0.125	0.808	18.000	13.430
X	17.55.55	тм 17480.000	тм 19200.000	1.419	0.622	31.240	3.231	0.120	0.664	17.550	13.090
σ		тм 632.200	тм 614.500	0.052	0.040	0.907	0.002	0.007	0.125	0.731	0.426
%RSD		тм 3.616	тм 3.201	3.673	6.495	2.902	0.072	6.137	18.740	4.162	3.255
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:51:45	0.604	4.681	0.506	0.000	0.000	0.624	тм 606.800	123.590%	-0.204	-0.179
2	17:52:50	0.600	5.545	0.728	0.000	0.000	0.735	тм 634.900	120.617%	-0.211	-0.177
3	17:53:55	0.619	6.466	0.860	0.000	0.000	0.879	тм 648.800	119.731%	-0.197	-0.165
Х		0.607	5.564	0.698	0.000	0.000	0.746	тм 630.200	121.313%	-0.204	-0.174
σ		0.010	0.893	0.179	0.000	0.000	0.128	тм 21.400	2.022%	0.007	0.008
%RSD		1.637	16.040	25.610	0.000	0.000	17.150	тм 3.396	1.667	3.449	4.529
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:51:45	-0.084	110.625%	-2.280	0.357	0.350	-0.049	0.388	-0.199	-0.137	111.239%
2	17:52:50	-0.095	107.140%	-3.665	0.349	0.442	-0.000	0.381	-0.293	-0.192	109.750%
3	17:53:55	-0.086	105.483%	-3.343	0.347	0.423	0.026	0.386	-0.273	-0.182	107.662%
Х		-0.088	107.749%	-3.096	0.351	0.405	-0.008	0.385	-0.255	-0.170	109.550%
σ		0.006	2.625%	0.725	0.005	0.049	0.038	0.004	0.049	0.029	1.797%
%RSD		6.711	2.436	23.410	1.541	11.990	482.400	0.977	19.340	17.100	1.640
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	17:51:45	-0.193	0.018	-0.015	тм 625.000	112.661%	112.146%	0.028	0.264	-0.020	-0.014
	17:52:50	-0.196	0.014	-0.017	м 620.500	109.255%	110.405%	0.024	0.262	-0.011	-0.018
3	17:53:55	-0.207	0.016	-0.036	м 632.800	108.956%	107.167%	0.024	0.261	-0.017	-0.021
Х		-0.199	0.016	-0.022	тм 626.100	110.291%	109.906%	0.025	0.262	-0.016	-0.018
σ		0.008	0.002	0.011	<u>тм 6.240</u>	2.058%	2.527%	0.002	0.001	0.005	0.004
%RSD		3.843	13.480	51.290	<u>тм 0.997</u>	1.866	2.299	8.439	0.544	28.910	19.840
Run	Time	208Pb	209Bi	220Bkg	238U						
1	17:51:45	ppb 0.041	ppb 98.213%	ppb 0.000	ppb 0.000						
2	17:51:45	0.041	96.869%	0.000	0.000						
3	17:52:50	0.041	96.869%	0.000	0.000						
X	17.55.55	0.041	96.009%	0.000	0.000						
%RSD		0.000 0.706	1.111% 1.145	0.000	0.000						
701(3D	ı	0.700	1.143	0.000	0.000						

t74672-18f 5/7/2011 17:54:58

User Pre-dilution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:56:03	94.633%	0.096	м 227.000	м 231.900	0.000	тм 406200.000	тм 40190.000	тм 39590.000	5.416	<u> </u>
2 17:57:08	92.236%	0.129	м 224.100	м 229.300	0.000	тм 405000.000	тм 39550.000	тм 39170.000	5.461	<u> </u>
3 17:58:13	93.054%	0.017	м 230.000	м 233.900	0.000	тм 409000.000	тм 40020.000	тм 39480.000	<u> 78.754</u>	т 0.000
X	93.308%	0.081	м 227.100	м 231.700	0.000	тм 406700.000	тм 39920.000	тм 39410.000	т 6.543	<u>т 0.000</u>
	1.218%	0.058	м 2.944		0.000	тм 2081.000	тм 330.200	тм 218.900		
σ %RSD				м 2.281					<u>т 1.915</u>	<u>т 0.000</u>
	1.306	71.650	м 1.297	м 0.984	0.000	<u>тм 0.512</u>	<u>тм 0.827</u>	тм 0.555	<u>т 29.260</u>	<u>T 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
47.54.00	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:56:03	тм 6635.000	м 56880.000	тм 63310.000	134.292%	5.441	1.166	1.188	1.217	120.200	тм 1069.000
2 17:57:08	тм 6490.000	м 54920.000	<u>тм 61020.000</u>	136.389%	5.200	0.853	1.068	1.458	113.600	тм 1020.000
3 17:58:13	тм 6591.000	м 56090.000	тм 62280.000	134.342%	5.374	1.044	1.091	1.429	109.400	тм 1043.000
X	тм 6572.000	м 55960.000	тм 62200.000	135.007%	5.338	1.021	1.116	1.368	114.400	<u>тм 1044.000</u>
σ	тм 74.600	м 989.000	тм 1145.000	1.196%	0.124	0.158	0.064	0.132	5.426	тм 24.580
%RSD	<u>тм 1.135</u>	<u>м 1.767</u>	<u>тм 1.841</u>	0.886	2.324	15.460	5.711	9.623	4.742	<u>тм 2.354</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:56:03	тм 12100.000	тм 13310.000	1.251	0.439	29.130	3.413	0.189	1.451	15.430	12.080
2 17:57:08	тм 11610.000	м 12640.000	1.177	0.296	28.390	3.233	0.254	1.302	15.270	11.510
3 17:58:13	тм 11800.000	м 12850.000	1.222	0.315	26.780	3.227	0.256	1.390	14.920	11.920
Х	тм 11830.000	тм 12940.000	1.217	0.350	28.100	3.291	0.233	1.381	15.210	11.840
	тм 244.700	тм 340.500	0.037	0.078	1.205	0.105	0.038	0.075	0.260	0.295
σ %RSD	тм 2.068	тм 2.632	3.058		4.290			5.405	1.709	2.487
Run Time	75As	77Se	78Se	22.240 79Br	4.290 81Br	3.199 82Se	16.410 88Sr	89Y	95Mo	97Mo
Ruii IIIIle										
1 17.57.02	ppb	ppb 1.937	ppb	ppb	ppb	ppb 1.035	ppb	ppb	ppb 0.107	ppb
1 17:56:03	0.562		0.857	0.000	0.000	1.025	тм 682.200	112.331%	-0.187	-0.172
2 17:57:08	0.536	0.195	0.685	0.000	0.000	1.061	тм 658.800	114.340%	-0.215	-0.164
3 17:58:13	0.446	0.659	0.632	0.000	0.000	0.850	тм 668.000	113.541%	-0.195	-0.135
X	0.515	0.930	0.724	0.000	0.000	0.979	<u>тм 669.700</u>	113.404%	-0.199	-0.157
σ	0.061	0.903	0.118	0.000	0.000	0.113	тм 11.830	1.012%	0.015	0.019
%RSD	11.880	97.000	16.230	0.000	0.000	11.530	<u>тм 1.767</u>	0.892	7.380	12.420
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 17:56:03	-0.086	99.627%	-3.843	0.338	0.452	-0.019	0.390	-0.300	-0.203	102.539%
2 17:57:08	-0.096	102.436%	-3.764	0.342	0.447	-0.021	0.383	-0.290	-0.195	104.729%
3 17:58:13	-0.093	101.423%	-3.092	0.347	0.406	0.005	0.379	-0.256	-0.165	103.436%
X	-0.092	101.162%	-3.566	0.342	0.435	-0.011	0.384	-0.282	-0.188	103.568%
σ	0.005	1.422%	0.413	0.005	0.025	0.015	0.005	0.023	0.020	1.101%
%RSD	5.572	1.42278	11.570	1.323	5.855	127.400	1.400	8.182	10.780	1.063
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
ituii iiiie		ppb		ppb			ppb	ppb		
1 17:56:03	ppb -0.176	0.004	ppb -0.022	м 540.900	ppb 103.127%	ppb 103.140%	0.021	0.261	ppb 0.008	0.003
2 17:57:08				м 515.100						
	-0.192	0.006	-0.036		106.898%	107.618%	0.021	0.261	0.007	0.009
3 17:58:13	-0.191	0.012	-0.022	м 531.000	104.878%	106.580%	0.020	0.261	-0.007	-0.008
X	-0.186	0.007	-0.027	м 529.000	104.968%	105.779%	0.021	0.261	0.003	0.001
σ	0.009	0.004	0.008	м 13.050	1.887%	2.344%	0.001	0.000	0.008	0.008
%RSD	4.865	60.040	29.440	<u>м 2.466</u>	1.798	2.216	4.346	0.118	308.600	665.800
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 17:56:03	0.062	92.404%	0.000	0.000						
2 17:57:08	0.063	94.755%	0.000	0.000						
3 17:58:13	0.054	93.364%	0.000	0.000						
Х	0.060	93.508%	0.000	0.000						
σ	0.005	1.182%	0.000	0.000						
%RSD	7.870	1.264	0.000	0.000						
	7.070	1.204	0.000	0.000						

t74672-19f 5/7/2011 17:59:16

User Pre-	-allution: 1.00										
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:00:21	94.168%	0.092	м 214.300	м 220.200	0.000	тм 383800.000	тм 37230.000	тм 36540.000	<u> 11.150</u>	<u>т 0.000</u>
2	18:01:26	92.794%	0.059	м 225.100	м 229.500	0.000	тм 402100.000	тм 39600.000	тм 39000.000	6.063	<u>т 0.000</u>
3	18:02:31	93.475%	0.048	м 218.900	м 227.400	0.000	тм 398400.000	тм 39080.000	тм 38400.000	5.946	т 0.000
X		93.479%	0.067	м 219.500	м 225.700	0.000	тм 394800.000	тм 38640.000	тм 37980.000	т 7.719	т 0.000
	ł	0.687%	0.023			0.000	тм 9676.000		тм 1280.000	т 2.970	
σ %RSD]			м 5.423	м 4.898			тм 1247.000			<u>т 0.000</u>
		0.735	34.330	м 2.471	м 2.170	0.000	<u>тм 2.451</u>	<u>тм 3.228</u>	<u>тм 3.371</u>	T 38.480	<u>T 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	40.00.01	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:00:21	тм 6197.000	м 51980.000	тм 58150.000	134.366%	5.194	0.999	0.997	1.639	107.700	тм 972.900
2	18:01:26	тм 6498.000	<u>м 55650.000</u>	<u>тм 61970.000</u>	131.890%	5.759	1.183	1.124	2.074	109.400	тм 1039.000
3	18:02:31	<u>тм 6521.000</u>	м 55490.000	<u>тм 61690.000</u>	131.350%	5.565	1.022	1.109	0.863	117.500	тм 1033.000
X		тм 6406.000	м 54370.000	тм 60600.000	132.536%	5.506	1.068	1.076	1.525	111.600	<u>тм 1015.000</u>
σ		тм 181.100	м 2072.000	тм 2127.000	1.608%	0.287	0.100	0.070	0.614	5.192	тм 36.510
%RSD	Ī	тм 2.828	м 3.811	тм 3.510	1.214	5.217	9.372	6.463	40.230	4.654	тм 3.597
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:00:21	тм 11230.000	м 12230.000	1.112	0.236	22.780	3.733	1.016	0.512	13.500	10.170
2	18:01:26	тм 12120.000	тм 13290.000	1.196	0.276	25.010	4.288	1.150	0.647	14.390	11.150
3	18:02:31	тм 12050.000	тм 13190.000	1.178	0.266	28.390	4.350	1.038	0.742	13.860	10.830
	10.02.31	тм 11800.000	тм 12900.000	1.162	0.259	25.390	4.124	1.068	0.633	13.920	10.720
X											
σ		тм 497.100	тм 583.800	0.044	0.020	2.828	0.340	0.072	0.116	0.451	0.496
%RSD		тм 4.212	тм 4.524	3.796	7.853	11.140	8.242	6.702	18.230	3.244	4.629
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:00:21	0.418	-0.254	0.204	0.000	0.000	1.136	тм 620.600	115.058%	-0.243	-0.152
2	18:01:26	0.557	0.728	0.599	0.000	0.000	1.195	тм 669.600	110.719%	-0.212	-0.154
3	18:02:31	0.620	0.524	0.492	0.000	0.000	1.200	тм 656.600	111.830%	-0.219	-0.172
X		0.532	0.333	0.431	0.000	0.000	1.177	тм 648.900	112.536%	-0.224	-0.160
σ	ĺ	0.103	0.518	0.204	0.000	0.000	0.035	тм 25.400	2.254%	0.017	0.011
%RSD	i	19.420	155.900	47.320	0.000	0.000	3.014	тм 3.914	2.003	7.363	6.672
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:00:21	-0.132	103.534%	-3.365	0.349	0.422	-0.021	0.381	-0.273	-0.186	105.185%
2	18:01:26	-0.108	99.139%	-3.416	0.341	0.427	0.008	0.382	-0.280	-0.186	101.541%
3	18:02:31	-0.111	100.344%	-3.769	0.350	0.449	0.006	0.382	-0.296	-0.202	102.859%
	10.02.31]										103.195%
X		-0.117	101.006%	-3.517	0.347	0.433	-0.003	0.382	-0.283	-0.191	
σ	ļ	0.013	2.271%	0.220	0.005	0.015	0.016	0.001	0.012	0.009	1.845%
%RSD		10.890	2.248	6.251	1.380	3.389	640.000	0.224	4.159	4.643	1.788
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:00:21	-0.198	0.017	-0.035	м 489.300	108.174%	108.793%	0.026	0.262	-0.026	-0.018
2	18:01:26	-0.191	0.017	-0.015	м 535.500	103.692%	104.856%	0.024	0.264	-0.022	-0.010
3	18:02:31	-0.194	0.023	-0.034	м 524.200	105.126%	105.569%	0.022	0.262	-0.023	-0.025
X		-0.194	0.019	-0.028	м 516.300	105.664%	106.406%	0.024	0.262	-0.024	-0.017
σ		0.004	0.004	0.011	м 24.070	2.289%	2.098%	0.002	0.001	0.002	0.007
%RSD	ĺ	1.985	20.030	40.320	м 4.662	2.166	1.971	7.981	0.396	9.707	41.070
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	18:00:21	0.037	96.142%	0.000	0.000						
2		0.041	92.470%	0.000	0.000						
3											
	18:02:31	0.038	94.292%	0.000	0.000						
X		0.038	94.301%	0.000	0.000						
σ		0.002	1.836%	0.000	0.000						
%RSD		5.468	1.947	0.000	0.000						

t74672-20f 5/7/2011 18:03:34

user Pre-dilution: I										
Run Tim		9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:04:3	92.306%	0.074	м 227.200	м 229.000	0.000	тм 406300.000	тм 40080.000	тм 39340.000	5.237	<u>T 0.000</u>
2 18:05:4	96.492%	0.051	м 211.700	м 216.400	0.000	тм 382600.000	тм 37350.000	тм 36760.000	4.921	<u>T 0.000</u>
3 18:06:4	9 93.678%	0.075	м 225.200	м 227.800	0.000	тм 398600.000	тм 39000.000	тм 38500.000	<u> ⊤8.074</u>	т 0.000
X		0.067	м 221.300	м 224.400	0.000	тм 395800.000	тм 38810.000	тм 38200.000	т 6.077	т 0.000
σ	2.134%	0.014	м 8.452	м 6.960	0.000	тм 12110.000	тм 1378.000	тм 1317.000	т 1.737	т 0.000
%RSD	2.266	20.670	м 3.819	<u>м 3.700</u> м 3.102	0.000	тм 3.059	тм 3.550	тм 3.447	<u>т 28.580</u>	<u>т 0.000</u>
Run Tim		43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
Kuii IIIII	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:04:3		м 56540.000	тм 62790.000	129.297%	5.443	1.071	1.311	1.206	127.700	тм 1055.000
		· · · · · · · · · · · · · · · · · · ·								
2 18:05:4		м 52630.000	тм 58830.000	135.416%	4.904	1.036	1.197	1.672	126.900	тм 990.200
3 18:06:4		м 54780.000	тм 60980.000	133.436%	5.224	1.083	1.274	1.560	132.700	тм 1022.000
X	тм 6454.000	м 54650.000	<u>тм 60870.000</u>	132.717%	5.190	1.064	1.261	1.480	129.100	тм 1022.000
σ	тм 160.800	м 1957.000	тм 1982.000	3.122%	0.271	0.024	0.058	0.243	3.138	<u>тм 32.220</u>
%RSD	<u>тм 2.491</u>	<u>м 3.582</u>	<u>тм 3.257</u>	2.353	5.221	2.299	4.640	16.430	2.431	<u>тм 3.152</u>
Run Tim	e 56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:04:3	9 <u>тм 11950.000</u>	тм 13070.000	1.212	0.326	29.160	3.439	0.122	0.587	14.560	10.390
2 18:05:4	4 <u>тм 11220.000</u>	м 12150.000	1.154	0.345	28.250	3.372	0.076	0.527	13.810	10.240
3 18:06:4	9 <u>тм 11630.000</u>	тм 12660.000	1.169	0.338	30.620	3.463	0.099	0.642	13.500	10.070
X	тм 11600.000	тм 12630.000	1.178	0.336	29.340	3.425	0.099	0.585	13.960	10.230
σ	тм 367.500	тм 460.100	0.030	0.009	1.199	0.047	0.023	0.057	0.544	0.158
%RSD	тм 3.168	тм 3.644	2.571	2.742	4.085	1.374	22.760	9.792	3.899	1.546
Run Tim		77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
itan inn	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:04:3		1.785	0.565	0.000	0.000	1.141	тм 671.000	110.524%	-0.196	-0.154
2 18:05:4	=	1.583	0.319	0.000	0.000	0.767	тм 634.400	114.043%	-0.205	-0.175
3 18:06:4	-	2.480	0.510	0.000	0.000	0.868	<u>тм 656.000</u>	112.115%	-0.205	-0.173
X	0.497	1.949	0.465	0.000	0.000	0.925	тм 653.800	112.227%	-0.195	-0.159
σ	0.097	0.471	0.129	0.000	0.000	0.193	тм 18.360	1.762%	0.010	0.014
%RSD	19.550	24.140	27.810	0.000	0.000	20.890	тм 2.809	1.570	5.205	9.005
Run Tim		103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:04:3		99.166%	-3.519	0.345	0.725	4.213	0.386	-0.542	-0.352	100.751%
2 18:05:4	=	101.957%	-3.376	0.347	0.730	4.425	0.382	-0.532	-0.341	104.911%
3 18:06:4	-0.084	100.679%	-2.060	0.340	0.641	4.360	0.386	-0.455	-0.297	101.900%
X	-0.087	100.601%	-2.985	0.344	0.699	4.333	0.385	-0.510	-0.330	102.521%
σ	0.003	1.397%	0.805	0.004	0.050	0.109	0.002	0.047	0.029	2.148%
%RSD	3.858	1.388	26.960	1.112	7.156	2.505	0.611	9.291	8.899	2.096
Run Tim	e 118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:04:3	9 -0.195	-0.003	-0.041	м 526.600	103.475%	104.318%	0.017	0.258	0.173	0.159
2 18:05:4	-0.186	-0.015	-0.063	м 494.400	107.691%	108.172%	0.015	0.257	0.157	0.154
3 18:06:4	9 -0.204	-0.008	-0.047	м 513.000	105.170%	105.177%	0.016	0.256	0.168	0.167
Х	-0.195	-0.009	-0.050	м 511.300	105.445%	105.889%	0.016	0.257	0.166	0.160
σ	0.009	0.006	0.011	м 16.200	2.122%	2.024%	0.001	0.001	0.008	0.007
%RSD	4.464	70.760	22.490	м 3.168	2.012	1.911	7.012	0.359	5.029	4.148
Run Tim		209Bi	220Bkg	238U	2.012	1.711	7.012	0.007	5.027	1.110
71111	ppb	ppb	ppb	ppb						
1 18:04:3		92.127%	0.000	0.000						
2 18:05:4	=	95.401%	0.000	0.000						
		93.693%	0.000	0.000						
Х	0.216	93.740%	0.000	0.000						
σ	0.006	1.638%	0.000	0.000						
%RSD	2.580	1.747	0.000	0.000						

t74672-21f 5/7/2011 18:07:52

User Pre-dilution:	1.000									
Run Tin	_	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:08:	<u>57</u> 91.542%	0.057	м 226.000	м 228.800	0.000	тм 403000.000	тм 39500.000	<u>тм 38790.000</u>	4.844	<u>T 0.000</u>
2 18:10:	90.279%	0.017	м 235.600	м 239.700	0.000	тм 420100.000	тм 41370.000	тм 40710.000	<u> 78.147</u>	<u>T 0.000</u>
3 18:11:	96.503%	0.011	м 211.400	м 219.200	0.000	тм 379600.000	тм 36990.000	тм 36330.000	4.582	<u> </u>
X	92.775%	0.028	м 224.300	м 229.200	0.000	тм 400900.000	тм 39290.000	тм 38610.000	<u>т 5.858</u>	<u>т 0.000</u>
σ	3.290%	0.025	м 12.230	м 10.260	0.000	тм 20330.000	тм 2198.000	тм 2198.000	т 1.987	т 0.000
%RSD	3.546		м 5.453	м 4.477	0.000	тм 5.071	тм 5.595	тм 5.692	т 33.920	т 0.000
Run Tin		43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	+	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:08:		•	тм 61650.000	131.020%	5.330	0.973	1.108	0.971	141.600	тм 1034.000
2 18:10:			тм 63980.000	130.403%	5.775	1.216	1.159	2.124	144.400	тм 1077.000
3 18:11:			тм 58270.000	136.033%	5.135	0.922	1.069	0.622	146.600	тм 977.800
		-								
X	тм 6520.000		тм 61300.000	132.485%	5.413	1.037	1.112	1.239	144.200	тм 1030.000
σ	тм 269.900		тм 2870.000	3.088%	0.328	0.157	0.045	0.787	2.490	тм 49.700
%RSD	тм 4.140		тм 4.682	2.331	6.059	15.140	4.050	63.490	1.727	тм 4.827
Run Tin		1	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 10 00	ppb		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:08:			1.182	0.430	28.580	3.574	0.156	0.807	13.840	10.200
2 18:10:			1.234	0.457	31.780	3.848	0.178	0.916	14.430	10.950
3 18:11:			1.098	0.407	29.300	3.533	0.116	0.761	13.380	10.160
X	тм 11560.000		1.171	0.431	29.890	3.651	0.150	0.828	13.880	10.440
σ	<u>тм 586.900</u>		0.069	0.025	1.676	0.171	0.031	0.080	0.527	0.448
%RSD	<u>тм 5.079</u>	_	5.853	5.856	5.609	4.687	20.900	9.643	3.793	4.291
Run Tin			78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:08:			0.419	0.000	0.000	0.681	тм 662.900	110.787%	-0.199	-0.165
2 18:10:			0.712	0.000	0.000	0.943	<u>тм 691.700</u>	108.985%	-0.184	-0.151
3 18:11:	0.414	3.529	0.403	0.000	0.000	0.847	<u>тм 617.500</u>	115.719%	-0.200	-0.174
X	0.415	4.000	0.511	0.000	0.000	0.824	<u>тм 657.400</u>	111.830%	-0.194	-0.163
σ	0.072	0.715	0.174	0.000	0.000	0.133	тм 37.440	3.486%	0.009	0.012
%RSD	17.260	17.870	34.070	0.000	0.000	16.130	<u>тм 5.695</u>	3.117	4.590	7.258
Run Tin	ne 98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:08:	-0.088	99.133%	-3.292	0.359	0.422	0.059	0.391	-0.270	-0.177	101.906%
2 18:10:	-0.089	97.162%	-3.165	0.350	0.412	0.036	0.386	-0.256	-0.178	99.313%
3 18:11:	-0.088	102.924%	-2.877	0.342	0.393	0.028	0.383	-0.237	-0.162	105.740%
X	-0.088	99.740%	-3.111	0.350	0.409	0.041	0.387	-0.254	-0.172	102.320%
σ	0.001	2.929%	0.213	0.009	0.015	0.016	0.004	0.017	0.009	3.233%
%RSD	0.827	2.936	6.832	2.497	3.605	38.590	1.036	6.564	5.332	3.160
Run Tin	ne 118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:08:	-0.166	-0.020	-0.063	м 510.000	105.068%	104.744%	0.015	0.255	0.006	0.001
2 18:10:	-0.197	-0.025	-0.057	м 534.400	102.853%	103.630%	0.016	0.256	-0.000	0.003
3 18:11:	-0.194	-0.038	-0.052	м 481.400	108.438%	108.295%	0.017	0.257	-0.003	-0.013
X	-0.186	-0.028	-0.057	м 508.600	105.453%	105.556%	0.016	0.256	0.001	-0.003
σ	0.017	0.009	0.005	м 26.560	2.812%	2.437%	0.001	0.001	0.005	0.009
%RSD	9.329	32.990	9.383	м 5.222	2.667	2.308	7.342	0.267	494.600	264.300
Run Tin	ne 208Pb	1	220Bkg	238U						
	ppb	-	ppb	ppb						
1 18:08:	0.057	93.227%	0.000	0.000						
2 18:10:	0.055	91.623%	0.000	0.000						
3 18:11:	0.051	96.250%	0.000	0.000						
Х	0.054		0.000	0.000						
σ	0.003		0.000	0.000						
%RSD	5.784		0.000	0.000						

ccv 5/7/2011 18:12:11

D Time a) /!: [OD -	100	110	100	221-	2514-	2/14-	0741	2701
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 10 10 17	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:13:16	96.870%	53.380	59.620	58.410	0.000	тм 1386.000	560.900	557.000	491.900	<u>T 0.000</u>
2 18:14:22	97.499%	51.960	57.230	55.730	0.000	681.900	482.500	481.800	465.600	<u>T 0.000</u>
3 18:15:27	100.267%	50.820	52.860	52.920	0.000	531.700	457.600	457.600	453.300	<u>T 0.000</u>
X	98.212%	52.050	56.570	55.680	0.000	тм 866.700	500.300	498.800	470.300	<u>т 0.000</u>
σ	1.807%	1.282	3.425	2.745	0.000	тм 456.300	53.930	51.860	19.730	<u>т 0.000</u>
%RSD Time	1.840 39K	2.463 43Ca	6.054 44Ca	4.929 45Sc	0.000 47Ti	<u>тм 52.650</u> 51∨	10.780 52Cr	10.400 53Cr	4.195 53CI O	<u>⊤ 0.000</u> 55Mn
Kuii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:13:16	479.200	698.300	657.600	101.018%	54.290	53.910	53.070	55.570	240.400	55.340
2 18:14:22	450.200	528.800	521.300	105.647%	50.070	49.630	49.820	48.960	244.100	50.390
3 18:15:27	439.900	490.000	479.400	107.350%	49.030	48.460	48.560	49.110	237.700	48.840
Х	456.400	572.400	552.800	104.672%	51.130	50.670	50.480	51.220	240.700	51.520
σ	20.370	110.800	93.180	3.277%	2.785	2.867	2.326	3.770	3.241	3.393
%RSD	4.463	19.360	16.860	3.131	5.447	5.658	4.607	7.362	1.346	6.586
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:13:16	<u> 7547.500</u>	540.100	53.100	53.760	61.630	52.700	52.430	53.290	54.190	54.160
2 18:14:22	<u> 7 492.200</u>	484.600	50.130	49.890	58.260	49.500	49.080	50.260	51.200	50.580
3 18:15:27	<u> 7476.000</u>	470.500	48.990	49.370	55.080	48.340	48.060	49.470	49.480	49.410
X	<u>т 505.200</u>	498.400	50.740	51.010	58.320	50.180	49.860	51.010	51.620	51.380
σ	<u>т 37.490</u>	36.810	2.121	2.400	3.275	2.256	2.284	2.018	2.386	2.473
%RSD	<u>т 7.421</u>	7.385	4.180	4.705	5.616	4.496	4.580	3.956	4.622	4.814
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:13:16	53.600	56.150	53.720	0.000	0.000	52.570	53.620	102.448%	52.600	52.950
2 18:14:22	50.700	53.500	50.710	0.000	0.000	50.140	50.050	105.717%	50.560	49.450
3 18:15:27	49.540	51.950	49.230	0.000	0.000	49.380	48.890	107.683%	48.850	49.070
X	51.280	53.870	51.220	0.000	0.000	50.700	50.860	105.283%	50.670	50.490
σ	2.095	2.126	2.286	0.000	0.000	1.667	2.468	2.644%	1.877	2.140
%RSD	4.085	3.946	4.462	0.000	0.000	3.288	4.853	2.512	3.703	4.239
Run Time	98Mo ppb	103Rh ppb	106Cd ppb	107Ag ppb	108Mo O ppb	108Cd ppb	109Ag ppb	111Cd ppb	114Cd ppb	115I n ppb
1 18:13:16	52.830	100.637%	52.460	51.310	0.409	52.160	51.060	52.020	51.900	100.278%
2 18:14:22	49.980	103.301%	51.860	49.010	0.281	49.720	48.770	49.680	49.360	103.391%
3 18:15:27	49.160	104.942%	50.050	48.510	0.235	47.360	48.090	48.560	48.780	105.017%
X	50.660	102.960%	51.460	49.610	0.308	49.750	49.310	50.090	50.010	102.895%
σ	1.924	2.173%	1.252	1.497	0.090	2.401	1.558	1.770	1.661	2.408%
%RSD	3.798	2.110	2.434	3.017	29.270	4.827	3.160	3.535	3.321	2.340
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:13:16	52.340	51.950	52.050	54.090	99.818%	99.638%	52.680	52.100	53.060	52.620
2 18:14:22	49.560	49.800	50.030	51.250	102.740%	102.795%	50.400	50.040	50.240	50.060
3 18:15:27	48.370	49.010	49.220	49.000	104.539%	104.007%	49.220	48.790	49.300	49.400
X	50.090	50.250	50.430	51.450	102.366%	102.147%	50.770	50.310	50.870	50.690
σ	2.037	1.522	1.460	2.549	2.382%	2.256%	1.758	1.670	1.956	1.702
%RSD	4.066	3.028	2.896	4.954	2.327	2.208	3.464	3.320	3.846	3.357
Run Time	208Pb	209Bi	220Bkg	238U						
1 10 10 11	ppb	ppb	ppb	ppb						
1 18:13:16	52.690	98.070%	0.000	0.000						
2 18:14:22	50.180	100.756%	0.000	0.000						
3 18:15:27	49.170	102.808%	0.000	0.000						
X	50.680	100.544%	0.000	0.000						
σ , , , , , , , , , , , , , , , , , , ,	1.813	2.376%	0.000	0.000						
%RSD	3.577	2.363	0.000	0.000						

ccb 5/7/2011 18:16:30

Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:17:35	100.588%	-0.084	3.804	4.233	0.000	47.600	4.659	5.059	2.689	<u>т 0.000</u>
2	18:18:40	100.354%	-0.088	3.368	3.633	0.000	37.200	3.048	3.268	2.299	<u>т 0.000</u>
3	18:19:45	97.615%	-0.109	3.583	3.104	0.000	42.740	3.151	3.605	<u>⊤ 5.165</u>	<u>T 0.000</u>
X		99.519%	-0.094	3.585	3.656	0.000	42.510	3.619	3.977	<u>т 3.384</u>	<u>т 0.000</u>
σ		1.653%	0.013	0.218	0.565	0.000	5.207	0.902	0.952	<u>т 1.554</u>	<u>т 0.000</u>
%RSD	Ti	1.661	14.080	6.083	15.450	0.000	12.250	24.920	23.930	<u>145.930</u>	<u>T 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1	18:17:35	ppb -6.358	ppb -15.290	ppb -8.300	ppb 105.846%	ppb -0.498	ppb -0.148	ppb 0.013	ppb 0.434	ppb	ppb 0.109
2								0.012		230.500	
3	18:18:40 18:19:45	-4.468	-19.220	-10.910	106.022%	-0.511	-0.315	0.034	-0.369	240.300 248.700	0.010
	10.19.40	-3.989	-19.140	-10.330	104.850%	-0.529	-0.178	0.004	0.019		0.043
X		-4.938	-17.890	-9.849	105.572%	-0.512	-0.214	0.017	0.028	239.800	0.054
σ		1.252	2.248	1.372	0.632%	0.016	0.089	0.015	0.401	9.091	0.050
%RSD	I	25.360	12.570	13.930	0.599	3.097	41.530	92.490	1431.000	3.791	92.950
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1	18:17:35	ppb 5.757	ppb 7.784	ppb 0.004	ppb -0.101	ppb 6.650	ppb 0.103	-0.256	ppb 0.439	ppb 0.141	ppb -0.588
2	18:18:40	4.793	6.316	-0.061	-0.101	5.704	0.103 -0.010	-0.256	-0.438 -0.524	-0.141 -0.254	-0.566
3	18:19:45	6.672	6.771	-0.078	-0.215	5.651	0.013	-0.326	-0.511	-0.302	-0.608
X		5.740	6.957	-0.045	-0.170	6.001	0.035	-0.294	-0.491	-0.232	-0.601
σ		0.940	0.752	0.043	0.061	0.562	0.060	0.035	0.046	0.082	0.011
%RSD	Ti	16.370	10.800	95.750	35.730	9.368	170.200	11.910	9.366	35.470	1.879
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1	18:17:35	ppb -0.182	ppb 1.523	ppb -0.076	ppb 0.000	ppb 0.000	ppb -0.137	ppb 0.034	ppb 106.837%	ppb -0.083	-0.061
3	18:18:40 18:19:45	-0.154 -0.260	2.010 3.222	0.101 0.243	0.000	0.000 0.000	-0.217 -0.197	-0.083 -0.111	106.137% 103.967%	-0.178 -0.198	-0.148 -0.148
	10.19.40	-0.200	2.251	0.243	0.000	0.000	-0.197	-0.053		-0.153	-0.146
σ		0.055	0.875	0.069	0.000	0.000	0.041	0.053	105.647%	0.061	0.050
%RSD			38.850			0.000	22.520		1.496%		
Run	Time	27.470 98Mo	103Rh	178.500 106Cd	0.000 107Ag	108Mo O	108Cd	144.100 109Ag	1.416 111Cd	40.030 114Cd	42.080 115I n
Ruii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:17:35	-0.014	106.709%	0.229	0.412	0.193	0.026	0.440	-0.001	-0.004	104.713%
2	18:18:40	-0.060	104.960%	-0.350	0.359	0.224	-0.071	0.412	-0.056	-0.041	102.870%
3	18:19:45	-0.088	102.617%	0.052	0.356	0.200	-0.045	0.398	-0.045	-0.037	101.498%
X	10.17.10	-0.054	104.762%	-0.023	0.376	0.206	-0.030	0.416	-0.034	-0.027	103.027%
σ		0.037	2.053%	0.297	0.031	0.016	0.051	0.021	0.029	0.021	1.613%
%RSD		68.370	1.960	1289.000	8.344	7.975	168.300	5.107	84.920	75.490	1.566
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:17:35	-0.058	0.696	0.614	0.137	103.196%	103.362%	0.137	0.373	0.127	0.106
2	18:18:40	-0.139	0.423	0.362	0.001	102.225%	101.503%	0.090	0.330	0.032	0.022
3	18:19:45	-0.148	0.327	0.306	-0.022	99.791%	100.377%	0.083	0.327	-0.002	0.006
Х		-0.115	0.482	0.428	0.038	101.737%	101.747%	0.103	0.343	0.052	0.045
σ		0.050	0.191	0.164	0.086	1.754%	1.507%	0.029	0.025	0.067	0.054
%RSD		43.290	39.660	38.390	224.000	1.724	1.481	28.310	7.407	127.400	121.000
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	18:17:35	0.174	101.579%	0.000	0.000						
2	18:18:40	0.085	101.879%	0.000	0.000						
3	18:19:45	0.058	98.732%	0.000	0.000						
X		0.105	100.730%	0.000	0.000						
σ		0.061	1.737%	0.000	0.000						
%RSD		57.520	1.724	0.000	0.000						

mp58045-mb1 5/7/2011 18:20:49

User Pre-dilution: 1.000						1				
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:21:54	99.500%	-0.140	2.431	2.276	0.000	52.590	4.257	4.311	3.531	<u> </u>
2 18:22:59	101.927%	-0.124	1.807	2.272	0.000	49.030	3.991	4.467	3.291	<u> </u>
3 18:24:04	101.011%	-0.132	1.708	2.054	0.000	50.040	3.826	4.649	<u> 76.144</u>	<u>т 0.000</u>
X	100.813%	-0.132	1.982	2.201	0.000	50.550	4.025	4.476	<u>т 4.322</u>	<u>т 0.000</u>
σ	1.225%	0.008	0.392	0.127	0.000	1.837	0.217	0.169	т 1.583	т 0.000
%RSD	1.215	6.296	19.760	5.778	0.000	3.633	5.397	3.776	<u>т 36.620</u>	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:21:54	т 21.970	-6.240	1.641	105.432%	-0.536	-0.467	0.189	-0.562	306.800	0.155
2 18:22:59	-3.079	-5.409	2.120	111.564%	-0.527	-0.267	0.178	-0.103	290.200	0.124
3 18:24:04	-2.219	-0.716	0.860	110.845%	-0.490	-0.326	0.155	0.175	293.100	0.125
										
X	<u>т 5.557</u>	-4.122	1.540	109.281%	-0.518	-0.353	0.174	-0.163	296.700	0.134
σ	<u>т 14.220</u>	2.979	0.636	3.352%	0.025	0.103	0.017	0.372	8.817	0.018
%RSD	<u>T 255.900</u>	72.270	41.290	3.068	4.755	29.040	9.817	228.000	2.972	13.030
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:21:54	14.600	14.570	-0.094	-0.159	6.789	0.154	-0.198	0.061	0.161	-0.040
2 18:22:59	10.810	11.820	-0.088	-0.127	6.498	0.158	-0.204	0.035	0.409	-0.121
3 18:24:04	11.290	12.110	-0.089	-0.146	7.406	0.171	-0.200	0.037	0.261	0.039
X	12.240	12.830	-0.090	-0.144	6.898	0.161	-0.200	0.044	0.277	-0.041
σ	2.064	1.513	0.003	0.016	0.464	0.009	0.003	0.014	0.125	0.080
%RSD	16.870	11.790	3.330	11.140	6.723	5.340	1.570	31.850	45.090	195.000
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:21:54	-0.012	9.668	0.385	0.000	0.000	-0.238	-0.102	103.182%	-0.257	-0.216
2 18:22:59	-0.128	7.846	0.067	0.000	0.000	-0.167	-0.106	109.843%	-0.263	-0.218
3 18:24:04	-0.125	8.864	0.338	0.000	0.000	-0.197	-0.113	107.551%	-0.271	-0.225
Х	-0.088	8.793	0.263	0.000	0.000	-0.200	-0.107	106.859%	-0.263	-0.220
σ	0.066	0.913	0.171	0.000	0.000	0.035	0.006	3.384%	0.007	0.005
%RSD	75.110	10.380	65.140	0.000	0.000	17.620	5.245	3.167	2.675	2.244
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
itan nine	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:21:54	-0.145	102.446%	-0.133	0.355	0.219	0.056	0.393	-0.087	-0.063	101.385%
2 18:22:59	-0.140	108.077%	-0.256	0.350	0.220	-0.048	0.385	-0.091	-0.062	106.714%
3 18:24:04			-0.250	0.349	0.214		0.384	-0.079	-0.058	104.467%
	-0.151	106.333%				0.051				
X	-0.145	105.619%	-0.149	0.351	0.217	0.020	0.387	-0.086	-0.061	104.189%
σ	0.006	2.883%	0.100	0.004	0.003	0.059	0.005	0.006	0.003	2.676%
%RSD	3.973	2.729	66.780	1.009	1.445	294.100	1.351	6.975	4.424	2.568
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:21:54	-0.175	0.204	0.155	-0.021	99.951%	98.926%	0.034	0.268	-0.015	-0.018
2 18:22:59	-0.183	0.165	0.132	-0.051	105.059%	105.007%	0.025	0.265	-0.026	-0.021
3 18:24:04	-0.172	0.145	0.101	-0.069	103.515%	103.042%	0.022	0.263	-0.024	-0.021
X	-0.177	0.172	0.129	-0.047	102.841%	102.325%	0.027	0.265	-0.022	-0.020
σ	0.006	0.030	0.027	0.024	2.619%	3.103%	0.006	0.003	0.006	0.002
%RSD	3.306	17.460	21.030	51.370	2.547	3.032	23.630	0.961	28.620	9.360
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 18:21:54	0.039	98.868%	0.000	0.000						
2 18:22:59	0.035	104.001%	0.000	0.000						
3 18:24:04	0.034	101.844%	0.000	0.000						
x	0.036	101.571%	0.000	0.000						
σ	0.003	2.577%	0.000	0.000						
%RSD	7.314	2.537	0.000	0.000						
	7.514	2.557	3.000	0.000						

mp58045-lc1 5/7/2011 18:25:06

User Pre-dilution: 1.00 Run Time	o 6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:26:11	98.562%	м 107.700	1.706	2.074	0.000	т 782.200	505.700	507.500	491.800	<u>⊤ 0.000</u>
2 18:27:17	102.258%	м 101.000	1.199	1.666	0.000	⊤739.600	474.500	468.300	458.300	± 0.000
3 18:28:22	103.138%	97.030	1.416	1.787	0.000	_T 718.800	453.400	445.900	432.000	⊤ 0.000
X	101.319%	м 101.900	1.441	1.842	0.000	т 746.800	477.900	473.900	460.700	т 0.000
σ	2.428%	м 5.381	0.255	0.210	0.000	т 32.310	26.300	31.160	29.960	т 0.000
%RSD	2.397	м 5.280	17.670	11.380	0.000	т 4.326	5.504	6.576	6.504	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:26:11	479.800	505.100	526.800	104.691%	-0.503	м 109.000	м 108.200	м 107.700	277.400	м 110.400
2 18:27:17	454.600	467.600	487.100	108.686%	-0.538	м 101.300	м 100.200	98.560	254.100	м 103.200
3 18:28:22	431.500	453.400	462.100	112.164%	-0.509	94.310	93.330	91.420	233.500	96.610
X	455.300	475.400	492.000	108.514%	-0.517	м 101.500	м 100.600	м 99.220	255.000	м 103.400
σ	24.160	26.710	32.620	3.740%	0.019	<u>м 7.345</u>	м 7.43 <u>5</u>	<u>м 8.154</u>	21.950	м 6.920
%RSD	5.306	5.618	6.630	3.446	3.609	м 7.235	м 7.392	м 8.218	8.607	<u>м 6.691</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 10 07 11	ppb	ppb 544,700	ppb	ppb	ppb 112,400	ppb	ppb	ppb	ppb	ppb
1 18:26:11 2 18:27:17	<u> </u>	546.700	м 108.200	м 107.800	м 113.400	м 107.600	м 107.600	м 107.700	м 106.400	м 107.300
	<u>T 519.700</u>	510.100	м 101.600	м 101.200	м 108.500	м 101.500	м 100.900	м 100.400	98.780	м 100.600
3 18:28:22	<u>т 482.200</u> т 520.300	467.500 508.100	93.980 м 101.300	93.540	98.680	93.520 м 100.900	93.870 м 100.800	92.680	92.950	93.560 м 100.500
X				м 100.900	м 106.900			м 100.300	м 99.370	
σ %RSD	<u>т 38.320</u> т 7.365	39.670 7.807	<u>м 7.131</u> м 7.043	<u>м 7.150</u> м 7.089	<u>м 7.488</u> м 7.008	<u>м 7.048</u> м 6.988	<u>м 6.877</u> м 6.822	<u>м 7.505</u> м 7.486	<u>м 6.735</u> м 6.777	<u>м 6.869</u> м 6.83 <u>6</u>
Run Time	75As	77.807	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
itan iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:26:11	м 110.400	м 224.200	м 213.100	0.000	0.000	м 212.200	0.173	104.587%	-0.253	-0.208
2 18:27:17	м 102.700	м 211.800	м 202.300	0.000	0.000	м 199.000	0.137	107.896%	-0.256	-0.221
3 18:28:22	96.360	м 196.500	м 189.000	0.000	0.000	м 187.500	0.122	112.070%	-0.263	-0.207
X	м 103.200	м 210.800	м 201.400	0.000	0.000	м 199.600	0.144	108.185%	-0.257	-0.212
σ	м 7.026	м 13.860	м 12.080	0.000	0.000	м 12.380	0.026	3.750%	0.005	0.008
%RSD	м 6.811	м 6.575	м 5.995	0.000	0.000	м 6.204	18.210	3.466	2.009	3.816
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:26:11	-0.145	102.334%	м 103.600	м 104.700	0.847	м 106.300	м 103.900	м 106.900	м 105.800	103.241%
2 18:27:17	-0.145	106.913%	м 101.300	98.910	0.294	96.310	98.350	99.980	99.390	106.618%
3 18:28:22	-0.149	110.201%	92.350	92.830	0.543	91.530	92.870	92.620	93.200	109.832%
X	-0.146	106.483%	м 99.080	м 98.810	0.561	м 98.040	м 98.370	<u>м 99.840</u>	м 99.470	106.564%
σ	0.003	3.952%	м 5.938	м 5.930	0.277	м 7.528	<u>м 5.506</u>	м 7.146	м 6.302	3.296%
Run Time	1.898	3.711	м <u>5.993</u>	м 6.002	49.370	м7.678	м 5.597	<u>м 7.158</u> 205ТІ	м 6.336	3.093 207Pb
Run Time	118Sn ppb	121Sb ppb	123Sb ppb	137Ba ppb	159Tb ppb	165Ho ppb	203TI ppb	ppb	206Pb ppb	ppb
1 18:26:11	-0.184	м 110.000	м 110.000	м 107.300	101.972%	102.468%	м 107.400	м 107.800	м 108.100	м 107.800
2 18:27:17	-0.183	м 102.500	м 102.700	м 101.900	106.305%	105.919%	м 101.800	м 101.300	м 101.500	м 101.100
3 18:28:22	-0.188	96.410	96.130	95.090	109.435%	109.136%	96.600	97.260	95.360	95.050
X	-0.185	м 103.000	м 102.900	м 101.400	105.904%	105.841%	м 101.900	м 102.100	м 101.700	м 101.300
σ	0.003	м 6.801	м 6.934	м 6.115	3.748%	3.335%	м 5.410	м 5.323	м 6.390	м 6.356
%RSD	1.545	м 6.605	м 6.736	м 6.030	3.539	3.151	м 5.307	<u>м 5.212</u>	<u>м 6.286</u>	<u>м 6.274</u>
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 18:26:11	м 108.100	100.293%	0.000	0.000						
2 18:27:17	м 101.700	104.731%	0.000	0.000						
3 18:28:22	95.650	106.907%	0.000	0.000						
X	м 101.800	103.977%	0.000	0.000						
σ	м 6.237	3.371%	0.000	0.000						
%RSD	м 6.125	3.242	0.000	0.000						

mp58045-s1 5/7/2011 18:29:24

	-allution: 1.00		00	405.1	445	100	001	0514	0/14	07.41	0701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:30:29	87.093%	м 120.300	м 281.300	<u>м 290.600</u>	0.000	тм 427100.000	<u>тм 51240.000</u>	тм 50990.000	569.400	<u>T 0.000</u>
2	18:31:35	92.164%	м 113.100	м 261.500	м 275.600	0.000	тм 407900.000	тм 48400.000	тм 48100.000	534.300	<u>T 0.000</u>
3	18:32:40	93.676%	м 109.000	м 275.400	м 277.400	0.000	тм 404600.000	тм 47650.000	тм 47490.000	524.800	<u> </u>
X		90.978%	м 114.100	м 272.700	м 281.200	0.000	тм 413200.000	тм 49100.000	тм 48860.000	542.800	<u>т 0.000</u>
σ		3.448%	м 5.689	м 10.150	<u>м 8.183</u>	0.000	тм 12180.000	тм 1893.000	тм 1869.000	23.500	<u>т 0.000</u>
%RSD		3.790	<u>м 4.985</u>	м 3.721	<u>м 2.910</u>	0.000	<u>тм 2.948</u>	<u>тм 3.857</u>	<u>тм 3.826</u>	4.329	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:30:29	тм 8778.000	м 46810.000	тм 52420.000	0.000	5.620	м 125.900	м 121.300	м 121.500	178.000	тм 1745.000
2	18:31:35	TM 8434.000	м 44310.000	тм 49800.000	0.000	5.023	м 116.800	м 113.000	м 113.700	188.900	тм 1651.000
3	18:32:40	тм 8370.000	м 43360.000	тм 48750.000	0.000	5.335	м 115.400	м 110.200	м 110.800	186.400	тм 1608.000
X		тм 8527.000	м 44830.000	тм 50320.000	0.000	5.326	м 119.400	м 114.800	м 115.300	184.400	<u>тм 1668.000</u>
σ		_{TM} 219.200	м 1782.000	тм 1889.000	0.000	0.299	м 5.713	м 5.797	м 5.554	5.735	тм 69.910
%RSD		<u>тм 2.570</u>	<u>м 3.975</u>	<u>тм 3.754</u>	0.000	5.610	<u>м 4.786</u>	<u>м 5.048</u>	<u>м 4.815</u>	3.109	<u>тм 4.191</u>
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:30:29	<u>тм 34870.000</u>	тм 37950.000	м 115.500	м 110.600	м 139.300	м 112.800	м 107.500	м 108.300	м 126.200	м 122.200
2	18:31:35	тм 32970.000	тм 35660.000	м 109.200	м 105.400	м 131.200	м 105.800	м 102.200	м 102.600	м 119.300	м 115.500
3	18:32:40	тм 32160.000	тм 34670.000	м 107.000	м 101.900	м 127.800	м 103.100	99.290	99.260	м 115.800	м 112.800
X		тм 33340.000	тм 36100.000	м 110.500	м 106.000	м 132.800	м 107.300	м 103.000	м 103.400	м 120.400	м 116.800
σ		тм 1389.000	тм 1685.000	м 4.434	<u>м 4.357</u>	<u>м 5.869</u>	м 4.970	м 4.142	м 4.549	м 5.301	м 4.827
%RSD		<u>тм 4.166</u>	тм 4.668	м 4.011	<u>м 4.111</u>	м 4.420	м 4.634	м 4.022	м 4.400	м 4.402	м 4.133
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:30:29	м 115.300	м 216.700	м 206.300	0.000	0.000	м 202.900	<u>тм 577.400</u>	105.137%	-0.159	-0.143
2	18:31:35	м 108.800	м 203.800	м 194.400	0.000	0.000	м 191.300	тм 539.900	112.934%	-0.168	-0.128
3	18:32:40	м 105.100	м 200.200	м 189.100	0.000	0.000	м 185.200	<u>тм 521.100</u>	117.516%	-0.175	-0.127
X		м 109.700	м 206.900	м 196.600	0.000	0.000	м 193.100	тм 546.100	111.862%	-0.167	-0.133
σ		<u>м 5.164</u>	м 8.721	м 8.814	0.000	0.000	м 8.988	тм 28.640	6.259%	0.008	0.009
%RSD		<u>м 4.708</u>	<u>м 4.215</u>	<u>м 4.483</u>	0.000	0.000	<u>м 4.655</u>	<u>тм 5.245</u>	5.595	4.767	6.883
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:30:29	-0.045	94.654%	м 107.000	м 103.600	0.544	м 104.900	м 103.400	м 107.800	м 107.100	96.726%
2	18:31:35	-0.071	101.078%	96.460	98.940	0.691	97.260	98.150	м 100.500	м 100.600	102.600%
3	18:32:40	-0.079	104.704%	95.730	95.870	0.674	96.370	95.640	96.980	97.330	106.034%
X		-0.065	100.146%	<u>м 99.750</u>	м 99.470	0.636	м 99.520	м 99.080	м 101.800	м 101.700	101.787%
σ		0.018	5.090%	м 6.334	м 3.883	0.080	м 4.711	м 3.981	<u>м 5.545</u>	м 4.956	4.707%
%RSD		27.340	5.082	м 6.350	м 3.903	12.640	м 4.734	м 4.018	м 5.449	м 4.874	4.624
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1		-0.156	<u>м 117.100</u>	м 117.300	тм 839.800	99.964%	100.418%	м 111.400	м 112.900	м 113.600	м 113.300
	18:31:35	-0.166	м 110.000	м 109.500	тм 785.000	105.596%	105.492%	м 106.000	м 107.100		м 107.500
3	18:32:40	-0.170	м 105.900	м 106.300	тм 760.800	109.111%	109.646%	м 103.700	м 104.500	м 104.800	м 105.100
X		-0.164	м 111.000	м 111.000	тм 795.200	104.890%	105.185%	м 107.000	м 108.200	м 108.500	<u>м 108.600</u>
σ		0.007	<u>м 5.630</u>	<u>м 5.647</u>	тм 40.440	4.614%	4.622%	м 3.946	<u>м 4.319</u>	<u>м 4.547</u>	м 4.251
%RSD		4.412	<u>м 5.071</u>	<u>м 5.087</u>	<u>тм 5.086</u>	4.399	4.394	м 3.686	<u>м 3.993</u>	<u>м 4.191</u>	м 3.914
Run	Time	208Pb	209Bi	220Bkg	238U						
	40.00.00	ppb	ppb	ppb	ppb						
1	18:30:29	м 113.800	90.205%	0.000	0.000						
2	18:31:35	м 108.000	94.304%	0.000	0.000						
3	18:32:40	м 105.300	96.190%	0.000	0.000						
X		м 109.000	93.566%	0.000	0.000						
σ		м 4.339	3.060%	0.000	0.000						
%RSD		м 3.980	3.271	0.000	0.000						

mp58045-s2 5/7/2011 18:33:42

User Pre-dilution: 1.00		OD a	100	110	120	22No	25Me	2/14~	27.41	37CI
Run Time	6Li	9Be	10B	11B	13C	23Na ppb	25Mg	26Mg ppb	27AI	
1 18:34:47	ppb 93.122%	ррb м 111.800	ррb м 268.800	ррb м 279.700	ppb 0.000	тм 404100.000	ppb ™ 48030.000	тм 47800.000	ppb 538.800	ppb <u>⊤ 0.000</u>
2 18:35:53	95.618%	м 110.800	м 266.500	м 276.600	0.000	тм 402000.000	тм 47710.000	тм 47470.000	534.600	<u>1 0.000</u>
3 18:36:58	93.888%	м 114.900	м 278.600	м 284.300	0.000	тм 414100.000	тм 49570.000	тм 49190.000	558.300	<u>⊤ 0.000</u>
x	94.209%	м 114.900	м 271.300	м 280.200	0.000	тм 406700.000	тм 48440.000	тм 48150.000	543.900	<u>т 0.000</u>
σ	1.279%	<u>м 112.300</u> м 2.142	м 6.412	м 3.904	0.000	тм 6448.000	тм 992.900	тм 909.500	12.600	т 0.000
%RSD	1.357	м 2.142 м 1.904	м 2.363	<u>м 3. 704</u> м 1.393	0.000	тм 1.585	тм 2.050	тм 1.889	2.317	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
itan inno	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:34:47	тм 8410.000	м 44290.000	тм 49530.000	0.000	5.479	м 118.400	м 113.100	м 113.900	188.600	тм 1642.000
2 18:35:53	тм 8401.000	м 43840.000	тм 49100.000	0.000	5.189	м 117.000	м 112.300	м 113.300	189.100	тм 1619.000
3 18:36:58	тм 8565.000	м 45810.000	тм 51160.000	0.000	5.097	м 122.600	м 118.200	м 120.700	190.400	тм 1702.000
Х	тм 8459.000	м 44650.000	тм 49930.000	0.000	5.255	м 119.300	м 114.500	м 115.900	189,400	тм 1654.000
σ	тм 92.420	м 1033.000	тм 1087.000	0.000	0.199	м 2.889	м 3.190	м 4.094	0.929	тм 42.440
%RSD	тм 1.093	м 2.315	тм 2.177	0.000	3.792	м 2.420	м 2.786	м 3.531	0.491	тм 2.565
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	dqq	dqq	dqq	ppb	ppb	ppb	dqq	dqq	ppb	dqq
1 18:34:47	тм 32680.000	тм 35530.000	м 109.400	м 104.800	м 129.000	м 105.800	м 101.700	м 101.200	м 119.200	м 114.700
2 18:35:53	тм 32310.000	тм 35090.000	м 108.400	м 104.700	м 127.500	м 105.400	м 101.400	м 101.500	м 117.800	м 114.400
3 18:36:58	тм 34050.000	тм 36790.000	м 113.300	м 108.700	м 132.600	м 109.800	м 104.500	м 104.400	м 125.000	м 118.600
X	тм 33010.000	тм 35800.000	м 110.400	м 106.100	м 129.700	м 107.000	м 102.500	м 102.400	м 120.600	м 115.900
σ	тм 918.100	тм 883.900	м 2.570	м 2.296	м 2.633	м 2.417	м 1.708	м 1.770	м 3.807	м 2.320
%RSD	тм 2.781	тм 2.469	м 2.329	м 2.16 <u>5</u>	м 2.030	м 2.259	м 1.667	м 1.729	м 3.156	м 2.001
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:34:47	м 108.600	м 205.500	м 193.200	0.000	0.000	м 190.600	тм 533.400	115.010%	-0.179	-0.112
2 18:35:53	м 108.000	м 202.100	м 191.400	0.000	0.000	м 188.800	тм 528.400	117.254%	-0.184	-0.140
3 18:36:58	м 112.100	м 210.000	м 199.200	0.000	0.000	м 194.300	тм 550.000	116.050%	-0.183	-0.139
X	м 109.600	м 205.900	м 194.600	0.000	0.000	м 191.200	тм 537.300	116.105%	-0.182	-0.130
σ	м 2.196	м 3.943	м 4.085	0.000	0.000	м 2.795	тм 11.310	1.123%	0.003	0.016
%RSD	м 2.004	<u>м 1.916</u>	м 2.099	0.000	0.000	м 1.461	<u>тм 2.105</u>	0.967	1.621	11.990
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:34:47	-0.083	102.735%	м 100.400	97.620	0.390	96.490	97.420	99.480	99.240	104.992%
2 18:35:53	-0.071	104.264%	99.680	97.650	0.513	97.550	96.830	98.370	98.470	106.858%
3 18:36:58	-0.063	103.120%	м 100.300	м 100.500	0.918	м 104.200	99.640	м 101.600	м 101.900	104.160%
X	-0.073	103.373%	м 100.100	м 98.590	0.607	м 99.430	97.960	м 99.820	м 99.860	105.337%
σ	0.010	0.795%	м 0.402	<u>м 1.645</u>	0.276	м 4.201	1.477	<u>м 1.650</u>	м 1.787	1.382%
%RSD	13.840	0.769	м 0.402	<u>м 1.668</u>	45.530	м 4.225	1.508	<u>м 1.653</u>	м 1.790	1.312
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:34:47	-0.183	м 107.900	м 107.600	тм 768.200	107.283%	106.874%	м 104.900	м 104.800	м 105.000	м 105.800
2 18:35:53	-0.172	м 106.600	м 106.500	тм 760.500	109.475%	109.204%	м 104.200	м 104.800	м 104.800	м 103.900
3 18:36:58	-0.165	м 112.700	м 111.700	тм 797.100	105.838%	106.085%	м 108.400	м 109.900	м 109.000	м 109.200
X	-0.173	м 109.100	м 108.600	тм 775.300	107.532%	107.388%	м 105.900	м 106.500	м 106.300	м 106.300
σ	0.009	м 3.239	м 2.739	тм 19.280	1.831%	1.621%	м 2.272	м 2.920	<u>м 2.375</u>	м 2.678
%RSD	5.369	м 2.969	м 2.523	<u>тм 2.487</u>	1.703	1.510	<u>м 2.147</u>	<u>м 2.741</u>	м 2.234	<u>м 2.519</u>
Run Time	208Pb	209Bi	220Bkg	238U						
1 10 04 47	ppb	ppb ppb	ppb	ppb						
1 18:34:47	м 105.900	95.573%	0.000	0.000						
2 18:35:53	м 105.000	97.147%	0.000	0.000						
3 18:36:58	м 109.700	94.320%	0.000	0.000						
X	м 106.900	95.680%	0.000	0.000						
σ	м 2.501	1.416%	0.000	0.000						
%RSD	м 2.340	1.480	0.000	0.000						

t74672-23f 5/7/2011 18:38:00

user Pre-dilution:											
Run Tir	me	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	L	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:39	:05	93.450%	0.145	м 284.900	м 292.000	0.000	тм 420600.000	тм 49410.000	тм 49240.000	7.307	<u>T 0.000</u>
2 18:40	:10	95.068%	0.053	м 283.400	м 290.800	0.000	тм 423200.000	тм 50050.000	тм 49680.000	6.337	<u>T 0.000</u>
3 18:41	:15	95.475%	0.020	м 278.200	м 291.000	0.000	тм 418900.000	тм 49290.000	тм 49250.000	5.674	т 0.000
X		94.664%	0.072	м 282.200	м 291.300	0.000	тм 420900.000	тм 49580.000	тм 49390.000	6.439	т 0.000
σ		1.072%	0.065	м 3.551	м 0.650	0.000	тм 2135.000	тм 404.000	тм 254.500	0.821	т 0.000
%RSD		1.132	89.360	<u>м 1.259</u>	<u>м 0.223</u>	0.000	тм 0.507	тм 0.815	тм 0.515	12.750	<u>т 0.000</u>
	me	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
Kuii III		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:39	·05	тм 81 36.000	м 44720.000	тм 50780.000	0.000	5.275	0.610	1.337	1.362	192.200	тм 1583.000
2 18:40		тм 8233.000	м 45520.000	тм 51790.000	0.000	5.115	0.757	1.164	2.016	191.100	тм 1610.000
3 18:41	:15	тм 8222.000	м 45040.000	<u>тм 51000.000</u>	0.000	5.285	0.550	1.093	1.688	195.700	<u>тм 1586.000</u>
X		тм 8197.000	м 45090.000	<u>тм 51190.000</u>	0.000	5.225	0.639	1.198	1.689	193.000	тм 1593.000
σ		<u>тм 52.960</u>	м 406.600	<u>тм 531.800</u>	0.000	0.095	0.106	0.126	0.327	2.416	<u>тм 15.020</u>
%RSD		<u>тм 0.646</u>	<u>м 0.902</u>	<u>тм 1.039</u>	0.000	1.822	16.650	10.470	19.370	1.252	<u>тм 0.943</u>
Run Tir	me	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:39	:05	тм 33500.000	тм 36380.000	2.095	1.007	21.780	4.084	0.914	0.584	20.860	15.540
2 18:40	:10	тм 34320.000	тм 37040.000	1.934	0.855	21.300	4.033	0.802	0.426	20.150	15.340
3 18:41	:15	тм 33690.000	тм 36450.000	1.851	0.837	20.780	3.963	0.777	0.441	21.250	15.290
х		тм 33830.000	тм 36630.000	1.960	0.900	21.290	4.027	0.831	0.484	20.750	15.390
σ		тм 429.300	тм 362.800	0.124	0.093	0.496	0.060	0.073	0.087	0.557	0.135
%RSD		тм 1.269	тм 0.991	6.325	10.390	2.332	1.501	8.784	18.060	2.684	0.875
	me	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
Ruii III	ille	ppb	ppb				ppb		ppb		
1 18:39	·05	1.264	8.191	ppb 1.517	0.000	ppb 0.000	1.626	ppb	115.258%	ppb -0.175	-0.126
								тм 554.800			
2 18:40		1.236	7.990	1.319	0.000	0.000	1.215	<u>тм 568.900</u>	116.099%	-0.201	-0.138
3 18:41	:15	1.044	8.570	1.312	0.000	0.000	1.255	тм 549.800	118.152%	-0.178	-0.159
X		1.181	8.250	1.383	0.000	0.000	1.365	<u>тм 557.900</u>	116.503%	-0.185	-0.141
σ		0.120	0.295	0.117	0.000	0.000	0.227	<u>тм 9.916</u>	1.489%	0.014	0.016
%RSD		10.120	3.574	8.437	0.000	0.000	16.610	<u>тм 1.777</u>	1.278	7.753	11.540
Run Tir	me	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	L	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:39	:05	-0.073	102.718%	-3.040	0.519	0.413	0.154	0.562	-0.100	0.009	104.805%
2 18:40	:10	-0.065	102.452%	-2.360	0.384	0.372	0.182	0.419	-0.180	-0.103	102.520%
3 18:41	:15	-0.090	105.580%	-3.025	0.361	0.402	0.002	0.398	-0.236	-0.154	106.247%
X		-0.076	103.583%	-2.808	0.421	0.396	0.113	0.460	-0.172	-0.083	104.524%
σ		0.012	1.734%	0.388	0.085	0.021	0.097	0.089	0.068	0.083	1.879%
%RSD		16.410	1.674	13.820	20.290	5.373	86.030	19.390	39.690	101.000	1.798
	me	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
itan in		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:39	:05	-0.212	0.291	0.209	м 650.300	105.856%	106.469%	0.536	0.763	0.192	0.203
2 18:40		-0.206	0.134	0.207	тм 709.900	105.840%	105.330%	0.348	0.593	0.030	0.045
		-0.206					108.871%	0.346			-0.001
	. 10		0.072	0.037	тм 685.700	108.373%			0.595	0.009	
X		-0.206	0.166	0.106	тм 682.000	106.690%	106.890%	0.418	0.650	0.077	0.082
σ		0.005	0.113	0.091	тм 29.990	1.458%	1.808%	0.103	0.098	0.101	0.107
%RSD	-	2.427	67.940	85.260	<u>тм 4.398</u>	1.366	1.691	24.540	15.040	130.400	130.700
Run Tir	me	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1 18:39		0.249	94.327%	0.000	0.000						
2 18:40	:10	0.091	94.302%	0.000	0.000						
3 18:41	:15	0.062	95.613%	0.000	0.000						
X		0.134	94.747%	0.000	0.000						
σ		0.101	0.749%	0.000	0.000						
%RSD		74.880	0.791	0.000	0.000						

t74672-24f 5/7/2011 18:42:18

User Pre-dilution: 1.		0.0	100	445	400	0011	0514	0/14	07.41	0701
Run Time		9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:43:23	=	-0.020	м 279.700	м 284.300	0.000	тм 414600.000	тм 48310.000	тм 48250.000	5.287	<u>т 0.000</u>
2 18:44:29	95.087%	-0.039	м 280.900	м 293.900	0.000	тм 421100.000	тм 49380.000	тм 48920.000	5.162	<u>T 0.000</u>
3 18:45:34	96.549%	-0.063	м 283.600	м 291.300	0.000	тм 422900.000	тм 49860.000	тм 49600.000	5.180	<u>T 0.000</u>
X	95.504%	-0.041	м 281.400	м 289.800	0.000	тм 419500.000	тм 49180.000	тм 48920.000	5.209	<u>т 0.000</u>
σ	0.911%	0.022	м 1.964	м 4.952	0.000	тм 4332.000	тм 795.200	тм 675.300	0.068	<u>т 0.000</u>
%RSD	0.954	52.690	м 0.698	м 1.709	0.000	тм 1.032	тм 1.617	тм 1.380	1.299	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
-	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:43:23		м 44750.000	тм 50380.000	0.000	5.162	0.778	1.063	1.405	197.300	тм 1555.000
2 18:44:29	тм 8224.000	м 44910.000	тм 50940.000	0.000	4.900	0.655	1.087	1.830	203.400	тм 1581.000
3 18:45:34	_	м 46030.000	тм 51820.000	0.000	5.313	0.463	1.108	0.638	208.200	тм 1604.000
x	тм 8209.000	м 45230.000	тм 51040.000	0.000	5.125	0.632	1.086	1.291	203.000	тм 1580.000
	тм 80.190	м 43230.000	тм 722.900	0.000	0.209	0.032	0.023	0.604	5.433	
σ %RSD										<u>тм 24.250</u>
	тм 0.977	<u>м 1.541</u>	<u>тм 1.416</u>	0.000	4.079	25.100	2.074	46.780	2.677	<u>тм 1.535</u>
Run Time		57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 10 12 22	ppb	ppb	ppb	ppb 0.07/	ppb	ppb	ppb	ppb	ppb	ppb
1 18:43:23	_	тм 35620.000	1.728	0.876	17.550	2.992	0.043	0.408	19.640	14.740
2 18:44:29		тм 36060.000	1.723	0.776	17.880	3.177	0.061	0.562	21.500	15.020
3 18:45:34		тм 36840.000	1.759	0.876	16.780	3.104	0.062	0.547	21.120	15.630
X	тм 33450.000	тм 36170.000	1.737	0.843	17.410	3.091	0.055	0.506	20.750	15.130
σ	тм 589.900	<u>тм 620.800</u>	0.020	0.057	0.564	0.093	0.011	0.085	0.982	0.458
%RSD	<u>тм 1.764</u>	<u>тм 1.716</u>	1.142	6.812	3.238	3.011	19.740	16.850	4.732	3.029
Run Time		77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:43:23	0.922	9.019	1.176	0.000	0.000	1.180	тм 543.300	118.142%	-0.174	-0.152
2 18:44:29	1.056	9.775	1.117	0.000	0.000	1.229	тм 550.500	118.537%	-0.160	-0.139
3 18:45:34	0.985	10.550	1.169	0.000	0.000	1.075	тм 561.800	117.837%	-0.190	-0.132
X	0.987	9.780	1.154	0.000	0.000	1.161	тм 551.900	118.172%	-0.175	-0.141
σ	0.067	0.764	0.033	0.000	0.000	0.079	тм 9.301	0.351%	0.015	0.010
%RSD	6.810	7.815	2.823	0.000	0.000	6.766	тм 1.685	0.297	8.846	7.221
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:43:23	-0.071	104.347%	-2.742	0.347	0.379	-0.047	0.390	-0.229	-0.150	106.772%
2 18:44:29	-0.078	104.300%	-3.355	0.340	0.436	0.199	0.380	-0.276	-0.186	106.758%
3 18:45:34	-0.080	103.815%	-2.001	0.344	0.336	0.003	0.377	-0.184	-0.123	104.845%
X		104.154%	-2.699	0.344	0.384	0.052	0.382	-0.230	-0.153	106.125%
σ	0.005	0.295%	0.678	0.003	0.050	0.130	0.007	0.046	0.032	1.108%
%RSD	6.320	0.283	25.110	0.944	13.130	250.200	1.802	19.950	20.740	1.045
Run Time		121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
itan inne	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:43:23		0.025	-0.029	м 631.600	108.002%	108.513%	0.102	0.342	-0.007	-0.019
2 18:44:29		0.002	-0.049	м 643.600	108.123%	108.307%	0.094	0.327	-0.007	-0.017
3 18:45:34	=	0.033	-0.047	м 658.800	106.125%	106.752%	0.074	0.327	-0.016	-0.014
<u> </u>	_									
X	-0.195	0.020	-0.035	м 644.700	107.677%	107.857%	0.089	0.330	-0.016	-0.017
σ	0.000	0.016	0.012	м 13.600	0.671%	0.963%	0.016	0.010	0.009	0.003
%RSD	0.148	82.380	34.760	м 2.110	0.623	0.892	17.700	3.133	56.070	16.960
Run Time	-	209Bi	220Bkg	238U						
1 10.42.22	ppb	ppb	ppb	ppb						
1 18:43:23		95.631%	0.000	0.000						
2 18:44:29	≓	95.534%	0.000	0.000						
3 18:45:34	_	94.366%	0.000	0.000						
X	0.042	95.177%	0.000	0.000						
σ	0.004	0.704%	0.000	0.000						
%RSD	10.180	0.740	0.000	0.000						

t74672-25f 5/7/2011 18:46:36

USCI ITC	-unution. 1.00										
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:47:41	98.490%	-0.065	м 259.300	м 262.200	0.000	тм 382100.000	тм 44090.000	тм 44020.000	4.577	<u>T 0.000</u>
2	18:48:47	97.217%	-0.019	м 266.300	м 278.600	0.000	тм 403500.000	тм 47190.000	тм 46760.000	4.841	<u> </u>
3	18:49:52	95.438%	-0.035	м 274.300	м 284.900	0.000	тм 412000.000	тм 48200.000	тм 47660.000	4.998	<u> </u>
X		97.048%	-0.040	м 266.600	м 275.200	0.000	тм 399200.000	тм 46490.000	тм 46150.000	4.806	<u>т 0.000</u>
σ		1.533%	0.023	м 7.480	м 11.700	0.000	тм 15420.000	тм 2142.000	тм 1901.000	0.213	<u>т 0.000</u>
%RSD		1.579	59.020	м 2.805	м 4.250	0.000	тм 3.863	тм 4.606	тм 4.120	4.433	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:47:41	тм 7544.000	м 41190.000	тм 46400.000	0.000	4.813	0.624	1.182	2.752	209.100	тм 1433.000
2	18:48:47	тм 7987.000	м 43680.000	тм 49630.000	0.000	5.471	0.245	1.262	0.918	225.300	тм 1540.000
3	18:49:52	тм 8041.000	м 44560.000	тм 50280.000	0.000	5.221	0.374	1.305	2.121	225.500	тм 1558.000
Х		тм 7857.000	м 43150.000	тм 48770.000	0.000	5.168	0.414	1.249	1.930	220.000	тм 1510.000
σ		тм 272.500	м 1748.000	тм 2082.000	0.000	0.332	0.193	0.062	0.931	9.449	тм 67.600
%RSD		тм 3.468	м 4.052	тм 4.268	0.000	6.422	46.570	5.000	48.250	4.295	тм 4.476
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:47:41	тм 30290.000	тм 32760.000	1.484	1.007	15.050	2.863	0.210	0.733	19.600	13.900
2	18:48:47	тм 32470.000	тм 35060.000	1.686	0.940	14.850	3.041	0.272	0.749	19.990	14.630
3	18:49:52	тм 33080.000	тм 35770.000	1.669	0.962	14.880	3.105	0.301	0.686	20.310	15.220
Х		тм 31950.000	тм 34530.000	1.613	0.970	14.930	3.003	0.261	0.723	19.960	14.580
σ		тм 1465.000	тм 1575.000	0.112	0.034	0.105	0.125	0.047	0.033	0.355	0.658
%RSD		тм 4.585	тм 4.562	6.938	3.552	0.704	4.177	17.890	4.596	1.776	4.511
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:47:41	0.935	9.442	0.905	0.000	0.000	0.994	тм 502.200	121.652%	-0.168	-0.116
2	18:48:47	0.899	11.540	1.073	0.000	0.000	1.193	тм 534.300	118.386%	-0.158	-0.122
3	18:49:52	0.943	12.100	1.298	0.000	0.000	1.241	тм 540.300	118.757%	-0.147	-0.111
X		0.926	11.030	1.092	0.000	0.000	1.143	тм 525.600	119.598%	-0.158	-0.116
σ		0.023	1.402	0.197	0.000	0.000	0.131	тм 20.500	1.788%	0.010	0.006
%RSD		2.504	12.710	18.050	0.000	0.000	11.430	тм 3.900	1.495	6.642	4.791
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
- rearr		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:47:41	-0.069	107.999%	-2.576	0.350	0.369	-0.048	0.375	-0.225	-0.147	110.126%
2	18:48:47	-0.066	105.176%	-2.236	0.346	0.350	0.002	0.382	-0.207	-0.136	107.566%
3	18:49:52	-0.059	105.587%	-3.115	0.326	0.404	-0.047	0.378	-0.252	-0.174	106.707%
X		-0.065	106.254%	-2.642	0.341	0.374	-0.031	0.378	-0.228	-0.152	108.133%
σ		0.005	1.525%	0.443	0.013	0.028	0.029	0.003	0.023	0.019	1.779%
%RSD		7.352	1.436	16.770	3.766	7.371	91.140	0.883	10.060	12.770	1.645
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	18:47:41	-0.205	-0.011	-0.063	м 583.700	111.181%	111.437%	0.056	0.297	-0.024	-0.025
2		-0.205	-0.020	-0.055	тм 659.200	108.924%	109.048%	0.054	0.293	-0.024	-0.019
3	18:49:52	-0.200	-0.016	-0.055	тм 664.400	107.943%	107.689%	0.054	0.288	-0.026	-0.022
X		-0.203	-0.016	-0.057	тм 635.800	109.349%	109.391%	0.055	0.293	-0.024	-0.022
σ		0.003	0.005	0.005	тм 45.150	1.661%	1.897%	0.001	0.005	0.001	0.003
%RSD		1.588	28.450	7.865	тм 7.102	1.519	1.735	2.272	1.665	4.283	13.250
Run	Time	208Pb	209Bi	220Bkg	238U		11700	2,2,2	1,000	11200	10.200
		ppb	ppb	ppb	ppb						
1	18:47:41	0.037	97.904%	0.000	0.000						
2	18:48:47	0.037	95.180%	0.000	0.000						
3	18:49:52	0.036	95.184%	0.000	0.000						
X		0.036	96.089%	0.000	0.000						
σ		0.001	1.571%	0.000	0.000						
%RSD		1.548	1.635	0.000	0.000						
	ı	1.510	1.000	0.000	3.000						

t74672-26f 5/7/2011 18:50:55

User Pre-dilution: 1.00	JU									
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:52:00	97.634%	-0.042	м 275.000	м 283.700	0.000	тм 413600.000	тм 48100.000	тм 47750.000	4.923	<u>T 0.000</u>
2 18:53:05	95.428%	-0.048	м 287.200	м 298.000	0.000	тм 427000.000	тм 50260.000	тм 49870.000	4.937	<u>T_0.000</u>
3 18:54:10	96.710%	-0.063	м 283.500	м 293.200	0.000	тм 422500.000	тм 50090.000	тм 49400.000	4.906	<u> </u>
X	96.590%	-0.051	м 281.900	м 291.600	0.000	тм 421000.000	тм 49480.000	тм 49010.000	4.922	<u>т 0.000</u>
σ	1.108%	0.011	м 6.214	м 7.274	0.000	тм 6826.000	тм 1200.000	тм 1111.000	0.015	<u>т 0.000</u>
%RSD	1.147	21.420	м 2.205	м 2.494	0.000	<u>тм 1.621</u>	<u>тм 2.425</u>	<u>тм 2.267</u>	0.313	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:52:00	тм 8082.000	м 44800.000	тм 50840.000	0.000	4.987	0.288	1.125	1.156	230.900	тм 1585.000
2 18:53:05	тм 8392.000	м 46790.000	тм 52700.000	0.000	5.036	0.368	1.213	1.153	241.700	тм 1634.000
3 18:54:10	тм 8321.000	м 46370.000	тм 52330.000	0.000	5.579	0.405	1.227	1.288	241.500	тм 1629.000
X	тм 8265.000	м 45990.000	тм 51960.000	0.000	5.201	0.353	1.188	1.199	238.000	<u>тм 1616.000</u>
σ	тм 162.500	м 1046.000	<u>тм 985.500</u>	0.000	0.329	0.060	0.056	0.077	6.148	_{тм} 27.120
%RSD	<u>тм 1.966</u>	м 2.275	<u>тм 1.897</u>	0.000	6.316	16.910	4.681	6.427	2.583	<u>тм 1.678</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:52:00	тм 33560.000	тм 36190.000	1.681	1.051	13.120	2.792	0.076	0.672	20.110	15.280
2 18:53:05	тм 34750.000	тм 37260.000	1.814	0.962	14.940	2.899	0.048	0.673	21.280	15.710
3 18:54:10	тм 34790.000	тм 37230.000	1.814	0.947	14.210	2.831	0.115	0.768	21.200	15.510
X	тм 34370.000	тм 36890.000	1.770	0.987	14.090	2.841	0.080	0.704	20.860	15.500
σ	тм 698.300	тм 610.600	0.077	0.056	0.918	0.054	0.034	0.055	0.650	0.214
%RSD	тм 2.032	тм 1.655	4.352	5.699	6.514	1.910	42.460	7.841	3.116	1.379
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 18:52:00	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	-0.144
	0.998	13.190	1.313	0.000	0.000	1.206	<u>тм 550.700</u>	119.405%	-0.189	
2 18:53:05 3 18:54:10	1.063 1.293	14.040	1.343	0.000	0.000	1.249 1.165	<u>тм 563.400</u>	118.627%	-0.195 -0.175	-0.123 -0.157
		13.140	1.421				<u>тм 563.700</u>	119.218%		
X	1.118 0.155	13.450 0.506	1.359 0.056	0.000	0.000	1.207 0.042	<u>тм 559.200</u>	119.083%	-0.186 0.010	-0.141 0.017
σ %RSD	13.880	3.761	4.121	0.000	0.000	3.480	<u>тм 7.428</u> тм 1.328	0.406% 0.341	5.400	12.060
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	12.000 115In
itan nine	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:52:00	-0.067	106.242%	-2.173	0.338	0.347	0.001	0.380	-0.200	-0.135	107.285%
2 18:53:05	-0.084	104.432%	-2.572	0.338	0.375	0.051	0.375	-0.225	-0.149	107.170%
3 18:54:10	-0.084	105.545%	-2.068	0.334	0.345	0.075	0.377	-0.198	-0.134	106.789%
Х	-0.078	105.406%	-2.271	0.337	0.355	0.042	0.377	-0.208	-0.140	107.081%
σ	0.009	0.913%	0.266	0.003	0.017	0.038	0.002	0.015	0.009	0.259%
%RSD	12.110	0.866	11.710	0.783	4.766	88.750	0.655	7.290	6.175	0.242
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
-	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:52:00	-0.204	-0.022	-0.053	<u>тм 678.600</u>	108.721%	108.314%	0.035	0.277	-0.029	-0.021
2 18:53:05	-0.206	-0.008	-0.066	тм 693.400	107.608%	108.412%	0.035	0.276	-0.024	-0.015
3 18:54:10	-0.200	-0.008	-0.064	тм 690.100	108.257%	108.400%	0.028	0.271	-0.026	-0.026
X	-0.203	-0.013	-0.061	тм 687.300	108.195%	108.375%	0.033	0.275	-0.027	-0.021
σ	0.003	0.008	0.007	тм 7.785	0.559%	0.054%	0.004	0.003	0.003	0.006
%RSD	1.321	64.270	11.410	тм 1.133	0.517	0.049	11.580	1.175	10.010	28.360
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 18:52:00	0.034	94.023%	0.000	0.000						
2 18:53:05	0.036	94.261%	0.000	0.000						
3 18:54:10	0.034	94.802%	0.000	0.000						
X	0.035	94.362%	0.000	0.000						
σ	0.002	0.399%	0.000	0.000						
%RSD	4.388	0.423	0.000	0.000						

t74672-27f 5/7/2011 18:55:12

User Pre-dilution: 1.0		0.0	100	445	100	2011	0514	0/14	0741	07.01
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 10 5 / 17	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:56:17	91.968%	-0.092	м 273.800	м 284.400	0.000	тм 731200.000	тм 85150.000	тм 84490.000	5.192	<u>T 0.000</u>
2 18:57:23	91.497%	-0.053	м 280.600	м 291.800	0.000	тм 743100.000	тм 87100.000	тм 86330.000	5.375	<u>T 0.000</u>
3 18:58:28	91.717%	-0.058	м 283.800	м 291.500	0.000	тм 741600.000	тм 87300.000	тм 86690.000	5.241	<u>T 0.000</u>
X	91.728%	-0.068	м 279.400	м 289.200	0.000	тм 738600.000	тм 86520.000	тм 85840.000	5.269	<u>т 0.000</u>
σ	0.236%	0.021	<u>м 5.113</u>	<u>м 4.171</u>	0.000	<u>тм 6484.000</u>	<u>тм 1187.000</u>	<u>тм 1180.000</u>	0.095	<u>т 0.000</u>
%RSD	0.257	30.790	м 1.830	м 1.442	0.000	<u>тм 0.878</u>	<u>тм 1.372</u>	тм 1.375	1.798	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 10 5 / 17	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:56:17	тм 12330.000	м 66900.000	тм 75020.000	0.000	5.187	0.311	0.721	0.895	98.680	тм 6449.000
2 18:57:23	тм 12670.000	м 68190.000	тм 77040.000	0.000	5.487	0.482	0.796	1.439	83.570	<u>тм 6628.000</u>
3 18:58:28	тм 12680.000	м 68360.000	тм 77240.000	0.000	5.276	0.270	0.760	1.201	83.920	<u>тм 6586.000</u>
X	тм 12560.000	м 67820.000	тм 76440.000	0.000	5.317	0.354	0.759	1.178	88.720	<u>тм 6554.000</u>
σ	тм 199.200	м 801.200	тм 1226.000	0.000	0.154	0.112	0.037	0.273	8.624	_{TM} 93.770
%RSD	<u>тм 1.586</u>	м 1.181	<u>тм 1.604</u>	0.000	2.897	31.700	4.942	23.140	9.720	<u>тм 1.431</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:56:17	тм 91150.000	тм 99040.000	1.288	1.260	27.830	5.644	0.468	0.876	38.730	29.050
2 18:57:23	тм 93290.000	тм 102000.000	1.299	1.343	33.150	5.921	0.441	0.758	40.770	29.760
3 18:58:28	тм 93080.000	тм 101600.000	1.338	1.356	34.200	6.067	0.460	0.864	39.940	29.730
X	тм 92510.000	тм 100900.000	1.308	1.320	31.730	5.877	0.456	0.833	39.810	29.510
σ	тм 1180.000	тм 1621.000	0.027	0.052	3.418	0.215	0.014	0.065	1.029	0.407
%RSD	<u>тм 1.275</u>	<u>тм 1.607</u>	2.028	3.930	10.770	3.656	3.080	7.790	2.585	1.378
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:56:17	0.839	6.637	1.226	0.000	0.000	1.350	тм 797.600	116.775%	0.006	0.034
2 18:57:23	0.731	5.746	1.391	0.000	0.000	1.290	тм 823.600	115.207%	0.000	0.120
3 18:58:28	0.829	4.576	1.378	0.000	0.000	1.255	<u>тм 818.900</u>	116.198%	0.020	0.079
X	0.800	5.653	1.332	0.000	0.000	1.298	тм 813.300	116.060%	0.009	0.078
σ	0.060	1.033	0.092	0.000	0.000	0.048	<u>тм 13.870</u>	0.793%	0.010	0.043
%RSD	7.501	18.280	6.896	0.000	0.000	3.698	<u>тм 1.705</u>	0.683	112.900	54.830
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:56:17	0.118	102.966%	-4.688	0.342	0.506	-0.046	0.381	-0.345	-0.234	104.886%
2 18:57:23	0.118	101.771%	-4.154	0.345	0.473	-0.020	0.367	-0.318	-0.210	104.036%
3 18:58:28	0.114	102.380%	-4.654	0.324	0.507	0.005	0.377	-0.341	-0.233	103.972%
X	0.117	102.372%	-4.499	0.337	0.495	-0.021	0.375	-0.335	-0.226	104.298%
σ	0.003	0.597%	0.299	0.011	0.020	0.025	0.007	0.014	0.013	0.510%
%RSD	2.180	0.583	6.651	3.301	3.955	123.000	2.000	4.330	5.970	0.489
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 18:56:17	-0.154	-0.021	-0.057	тм 1293.000	107.042%	106.858%	0.034	0.271	-0.008	0.005
2 18:57:23	1	-0.023	-0.066	тм 1328.000	104.796%	104.467%	0.028	0.268	-0.006	-0.001
3 18:58:28	-0.164	-0.037	-0.046	тм 1336.000	104.710%	104.352%	0.026	0.267	0.002	-0.000
X	-0.161	-0.027	-0.056	тм 1319.000	105.516%	105.226%	0.030	0.269	-0.004	0.001
σ	0.006	0.009	0.010	тм 23.270	1.323%	1.415%	0.004	0.002	0.005	0.003
%RSD	3.541	33.010	17.970	<u>тм 1.764</u>	1.254	1.344	14.440	0.761	135.900	238.500
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 18:56:17	0.057	92.130%	0.000	0.000						
2 18:57:23	0.056	90.094%	0.000	0.000						
3 18:58:28	0.059	90.055%	0.000	0.000						
X	0.058	90.760%	0.000	0.000						
σ	0.001	1.187%	0.000	0.000						
%RSD	2.334	1.308	0.000	0.000						

t74672-28f 5/7/2011 18:59:30

user Pre	-allution: 1.00	10										
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	19:00:35	90.737%	-0.086	м 285.600	м 291.400	0.000	тм 737900.000	<u>тм 86190.000</u>	тм 85350.000	4.632	<u>T 0.000</u>	
2	19:01:40	92.226%	-0.078	м 281.700	м 292.000	0.000	тм 743000.000	тм 86750.000	тм 85460.000	4.991	<u>т 0.000</u>	
3	19:02:46	92.335%	-0.111	м 282.500	м 294.500	0.000	тм 746100.000	тм 88040.000	тм 86520.000	4.742	<u>т 0.000</u>	
X		91.766%	-0.092	м 283.300	м 292.600	0.000	тм 742400.000	тм 86990.000	тм 85780.000	4.788	<u>т 0.000</u>	
σ		0.893%	0.017	м 2.042	м 1.652	0.000	тм 4161.000	тм 948.400	тм 648.500	0.184	<u>т 0.000</u>	
%RSD	j	0.973	18.780	м 0.721	м 0.565	0.000	тм 0.561	тм 1.090	тм 0.756	3.847	<u>т 0.000</u>	
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	19:00:35	тм 12480.000	м 67750.000	тм 75890.000	0.000	4.403	0.359	0.658	1.296	77.620	тм 6465.000	
2	19:01:40	тм 12590.000	м 68310.000	тм 76590.000	0.000	4.483	0.219	0.724	0.564	78.250	тм 6550.000	
3	19:02:46	тм 12750.000	м 68820.000	тм 77630.000	0.000	4.384	0.427	0.706	0.964	74.720	тм 6663.000	
X		тм 12610.000	м 68290.000	тм 76700.000	0.000	4.423	0.335	0.696	0.941	76.860	тм 6559.000	ı
σ	j	тм 133.100	м 537.300	тм 874.400	0.000	0.052	0.106	0.034	0.366	1.878	тм 99.590	ı
%RSD	i	тм 1.056	м 0.787	тм 1.140	0.000	1.179	31.690	4.923	38.940	2.444	тм 1.518	
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	19:00:35	тм 91400.000	тм 100500.000	1.239	0.997	35.000	5.816	0.266	0.627	38.670	29.310	
2	19:01:40	тм 92640.000	тм 101700.000	1.331	0.950	41.210	6.042	0.311	0.686	39.590	29.600	
3	19:02:46	тм 94280.000	тм 103400.000	1.279	1.088	46.030	6.448	0.350	0.586	41.300	30.520	
Х	i	тм 92770.000	тм 101900.000	1.283	1.012	40.740	6.102	0.309	0.633	39.850	29.810	
σ	ĺ	тм 1445.000	тм 1452.000	0.046	0.070	5.530	0.320	0.042	0.051	1.335	0.629	
%RSD	i	тм 1.558	тм 1.425	3.623	6.945	13.570	5.248	13.650	7.979	3.349	2.111	
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	19:00:35	0.617	4.445	1.338	0.000	0.000	1.206	тм 801.200	116.925%	-0.014	0.011	
2	19:01:40	0.777	3.534	1.095	0.000	0.000	1.250	тм 808.300	118.042%	-0.028	0.029	
3	19:02:46	0.674	4.396	1.345	0.000	0.000	0.916	тм 823.600	117.086%	-0.003	-0.007	
Х	i	0.690	4.125	1.259	0.000	0.000	1.124	тм 811.000	117.351%	-0.015	0.011	
σ	j	0.081	0.512	0.143	0.000	0.000	0.181	тм 11.440	0.604%	0.012	0.018	
%RSD]	11.770	12.420	11.330	0.000	0.000	16.120	тм 1.411	0.515	82.550	159.800	
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	19:00:35	0.072	102.452%	-4.413	0.347	0.488	-0.046	0.376	-0.339	-0.222	103.791%	
2	19:01:40	0.069	103.033%	-4.844	0.333	0.523	0.054	0.379	-0.362	-0.249	104.501%	
3	19:02:46	0.092	102.647%	-5.558	0.330	0.565	-0.021	0.376	-0.409	-0.277	103.651%	
Х		0.078	102.711%	-4.938	0.337	0.525	-0.004	0.377	-0.370	-0.249	103.981%	
σ	i	0.012	0.296%	0.579	0.009	0.038	0.052	0.001	0.036	0.027	0.456%	
%RSD	i	15.970	0.288	11.720	2.588	7.275	1269.000	0.350	9.724	10.910	0.438	
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	19:00:35	-0.201	-0.021	-0.075	тм 1303.000	105.295%	105.445%	0.027	0.264	-0.025	-0.027	
2	19:01:40	-0.199	-0.046	-0.062	тм 1311.000	105.430%	104.789%	0.025	0.261	-0.031	-0.027	
3	19:02:46	-0.194	-0.038	-0.065	тм 1344.000	104.414%	104.576%	0.026	0.264	-0.027	-0.024	
Х		-0.198	-0.035	-0.067	тм 1319.000	105.046%	104.937%	0.026	0.263	-0.028	-0.026	
σ	Ì	0.004	0.013	0.007	тм 21.440	0.552%	0.453%	0.001	0.002	0.003	0.002	
%RSD]	1.771	37.650	10.030	тм 1.625	0.525	0.432	2.834	0.821	10.060	7.238	
Run	Time	208Pb	209Bi	220Bkg	238U	0.020	0.102	2.004	0.021		7.200	
		ppb	ppb	ppb	dqq							
1	19:00:35	0.034	90.421%	0.000	0.000	1						
2		0.032	89.826%	0.000	0.000							
3	19:02:46	0.033	89.078%	0.000	0.000							
X		0.033	89.775%	0.000	0.000							
σ	i	0.001	0.673%	0.000	0.000							
%RSD	1	3.186	0.750	0.000	0.000							
	1	330	0.700	3.330	3.330							

ccv 5/7/2011 19:03:50

	Time s	6Li	9Be	10B	11B	13C	23Na	25Mg	2/14~	27AI	37CI
Run	Time	7	ppb	ppb		ppb			26Mg		
1	19:04:55	ppb 106.720%	52.230	58.250	ppb 58.520	0.000	ppb	ppb 660.300	ppb 667.400	ppb 478.400	ррb <u>т 0.000</u>
2	19:04:33	108.595%	50.620	54.150	54.560	0.000	тм 1122.000	502.000	504.900	462.000	<u>т 0.000</u>
3	19:07:05	108.249%	48.010	51.510	52.510	0.000	<u> 793.000</u>	462.800	462.100	444.100	<u>T 0.000</u>
Х		107.854%	50.290	54.640	55.200	0.000	тм 1510.000	541.700	544.800	461.500	<u>т 0.000</u>
σ		0.998%	2.132	3.398	3.054	0.000	тм 971.300	104.500	108.300	17.160	<u>т 0.000</u>
%RSD		0.925	4.240	6.219	5.533	0.000	<u>тм 64.320</u>	19.300	19.880	3.718	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	140.04.55	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:04:55	491.300	661.300	655.200	117.297%	51.210	50.680	50.280	50.480	160.300	66.060
2	19:06:00	456.200	525.700	519.600	118.354%	48.510	48.910	48.640	48.590	175.400	53.610
3	19:07:05	436.200	491.900	473.600	118.635%	48.190	47.430	47.070	47.580	166.700	49.480
X		461.200	559.600	549.500	118.095%	49.300	49.010	48.660	48.880	167.500	56.380
σ		27.870	89.640	94.400	0.705%	1.658	1.625	1.603	1.472	7.618	8.635
%RSD		6.043	16.020	17.180	0.597	3.364	3.317	3.294	3.011	4.549	15.310
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:04:55	<u> 7773.100</u>	766.100	50.700	51.660	78.410	51.900	50.550	51.290	51.920	50.970
2	19:06:00	<u> 7 572.700</u>	566.500	49.330	50.150	68.910	50.070	48.910	49.270	49.280	50.780
3	19:07:05	<u> 7 508.600</u>	507.500	47.440	48.130	66.260	47.730	46.860	47.010	47.220	47.330
X		<u>т 618.100</u>	613.300	49.160	49.980	71.190	49.900	48.770	49.190	49.470	49.690
σ		<u>т 138.000</u>	135.500	1.634	1.772	6.388	2.090	1.852	2.139	2.358	2.046
%RSD		<u>т 22.330</u>	22.090	3.325	3.545	8.973	4.187	3.797	4.349	4.766	4.118
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:04:55	51.510	48.090	52.450	0.000	0.000	50.720	52.280	115.819%	50.590	50.880
2	19:06:00	50.540	46.800	50.410	0.000	0.000	49.590	49.610	115.913%	49.080	49.480
3	19:07:05	48.310	45.760	48.900	0.000	0.000	48.080	47.490	116.593%	47.030	47.340
X		50.120	46.880	50.590	0.000	0.000	49.460	49.790	116.108%	48.900	49.230
σ		1.640	1.168	1.785	0.000	0.000	1.323	2.401	0.423%	1.788	1.787
%RSD		3.272	2.491	3.529	0.000	0.000	2.676	4.822	0.364	3.657	3.630
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	<u></u>	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:04:55	50.190	112.858%	49.580	48.760	0.417	49.670	48.440	48.420	49.280	111.155%
2	19:06:00	49.000	112.176%	46.690	48.530	0.541	48.750	48.450	48.000	48.780	110.405%
3	19:07:05	47.460	113.316%	45.990	46.480	0.421	46.310	46.490	46.710	46.470	112.270%
Х		48.880	112.783%	47.420	47.920	0.460	48.240	47.800	47.710	48.180	111.276%
σ	İ	1.370	0.574%	1.903	1.253	0.071	1.735	1.130	0.892	1.500	0.939%
%RSD		2.802	0.509	4.012	2.614	15.350	3.596	2.365	1.870	3.114	0.844
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:04:55	49.520	48.920	48.750	54.410	107.063%	107.288%	50.570	49.750	50.270	50.150
2	19:06:00	48.990	48.840	48.850	51.310	108.718%	107.118%	49.340	49.020	49.410	50.090
3	19:07:05	46.880	46.640	46.770	48.770	110.369%	108.844%	47.840	47.450	47.510	47.430
Х		48.460	48.130	48.120	51.500	108.717%	107.750%	49.250	48.740	49.060	49.220
σ		1.397	1.291	1.174	2.823	1.653%	0.951%	1.367	1.172	1.414	1.550
%RSD]	2.882	2.683	2.440	5.483	1.520	0.883	2.776	2.405	2.882	3.150
Run	Time	208Pb	209Bi	220Bkg	238U	1.520	0.003	2.110	2.403	2.002	3.130
Itali		ppb	ppb	ppb	ppb						
			103.443%	0.000	0.000						
1	19:04:55	9U. LTU									
_	19:04:55	50.110 49.450									
2	19:06:00	49.450	104.513%	0.000	0.000						
3		49.450 47.460	104.513% 105.610%	0.000 0.000	0.000 0.000						
2 3 x	19:06:00	49.450 47.460 49.010	104.513% 105.610% 104.522%	0.000 0.000 0.000	0.000 0.000 0.000						
3	19:06:00	49.450 47.460	104.513% 105.610%	0.000 0.000	0.000 0.000						

ccb 5/7/2011 19:08:08

User Pre-dilution: 1.0			100					0.111		0701
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 10 00 10	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:09:13	101.152%	0.053	4.974	5.119	0.000	108.000	11.190	10.800	3.543	<u>T 0.000</u>
2 19:10:18	104.659%	-0.091	2.964	3.672	0.000	73.160	6.225	6.820	2.400	<u> </u>
3 19:11:23	99.610%	-0.123	2.772	3.615	0.000	54.400	3.471	4.063	2.172	<u>т 0.000</u>
X	101.807%	-0.054	3.570	4.136	0.000	78.530	6.961	7.228	2.705	<u>т 0.000</u>
σ	2.588%	0.094	1.220	0.852	0.000	27.210	3.910	3.388	0.734	<u>т 0.000</u>
%RSD	2.542	175.400	34.170	20.610	0.000	34.650	56.170	46.870	27.150	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:09:13	-0.655	-10.220	-6.060	107.675%	-0.429	0.026	0.243	-0.321	184.900	0.707
2 19:10:18	-7.354	-13.230	-11.040	114.848%	-0.464	-0.259	0.112	0.337	185.400	0.312
3 19:11:23	-1.764	-21.210	-13.440	106.730%	-0.524	-0.075	0.161	1.173	199.500	0.118
X	-3.258	-14.890	-10.180	109.751%	-0.472	-0.103	0.172	0.397	189.900	0.379
σ	3.591	5.676	3.764	4.439%	0.048	0.145	0.066	0.749	8.307	0.300
%RSD	110.200	38.130	36.970	4.045	10.150	141.100	38.460	188.700	4.374	79.190
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:09:13	20.670	24.450	0.070	0.007	15.330	0.485	-0.175	-0.368	-0.213	-0.473
2 19:10:18	11.900	16.600	-0.056	-0.102	11.430	0.276	-0.277	-0.525	-0.233	-0.571
3 19:11:23	11.080	13.150	-0.077	-0.148	11.720	0.219	-0.324	-0.533	-0.368	-0.640
X	14.550	18.070	-0.021	-0.081	12.820	0.327	-0.259	-0.475	-0.272	-0.562
σ	5.318	5.792	0.080	0.079	2.174	0.140	0.076	0.093	0.084	0.084
%RSD	36.550	32.060	380.500	97.910	16.950	42.780	29.530	19.580	31.040	14.940
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:09:13	-0.030	-2.178	0.572	0.000	0.000	-0.063	0.123	106.285%	-0.045	0.008
2 19:10:18	-0.234	-2.977	0.157	0.000	0.000	-0.181	-0.055	110.581%	-0.194	-0.170
3 19:11:23	-0.286	-1.399	0.606	0.000	0.000	-0.233	-0.124	105.843%	-0.204	-0.178
X	-0.183	-2.185	0.445	0.000	0.000	-0.159	-0.019	107.570%	-0.148	-0.113
σ	0.135	0.789	0.250	0.000	0.000	0.087	0.127	2.617%	0.089	0.105
%RSD	73.750	36.100	56.250	0.000	0.000	54.940	672.600	2.433	60.230	93.050
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:09:13	0.104	104.658%	-0.384	0.438	0.233	0.029	0.491	0.012	0.036	102.871%
2 19:10:18	-0.077	109.817%	-0.152	0.356	0.215	-0.024	0.400	-0.055	-0.021	107.159%
3 19:11:23	-0.088	104.524%	-0.371	0.337	0.224	-0.096	0.379	-0.086	-0.051	102.102%
X	-0.021	106.333%	-0.302	0.377	0.224	-0.031	0.423	-0.043	-0.012	104.044%
σ	0.108	3.018%	0.130	0.054	0.009	0.063	0.060	0.050	0.044	2.725%
%RSD	524.000	2.838	43.050	14.280	4.134	204.500	14.150	116.400	356.800	2.619
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
1 10 00 10	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:09:13	-0.009	0.837	0.800	0.255	99.225%	98.846%	0.212	0.429	0.157	0.176
2 19:10:18	-0.138	0.423	0.400	-0.013	104.071%	103.373%	0.106	0.336	0.027	0.032
3 19:11:23	-0.150	0.329	0.294	-0.040	99.382%	98.371%	0.085	0.327	-0.010	-0.009
X	-0.099	0.530	0.498	0.067	100.893%	100.197%	0.134	0.364	0.058	0.066
σ	0.078	0.270	0.267	0.163	2.754%	2.761%	0.068	0.057	0.088	0.097
%RSD	79.260	51.040	53.540	242.400	2.729	2.755	50.930	15.560	151.600	146.900
Run Time	208Pb	209Bi	220Bkg	238U						
1 19:09:13	ppb	ppb 07 500%	ppb	ppb						
	0.223	97.590%	0.000	0.000						
2 19:10:18	0.085	102.010%	0.000	0.000						
3 19:11:23	0.049	97.445%	0.000	0.000						
X	0.119	99.015%	0.000	0.000						
σ	0.092	2.595%	0.000	0.000						
%RSD	77.460	2.621	0.000	0.000						

t74672-29f 5/7/2011 19:12:27

User Pre-dilution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:13:32	89.164%	-0.090	м 261.600	м 276.200	0.000	тм 732800.000	<u>тм 85180.000</u>	<u>тм 84110.000</u>	7.215	<u>T 0.000</u>
2 19:14:37	94.216%	-0.121	м 251.700	м 261.000	0.000	тм 690300.000	тм 79370.000	тм 78480.000	5.332	<u>T 0.000</u>
3 19:15:42	93.136%	-0.060	м 266.600	м 278.800	0.000	тм 720100.000	тм 83890.000	тм 82990.000	5.273	<u>т 0.000</u>
X	92.172%	-0.090	м 260.000	м 272.000	0.000	тм 714400.000	тм 82810.000	тм 81860.000	5.940	<u>т 0.000</u>
σ	2.661%	0.031	<u>м 7.583</u>	<u>м 9.596</u>	0.000	тм 21830.000	тм 3050.000	тм 2982.000	1.105	<u>т 0.000</u>
%RSD	2.886	33.910	м 2.917	м 3.528	0.000	<u>тм 3.056</u>	тм 3.683	тм 3.642	18.600	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:13:32	<u>тм 12380.000</u>	м 66710.000	тм 74790.000	0.000	4.202	0.303	1.011	1.688	78.440	тм 6399.000
2 19:14:37	тм 11720.000	м 61640.000	тм 69610.000	0.000	4.148	0.333	0.663	1.158	72.480	тм 5932.000
3 19:15:42	тм 12270.000	м 65510.000	тм 73810.000	0.000	4.451	0.250	0.737	0.392	76.380	тм 6299.000
X	тм 12120.000	м 64620.000	тм 72740.000	0.000	4.267	0.295	0.804	1.079	75.760	тм 6210.000
σ	тм 356.800	м 2652.000	тм 2752.000	0.000	0.162	0.042	0.183	0.652	3.025	тм 245.800
%RSD	тм 2.943	м 4.104	тм 3.784	0.000	3.791	14.370	22.800	60.380	3.993	тм 3.957
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	dqq	dqq	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb
1 19:13:32	тм 90170.000	тм 98690.000	1.454	1.295	30.090	6.556	1.594	2.757	40.460	30.090
2 19:14:37	тм 83770.000	тм 91580.000	1.273	1.331	32.280	6.313	1.396	2.358	37.980	28.320
3 19:15:42	тм 88790.000	тм 97390.000	1.359	1.351	37.670	6.854	1.553	2.590	41.510	29.990
X X	тм 87580.000	тм 95890.000	1.362	1.325	33.350	6.575	1.514	2.568	39.980	29.470
	тм 3372.000		0.090	0.028	3.903	0.271		0.200	1.814	0.997
σ %RSD	тм 3.850	<u>тм 3785.000</u> тм 3.948	6.628	2.143	11.700	4.123	0.105 6.925	7.805	4.536	3.384
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	7.805 89Y	95Mo	97Mo
Ruii Iiiile	ppb				ppb					
1 19:13:32	1.112	ppb 3.969	ppb 1.381	ppb 0.000	0.000	ppb 1.297	ррb тм 796.000	ppb 113.562%	ppb 0.090	0.135
2 19:14:37	1.048	1.915	1.354	0.000	0.000	1.191	тм 731.400	121.786%	0.074	0.105
3 19:15:42	1.142	3.350	1.490	0.000	0.000	1.357	тм 779.200	118.587%	0.136	0.142
X	1.101	3.078	1.408	0.000	0.000	1.282	<u>тм 768.800</u>	117.978%	0.100	0.127
σ	0.049	1.054	0.072	0.000	0.000	0.084	тм 33.520	4.146%	0.032	0.020
%RSD	4.408	34.230	5.137	0.000	0.000	6.572	<u>тм 4.360</u>	3.514	31.950	15.440
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
The state of the s	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:13:32	0.204	100.480%	-4.422	0.333	0.490	-0.019	0.373	-0.326	-0.232	102.505%
2 19:14:37	0.173	105.794%	-4.744	0.324	0.509	-0.047	0.368	-0.357	-0.232	107.739%
3 19:15:42	0.187	104.634%	-4.171	0.334	0.476	0.003	0.371	-0.323	-0.222	105.783%
X	0.188	103.636%	-4.446	0.330	0.492	-0.021	0.371	-0.335	-0.229	105.342%
σ	0.015	2.794%	0.288	0.006	0.017	0.025	0.002	0.019	0.006	2.645%
%RSD	8.099	2.696	6.469	1.676	3.382	117.400	0.611	5.527	2.451	2.511
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:13:32	-0.075	0.323	0.291	тм 1288.000	104.688%	103.780%	0.052	0.283	0.011	0.015
2 19:14:37	-0.093	0.255	0.214	тм 1206.000	110.079%	110.018%	0.040	0.279	0.005	-0.001
3 19:15:42	-0.112	0.236	0.193	тм 1271.000	107.340%	107.639%	0.041	0.279	0.008	0.002
X	-0.093	0.271	0.233	тм 1255.000	107.369%	107.146%	0.044	0.280	0.008	0.005
σ	0.019	0.046	0.051	тм 43.340	2.696%	3.148%	0.007	0.002	0.003	0.009
%RSD	19.890	16.810	22.080	тм 3.453	2.511	2.938	14.930	0.793	34.800	164.800
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 19:13:32	0.075	89.893%	0.000	0.000						
2 19:14:37	0.058	93.983%	0.000	0.000						
3 19:15:42	0.062	91.697%	0.000	0.000						
X	0.065	91.858%	0.000	0.000						
σ	0.009	2.049%	0.000	0.000						
%RSD	13.530	2.04978	0.000	0.000						
,,,,,,,	13.330	2.231	0.000	0.000						

t74672-30f 5/7/2011 19:16:44

user Pre-	-airution: 1.00	10									
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:17:49	90.689%	-0.120	м 293.200	м 297.100	0.000	тм 766500.000	тм 90300.000	тм 89780.000	4.287	<u>т 0.000</u>
2	19:18:54	94.383%	-0.093	м 267.500	м 283.000	0.000	тм 730800.000	тм 84840.000	тм 84170.000	4.081	<u> </u>
3	19:20:00	95.855%	-0.076	м 268.000	м 279.500	0.000	тм 716300.000	тм 83150.000	тм 82170.000	3.957	т 0.000
Х		93.642%	-0.096	м 276.200	м 286.500	0.000	тм 737900.000	тм 86100.000	тм 85370.000	4.109	т 0.000
σ		2.662%	0.022	м 14.690	м 9.290	0.000	тм 25850.000	тм 3737.000	тм 3946.000	0.167	т 0.000
%RSD		2.842	22.620	<u>м 5.317</u>	м 3.242	0.000	тм 3.503	тм 4.341	тм 4.622	4.062	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:17:49	тм 12980.000	м 70950.000	тм 80220.000	0.000	4.907	0.329	0.728	1.397	76.930	тм 6843.000
2	19:18:54	тм 12440.000	м 67390.000	тм 75530.000	0.000	4.541	0.266	0.652	1.243	74.470	тм 6453.000
3	19:20:00	тм 12270.000	м 65880.000	тм 74110.000	0.000	4.534	0.392	0.691	1.672	71.410	тм 6371.000
X	17120100	тм 12570.000	м 68070.000	тм 76620.000	0.000	4.661	0.329	0.690	1.437	74.270	тм 6556.000
σ		тм 370.200	м 2602.000	тм 3197.000	0.000	0.213	0.063	0.038	0.217	2.764	тм 252.100
%RSD		тм 2.947	м 3.822	тм 4.173	0.000	4.573	19.110	5.489	15.130	3.722	<u>тм 3.845</u>
Run	Time	56Fe	<u>™ 3.022</u> 57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
Kuii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:17:49	тм 97250.000	тм 107200.000	1.315	1.255	49.450	6.784	0.412	0.836	42.980	31.690
2	19:18:54	тм 91050.000	тм 99720.000	1.267	1.309	56.260	6.727	0.395	0.785	40.460	29.770
3	19:20:00	тм 89720.000	тм 98450.000	1.264	1.228	67.050	7.065	0.340	0.703	39.050	28.910
	19.20.00	тм 92680.000	тм 101800.000				6.858		0.832		30.130
X				1.282	1.264	57.590		0.383		40.830	
σ		тм 4016.000	тм 4738.000	0.029	0.041	8.875	0.181	0.038	0.044	1.989	1.424
%RSD	Time o	<u>тм 4.333</u>	<u>тм 4.654</u>	2.230	3.275	15.410	2.639	9.935	5.338	4.872	4.726 97Mo
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	
1	19:17:49	ppb 0.787	ppb 6.003	ppb 1.701	0.000	ppb 0.000	ppb 1.595	ppb	ppb 114.393%	ppb 0.047	ppb 0.132
								тм 847.800			
2	19:18:54	0.639	4.917	1.446	0.000	0.000	1.210	тм 800.200	119.784%	0.024	0.093
3	19:20:00	0.731	3.981	1.384	0.000	0.000	1.099	тм 786.800	121.175%	0.039	0.078
X		0.719	4.967	1.510	0.000	0.000	1.301	<u>тм 811.600</u>	118.450%	0.037	0.101
σ		0.075	1.012	0.168	0.000	0.000	0.261	тм 32.090	3.582%	0.012	0.028
%RSD		10.440	20.370	11.120	0.000	0.000	20.030	<u>тм 3.953</u>	3.024	31.270	27.460
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:17:49	0.162	100.484%	-4.835	0.333	0.514	-0.070	0.382	-0.353	-0.240	101.674%
2	19:18:54	0.119	105.399%	-5.209	0.326	0.548	0.052	0.364	-0.394	-0.267	105.194%
3	19:20:00	0.132	105.365%	-4.516	0.331	0.500	0.026	0.371	-0.347	-0.236	106.865%
X		0.138	103.749%	-4.853	0.330	0.521	0.003	0.372	-0.364	-0.248	104.577%
σ		0.022	2.828%	0.347	0.004	0.025	0.064	0.009	0.026	0.017	2.650%
%RSD		16.110	2.726	7.141	1.183	4.746	2566.000	2.387	7.018	6.913	2.534
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:17:49	-0.199	0.083	0.053	тм 1384.000	101.566%	101.988%	0.024	0.262	-0.017	-0.013
	19:18:54	-0.210	0.060	0.012	тм 1310.000	106.467%	106.263%	0.021	0.260	-0.025	-0.018
3	19:20:00	-0.206	0.022	-0.004	тм 1288.000	108.178%	107.416%	0.023	0.263	-0.018	-0.020
X		-0.205	0.055	0.021	тм 1327.000	105.404%	105.222%	0.023	0.262	-0.020	-0.017
σ		0.005	0.031	0.029	тм 50.590	3.432%	2.860%	0.001	0.001	0.004	0.003
%RSD		2.662	56.150	141.700	<u>тм 3.811</u>	3.256	2.718	5.493	0.458	20.000	19.870
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	19:17:49	0.042	88.788%	0.000	0.000						
2	19:18:54	0.037	91.152%	0.000	0.000						
3	19:20:00	0.039	91.762%	0.000	0.000						
X		0.039	90.567%	0.000	0.000						
σ		0.002	1.571%	0.000	0.000						
%RSD		6.194	1.734	0.000	0.000						

t74672-31f 5/7/2011 19:21:02

0301110	-unution, 1.00											
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	19:22:07	92.305%	-0.064	м 199.200	м 203.000	0.000	тм 717100.000	<u>тм 66910.000</u>	<u>тм 66250.000</u>	<u> </u>	<u>T 0.000</u>	
2	19:23:13	92.941%	-0.074	м 195.700	м 203.700	0.000	тм 71 1900.000	<u>тм 66970.000</u>	тм 66450.000	⊤8.267	<u> </u>	
3	19:24:18	95.192%	-0.080	м 189.200	м 196.600	0.000	тм 694700.000	тм 64780.000	тм 64370.000	4.061	<u> </u>	
X		93.479%	-0.073	м 194.700	м 201.100	0.000	тм 707900.000	тм 66220.000	тм 65690.000	<u>т 6.592</u>	<u>т 0.000</u>	
σ		1.517%	0.008	м 5.039	м 3.918	0.000	тм 11750.000	тм 1252.000	тм 1151.000	т 2.229	<u>т 0.000</u>	
%RSD		1.623	11.490	м 2.588	м 1.948	0.000	тм 1.661	тм 1.890	тм 1.753	т 33.820	<u>т 0.000</u>	
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	19:22:07	тм 9094.000	м 94180.000	тм 105300.000	0.000	4.644	0.608	0.570	1.629	70.070	тм 6872.000	
2	19:23:13	тм 9095.000	м 93980.000	тм 105700.000	0.000	4.609	0.405	0.569	0.837	72.340	тм 6871.000	
3	19:24:18	тм 8946.000	м 92410.000	тм 103200.000	0.000	4.964	0.534	0.536	1.252	68.710	тм 6698.000	
Х		тм 9045.000	м 93520.000	тм 104700.000	0.000	4.739	0.516	0.559	1.239	70.370	тм 6814.000	
σ		тм 85.850	м 969.600	тм 1303.000	0.000	0.196	0.103	0.019	0.396	1.837	тм 99.880	
%RSD		тм 0.949	м 1.037	тм 1.244	0.000	4.129	19.930	3.414	31.980	2.611	тм 1.466	
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	19:22:07	тм 117300.000	тм 129300.000	1.005	0.841	82.550	8.155	0.504	0.875	43.780	33.790	
2	19:23:13	тм 117600.000	тм 129600.000	1.057	0.834	м 100.800	8.680	0.516	0.944	44.890	33.180	
3	19:24:18	тм 114500.000	тм 126200.000	1.038	0.826	м 109.500	9.304	0.497	0.863	42.670	32.560	
X		тм 116500.000	тм 128400.000	1.033	0.833	м 97.610	8.713	0.506	0.894	43.780	33.180	
σ		тм 1726.000	тм 1877.000	0.026	0.008	м 13.740	0.575	0.009	0.044	1.112	0.619	
%RSD		тм 1.482	тм 1.462	2.514	0.936	м 14.070	6.603	1.837	4.899	2.539	1.864	
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	19:22:07	1.092	4.453	1.679	0.000	0.000	1.045	тм 801.500	118.119%	0.085	0.161	
2	19:23:13	1.189	4.023	1.674	0.000	0.000	0.949	тм 802.600	119.593%	0.104	0.133	
3	19:24:18	1.137	3.717	1.874	0.000	0.000	0.987	тм 790.700	120.948%	0.047	0.105	
Х		1.140	4.064	1.742	0.000	0.000	0.994	тм 798.300	119.553%	0.079	0.133	
σ		0.049	0.370	0.114	0.000	0.000	0.048	тм 6.568	1.415%	0.029	0.028	
%RSD		4.273	9.099	6.563	0.000	0.000	4.852	тм 0.823	1.183	36.340	20.970	
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	19:22:07	0.155	102.954%	-4.468	0.338	0.492	-0.046	0.367	-0.342	-0.231	104.720%	
2	19:23:13	0.141	104.090%	-4.959	0.328	0.528	0.004	0.370	-0.373	-0.252	104.178%	
3	19:24:18	0.185	106.387%	-3.223	0.325	0.418	0.050	0.371	-0.277	-0.184	107.237%	
X		0.161	104.477%	-4.217	0.330	0.479	0.002	0.369	-0.330	-0.222	105.378%	
σ		0.023	1.749%	0.895	0.007	0.056	0.048	0.002	0.049	0.034	1.632%	
%RSD		14.070	1.674	21.220	2.033	11.700	2002.000	0.563	14.830	15.470	1.549	
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb	
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	
1	19:22:07	-0.205	0.012	-0.019	тм 1435.000	105.240%	105.752%	0.020	0.259	-0.028	-0.023	
2	19:23:13	-0.200	-0.009	-0.039	тм 1449.000	104.971%	105.885%	0.016	0.259	-0.025	-0.023	
3	19:24:18	-0.203	-0.007	-0.044	тм 1403.000	106.952%	107.564%	0.017	0.257	-0.026	-0.026	
X		-0.203	-0.001	-0.034	тм 1429.000	105.721%	106.400%	0.018	0.258	-0.027	-0.024	
σ	İ	0.002	0.011	0.014	тм 23.580	1.075%	1.010%	0.002	0.001	0.001	0.002	
%RSD	İ	1.210	872.000	40.210	тм 1.650	1.017	0.949	10.670	0.441	5.469	8.294	
Run	Time	208Pb	209Bi	220Bkg	238U							
		ppb	ppb	ppb	ppb							
1	19:22:07	0.036	89.522%	0.000	0.000							
2	19:23:13	0.035	90.399%	0.000	0.000							
3	19:24:18	0.035	91.974%	0.000	0.000							
Х		0.035	90.631%	0.000	0.000							
σ		0.001	1.243%	0.000	0.000							
%RSD		1.828	1.371	0.000	0.000							
	•											

t74672-32f 5/7/2011 19:25:21

	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Run	Time					ppb			ppb		
1	19:26:26	ppb 92.392%	ppb -0.059	ррb м 195.300	ppb м 204.100	0.000	ррb тм 734300.000	ррb тм 67810.000	тм 67220.000	ppb 4.590	ppb <u>1 0.000</u>
2	19:27:31	94.102%	-0.102	м 182.200	м 182.600	0.000	тм 663100.000	тм 59870.000	тм 59560.000	±8.718	<u>⊤ 0.000</u>
				· · · · · · · · · · · · · · · · · · ·							
3	19:28:36	97.860%	-0.065	м 191.000	м 200.000	0.000	тм 707700.000	тм 65500.000	тм 65070.000	4.444	<u>T 0.000</u>
X		94.785%	-0.075	м 189.500	м 195.500	0.000	тм 701700.000	тм 64390.000	тм 63950.000	<u>т 5.917</u>	<u>т 0.000</u>
σ		2.797%	0.024	м 6.679	<u>м 11.410</u>	0.000	тм 36000.000	тм 4087.000	тм 3946.000	<u>т 2.426</u>	<u>т 0.000</u>
%RSD		2.951	31.310	м 3.525	<u>м 5.835</u>	0.000	<u>тм 5.131</u>	тм 6.346	<u>тм 6.171</u>	<u>т 41.000</u>	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	40.07.07	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:26:26	тм 9064.000	м 101700.000	тм 113600.000	0.000	4.944	0.413	0.554	0.871	72.410	тм 6965.000
2	19:27:31	тм 8306.000	м 90060.000	тм 101900.000	0.000	4.319	0.411	0.414	0.657	63.880	тм 6254.000
3	19:28:36	тм 8926.000	м 100000.000	тм 111600.000	0.000	4.696	0.393	0.489	0.649	69.740	тм 6873.000
X		<u>тм 8765.000</u>	м 97250.000	тм 109100.000	0.000	4.653	0.406	0.486	0.726	68.680	тм 6697.000
σ		тм 403.700	м 6282.000	тм 6263.000	0.000	0.315	0.011	0.070	0.126	4.361	тм 386.700
%RSD		<u>тм 4.606</u>	м 6.460	<u>тм 5.742</u>	0.000	6.764	2.628	14.420	17.360	6.349	<u>тм 5.774</u>
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:26:26	тм 120500.000	тм 132900.000	1.016	0.840	м 133.500	10.640	0.593	0.637	44.900	33.700
2	19:27:31	тм 107600.000	тм 117900.000	0.904	0.741	м 143.500	10.550	0.573	0.531	42.200	30.650
3	19:28:36	тм 119200.000	тм 130400.000	1.029	0.966	м 162.700	11.980	0.618	0.605	44.820	32.950
X		тм 115800.000	тм 127000.000	0.983	0.849	м 146.500	11.060	0.595	0.591	43.970	32.430
σ		тм 7095.000	тм 8032.000	0.069	0.113	<u>м 14.870</u>	0.800	0.023	0.054	1.535	1.587
%RSD		<u>тм 6.128</u>	<u>тм 6.323</u>	6.991	13.280	м 10.150	7.240	3.797	9.155	3.490	4.892
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:26:26	1.093	4.873	1.838	0.000	0.000	0.719	тм 828.800	121.187%	0.164	0.176
2	19:27:31	0.979	2.590	2.105	0.000	0.000	0.441	тм 746.200	121.797%	0.074	0.069
3	19:28:36	1.070	5.292	1.780	0.000	0.000	0.458	тм 825.200	124.206%	0.150	0.140
X		1.047	4.252	1.907	0.000	0.000	0.539	тм 800.100	122.397%	0.130	0.128
σ		0.060	1.455	0.173	0.000	0.000	0.156	тм 46.710	1.596%	0.048	0.054
%RSD		5.764	34.210	9.082	0.000	0.000	28.940	тм 5.838	1.304	37.280	42.320
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:26:26	0.178	105.394%	-5.165	0.327	0.551	0.149	0.368	-0.397	-0.270	106.075%
2	19:27:31	0.182	105.747%	-4.246	0.324	0.491	0.148	0.366	-0.339	-0.227	106.491%
3	19:28:36	0.211	106.759%	-5.253	0.320	0.554	0.121	0.366	-0.402	-0.268	107.968%
X		0.190	105.967%	-4.888	0.324	0.532	0.140	0.367	-0.379	-0.255	106.845%
σ		0.018	0.708%	0.558	0.004	0.036	0.016	0.001	0.035	0.024	0.995%
%RSD		9.488	0.669	11.410	1.094	6.670	11.310	0.306	9.146	9.501	0.931
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:26:26	-0.188	0.010	-0.015	тм 1492.000	106.437%	105.780%	0.018	0.259	-0.023	-0.016
2	19:27:31	-0.182	-0.001	-0.013	тм 1335.000	106.599%	106.530%	0.021	0.257	-0.016	-0.020
3	19:28:36	-0.196	0.032	-0.036	тм 1487.000	108.304%	107.199%	0.019	0.258	-0.024	-0.014
X		-0.189	0.014	-0.021	тм 1438.000	107.113%	106.503%	0.019	0.258	-0.021	-0.017
σ		0.007	0.016	0.013	тм 89.060	1.034%	0.710%	0.002	0.001	0.004	0.003
%RSD		3.821	121.100	60.630	тм 6.193	0.965	0.667	8.426	0.418	20.460	19.100
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	19:26:26	0.041	90.596%	0.000	0.000						
2	19:27:31	0.039	90.984%	0.000	0.000						
3	19:28:36	0.042	91.768%	0.000	0.000						
Х		0.041	91.116%	0.000	0.000						
σ		0.001	0.597%	0.000	0.000						
%RSD		2.893	0.656	0.000	0.000						
			2.226	2.230							

mp58046-mb1 5/7/2011 19:29:39

User Pre-allution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:30:44	110.293%	-0.130	6.484	6.373	0.000	тм 1971.000	190.900	195.900	2.854	<u>T 0.000</u>
2 19:31:49	106.584%	-0.142	4.195	4.534	0.000	511.700	34.160	35.540	2.921	T 0.000
3 19:32:55	108.089%	-0.146	3.072	4.056	0.000	276.200	14.840	15.080	2.762	T 0.000
Х	108.322%	-0.139	4.583	4.988	0.000	тм 919.700	79.960	82.160	2.846	т 0.000
σ	1.866%	0.008	1.739	1.223	0.000	тм 918.300	96.540	99.010	0.080	т 0.000
%RSD	1.722	5.763	37.940	24.520	0.000	тм 99.840	120.700	120.500	2.813	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
Ruii IIIIle										
1 19:30:44	ppb 13.750	ppb 285.500	ppb 277.200	ppb 121.981%	ppb -0.376	ppb -0.219	ppb -0.174	ppb -0.197	ppb 128.500	ppb 20.130
2 19:31:49	3.609	36.440	45.390	116.803%	-0.343	-0.280	-0.136	0.167	160.900	3.465
3 19:32:55	-2.599	10.070	11.730	118.141%	-0.415	-0.261	-0.113	0.513	172.200	1.354
X	4.918	110.700	111.400	118.975%	-0.378	-0.253	-0.141	0.161	153.900	8.317
σ	8.250	152.000	144.500	2.688%	0.036	0.031	0.031	0.355	22.700	10.290
%RSD	167.700	137.300	129.700	2.259	9.586	12.400	21.870	220.800	14.750	123.700
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:30:44	<u>⊤517.200</u>	504.200	-0.084	0.402	м 120.600	4.971	-0.133	-0.090	0.076	-0.118
2 19:31:49	102.900	110.600	-0.085	0.221	98.870	4.204	-0.141	0.015	0.396	-0.162
3 19:32:55	48.090	54.450	-0.090	0.122	79.460	3.197	-0.173	-0.011	0.272	-0.202
X	т 222.700	223.100	-0.087	0.248	м 99.660	4.124	-0.149	-0.028	0.248	-0.161
σ	т 256.500	245.100	0.003	0.142	м 20.600	0.890	0.022	0.055	0.161	0.042
%RSD	т 115.200	109.800	3.786	57.370	м 20.670	21.580	14.520	192.800	65.070	26.080
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
itan mile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:30:44	-0.312	-4.288	0.714	0.000	0.000	-0.977	2.279	119.777%	-0.260	-0.229
								114.880%		
	-0.210	-3.226	0.452	0.000	0.000	-0.802	0.333		-0.261	-0.236
3 19:32:55	-0.182	-3.738	0.491	0.000	0.000	-0.722	0.025	115.726%	-0.271	-0.227
X	-0.235	-3.750	0.552	0.000	0.000	-0.834	0.879	116.794%	-0.264	-0.231
σ	0.068	0.531	0.142	0.000	0.000	0.130	1.222	2.617%	0.006	0.005
%RSD	29.130	14.160	25.630	0.000	0.000	15.590	139.100	2.241	2.232	2.073
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:30:44	-0.154	116.575%	-0.461	0.339	0.235	-0.029	0.374	-0.105	-0.074	113.398%
2 19:31:49	-0.154	111.875%	-0.235	0.336	0.223	0.021	0.366	-0.088	-0.065	109.160%
3 19:32:55	-0.156	112.447%	-0.217	0.330	0.225	0.066	0.363	-0.090	-0.067	110.783%
X	-0.155	113.632%	-0.304	0.335	0.228	0.020	0.367	-0.094	-0.069	111.114%
σ	0.001	2.565%	0.136	0.005	0.006	0.047	0.005	0.009	0.004	2.138%
%RSD	0.658	2.257	44.710	1.386	2.717	242.200	1.496	9.924	6.510	1.924
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:30:44	-0.203	-0.043	-0.076	4.714	108.414%	107.287%	0.016	0.256	-0.029	-0.026
2 19:31:49	-0.212	-0.028	-0.065	1.005	104.933%	104.376%	0.016	0.257	-0.032	-0.031
3 19:32:55	-0.204	-0.024	-0.072	0.327	106.300%	106.139%	0.019	0.256	-0.032	-0.028
X	-0.206	-0.032	-0.071	2.015	106.549%	105.934%	0.017	0.256	-0.031	-0.028
σ	0.005	0.010	0.006	2.362	1.754%	1.466%	0.002	0.001	0.002	0.002
%RSD	2.494	30.580	8.085	117.200	1.754%	1.466%	9.320	0.001	5.265	8.670
Run Time	2.494 208Pb	209Bi	220Bkg	238U	1.040	1.304	7.320	0.369	5.200	0.070
Kun mile	ppb	ppb	ppb	ppb						
1 19:30:44	0.031	104.694%	0.000	0.000						
2 19:31:49	0.027	102.005%	0.000	0.000						
3 19:32:55	0.028	103.761%	0.000	0.000						
X	0.029	103.487%	0.000	0.000						
σ	0.002	1.365%	0.000	0.000						
%RSD	6.784	1.319	0.000	0.000						

mp58046-lc1 5/7/2011 19:33:57

Sun Time	User Pre-	dilution: 1.00	0									
1 1935 19 1925 19 1925 19 1925 19 1925 19 1925 19 1925 19 1925 19 1925 19 1925 19 1925 19 1925 19 1925 19 1925 19 1925 19 19 19 19 19 19 19 1	Run	Time	6Li	9Be	10B	11B		23Na	25Mg	26Mg	27AI	37CI
2 13-36-07 102-14-86 and an alternative per per per per per per per per per pe			ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
3 9/37/12 104,683%	1	19:35:02	105.234%	м 103.600	2.656	2.999	0.000	<u> 7 645.900</u>	460.600	462.900	473.200	<u>T 0.000</u>
1.418% 1.418% 1.217.000 2.442 2.867 0.000 1.619.700 482.400 4479.800 1.10.000 1.00.000	2	19:36:07	102.514%	м 110.100	2.223	2.891	0.000	613.400	494.200	488.600	<u> </u>	<u>T 0.000</u>
Color	3	19:37:12	104.683%	м 109.200	3.048	2.710	0.000	599.800	492.600	487.700	<u>т 529.800</u>	т 0.000
Color	Х		104.144%	м 107.600	2.642	2.867	0.000	т 619.700	482.400	479.800	т 510.800	т 0.000
No. 1.381									18 970			· · · · · · · · · · · · · · · · · · ·
Fig. Time 39K 43Ca 44Ca 45Sc 47T1 51V 52Cr 53Cr 53Cl 55Mn 55Mn ppb												
Pob Pob		Time										
1 19:35:02 46:390	IXIII	mine										
2 19/36/07 495/800 493/200 499/800 110/200	1	10.35.02										
3 19:37:12 493.900 520.000 499.500 110.684% -0.416 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 174.000 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 174.000 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 174.000 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 174.000 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 174.000 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.800 \(\tilde{\text{u}} \) 105.900												
A										· · · · · · · · · · · · · · · · · · ·		
16.400	3	19:37:12						· · · · · · · · · · · · · · · · · · ·				
No. No.	X							м 106.800	<u>м 105.800</u>	<u>м 105.400</u>		
Run Time 56Fe 57Fe 59Co 60Ni 62Ni 63Cu 66Cu 66Cn 677.h 687.h 687.h ppb p	σ		16.400	34.750	20.060	3.385%	0.031	<u>м 5.077</u>	<u>м 5.584</u>	<u>м 5.211</u>	4.853	<u>м 4.667</u>
Deb Deb	%RSD		3.412	7.172	4.143	2.976	6.971	<u>м 4.752</u>	<u>м 5.276</u>	<u>м 4.946</u>	2.702	м 4.404
19.35:02	Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1936-07			ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
3 19:37-12 1541.400 534.300 2109.900 2110.100 216.500 2110.000 2108.000 2108.600 2108.0	1	19:35:02	<u> </u>	497.300	м 100.700	м 100.500	м 160.900	м 102.400	99.450	99.260	95.680	99.550
T Time Ti	2	19:36:07	<u> 7 531.700</u>	528.700	м 108.400	м 108.200	м 161.000	м 110.000	м 107.600	м 107.300	м 105.700	м 106.600
T Time Ti	3	19:37:12	т 541.400	534.300	м 109.900	м 110.100	м 161.500	м 112.000	м 109.400	м 108.600	м 105.400	м 108.000
T19.210	X				м 106.300		м 161.100	· · · · · · · · · · · · · · · · · · ·		· ·		
Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89V 95Mo 97Mo 9												
Run Time 758s 778e 788e 79Br 81Br 82Se 88Sr 89V 95Mo 97Mo ppb												
PPD		Timo										
1 9:35:02 \(\buildrel{\colored}{u} \) \(\	Kuii	Tille	i i	-								
2 19:36:07	1	10.25.02					-					
3 19:37:12 w112.400 w224.800 w221.900 0.000 0.000 w218.900 -0.101 110.295% -0.262 -0.233 x w108.800 w218.800 w216.200 0.000 0.000 w213.300 -0.088 112.481% -0.267 -0.230 w5.026 w8.698 w8.391 0.000 0.000 w8.889 0.020 3.084% 0.004 0.003 w4.6619 w4.6619 w3.976 w3.881 0.000 0.000 w4.167 22.380 2.742 1.625 1.437 x w3.976 w4.619 w3.976 w3.881 0.000 0.000 w4.167 22.380 2.742 1.625 1.437 x w3.976 w4.619 w3.976 w3.981 0.000 0.000 w4.167 22.380 2.742 1.625 1.437 x w3.976 w4.619 w3.976 w3.981 0.000 0.000 w4.167 22.380 2.742 1.625 1.437 x w3.976 w4.626												
No. Wide								· · · · · · · · · · · · · · · · · · ·				
Section Sec	3	19:37:12										
No. No.	X		м 108.800	<u>м 218.800</u>	м 216.200	0.000	0.000	м 213.300	-0.088	112.481%	-0.267	-0.230
Run Time 98Mo 103Rh 106Cd 107Ag 108Mo 108Cd 109Ag 111Cd 114Cd 115In	σ		<u>м 5.026</u>	<u>м 8.698</u>	<u>м 8.391</u>	0.000	0.000	<u>м 8.889</u>	0.020	3.084%	0.004	0.003
Part Part	%RSD		<u>м 4.619</u>	м 3.976	<u>м 3.881</u>	0.000	0.000	<u>м 4.167</u>	22.380	2.742	1.625	1.437
1 19:35:02 -0.158 112:329% 98:230 98:060 0.451 95:910 97:810 97:980 98:620 110.499%	Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
2 19:36:07 -0.152 108.111%			ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
3 19:37:12 -0.152 106.422% \(\mu \) 108.400 \(\mu \) 108.400 \(\mu \) 106.400 \(0.517 \) \(\mu \) 106.300 \(\mu \) 105.800 \(\mu \) 106.900 \(\mu \) 107.700 105.468% \(\mu \) 108.954% \(\mu \) 103.800 \(\mu \) 103.100 0.473 \(\mu \) 101.400 \(\mu \) 102.700 \(\mu \) 103.700 \(\mu \) 103.700 \(\mu \) 107.582% \(\mu \) 5.62 \(\mu \) 4.297 8.225 \(\mu \) 5.162 \(\mu \) 4.154 \(\mu \) 4.4798 \(\mu \) 4.856 2.426 \(\mu \) 1188N 1218b 1238b 1378a 1597b 165Ho 203Ti 205Ti 206Pb 207Pb \(\mu \) 107.500 \(\mu \) 103.502 -0.213 \(\mu \) 100.900 \(\mu \) 100.700 \(\mu \) 100.800 \(\mu \) 103.767% 103.113% \(\mu \) 101.500 \(\mu \) 108.800	1	19:35:02	-0.158	112.329%	98.230	98.060	0.451	95.910	97.810	97.980	98.620	110.499%
X	2	19:36:07	-0.152	108.111%	м 104.800	м 104.700	0.449	м 102.000	м 104.400	м 106.300	м 107.000	106.780%
O	3	19:37:12	-0.152	106.422%	м 108.400	м 106.400	0.517	м 106.300	м 105.800	м 106.900	м 107.700	105.468%
O	Х		-0.154	108.954%	м 103.800	м 103.100	0.473	м 101.400	м 102.700	м 103.700	м 104.500	107.582%
No. No. No. No. No. No. No. No. No. No.												
Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb												
Ppb Ppb		Time										
1 19:35:02 -0.213 M.100.900 M.101.000 107.724% 107.103% M.101.500 M.102.100 M.100.500 M.100.600 2 19:36:07 -0.210 M.109.700 M.109.500 M.108.400 103.767% 103.113% M.109.000 M.108.400 M.108.200 3 19:37:12 -0.211 M.110.800 M.110.400 102.742% 102.386% M.107.800 M.108.200 M.108.300 X -0.211 M.107.200 M.107.000 M.106.600 104.744% 104.200% M.106.100 M.106.300 M.105.700 M.105.700 G 0.002 M.5.407 M.5.478 M.4.929 2.631% 2.539% M.4.028 M.3.634 M.4.470 M.4.427 MRSD 0.712 M.5.046 M.5.119 M.4.624 2.512 2.437 M.3.796 M.3.419 M.4.229 M.4.189 Run Time 208Pb 209Bi 220Bkg 238U 2.324 2.512 2.437 M.3.796 M.3.419 M.4.229											-	
2 19:36:07 -0.210 M 109.700 M 109.500 M 108.400 103.767% 103.113% M 109.000 M 108.800 M 108.400 M 108.200 3 19:37:12 -0.211 M 110.800 M 110.800 M 110.400 102.742% 102.386% M 107.800 M 108.200 M 108.300 X -0.211 M 107.200 M 107.000 M 106.600 104.744% 104.200% M 106.100 M 106.300 M 105.700 M 105.700 G 0.002 M 5.478 M 4.929 2.631% 2.539% M 4.028 M 3.634 M 4.470 M 4.427 WARSD 0.712 M 5.046 M 5.119 M 4.624 2.512 2.437 M 3.796 M 3.419 M 4.229 M 4.189 Run Time 208Pb 209Bi 220Bkg 238U Ppb	1	19:35:02										
3 19:37:12 -0.211 M10.800 M10.800 M10.400 102.742% 102.386% M107.800 M108.000 M108.200 M108.300												
X -0.211 M107.200 M107.000 M106.600 104.744% 104.200% M106.100 M106.300 M105.700 M105.700 σ 0.002 M5.407 M5.478 M4.929 2.631% 2.539% M4.028 M3.634 M4.470 M4.427 %RSD 0.712 M5.046 M5.119 M4.624 2.512 2.437 M3.796 M3.419 M4.229 M4.189 Run Time 208Pb 209Bi 220Bkg 238U 238U M3.796 M3.419 M4.229 M4.189 1 19:35:02 M100.900 103.971% 0.000 <												
σ 0.002 м5.407 м5.478 м4.929 2.631% 2.539% м4.028 м3.634 м4.470 м4.427 %RSD 0.712 м5.046 м5.119 м4.624 2.512 2.437 м3.796 м3.419 м4.229 м4.189 Run Time 208Pb 209Bi 220Bkg 238U	=	19.37:12										
%RSD 0.712 м5.046 м5.119 м4.624 2.512 2.437 м3.796 м3.419 м4.229 м4.189 Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb 1 19:35:02 м100.900 103.971% 0.000 0.000 2 19:36:07 м109.000 100.275% 0.000 0.000 3 19:37:12 м108.700 100.275% 0.000 0.000 x м106.200 101.507% 0.000 0.000 σ м4.568 2.134% 0.000 0.000												
Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb 1 19:35:02 м 100.900 103.971% 0.000 0.000 2 19:36:07 м 109.000 100.275% 0.000 0.000 3 19:37:12 м 108.700 100.275% 0.000 0.000 x м 106.200 101.507% 0.000 0.000 σ м 4.568 2.134% 0.000 0.000												
ppb ppb ppb ppb 1 19:35:02 M 100.900 103.971% 0.000 0.000 2 19:36:07 M 109.000 100.275% 0.000 0.000 3 19:37:12 M 108.700 100.275% 0.000 0.000 X M 106.200 101.507% 0.000 0.000 σ M 4.568 2.134% 0.000 0.000		-					2.512	2.437	м 3.796	м 3.419	м 4.229	м 4.189
1 19:35:02 M 100.900 103.971% 0.000 0.000 2 19:36:07 M 109.000 100.275% 0.000 0.000 3 19:37:12 M 108.700 100.275% 0.000 0.000 X M 106.200 101.507% 0.000 0.000 σ M 4.568 2.134% 0.000 0.000	Run	Time	208Pb	209Bi	220Bkg	238U						
2 19:36:07 M 109.000 100.275% 0.000 0.000 3 19:37:12 M 108.700 100.275% 0.000 0.000 x M 106.200 101.507% 0.000 0.000 σ M 4.568 2.134% 0.000 0.000												
3 19:37:12 M 108.700 100.275% 0.000 0.000 x M 106.200 101.507% 0.000 0.000 σ M 4.568 2.134% 0.000 0.000	1	19:35:02	м 100.900	103.971%	0.000	0.000						
x м 106.200 101.507% 0.000 0.000 σ м 4.568 2.134% 0.000 0.000	2	19:36:07	м 109.000	100.275%	0.000	0.000						
<u>σ</u> <u>м4.568</u> 2.134% 0.000 0.000	3	19:37:12	м 108.700	100.275%	0.000	0.000						
<u>σ</u> <u>м4.568</u> 2.134% 0.000 0.000	Х		м 106.200	101.507%	0.000	0.000						
				-								

mp58046-s1 5/7/2011 19:38:15

User Pre-dilution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:39:20	88.606%	м 115.400	м 189.700	м 190.400	0.000	тм 694300.000	тм 65060.000	тм 64320.000	571.500	<u>T 0.000</u>
2 19:40:25	91.271%	м 113.300	м 186.900	м 192.500	0.000	тм 694200.000	тм 64970.000	тм 64370.000	571.300	<u>т 0.000</u>
3 19:41:30	94.464%	м 109.700	м 181.900	м 184.600	0.000	тм 669000.000	тм 62040.000	<u>тм 61650.000</u>	546.500	<u>T 0.000</u>
X	91.447%	м 112.800	м 186.200	м 189.200	0.000	тм 685800.000	тм 64020.000	тм 63440.000	563.100	<u>т 0.000</u>
σ	2.933%	м 2.838	м 3.930	<u>м 4.063</u>	0.000	тм 14550.000	тм 1721.000	<u>тм 1555.000</u>	14.360	<u>т 0.000</u>
%RSD	3.207	<u>м 2.516</u>	м 2.111	м 2.147	0.000	<u>тм 2.122</u>	<u>тм 2.689</u>	<u>тм 2.451</u>	2.550	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:39:20	тм 9225.000	м 92820.000	тм 104100.000	0.000	4.636	м 125.700	м 119.300	м 120.800	80.360	тм 6706.000
2 19:40:25	тм 9336.000	м 94300.000	тм 105000.000	0.000	4.674	м 126.600	м 120.700	м 119.200	94.910	тм 6771.000
3 19:41:30	<u>тм 9015.000</u>	м 89980.000	тм 100400.000	0.000	4.781	м 120.400	м 115.000	м 114.700	92.290	тм 6466.000
X	тм 9192.000	м 92370.000	тм 103100.000	0.000	4.697	м 124.200	м 118.300	м 118.200	89.180	тм 6648.000
σ	тм 163.100	м 2194.000	тм 2443.000	0.000	0.075	м 3.331	м 3.005	м 3.149	7.756	тм 160.700
%RSD	<u>тм 1.775</u>	м 2.375	тм 2.369	0.000	1.598	м 2.682	м 2.540	м 2.663	8.696	<u>тм 2.417</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:39:20	тм 114000.000	тм 124900.000	м 113.500	м 107.900	м 177.100	м 113.300	м 106.000	м 104.400	<u>м 143.000</u>	м 135.000
2 19:40:25	тм 115400.000	тм 126500.000	м 115.000	м 111.300	м 180.600	м 114.500	м 107.300	м 105.500	<u>м 144.900</u>	м 135.900
3 19:41:30	тм 110200.000	тм 120900.000	м 109.800	м 105.600	м 172.400	м 110.500	м 101.800	99.620	<u>м 138.400</u>	м 129.300
X	тм 113200.000	тм 124100.000	м 112.800	м 108.300	м 176.700	м 112.800	м 105.000	м 103.200	м 142.100	м 133.400
σ	тм 2675.000	тм 2910.000	м 2.646	м 2.856	м 4.144	м 2.092	м 2.851	м 3.135	м 3.360	м 3.604
%RSD	<u>тм 2.363</u>	<u>тм 2.345</u>	м 2.346	м 2.637	м 2.345	м 1.855	<u>м 2.715</u>	м 3.038	м 2.364	<u>м 2.701</u>
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 10 00 00	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:39:20	м 112.200	м 201.500	м 193.400	0.000	0.000	м 189.600	тм 782.500	114.780%	0.061	0.122
2 19:40:25	м 113.100	м 205.800	м 196.500	0.000	0.000	м 190.700	тм 786.300	117.609%	0.047	0.134
3 19:41:30	м 108.500	м 193.400	м 187.300	0.000	0.000	м 183.300	тм 745.000	122.690%	0.076	0.099
X	м 111.300	м 200.200	м 192.400	0.000	0.000	м 187.800	тм 771.300	118.360%	0.061	0.119
σ	м 2.436	м 6.302	м 4.664	0.000	0.000	м 4.004	тм 22.840	4.008%	0.015	0.018
%RSD	м 2.190	м 3.148	м 2.424	0.000	0.000	м 2.131	<u>тм 2.962</u>	3.386	24.120	14.790
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
1 19:39:20	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
2 19:40:25	0.150 0.175	100.879% 103.750%	<u>м 100.600</u> 97.240	98.930 98.930	0.669 0.781	<u>м 100.800</u> 99.250	98.330 97.880	м 100.200 99.420	м 100.100 99.340	102.531% 105.485%
3 19:41:30	0.173	107.169%	92.200	95.220 97.700	0.754 0.735	94.280	94.150	95.360	95.540	108.031%
X	0.166	103.933%	м 96.690			м 98.120	96.790	м 98.320	м 98.320	105.349%
σ	0.014	3.149%	м 4.241	2.142	0.058	м 3.415	2.290	м 2.591	м 2.433	2.752%
%RSD Time	8.362 118Sn	3.030 121Sb	<u>м 4.386</u> 123Sb	2.193 137Ba	7.936 159Tb	<u>м 3.480</u> 165Но	2.366 203TI	<u>м 2.635</u> 205ТІ	<u>м 2.475</u> 206Рb	2.613 207Pb
Ruii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:39:20	-0.170	м 110.600	м 110.600	тм 1517.000	104.870%	104.033%	м 108.000	м 108.600	м 108.800	м 109.600
2 19:40:25	-0.182	м 110.100		тм 1502.000	106.559%	106.597%	м 106.300	м 107.700		м 108.100
3 19:41:30	-0.187	м 105.600		тм 1450.000		108.517%	м 104.400		м 104.700	м 105.100
X	-0.180	м 108.800	м 108.500	тм 1490.000	106.705%	106.382%	м 106.200	м 107.100	м 107.100	м 107.600
σ	0.009	м 2.734	<u>м 100.300</u> м 2.715	тм 35.160	1.912%	2.250%	м 1.823	<u>м 1.802</u>	м 2.129	м 2.321
%RSD	5.059	м 2.734 м 2.513	м 2.503	тм 2.360	1.792	2.250%	<u>м 1.623</u> <u>м 1.716</u>	<u>м 1.602</u> <u>м 1.683</u>	м 2.129 м 1.988	<u>м 2.32 г</u> м 2.157
Run Time	208Pb	209Bi	220Bkg	238U	1.772	2.113	<u>M 1.710</u>	<u>M 1.003</u>	M 1.700	M 2. 137
itan iiiie	ppb	ppb	ppb	ppb						
1 19:39:20	м 110.000	89.883%	0.000	0.000	ı					
2 19:40:25	м 108.500	92.313%	0.000	0.000						
3 19:41:30	м 105.500	93.227%	0.000	0.000						
X X	м 108.000	91.808%	0.000	0.000						
σ	м 2.278	1.729%	0.000	0.000						
%RSD	<u>м 2.276</u> м 2.110	1.883	0.000	0.000						
	<u>m 2.110</u>	1.000	0.000	0.000						

mp58046-s2 5/7/2011 19:42:33

	-dilution: 1.00		0.0	100	445	100	0011	0514	0/14	0741	0701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	10 12 20	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:43:38	92.351%	м 115.300	м 193.700	м 198.000	0.000	тм 714500.000	тм 67200.000	тм 66800.000	574.500	<u>T 0.000</u>
2	19:44:43	91.965%	м 121.400	м 205.100	м 207.600	0.000	тм 739200.000	тм 71080.000	тм 70670.000	<u>+636.600</u>	<u>T 0.000</u>
3	19:45:49	96.167%	м 110.600	м 189.100	м 196.000	0.000	тм 691800.000	тм 64740.000	тм 64350.000	553.300	<u>T 0.000</u>
X		93.495%	м 115.800	м 196.000	м 200.500	0.000	тм 715200.000	тм 67670.000	тм 67280.000	<u>т 588.100</u>	<u>т 0.000</u>
σ		2.322%	м 5.445	м 8.200	м 6.213	0.000	тм 23710.000	тм 3198.000	тм 3187.000	<u>т 43.330</u>	<u>т 0.000</u>
%RSD		2.484	м 4.703	м 4.185	м 3.098	0.000	<u>тм 3.315</u>	<u>тм 4.726</u>	тм 4.737	<u>17.367</u>	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1	19:43:38	ррb тм 9597.000	ррb м 97210.000	ррb тм 108700.000	0.000	ppb 4.875	ррb м 126.400	ррb м 118.900	ррb м 120.700	dqq 88.000	ррb тм 6968.000
							<u> </u>		· · · · · · · · · · · · · · · · · · ·		
2	19:44:43 19:45:49	тм 10010.000	м 102900.000	тм 105900.000	0.000	5.066	м 135.000	м 129.100	м 128.100	94.040	тм 7419.000
3	19:45:49	тм 9391.000	м 94790.000		0.000	4.656	м 123.800	м 117.000	м 116.700	88.590	тм 6762.000
X		тм 9667.000	м 98310.000	тм 109900.000	0.000	4.866	м 128.400	м 121.700	м 121.800	90.210	тм 7050.000
%RSD		тм 317.500	м 4181.000	тм 4723.000	0.000	0.205	м 5.844	м 6.498	м 5.768	3.329	тм 335.800
	Time o	тм 3.284	м 4.252	тм 4.298	0.000	4.215	м 4.551	<u>м 5.341</u>	м 4.735	3.690	<u>тм 4.763</u>
Run	Time	56Fe ppb	57Fe ppb	59Co ppb	60Ni ppb	62Ni ppb	63Cu ppb	65Cu ppb	66Zn ppb	67Zn ppb	68Zn ppb
1	19:43:38	тм 118600.000	тм 130600.000	м 114.500	м 110.400	м 189.200	м 115.000	м 106.200	м 103.400	м 143.300	м 136.600
2	19:44:43	тм 126700.000	тм 139200.000	м 122.100	м 117.200	м 184.200	м 122.300	м 100.200	м 103.400	м 155.500	м 143.800
3	19:45:49	тм 114600.000	тм 126600.000	м 112.200	м 107.300	м 200.500	м 113.200	м 104.000	м 100.000	м 142.600	м 132.800
X	19.43.49	тм 119900.000	тм 132100.000	м 116.200	м 111.600	м 199.100	м 116.800	м 104.000	м 100.000	м 147.100	м 137.800
σ		тм 6192.000	тм 6447.000	м 5.171	м 5.035	м 9.283	м 4.853	м 4.908	м 4.539	м 7.270	<u>м 5.591</u>
%RSD		тм 5.162	тм 4.880	м 4.448	<u>м 5.035</u> м 4.510	м 4.663	<u>м 4.053</u> м 4.154	<u>м 4.908</u> м 4.549	<u>м 4.357</u> м 4.357	м 4.940	<u>м 3.591</u> м 4.059
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
Itan	111110	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:43:38	м 112.400	м 202.400	м 194.100	0.000	0.000	м 187.900	тм 804.900	120.734%	0.063	0.139
2	19:44:43	м 120.500	м 216.400	м 207.300	0.000	0.000	м 201.000	тм 868.600	116.533%	0.112	0.146
3	19:45:49	м 110.000	м 196.700	м 191.300	0.000	0.000	м 183.700	тм 786.300	123.379%	0.094	0.099
X		м 114.300	м 205.200	м 197.600	0.000	0.000	м 190.800	тм 819.900	120.215%	0.090	0.128
σ		м 5.535	м 10.170	м 8.542	0.000	0.000	м 9.021	тм 43.130	3.452%	0.025	0.025
%RSD		м 4.843	м 4.959	м 4.324	0.000	0.000	м 4.728	тм 5.261	2.872	27.560	19.550
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:43:38	0.158	104.798%	99.180	98.710	0.712	м 100.100	98.430	99.380	99.170	106.170%
2	19:44:43	0.227	100.985%	м 101.100	м 105.600	0.871	м 104.200	м 104.300	м 107.500	м 106.800	102.238%
3	19:45:49	0.157	107.745%	93.390	96.390	0.756	95.500	95.810	97.460	97.320	108.034%
X		0.181	104.509%	м 97.880	м 100.200	0.780	м 99.950	м 99.520	м 101.400	м 101.100	105.481%
σ		0.040	3.389%	м 4.007	м 4.804	0.082	м 4.366	м 4.351	<u>м 5.315</u>	м 5.025	2.959%
%RSD		22.230	3.243	м 4.093	м 4.792	10.560	м 4.368	м 4.372	<u>м 5.240</u>	<u>м 4.971</u>	2.805
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	10 10 00	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:43:38	-0.204	м 110.000	м 109.400	тм 1557.000	107.648%	106.235%	м 108.300	м 108.900	м 108.100	м 108.800
$\overline{}$	19:44:43	-0.192	м 119.100	м 118.300		103.287%	103.122%	м 115.600	м 116.200	м 116.300	м 115.900
3	19:45:49	-0.197	м 107.600	м 107.200	тм 1520.000	108.591%	109.079%	м 106.100	м 106.600	<u>м 105.400</u>	м 105.300
X		-0.198	м 112.200	м 111.600	тм 1582.000	106.509%	106.145%	м 110.000	м 110.600	м 109.900	м 110.000
σ		0.006	<u>м 6.062</u>	<u>м 5.848</u>	тм 78.080	2.829%	2.979%	м 4.970	м 5.004	<u>м 5.654</u>	м 5.390
%RSD	I	3.123	м 5.403	м 5.239	тм 4.936	2.657 I	2.807	м 4.517	м 4.525	<u>м 5.143</u>	м 4.900
Run	Time	208Pb	209Bi	220Bkg	238U						
1	19:43:38	ррb м 108.900	ppb 90.869%	ppb 0.000	0.000	I					
	19:44:43	м 116.600	88.520%	0.000	0.000						
3	19:45:49	м 106.600	93.110%	0.000	0.000						
X	17.73.47	м 100.000 м 110.700	90.833%	0.000	0.000						
		м 5.229	2.295%	0.000	0.000						
σ %RSD		м 4.723	2.527	0.000	0.000						
	ı	<u></u>	2.027	3.330	3.330						

t74672-33f 5/7/2011 19:46:51

User Pre-	dilution: 1.00	0									
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:47:57	93.631%	0.042	м 190.000	м 198.000	0.000	тм 705800.000	тм 65000.000	тм 64490.000	5.322	т 0.000
2	19:49:02	94.794%	-0.039	м 192.400	м 198.200	0.000	тм 703800.000	тм 65400.000	тм 64930.000	4.522	т 0.000
3	19:50:07	95.233%	-0.080	м 190.800	м 195.200	0.000	тм 701400.000	тм 65800.000	тм 65060.000	<u> 7.671</u>	т 0.000
	17.30.07	94.553%	-0.026	м 191.100	м 197.100	0.000	тм 703700.000	тм 65400.000	тм 64830.000	<u>т 5.838</u>	<u>т 0.000</u>
X											
σ		0.828%	0.062	м 1.236	м 1.657	0.000	тм 2211.000	тм 398.300	тм 301.700	<u>т 1.637</u>	<u>т 0.000</u>
%RSD		0.875	241.000	м 0.647	м 0.840	0.000	<u>тм 0.314</u>	<u>тм 0.609</u>	<u>тм 0.465</u>	<u>т 28.030</u>	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:47:57	тм 8905.000	м 94250.000	тм 105400.000	0.000	4.660	0.515	0.736	0.908	70.000	<u>тм 6698.000</u>
2	19:49:02	тм 8899.000	м 94730.000	тм 106100.000	0.000	4.568	0.613	0.648	1.104	65.510	тм 6743.000
3	19:50:07	тм 8941.000	м 95280.000	тм 106900.000	0.000	4.810	0.530	0.548	1.177	65.550	<u>тм 6791.000</u>
Х		тм 8915.000	м 94750.000	тм 106100.000	0.000	4.679	0.552	0.644	1.063	67.020	тм 6744.000
σ		тм 22.550	м 516.100	тм 743.300	0.000	0.122	0.053	0.094	0.139	2.581	тм 46.320
%RSD		тм 0.253	м 0.545	тм 0.700	0.000	2.616	9.540	14.590	13.070	3.852	тм 0.687
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		dqq	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:47:57	тм 115000.000	тм 126900.000	1.164	1.078	м 111.700	9.022	0.499	0.682	43.150	32.210
2	19:49:02	тм 116600.000	тм 128000.000	1.076	0.827	м 119.600	9.803	0.489	0.583	44.490	32.480
3	19:50:07	тм 116900.000	тм 127800.000	1.071	0.932	м 130.300	10.170	0.428	0.595	44.330	32.910
X		тм 116200.000	тм 127600.000	1.104	0.946	м 120.500	9.666	0.472	0.620	43.990	32.540
σ		тм 1043.000	<u>тм 608.100</u>	0.052	0.126	м 9.300	0.587	0.038	0.054	0.729	0.353
%RSD		<u>тм 0.898</u>	<u>тм 0.477</u>	4.727	13.330	м 7.716	6.074	8.068	8.709	1.658	1.086
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:47:57	1.305	4.675	2.035	0.000	0.000	1.345	тм 790.000	120.916%	0.052	0.100
2	19:49:02	1.215	4.846	1.973	0.000	0.000	1.415	тм 798.500	121.813%	0.070	0.171
3	19:50:07	1.144	4.511	1.817	0.000	0.000	0.994	тм 803.800	121.176%	0.072	0.111
X		1.221	4.677	1.942	0.000	0.000	1.251	тм 797.400	121.302%	0.065	0.127
σ		0.080	0.168	0.112	0.000	0.000	0.226	тм 6.931	0.462%	0.011	0.038
%RSD		6.589	3.589	5.786	0.000	0.000	18.050	<u>тм 0. 75 т</u>	0.381	17.410	30.040
	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
Run	Tille										
1	10.47.57	ppb 0 170	ppb	ppb 4 1/0	ppb 0.440	ppb	ppb 0.173	ppb	ppb	ppb	ppb
1	19:47:57	0.170	105.822%	-4.169	0.449	0.488	0.173	0.501	-0.233	-0.105	106.657%
2	19:49:02	0.171	106.054%	-4.405	0.352	0.501	0.147	0.396	-0.305	-0.196	107.967%
3	19:50:07	0.180	105.331%	-4.721	0.356	0.512	0.002	0.379	-0.336	-0.223	106.335%
X		0.174	105.736%	-4.431	0.385	0.500	0.107	0.425	-0.291	-0.174	106.986%
σ		0.005	0.369%	0.277	0.055	0.012	0.092	0.066	0.053	0.062	0.864%
%RSD		3.008	0.349	6.253	14.210	2.390	85.840	15.490	18.200	35.480	0.808
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:47:57	-0.184	0.245	0.205	тм 1413.000	106.905%	106.029%	0.523	0.754	0.135	0.133
2	19:49:02	-0.184	0.132	0.100	тм 1424.000	107.158%	106.370%	0.437	0.645	0.032	0.029
	19:50:07	-0.178	0.101	0.078	тм 1430.000	106.654%	106.521%	0.449	0.663	-0.004	0.001
X		-0.182	0.159	0.128	тм 1422.000	106.906%	106.307%	0.470	0.687	0.054	0.054
σ		0.003	0.076	0.068	тм 8.627	0.252%	0.252%	0.047	0.058	0.072	0.070
%RSD	I	1.919	47.440	53.230	<u>тм 0.607</u>	0.236	0.237	9.971	8.488	131.800	128.200
Run	Time	208Pb	209Bi	220Bkg	238U						
	10.15.55	ppb	ppb	ppb	ppb						
1	19:47:57	0.190	90.538%	0.000	0.000						
2	19:49:02	0.086	91.046%	0.000	0.000						
3	19:50:07	0.056	91.679%	0.000	0.000						
X		0.111	91.088%	0.000	0.000						
σ		0.070	0.571%	0.000	0.000						
%RSD		63.580	0.627	0.000	0.000						
-		-			-						

t74672-34f 5/7/2011 19:51:09

User Pre-	dilution: 1.00	0									
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:52:15	93.729%	-0.084	м 193.400	м 199.500	0.000	тм 718200.000	тм 65780.000	тм 65550.000	<u>⊤7.587</u>	т 0.000
2	19:53:20	96.352%	-0.077	м 185.800	м 193.800	0.000	тм 698100.000	тм 63910.000	тм 63470.000	4.052	т 0.000
3	19:54:25	98.886%	-0.057	м 178.500	м 185.100	0.000	тм 663100.000	тм 60330.000	тм 59750.000	3.869	т 0.000
X	17.01.20	96.323%	-0.072	м 185.900	м 192.800	0.000	тм 693100.000	тм 63340.000	тм 62930.000	т <u>5.169</u>	т 0.000
σ		2.578%	0.014	м 7.450	м7.210	0.000	тм 27860.000	тм 2770.000	тм 2938.000	<u>т 2.096</u>	<u>т 0.000</u>
%RSD		2.677	19.270	м 4.007	<u>м 3.740</u>	0.000	<u>тм 4.019</u>	<u>тм 4.374</u>	<u>тм 4.670</u>	<u>т 40.540</u>	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:52:15	тм 8879.000	м 102000.000	тм 114500.000	0.000	5.029	0.390	0.469	0.446	68.340	<u>тм 6831.000</u>
2	19:53:20	тм 8682.000	м 98960.000	тм 111200.000	0.000	4.903	0.464	0.441	1.052	66.300	тм 6666.000
3	19:54:25	тм 8250.000	м 92670.000	тм 104200.000	0.000	4.552	0.390	0.395	0.493	64.720	тм 6236.000
X		тм 8604.000	м 97880.000	тм 110000.000	0.000	4.828	0.415	0.435	0.664	66.450	тм 6578.000
σ		тм 321.900	м 4757.000	тм 5286.000	0.000	0.247	0.043	0.037	0.337	1.817	тм 307.100
%RSD		тм 3.742	м 4.860	тм 4.807	0.000	5.122	10.360	8.575	50.760	2.734	тм 4.668
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
Ruii	Tille										
1	10 50 15	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:52:15	TM 119000.000	тм 131200.000	0.953	0.922	м 152.300	11.170	0.405	0.386	45.460	33.740
2	19:53:20	тм 116300.000	тм 127900.000	0.961	0.853	м 153.500	11.470	0.361	0.521	44.340	33.290
3	19:54:25	тм 108500.000	тм 119300.000	0.904	0.905	м 161.800	11.140	0.333	0.430	42.940	31.290
X		тм 114600.000	тм 126200.000	0.940	0.893	<u>м 155.900</u>	11.260	0.366	0.445	44.250	32.770
σ		тм 5470.000	тм 6118.000	0.031	0.036	м 5.200	0.184	0.036	0.069	1.262	1.305
%RSD		тм 4.773	тм 4.850	3.277	4.053	м 3.336	1.631	9.937	15.460	2.853	3.983
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:52:15	1.047	5.540	1.678	0.000	0.000	1.014	тм 830.200	120.493%	0.114	0.119
2	19:53:20	1.081	4.216	1.737	0.000	0.000	0.689	тм 809.300	123.407%	0.080	0.144
3	19:54:25										0.144
	19.54.25	1.015	2.804	1.482	0.000	0.000	0.842	тм 754.300	127.750%	0.065	
X		1.048	4.187	1.632	0.000	0.000	0.849	<u>тм 797.900</u>	123.883%	0.086	0.114
σ		0.033	1.368	0.133	0.000	0.000	0.163	<u>тм 39.180</u>	3.652%	0.025	0.033
%RSD		3.178	32.690	8.164	0.000	0.000	19.170	<u>тм 4.910</u>	2.948	29.180	28.540
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	19:52:15	0.147	104.604%	-4.583	0.333	0.501	-0.022	0.366	-0.338	-0.230	105.660%
2	19:53:20	0.167	107.124%	-4.592	0.326	0.500	-0.048	0.359	-0.344	-0.233	108.268%
3	19:54:25	0.136	111.013%	-4.891	0.322	0.521	-0.026	0.361	-0.361	-0.244	112.290%
Х		0.150	107.580%	-4.689	0.327	0.507	-0.032	0.362	-0.348	-0.236	108.739%
		0.015	3.229%	0.175	0.006	0.012	0.014	0.003	0.012	0.007	3.340%
σ %RSD											
	Time o	10.260	3.001	3.737 123Sb	1.742	2.300	43.190	0.953	3.346	3.030	3.071
Run	Time	118Sn	121Sb		137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	10.50.15	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb 0.251	ppb	ppb
1	19:52:15	-0.208	-0.015	-0.038	тм 1494.000	105.592%	105.538%	0.108	0.351	-0.013	-0.011
	19:53:20	-0.205	-0.014	-0.041	тм 1451.000	108.215%	107.441%	0.094	0.334	-0.017	-0.014
3	19:54:25	-0.210	-0.025	-0.050	тм 1352.000	112.320%	111.556%	0.089	0.313	-0.017	-0.018
X		-0.208	-0.018	-0.043	тм 1432.000	108.709%	108.179%	0.097	0.333	-0.015	-0.014
σ		0.002	0.006	0.006	тм 73.070	3.391%	3.076%	0.010	0.019	0.002	0.004
%RSD		1.056	34.890	14.600	тм 5.101	3.119	2.844	9.860	5.691	14.830	26.210
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	19:52:15	0.048	90.499%	0.000	0.000						
2											
		0.043	91.759%	0.000	0.000						
3	19:54:25	0.043	95.648%	0.000	0.000						
X		0.045	92.636%	0.000	0.000						
σ		0.003	2.684%	0.000	0.000						
%RSD		6.147	2.897	0.000	0.000						

ccv 5/7/2011 19:55:29

User Pre-dilution: 1.00		0.0	100	445	100	001	0514	0/14	07.41	0701
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
4 40 57 05	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:56:35	108.711%	52.590	56.510	56.960	0.000	<u>тм 1773.000</u>	548.700	547.000	<u>⊤520.700</u>	<u> 7 0.000</u>
2 19:57:40	110.907%	50.140	52.250	52.630	0.000	тм 1145.000	480.500	485.000	<u> </u>	<u>T 0.000</u>
3 19:58:45	108.582%	51.630	54.230	53.630	0.000	<u> 7 838.800</u>	475.400	475.400	478.700	<u>т 0.000</u>
X	109.400%	51.450	54.330	54.410	0.000	тм 1253.000	501.600	502.500	<u>т 493.900</u>	<u>т 0.000</u>
σ	1.307%	1.234	2.132	2.266	0.000	тм 476.300	40.930	38.840	<u>т 23.310</u>	<u>т 0.000</u>
%RSD	1.194	2.398	3.924	4.165	0.000	тм 38.030	8.161	7.729	<u>т 4.719</u>	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:56:35	484.100	621.500	614.100	122.525%	51.480	52.460	51.930	52.070	123.300	60.120
2 19:57:40	455.900	524.800	514.300	124.599%	48.190	49.020	48.270	49.390	128.500	52.640
3 19:58:45	458.300	512.100	489.000	121.884%	49.840	50.430	49.780	51.730	136.600	51.440
X	466.100	552.800	539.100	123.003%	49.840	50.640	49.990	51.070	129.400	54.730
σ	15.640	59.850	66.120	1.419%	1.646	1.731	1.839	1.462	6.694	4.703
%RSD	3.355	10.830	12.260	1.154	3.302	3.419	3.679	2.863	5.172	8.593
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:56:35	<u> 706.500</u>	695.700	52.530	53.550	м 169.000	56.970	52.030	51.620	51.520	51.960
2 19:57:40	<u> 7574.600</u>	569.800	48.810	49.840	м 146.600	52.730	48.560	47.390	47.550	47.680
3 19:58:45	<u> 7541.700</u>	532.500	50.610	51.070	м 138.800	53.650	50.030	49.550	49.520	50.330
X	<u>т 607.600</u>	599.300	50.650	51.490	м 151.500	54.450	50.210	49.520	49.530	49.990
σ	<u>т 87.180</u>	85.520	1.860	1.894	м 15.680	2.230	1.746	2.120	1.985	2.159
%RSD	<u>т 14.350</u>	14.270	3.673	3.678	м 10.350	4.096	3.477	4.280	4.007	4.320
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
-	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:56:35	53.040	47.660	53.860	0.000	0.000	52.180	52.480	120.183%	51.570	51.440
2 19:57:40	49.480	44.410	50.320	0.000	0.000	49.570	48.340	123.075%	47.740	47.070
3 19:58:45	51.430	47.090	51.670	0.000	0.000	50.400	50.300	118.512%	50.220	50.370
X	51.320	46.390	51.950	0.000	0.000	50.710	50.370	120.590%	49.850	49.630
σ	1.783	1.738	1.789	0.000	0.000	1.336	2.071	2.309%	1.941	2.277
%RSD	3.475	3.746	3.444	0.000	0.000	2.634	4.111	1.914	3.894	4.588
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:56:35	51.810	114.905%	50.300	50.720	0.409	50.230	50.370	50.990	50.810	112.941%
2 19:57:40	48.160	118.647%	46.810	47.310	0.414	47.050	47.250	47.480	47.280	116.439%
3 19:58:45	50.470	113.630%	49.500	49.320	0.385	49.090	49.150	49.470	49.370	112.479%
X	50.150	115.727%	48.870	49.120	0.403	48.790	48.920	49.310	49.150	113.953%
σ	1.843	2.608%	1.825	1.713	0.016	1.614	1.573	1.759	1.774	2.165%
%RSD	3.675	2.253	3.734	3.487	3.876	3.307	3.216	3.567	3.610	1.900
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 19:56:35	50.970	50.280	50.560	54.870	108.336%	107.649%	51.490	50.620	51.720	51.590
2 19:57:40	47.610	47.100	47.150	49.810	111.127%	110.077%	48.940	48.190	47.810	48.580
3 19:58:45	49.750	49.620	49.590	51.550	107.665%	106.538%	50.670	50.330	50.490	50.170
X	49.440	49.000	49.100	52.070	109.042%	108.088%	50.370	49.710	50.000	50.110
σ	1.703	1.681	1.760	2.570	1.836%	1.810%	1.300	1.328	2.000	1.506
%RSD	3.443	3.430	3.585	4.935	1.684	1.674	2.581	2.671	4.001	3.006
Run Time	208Pb	209Bi	220Bkg	238U	1.004	1.074	2.301	2.071	4.001	3.000
itan iiile	ppb	ppb	ppb	ppb						
1 19:56:35	51.330	103.323%	0.000	0.000						
2 19:57:40	48.220	105.323%	0.000	0.000						
3 19:58:45	50.430	103.080%	0.000	0.000						
X 19.36.45	49.990	103.080%		0.000						
			0.000							
σ , , , , , , , , , , , , , , , , , , ,	1.598	2.054%	0.000	0.000						
%RSD	3.197	1.967	0.000	0.000						

ccb 5/7/2011 19:59:48

	Time a		9Be	100	11B	120	22No	OEM#	2/14~	27.41	37CI
Run	Time	6Li	-	10B		13C	23Na	25Mg	26Mg	27AI	
1	20:00:53	ppb 103.210%	ppb -0.002	ppb 3.615	ppb 4.121	ppb 0.000	ppb 198.200	ppb 9.007	ppb 9.075	ppb 3.486	ppb <u>⊤ 0.000</u>
2	20:00:53	103.210%	-0.002	3.144	3.346	0.000	149.700	2.911	3.469	2.260	<u>1 0.000</u>
3	20:03:03	103.841%	-0.133	2.083	2.733	0.000	127.800	2.388	3.107	2.107	<u>T 0.000</u>
X		103.928%	-0.089	2.948	3.400	0.000	158.600	4.768	5.217	2.618	<u>т 0.000</u>
σ		0.766%	0.076	0.785	0.696	0.000	36.030	3.680	3.346	0.756	<u>т 0.000</u>
%RSD		0.737	84.730	26.620	20.450	0.000	22.720	77.170	64.140	28.870	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	00.00.50	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:00:53	-2.510	-8.961	-4.826	113.987%	-0.300	-0.025	0.130	-0.749	148.700	0.756
2	20:01:58	-1.021	-17.510	-11.810	116.843%	-0.501	-0.206	0.029	0.628	167.200	0.118
3	20:03:03	-1.502	-17.740	-13.440	116.565%	-0.501	-0.241	0.063	0.323	174.100	0.097
X		-1.678	-14.740	-10.030	115.799%	-0.434	-0.158	0.074	0.067	163.300	0.324
σ		0.760	5.004	4.577	1.575%	0.116	0.116	0.051	0.723	13.140	0.375
%RSD		45.290	33.950	45.650	1.360	26.680	73.690	69.360	1076.000	8.047	115.700
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:00:53	<u> </u>	29.200	0.062	0.205	71.270	2.896	-0.181	-0.439	-0.202	-0.387
2	20:01:58	13.130	16.980	-0.076	0.097	63.680	2.482	-0.329	-0.521	-0.275	-0.583
3	20:03:03	10.660	14.380	-0.081	-0.008	53.880	2.051	-0.324	-0.535	-0.278	-0.646
X		<u>т 22.820</u>	20.190	-0.032	0.098	62.940	2.476	-0.278	-0.498	-0.252	-0.539
σ		<u>т 18.960</u>	7.911	0.081	0.106	8.717	0.423	0.084	0.052	0.043	0.135
%RSD		<u>т 83.080</u>	39.190	255.400	108.700	13.850	17.080	30.240	10.410	17.220	25.050
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:00:53	-0.112	-4.162	1.271	0.000	0.000	-0.342	0.118	111.541%	-0.072	0.005
2	20:01:58	-0.181	-3.048	0.915	0.000	0.000	-0.524	-0.106	112.514%	-0.189	-0.132
3	20:03:03	-0.250	-2.968	0.751	0.000	0.000	-0.543	-0.136	114.083%	-0.226	-0.177
X		-0.181	-3.393	0.979	0.000	0.000	-0.469	-0.042	112.712%	-0.163	-0.102
σ		0.069	0.667	0.266	0.000	0.000	0.111	0.139	1.283%	0.081	0.095
%RSD		38.290	19.670	27.130	0.000	0.000	23.660	333.700	1.138	49.590	93.360
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	00.00.50	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:00:53	0.062	107.679%	0.663	0.456	0.172	0.122	0.476	0.092	0.103	105.963%
2	20:01:58	-0.070	110.376%	0.131	0.355	0.193	-0.072	0.378	-0.053	-0.034	106.396%
3	20:03:03	-0.105	111.033%	-0.125	0.333	0.208	-0.096	0.370	-0.072	-0.044	107.839%
X		-0.038	109.696%	0.223	0.381	0.191	-0.015	0.408	-0.011	0.008	106.733%
σ		0.088	1.777%	0.402	0.065	0.018	0.120	0.059	0.089	0.082	0.982%
%RSD		233.800	1.620	180.100	17.140	9.663	777.800	14.400	798.300	1010.000	0.920
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
1	20.00.52	ppb 0.011	ppb	ppb 0.700	ppb	ppb	ppb	ppb 0.317	ppb	ppb 0.157	ppb 0.174
1	20:00:53	-0.011	0.863	0.799	0.320	100.798%	99.560%	0.217	0.454	0.156	0.174
2		-0.149	0.502	0.461	0.039	102.232%	102.080%	0.102	0.345	0.004	0.017
3	20:03:03	-0.155	0.376	0.313	-0.048	103.618%	102.354%	0.106	0.334	-0.022	-0.021
X		-0.105	0.580	0.525	0.104	102.216%	101.331%	0.142	0.378	0.046	0.057
σ		0.082	0.253	0.249	0.193	1.410%	1.540%	0.065	0.066	0.096	0.104
%RSD	 	77.890	43.580	47.520	185.300	1.379	1.520	45.910	17.560	208.900	182.100
Run	Time	208Pb	209Bi	220Bkg	238U						
-	20.00.52	ppb	ppb	ppb	ppb						
1	20:00:53	0.220	96.660%	0.000	0.000						
2	20:01:58	0.068	99.970%	0.000	0.000						
3	20:03:03	0.040	100.121%	0.000	0.000						
X		0.109	98.917%	0.000	0.000						
σ		0.097	1.956%	0.000	0.000						
%RSD	l	88.740	1.977	0.000	0.000						

t74672-35f 5/7/2011 20:04:07

User Pre-dilution: 1.00	0									
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:05:12	91.276%	-0.139	м 120.800	м 119.300	0.000	тм 39240.000	м 4568.000	м 4581.000	34.340	<u> </u>
2 20:06:18	96.225%	-0.113	м 115.800	м 118.500	0.000	тм 37490.000	м 4339.000	м 4344.000	32.130	<u> </u>
3 20:07:22	97.820%	-0.122	м 117.000	м 114.100	0.000	тм 36960.000	м 4288.000	м 4311.000	31.120	⊤ 0.000
X	95.107%	-0.125	м 117.800	м 117.300	0.000	тм 37900.000	м 4398.000	м 4412.000	32.530	т 0.000
		0.013			0.000			м 147.600		· · · · · · · · · · · · · · · · · · ·
σ %RSD	3.412%		м 2.596	м 2.804		тм 1196.000	м 149.000		1.649	<u>т 0.000</u>
	3.588	10.620	м 2.203	м 2.390	0.000	<u>тм 3.155</u>	м 3.388	м 3.344	5.070	<u>T 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
4 00 05 40	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:05:12	тм 5701.000	м 42690.000	тм 48320.000	100.421%	-0.185	2.811	0.084	0.389	113.300	6.553
2 20:06:18	<u>тм 5541.000</u>	м 40830.000	тм 46330.000	105.266%	-0.198	2.652	0.005	0.908	130.700	6.243
3 20:07:22	тм 5448.000	м 39860.000	тм 45230.000	108.569%	-0.185	2.395	0.036	0.972	157.100	6.149
X	тм 5563.000	м 41120.000	тм 46620.000	104.752%	-0.189	2.619	0.042	0.756	133.700	6.315
σ	тм 127.900	м 1439.000	тм 1571.000	4.098%	0.007	0.210	0.040	0.319	22.070	0.211
%RSD	тм 2.299	м 3.500	тм 3.368	3.913	3.933	7.998	95.040	42.220	16.500	3.342
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb
1 20:05:12	62.120	132.700	-0.267	1.389	48.280	3.452	1.288	37.570	37.460	38.550
2 20:06:18	52.490	119.200	-0.275	1.376	41.880	3.020	1.312	35.220	35.620	36.420
3 20:07:22	50.770	113.800	-0.274	1.298	33.720	2.764	1.206	34.940	35.710	35.610
X 20.07.22	55.130	121.900	-0.274	1.354	41.300	3.079	1.269	35.910	36.260	36.860
σ	6.116	9.750	0.005	0.049	7.298	0.348	0.056	1.443	1.039	1.520
%RSD	11.090	7.999	1.665	3.645	17.670	11.300	4.416	4.018	2.866	4.123
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 20 05 10	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:05:12	0.221	-3.931	0.875	0.000	0.000	-0.228	тм 402.200	98.941%	2.474	2.664
2 20:06:18	0.362	-4.327	0.587	0.000	0.000	-0.165	<u>тм 378.700</u>	104.365%	2.449	2.490
3 20:07:22	0.133	-1.627	0.630	0.000	0.000	-0.260	тм 370.600	107.311%	2.413	2.397
X	0.239	-3.295	0.697	0.000	0.000	-0.217	тм 383.800	103.539%	2.445	2.517
σ	0.115	1.458	0.156	0.000	0.000	0.048	тм 16.410	4.246%	0.031	0.136
%RSD	48.240	44.240	22.300	0.000	0.000	22.280	тм 4.277	4.100	1.258	5.393
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:05:12	2.669	93.261%	-2.288	0.328	0.368	0.208	0.370	-0.128	-0.088	94.522%
2 20:06:18	2.469	97.817%	-2.044	0.322	0.353	0.220	0.360	-0.147	-0.084	99.367%
3 20:07:22	2.450	101.209%	-1.970	0.328	0.341	0.108	0.366	-0.121	-0.080	102.143%
X	2.529	97.429%	-2.100	0.326	0.354	0.179	0.365	-0.132	-0.084	98.677%
σ	0.122	3.988%	0.167	0.003	0.014	0.061	0.005	0.013	0.004	3.857%
Run Time	4.803 118Sn	4.093 121Sb	7.928 123Sb	0.971 137Ba	3.869 159Tb	34.380	1.444 203TI	10.050	4.690 206Pb	3.909 207Pb
Run Time						165Ho		205TI		
1 20 05 12	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:05:12	-0.158	0.481	0.410	70.500	94.538%	94.366%	0.062	0.300	0.140	0.139
2 20:06:18	-0.167	0.397	0.335	67.900	98.248%	98.728%	0.053	0.292	0.149	0.126
3 20:07:22	-0.162	0.344	0.305	64.620	101.312%	100.634%	0.049	0.289	0.141	0.124
X	-0.163	0.407	0.350	67.670	98.033%	97.909%	0.055	0.293	0.144	0.130
σ	0.004	0.069	0.054	2.950	3.392%	3.213%	0.006	0.006	0.005	0.008
%RSD	2.731	16.990	15.390	4.359	3.460	3.281	11.740	2.032	3.568	6.345
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 20:05:12	0.203	89.886%	0.000	0.000						
2 20:06:18	0.195	93.589%	0.000	0.000						
3 20:07:22	0.192	95.598%	0.000	0.000						
X	0.197	93.024%	0.000	0.000						
σ	0.005	2.898%	0.000	0.000						
%RSD	2.720	3.115	0.000	0.000						
701.00	2.720	5.115	0.000	0.000						

t74672-36f 5/7/2011 20:08:25

user Pre-	allution: 1.00	U									
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:09:30	97.923%	-0.136	м 119.700	м 118.500	0.000	тм 37770.000	м 4367.000	м 4375.000	29.050	<u>т 0.000</u>
2	20:10:35	99.598%	-0.132	м 117.200	м 117.600	0.000	тм 37490.000	м 4345.000	м 4354.000	28.770	<u>т 0.000</u>
3	20:11:40	100.818%	-0.123	м 113.400	м 117.400	0.000	тм 36870.000	м 4262.000	м 4278.000	28.130	<u>т 0.000</u>
Х		99.446%	-0.130	м 116.800	м 117.800	0.000	тм 37380.000	м 4325.000	м 4336.000	28.650	т 0.000
σ		1.454%	0.006	м 3.154	м 0.577	0.000	тм 460.100	м 55.410	м 51.130	0.474	т 0.000
%RSD		1.462	4.829	м 2.701	м 0.490	0.000	тм 1.231	м 1.281	м 1.179	1.654	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:09:30	тм 5532.000	м 40390.000	тм 45740.000	112.574%	-0.333	2.699	0.062	0.614	183.000	6.126
2	20:10:35	тм 5550.000	м 40360.000	тм 45560.000	113.328%	-0.383	2.307	0.021	0.853	205.500	6.027
3	20:11:40	тм 5476.000	м 39710.000	тм 44960.000	113.040%	-0.407	2.312	-0.013	0.943	218.500	5.960
X		тм 5519.000	м 40160.000	тм 45420.000	112.980%	-0.375	2.439	0.023	0.804	202.300	6.038
σ		тм 38.360	м 383.600	тм 407.600	0.380%	0.038	0.225	0.038	0.170	17.920	0.084
%RSD		тм 0.695	м 0.955	тм 0.897	0.337	10.060	9.206	160.300	21.160	8.858	1.389
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
Ruii	Tillic	ppb	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:09:30	40.300	104.200	-0.277	1.432	27.190	2.415	1.307	36.180	36.780	37.090
2	20:10:35	39.550	100.600	-0.274	1.251	24.500	2.328	1.226	35.710	36.680	37.010
3	20:11:40	37.290	99.770	-0.276	1.254	21.020	2.216	1.175	35.770	37.170	36.420
X	20.11.40	39.040	101.500	-0.276	1.312	24.240	2.320	1.236	35.890	36.880	36.840
		1.569	2.334	0.001	0.104	3.097	0.100	0.066	0.256	0.259	0.368
σ %RSD		4.019	2.299	0.533	7.900	12.780	4.306	5.379	0.230	0.234	1.000
Run	Time	75As	77Se	78Se	7. 9 00 79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
Ruii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:09:30	0.190	0.862	0.677	0.000	0.000	-0.144	тм 378.300	109.534%	2.392	2.477
2	20:10:35	0.293	1.446	0.462	0.000	0.000	-0.132	тм 375.700	110.574%	2.423	2.387
3	20:11:40	0.245	3.295	0.543	0.000	0.000	-0.059	тм 372.700	109.276%	2.423	2.307
	20.11.40	0.256	1.868	0.561		0.000	-0.112		109.795%	2.393	2.389
X					0.000			тм 375.500			
σ %RSD		0.058	1.270	0.109	0.000	0.000	0.046	<u>тм 2.778</u>	0.687%	0.029	0.087
	Time o	22.590	68.010	19.390	0.000	0.000	41.500	<u>тм 0.740</u>	0.626	1.227	3.640
Run	Time	98Mo ppb	103Rh ppb	106Cd ppb	107Ag ppb	108Mo O ppb	108Cd ppb	109Ag ppb	111Cd ppb	114Cd	115I n ppb
1	20:09:30	2.520	102.985%	-1.670	0.323	0.310	-0.046	0.363	-0.115	ppb -0.052	104.560%
2	20:10:35	2.320	103.993%	-1.070	0.323	0.310	0.028	0.360	-0.115	-0.032	104.300%
	20:10:33										
3	20.11.40	2.589 2.528	103.161% 103.380%	-2.410 -1.704	0.323 0.320	0.360 0.315	-0.021 -0.013	0.355 0.360	-0.129	-0.083 -0.052	105.330% 105.056%
X									-0.110		
σ %RSD		0.058 2.289	0.538% 0.521	0.690	0.006	0.043	0.038	0.004	0.022	0.030	0.430% 0.410
Run	Time	118Sn	121Sb	40.470 123Sb	1. 797 137Ba	13.630 159Tb	287.000 165Ho	1.069 203TI	20.150 205TI	58.030 206Pb	207Pb
Ruii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:09:30	-0.162	0.258	0.209	66.940	103.488%	103.381%	0.040	0.279	0.127	0.139
2		-0.185	0.235	0.198	66.700	103.480%	104.003%	0.040	0.279	0.127	0.137
3	20:10:33	-0.176	0.243	0.202	65.450	103.447 %	104.003%	0.042	0.278	0.127	0.118
=	20.11.40	-0.174				103.888%	103.842%		0.277	0.129	0.128
X			0.252	0.203	66.360			0.040			
σ %RSD		0.012	0.007	0.005	0.801	0.358%	0.405% 0.390	0.001	0.001	0.001	0.010 8.113
	Time	6.833	2.654	2.586	1.207	0.345	0.390	3.277	0.239	0.632	8.113
Run	Time	208Pb	209Bi ppb	220Bkg	238U ppb						
1	20:09:30	ppb 0.186	96.844%	ppb 0.000	0.000						
2	20:10:35	0.180	98.234%		0.000						
3	20:10:35			0.000							
	20:11:40	0.180	97.013%	0.000	0.000						
X		0.182	97.364%	0.000	0.000						
σ		0.003	0.758%	0.000	0.000						
%RSD		1.892	0.779	0.000	0.000						

t74672-37f 5/7/2011 20:12:43

User Pre-allution: 1.00	00									
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:13:48	99.710%	-0.110	м 114.300	м 114.900	0.000	тм 36950.000	м 4270.000	м 4302.000	27.870	⊤ 0.000
2 20:14:53	97.272%	-0.153	м 117.300	м 119.500	0.000	тм 37760.000	м 4387.000	м 4408.000	28.600	<u> </u>
3 20:15:58	97.143%	-0.127	м 117.800	м 117.400	0.000	тм 37170.000	м 4312.000	м 4351.000	28.060	т 0.000
x	98.041%	-0.130	м 116.400	м 117.300	0.000	тм 37290.000	м 4323.000	м 4354.000	28.170	<u>т 0.000</u>
σ	1.446%	0.022	м 1.887	м 2.279	0.000	тм 416.800	<u>м 59.210</u>	м 52.710	0.380	<u>т 0.000</u>
%RSD	1.475	16.920	м 1.620	м 1.943	0.000	<u>тм 1.118</u>	м 1.370	<u>м 1.211</u>	1.347	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:13:48	тм 5471.000	м 40460.000	тм 45700.000	108.312%	-0.411	2.193	0.085	-0.500	251.000	6.091
2 20:14:53	тм 5551.000	м 41230.000	тм 46520.000	105.913%	-0.446	2.432	0.099	-0.136	257.400	6.120
3 20:15:58	тм 5476.000	м 40540.000	тм 45700.000	105.984%	-0.388	2.480	0.089	0.222	265.200	6.026
X	тм 5499.000	м 40740.000	тм 45970.000	106.736%	-0.415	2.368	0.091	-0.138	257.900	6.079
σ	тм 44.730	м 422.400	тм 470.800	1.365%	0.029	0.154	0.007	0.361	7.145	0.048
%RSD	тм 0.813	м 1.037	тм 1.024	1.279	7.064	6.485	7.932	261.900	2.771	0.786
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
•	ppb	ppb	ppb	dqq	ppb	dqq	ppb	dqq	ppb	ppb
1 20:13:48	35.630	98.200	-0.280	1.081	17.480	1.912	1.112	34.920	36.010	35.570
2 20:14:53	37.060	100.100	-0.283	1.219	16.750	1.852	1.095	35.330	36.640	36.200
3 20:15:58	35.050	99.300	-0.287	1.297	15.510	1.835	1.063	34.800	36.500	36.700
X 20.15.56	35.030	99.300	-0.283	1.199	16.580	1.866	1.090	35.020	36.380	36.760
σ	1.034	0.954	0.004	0.109	0.998	0.041	0.025	0.276	0.332	0.565
%RSD	2.878	0.962	1.302	9.113	6.018	2.178	2.280	0.788	0.914	1.561
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:13:48	0.112	6.439	0.355	0.000	0.000	-0.153	тм 377.000	106.038%	2.486	2.471
2 20:14:53	0.311	7.077	0.344	0.000	0.000	-0.068	тм 379.700	104.919%	2.508	2.371
3 20:15:58	0.211	8.687	0.382	0.000	0.000	-0.122	тм 382.600	102.416%	2.484	2.466
X	0.211	7.401	0.360	0.000	0.000	-0.114	тм 379.800	104.458%	2.493	2.436
σ	0.100	1.159	0.019	0.000	0.000	0.043	тм 2.775	1.855%	0.014	0.056
%RSD	47.200	15.660	5.392	0.000	0.000	37.700	тм 0.731	1.775	0.544	2.318
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:13:48	2.481	100.777%	-1.890	0.315	0.341	0.186	0.360	-0.119	-0.076	101.698%
2 20:14:53	2.605	99.100%	-1.630	0.321	0.322	0.164	0.358	-0.135	-0.068	100.331%
3 20:15:58	2.501	97.848%	-1.705	0.312	0.316	0.009	0.362	-0.116	-0.076	99.513%
X	2.529	99.242%	-1.742	0.312	0.327	0.120	0.360	-0.113	-0.074	100.514%
σ	0.067	1.470%	0.134	0.005	0.013	0.096	0.002	0.010	0.005	1.104%
%RSD	2.632	1.481	7.696	1.444	3.935	80.470	0.471	8.145	6.687	1.099
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
1 00 10 10	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:13:48	-0.194	0.223	0.188	66.750	101.423%	100.870%	0.044	0.274	0.127	0.108
2 20:14:53	-0.187	0.243	0.196	66.930	100.080%	99.499%	0.034	0.274	0.125	0.111
3 20:15:58	-0.197	0.215	0.152	67.610	99.867%	99.445%	0.027	0.274	0.125	0.131
X	-0.193	0.227	0.179	67.100	100.457%	99.938%	0.035	0.274	0.126	0.117
σ	0.005	0.014	0.023	0.452	0.843%	0.807%	0.009	0.000	0.001	0.012
%RSD	2.627	6.216	12.860	0.674	0.840	0.808	24.420	0.145	0.682	10.610
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 20:13:48	0.174	95.307%	0.000	0.000						
2 20:14:53	0.176	94.066%	0.000	0.000						
3 20:15:58	0.183	93.837%	0.000	0.000						
X	0.178	94.403%	0.000	0.000						
	0.005	0.791%	0.000	0.000						
σ « psp	2.789	0.791%								
%RSD	2.789	0.838	0.000	0.000						

t74672-38f 5/7/2011 20:17:01

User Pre-dilution: 1.00 Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	dqq	ppb	ppb	dqq	ppb	dqq	dqq	ppb	ppb	dqq
1 20:18:06	97.864%	-0.145	м 115.300	м 118.300	0.000	тм 36830.000	м 4265.000	м 4268.000	28.210	⊤ 0.000
2 20:19:11	98.398%	-0.149	м 113.300	м 116.100	0.000	тм 36780.000	м 4250.000	м 4272.000	28.340	<u> 7 0.000</u>
3 20:20:16	95.576%	-0.140	м 120.900	м 119.100	0.000	тм 37390.000	м 4325.000	м 4339.000	28.710	T 0.000
X	97.280%	-0.144	м 116.500	м 117.800	0.000	тм 37000.000	м 4280.000	м 4293.000	28.420	т 0.000
σ	1.499%	0.005	м 3.974	м 1.562	0.000	тм 340.300	м 39.670	м 40.130	0.260	т 0.000
%RSD	1.541	3.249	м 3.411	м 1.326	0.000	тм 0.920	м 0.927	м 0.935	0.913	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CIO	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:18:06	тм 5464.000	м 39900.000	тм 45340.000	103.495%	-0.356	2.638	0.132	1.405	275.300	6.026
2 20:19:11	TM 5441.000	м 40010.000	тм 45520.000	102.521%	-0.347	2.513	0.086	1.140	288.100	6.016
3 20:20:16	тм 5494.000	м 40390.000	тм 45770.000	101.325%	-0.338	2.878	0.128	1.234	288.400	6.104
X	тм 5466.000	м 40100.000	тм 45540.000	102.447%	-0.347	2.676	0.115	1.260	283.900	6.049
σ	тм 26.690	м 255.800	_{TM} 214.100	1.087%	0.009	0.186	0.025	0.135	7.486	0.048
%RSD	<u>тм 0.488</u>	м 0.638	тм 0.470	1.061	2.693	6.943	21.920	10.690	2.637	0.797
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 20:10:04	ppb 22.700	ppb 06.520	ppb	ppb	ppb 14,000	ppb 2.705	ppb 1 025	ppb 24.060	ppb	ppb
1 20:18:06 2 20:19:11	33.790 33.360	96.530 96.490	-0.278 -0.287	1.114 1.133	14.990 14.040	2.795 2.679	1.935 1.951	34.960 34.740	35.250 35.180	36.090 36.260
3 20:20:16	33.360	96.490	-0.269	1.133	12.950	2.746	2.092	34.740	35.180	35.860
X 20.20.16	33.800	96.530	-0.278	1.117	13.990	2.740	1.993	34.980	35.940	36.070
σ	0.443	0.041	0.009	0.010	1.018	0.058	0.086	0.252	1.266	0.198
%RSD	1.311	0.041	3.123	0.010	7.274	2.125	4.320	0.252	3.522	0.198
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	dqq	ppb	ppb	ppb
1 20:18:06	0.383	9.284	0.081	0.000	0.000	-0.046	тм 376.800	101.907%	2.427	2.512
2 20:19:11	0.248	10.620	0.144	0.000	0.000	-0.209	тм 378.800	100.651%	2.523	2.541
3 20:20:16	0.201	12.140	0.128	0.000	0.000	-0.113	тм 380.500	100.431%	2.374	2.443
X	0.277	10.680	0.117	0.000	0.000	-0.122	тм 378.700	100.996%	2.441	2.499
σ	0.094	1.430	0.033	0.000	0.000	0.082	тм 1.856	0.796%	0.076	0.050
%RSD	33.960	13.390	27.990	0.000	0.000	67.070	<u>тм 0.490</u>	0.788	3.098	2.013
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:18:06	2.534	97.126%	-1.911	0.324	0.326	-0.043	0.356	-0.132	-0.073	98.641%
2 20:19:11	2.496	95.568%	-0.476	0.319	0.231	-0.069	0.359	-0.020	0.018	98.444%
3 20:20:16	2.507	94.110%	-1.836	0.332	0.326	0.040	0.357	-0.108	-0.057	96.663%
X	2.512	95.601%	-1.408	0.325	0.294	-0.024	0.357	-0.087	-0.037	97.916%
σ	0.019	1.509%	0.808	0.007	0.055	0.057	0.001	0.059	0.048	1.089%
Run Time	0.768 118Sn	1.578 121Sb	57.390 123Sb	2.070 137Ba	18.740 159Tb	237.700 165Ho	0.368 203TI	68.150 205TI	130.100 206Pb	1.113 207Pb
Kuii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:18:06	-0.193	0.254	0.182	65.440	99.333%	99.416%	0.034	0.275	0.139	0.107
2 20:19:11	-0.187	0.257	0.201	66.090	97.779%	97.443%	0.037	0.273	0.129	0.120
3 20:20:16	-0.190	0.241	0.225	67.120	98.255%	98.432%	0.033	0.274	0.125	0.132
X	-0.190	0.251	0.203	66.220	98.456%	98.430%	0.034	0.274	0.131	0.120
σ	0.003	0.009	0.022	0.845	0.796%	0.987%	0.002	0.001	0.007	0.013
%RSD	1.529	3.434	10.630	1.276	0.809	1.003	5.882	0.342	5.380	10.490
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 20:18:06	0.182	94.344%	0.000	0.000						
2 20:19:11	0.182	93.584%	0.000	0.000						
3 20:20:16	0.184	92.462%	0.000	0.000						
Х	0.183	93.463%	0.000	0.000						
σ	0.001	0.946%	0.000	0.000						
%RSD	0.702	1.013	0.000	0.000						

t74672-40f 5/7/2011 20:21:19

	-dilution: 1.00										
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:22:24	82.490%	-0.080	м 175.400	м 179.700	0.000	тм 604100.000	тм 53090.000	тм 52260.000	3.617	<u>T 0.000</u>
2	20:23:29	81.953%	-0.075	м 186.500	м 190.300	0.000	тм 627300.000	тм 55590.000	<u>тм 54670.000</u>	3.425	<u>T 0.000</u>
3	20:24:34	86.754%	-0.044	м 175.200	м 180.200	0.000	тм 598200.000	тм 52900.000	тм 52140.000	3.500	<u>T 0.000</u>
X		83.732%	-0.066	м 179.000	м 183.400	0.000	тм 609900.000	тм 53860.000	тм 53020.000	3.514	<u>т 0.000</u>
σ		2.631%	0.019	м 6.466	<u>м 5.959</u>	0.000	тм 15400.000	тм 1502.000	тм 1426.000	0.097	<u>т 0.000</u>
%RSD		3.142	28.850	м 3.611	м 3.250	0.000	<u>тм 2.525</u>	тм 2.790	<u>тм 2.689</u>	2.755	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:22:24	тм 6119.000	м 77630.000	тм 86290.000	119.260%	2.851	0.237	0.027	0.270	54.470	тм 4944.000
2	20:23:29	тм 6334.000	м 80360.000	тм 88880.000	122.883%	3.014	0.411	0.091	0.729	48.330	тм 5140.000
3	20:24:34	тм 6112.000	м 77480.000	тм 86080.000	125.953%	2.857	0.280	0.039	0.743	49.410	тм 4957.000
X		тм 6188.000	м 78490.000	тм 87080.000	122.699%	2.907	0.309	0.053	0.581	50.740	тм 5014.000
σ		тм 126.600	м 1620.000	тм 1561.000	3.350%	0.092	0.091	0.034	0.269	3.277	тм 109.400
%RSD		тм 2.046	м 2.064	тм 1.793	2.730	3.169	29.260	64.630	46.370	6.459	тм 2.182
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:22:24	тм 87520.000	тм 97410.000	0.562	0.239	24.960	4.122	0.264	0.146	33.040	25.290
2	20:23:29	тм 91860.000	тм 102100.000	0.612	0.227	25.090	4.212	0.293	0.144	35.470	26.770
3	20:24:34	тм 88810.000	тм 98770.000	0.556	0.200	27.200	4.176	0.244	0.170	34.820	26.330
Х		тм 89390.000	тм 99430.000	0.577	0.222	25.750	4.170	0.267	0.153	34.440	26.130
σ		тм 2225.000	тм 2413.000	0.031	0.020	1.257	0.045	0.025	0.014	1.259	0.759
%RSD		тм 2.489	тм 2.427	5.322	9.040	4.881	1.081	9.306	9.454	3.655	2.904
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:22:24	0.976	-1.270	0.231	0.000	0.000	1.658	тм 816.700	101.941%	0.066	0.089
2	20:23:29	0.976	-0.030	0.579	0.000	0.000	1.883	тм 859.800	101.902%	0.118	0.107
3	20:24:34	0.958	-1.284	0.207	0.000	0.000	1.709	тм 818.600	106.058%	0.062	0.140
X		0.970	-0.861	0.339	0.000	0.000	1.750	тм 831.700	103.300%	0.082	0.112
σ		0.010	0.720	0.208	0.000	0.000	0.118	тм 24.360	2.389%	0.031	0.026
%RSD		1.078	83.580	61.470	0.000	0.000	6.749	тм 2.929	2.312	38.150	23.350
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
Itan	Tillic	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:22:24	0.130	90.228%	-3.468	0.321	0.432	0.046	0.358	-0.278	-0.187	93.378%
2	20:23:29	0.163	90.342%	-3.485	0.318	0.440	0.132	0.355	-0.288	-0.192	92.268%
3	20:24:34	0.150	93.148%	-4.313	0.327	0.492	0.124	0.352	-0.337	-0.225	95.949%
X	20.24.34	0.130	91.239%	-3.755	0.327	0.455	0.100	0.355	-0.301	-0.202	93.865%
		0.016	1.654%	0.483	0.005	0.433	0.048	0.003	0.032	0.020	1.889%
σ %RSD		11.140	1.813	12.870	1.430	7.221	47.400	0.003	10.480	10.150	2.012
Run	Time	11.140 118Sn	121Sb	12.870 123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
Run	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:22:24	-0.206	-0.024	-0.058	тм 1456.000	97.051%	97.950%	0.020	0.260	-0.026	-0.028
	20:23:29	-0.200	-0.024	-0.068	тм 1526.000	96.363%	96.685%	0.020	0.259	-0.024	-0.024
3	20:24:34	-0.193	-0.023	-0.066	тм 1468.000	98.590%	99.674%	0.022	0.259	-0.024	-0.024
	20.24.34				тм 1483.000	97.335%					
Х		-0.197	-0.025	-0.066			98.103%	0.021	0.259	-0.024	-0.023
σ		0.007	0.002	0.008	<u>тм 37.400</u>	1.140%	1.500%	0.001	0.000	0.002	0.005
%RSD	T'	3.689	8.196	12.030	<u>тм 2.521</u>	1.171	1.529	6.215	0.189	8.312	23.420
Run	Time	208Pb	209Bi	220Bkg	238U						
1	20.22.24	ppb	ppb	ppb 0,000	ppb						
1	20:22:24	0.033	86.408%	0.000	0.000						
2		0.034	85.601%	0.000	0.000						
3	20:24:34	0.036	87.157%	0.000	0.000						
X		0.034	86.389%	0.000	0.000						
σ		0.002	0.778%	0.000	0.000						
%RSD		5.210	0.901	0.000	0.000						

t74672-41f 5/7/2011 20:25:37

user Pre-dilution											
Run Ti	ime	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:26	5:42	84.116%	-0.054	м 186.100	м 197.800	0.000	тм 710500.000	тм 63710.000	тм 63220.000	4.273	<u>T 0.000</u>
2 20:27	7:47	86.767%	-0.098	м 182.400	м 194.000	0.000	тм 694100.000	тм 62340.000	тм 61680.000	4.211	T 0.000
3 20:28	3.52	87.652%	-0.078	м 182.600	м 191.600	0.000	тм 684700.000	тм 61100.000	тм 60760.000	4.188	т 0.000
X	J. U.	86.178%	-0.077	м 183.700	м 194.500	0.000	тм 696400.000	тм 62380.000	тм 61890.000	4.224	<u>т 0.000</u>
σ		1.840%	0.022	м 2.101	м 3.122	0.000	тм 13060.000	тм 1302.000	тм 1239.000	0.044	<u>т 0.000</u>
%RSD		2.135	28.210	м 1.144	м 1.605	0.000	<u>тм 1.875</u>	<u>тм 2.086</u>	тм 2.002	1.035	<u>т 0.000</u>
Run Ti	ime	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:26	5:42	тм 8224.000	м 108100.000	тм 120100.000	0.000	4.428	0.361	0.277	0.695	66.170	тм 6577.000
2 20:27	7:47	тм 8077.000	м 105000.000	<u>тм 117100.000</u>	0.000	4.064	0.401	0.302	0.729	64.300	тм 6419.000
3 20:28	3:52	тм 8001.000	м 103800.000	тм 115800.000	0.000	4.238	0.309	0.285	0.446	66.590	тм 6291.000
Х		тм 8101.000	м 105700.000	тм 117700.000	0.000	4.243	0.357	0.288	0.623	65.680	тм 6429.000
σ		тм 113.000	м 2232.000	тм 2230.000	0.000	0.182	0.046	0.013	0.154	1.219	тм 143.400
%RSD		тм 1.395	м 2.113	тм 1.895	0.000	4.292	12.930	4.502	24.730	1.856	тм 2.231
	ime	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
itan ii		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:26	5:42	тм 114200.000	тм 126300.000	0.794	0.387	39.070	6.172	1.006	0.488	42.980	32.060
2 20:27		тм 112100.000	тм 124100.000	0.766	0.429	41.010	6.197	1.111	0.416	42.790	30.680
3 20:28	3:52	тм 109600.000	тм 121800.000	0.769	0.559	47.530	6.414	0.992	0.407	41.920	31.490
X		тм 112000.000	тм 124000.000	0.776	0.458	42.530	6.261	1.036	0.437	42.560	31.410
σ		тм 2321.000	тм 2257.000	0.016	0.090	4.430	0.133	0.065	0.045	0.566	0.691
%RSD		тм 2.073	<u>тм 1.819</u>	2.021	19.610	10.420	2.127	6.263	10.200	1.329	2.198
Run Ti	ime	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:26	5:42	1.017	2.379	1.182	0.000	0.000	1.536	тм 867.500	104.148%	0.059	0.099
2 20:27	7:47	1.168	1.474	1.056	0.000	0.000	1.527	тм 846.300	107.238%	0.029	0.075
3 20:28		1.132	1.723	1.266	0.000	0.000	1.745	тм 834.400	108.228%	0.060	0.092
X	J. U.	1.106	1.859	1.168	0.000	0.000	1.603	тм 849.400	106.538%	0.050	0.089
σ		0.079	0.467	0.106	0.000	0.000	0.124	<u>тм 16.780</u>	2.128%	0.018	0.013
%RSD		7.120	25.140	9.058	0.000	0.000	7.711	<u>тм 1.976</u>	1.998	35.550	14.080
Run Ti	ime	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:26		0.138	90.150%	-5.355	0.321	0.543	-0.096	0.357	-0.382	-0.261	94.448%
2 20:27	7:47	0.160	94.430%	-4.765	0.315	0.511	-0.042	0.356	-0.354	-0.242	96.116%
3 20:28	3:52	0.175	94.826%	-3.992	0.332	0.463	0.012	0.355	-0.312	-0.208	98.667%
X		0.158	93.135%	-4.704	0.323	0.506	-0.042	0.356	-0.349	-0.237	96.410%
σ		0.019	2.593%	0.683	0.009	0.040	0.054	0.001	0.035	0.026	2.125%
%RSD		11.900	2.784	14.520	2.673	7.955	128.000	0.339	10.050	11.160	2.204
Run Ti	ime	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	1	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:26	5:42	-0.187	-0.021	-0.079	тм 1515.000	97.377%	97.989%	0.020	0.259	-0.018	-0.016
2 20:27		-0.199	-0.057		тм 1480.000	98.830%	99.350%	0.020	0.258	-0.019	-0.021
3 20:28	_	-0.194	-0.037	-0.075		99.816%	100.424%	0.020	0.258	-0.019	-0.021
_ 	∠ر.ر				тм 1449.000						
X		-0.193	-0.037	-0.079	тм 1481.000	98.675%	99.254%	0.019	0.259	-0.020	-0.017
σ		0.006	0.018	0.005	тм 33.070	1.227%	1.220%	0.002	0.001	0.003	0.003
%RSD		3.061	49.210	6.127	<u>тм 2.233</u>	1.243	1.229	9.007	0.238	14.140	19.440
Run Ti	ime	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1 20:26	5:42	0.043	84.321%	0.000	0.000						
2 20:27	7:47	0.039	85.950%	0.000	0.000						
3 20:28	3:52	0.040	87.116%	0.000	0.000						
Х		0.041	85.796%	0.000	0.000						
σ		0.002	1.404%	0.000	0.000						
%RSD		5.171	1.636	0.000	0.000						
		5.171	1.000	0.000	0.000						

t74672-42f 5/7/2011 20:29:55

User Pre-dilution: 1.00		ODe	100	110	120	22110	25Me	2/Ma	27.41	27.01
Run Time	6Li ppb	9Be	10B	11B	13C ppb	23Na	25Mg ppb	26Mg ppb	27AI	37CI
1 20:31:00	87.999%	ppb -0.094	ррb м 182.700	ррb м 187.800	0.000	ppb ™ 682300.000	тм 60610.000	тм 60310.000	9pb 3.936	ppb <u>⊤ 0.000</u>
2 20:32:05	88.380%	-0.084	м 185.500	м 191.400	0.000	тм 694700.000	тм 61710.000	тм 61250.000	3.956	<u>T 0.000</u>
3 20:33:10	84.600%	-0.029	м 182.100	м 191.500	0.000	тм 695100.000	тм 62010.000	тм 61510.000	± 8.701	<u>т 0.000</u>
x	86.993%	-0.069	м 183.500	м 190.200	0.000	тм 690700.000	тм 61440.000	тм 61020.000	<u>т 5.531</u>	<u>т 0.000</u>
σ	2.081%	0.035	м 1.835	м 2.126	0.000	тм 7260.000	тм 735.000	тм 632.400	т 2.746	т 0.000
%RSD	2.392	50.280	<u>м 1.000</u>	<u>м 2.128</u> м 1.118	0.000	тм 1.051	тм 1.196	тм 1.036	т 49.640	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:31:00	тм 7811.000	м 106500.000	тм 118500.000	0.000	3.815	0.355	0.231	0.284	62.190	тм 6264.000
2 20:32:05	тм 7907.000	м 108800.000	тм 120900.000	0.000	3.954	0.429	0.274	0.848	61.220	тм 6385.000
3 20:33:10	тм 7970.000	м 109300.000	тм 122200.000	0.000	4.241	0.299	0.381	0.541	62.720	тм 6466.000
X	тм 7896.000	м 108200.000	тм 120600.000	0.000	4.003	0.361	0.295	0.558	62.040	тм 6372.000
σ	тм 80.240	м 1514.000	тм 1880.000	0.000	0.217	0.065	0.077	0.283	0.763	тм 102.000
%RSD	<u>тм 1.016</u>	м 1.400	<u>тм 1.559</u>	0.000	5.430	18.120	26.230	50.650	1.230	<u>тм 1.601</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:31:00	тм 110900.000	тм 122600.000	0.711	0.426	55.720	6.058	0.238	0.533	42.290	31.300
2 20:32:05	тм 113900.000	тм 125800.000	0.770	0.466	64.350	6.450	0.206	0.473	44.620	33.690
3 20:33:10	тм 115300.000	тм 127200.000	0.798	0.519	70.030	6.898	0.244	0.555	44.780	32.640
X	тм 113300.000	тм 125200.000	0.760	0.470	63.370	6.469	0.229	0.520	43.900	32.540
σ	тм 2243.000	тм 2346.000	0.044	0.046	7.204	0.420	0.021	0.043	1.392	1.199
%RSD	<u>тм 1.979</u>	тм 1.873	5.853	9.857	11.370	6.493	8.968	8.223	3.171	3.683
Run Time	75As ppb	77Se	78Se	79Br	81Br ppb	82Se	88Sr	89Y	95Mo	97Mo
1 20:31:00	1.050	ppb 1.213	ppb 1.043	ppb 0.000	0.000	ppb 1.620	ppb <u>™ 834.900</u>	ppb 110.394%	ppb 0.064	ppb 0.124
2 20:32:05	1.191	0.650	1.220	0.000	0.000	1.450	тм 850.100	109.851%	0.069	0.156
3 20:33:10	1.197	1.278	1.956	0.000	0.000	1.631	тм 854.800	105.705%	0.058	0.130
X 20.33.10	1.146	1.047	1.406	0.000	0.000	1.567	тм 846.600	108.650%	0.064	0.133
σ	0.083	0.346	0.484	0.000	0.000	0.101	тм 10.430	2.565%	0.004	0.020
%RSD	7.272	33.020	34.430	0.000	0.000	6.452	тм 1.232	2.361	9.176	15.080
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:31:00	0.149	96.375%	-4.871	0.317	0.528	0.117	0.355	-0.368	-0.252	98.704%
2 20:32:05	0.136	96.292%	-4.330	0.309	0.484	-0.016	0.349	-0.336	-0.221	98.395%
3 20:33:10	0.151	91.916%	-4.236	0.308	0.473	-0.096	0.358	-0.322	-0.218	94.099%
X	0.145	94.861%	-4.479	0.311	0.495	0.002	0.354	-0.342	-0.230	97.066%
σ	0.008	2.550%	0.343	0.005	0.029	0.108	0.005	0.023	0.019	2.574%
%RSD	5.636	2.689	7.650	1.577	5.944	6482.000	1.286	6.836	8.382	2.652
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:31:00	-0.193	-0.052	-0.110	тм 1491.000	101.280%	101.370%	0.017	0.257	-0.024	-0.020
2 20:32:05	-0.193	-0.059	-0.093	тм 1519.000	100.442%	101.348%	0.018	0.255	-0.019	-0.024
3 20:33:10	-0.181	-0.047	-0.090	тм 1532.000	94.732%	95.813%	0.019	0.256	-0.027	-0.021
X	-0.189	-0.053	-0.098	<u>тм 1514.000</u>	98.818%	99.510%	0.018	0.256	-0.023	-0.022
σ	0.007	0.006	0.011	тм 20.570	3.563%	3.202%	0.001	0.001	0.004	0.002
%RSD	3.755	11.790	11.250	<u>тм 1.359</u>	3.606	3.218	5.266	0.336	18.510	9.916
Run Time	208Pb ppb	209Bi ppb	220Bkg	238U ppb						
1 20:31:00	0.036	88.015%	ppb 0.000	0.000						
2 20:32:05	0.035	86.721%	0.000	0.000						
3 20:33:10	0.034	82.717%	0.000	0.000						
X 20.33.10	0.035	85.817%	0.000	0.000						
σ	0.001	2.762%	0.000	0.000						
%RSD	2.428	3.219	0.000	0.000						

t74672-43f 5/7/2011 20:34:13

	-dilution: 1.00		OD -	100	110	120	2211-	2514-	2/14-	07.41	2701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	20 25 10	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:35:18	88.522%	-0.099	м 187.600	м 192.600	0.000	тм 688400.000	тм 61370.000	тм 60900.000	5.444	<u>T 0.000</u>
2	20:36:23	89.570%	-0.066	м 190.200	м 193.300	0.000	тм 689000.000	тм 61810.000	тм 61240.000	5.416	<u>T 0.000</u>
3	20:37:29	92.067%	-0.035	м 184.400	м 188.200	0.000	тм 675300.000	тм 60720.000	тм 60220.000	5.338	<u>T 0.000</u>
X		90.053%	-0.066	м 187.400	м 191.400	0.000	тм 684300.000	тм 61300.000	тм 60790.000	5.400	<u>т 0.000</u>
σ		1.821%	0.032	м 2.903	м 2.777	0.000	тм 7748.000	тм 545.900	тм 520.000	0.055	<u>т 0.000</u>
%RSD		2.022	48.150	м 1.549	<u>м 1.451</u>	0.000	тм 1.132	<u>тм 0.891</u>	<u>тм 0.856</u>	1.016	<u>T 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1	20:35:18	ррb тм 7951.000	ррb м 103400.000	ррb тм 115700.000	ppb 0.000	ppb 4.416	ppb 0.632	ppb 0.352	ppb 1.037	ppb 58.130	ррb тм 6275.000
2	20:36:23	тм 8119.000	м 105700.000 м 104700.000	тм 118300.000	0.000	4.173	0.465	0.301	0.718	61.880	тм 6418.000 тм 6323.000
3	20:37:29	тм 7957.000	-	тм 116300.000	0.000	4.468	0.507	0.317	0.719	60.520	
X		тм 8009.000	м 104600.000	тм 116800.000	0.000	4.352	0.535	0.323	0.825	60.180	тм 6339.000
%RSD		тм 95.290	м 1120.000	тм 1340.000	0.000	0.158	0.087	0.026	0.184	1.897	<u>тм 72.410</u>
	Time	тм 1.190	<u>м 1.070</u>	<u>тм 1.148</u>	0.000	3.621	16.220	8.075	22.290	3.153	<u>тм 1.142</u>
Run	Time	56Fe ppb	57Fe ppb	59Co ppb	60Ni ppb	62Ni ppb	63Cu ppb	65Cu ppb	66Zn ppb	67Zn ppb	68Zn
1	20:35:18	тм 110300.000	тм 122200.000	0.768	0.637	81.210	7.188	0.244	0.269	41.780	ppb 31.240
2	20:36:23	тм 112900.000	тм 125400.000	0.745	0.632	88.300	7.794	0.244	0.209	42.920	32.290
3	20:37:29	тм 111800.000	тм 123800.000	0.716	0.685	98.380	8.025	0.192	0.374	42.380	31.600
X	20.07.27	тм 111700.000	тм 123800.000	0.743	0.652	89.300	7.669	0.219	0.321	42.360	31.710
σ		тм 1286.000	тм 1646.000	0.026	0.029	8.626	0.432	0.026	0.053	0.566	0.528
%RSD		тм 1.151	тм 1.329	3.471	4.458	9.660	5.637	11.820	16.390	1.336	1.666
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:35:18	1.066	0.648	1.160	0.000	0.000	1.034	тм 817.600	112.764%	0.034	0.114
2	20:36:23	0.998	2.310	1.263	0.000	0.000	1.315	тм 839.100	110.776%	0.048	0.134
3	20:37:29	1.033	1.345	1.141	0.000	0.000	0.958	тм 833.400	112.134%	0.029	0.094
X		1.032	1.434	1.188	0.000	0.000	1.103	тм 830.000	111.891%	0.037	0.114
σ		0.034	0.835	0.066	0.000	0.000	0.188	<u>тм 11.170</u>	1.016%	0.010	0.020
%RSD		3.314	58.180	5.514	0.000	0.000	17.030	<u>тм 1.346</u>	0.908	25.880	17.620
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:35:18	0.164	97.683%	-4.466	0.315	0.499	0.062	0.352	-0.344	-0.231	98.920%
2	20:36:23	0.141	97.374%	-3.093	0.315	0.409	0.036	0.349	-0.255	-0.175	98.567%
3	20:37:29	0.173	97.806%	-4.590	0.325	0.510	0.114	0.350	-0.355	-0.242	99.782%
X		0.159	97.621%	-4.050	0.318	0.473	0.071	0.350	-0.318	-0.216	99.090%
σ		0.017	0.222%	0.831	0.006	0.056	0.040	0.001	0.055	0.036	0.625%
%RSD	T'	10.580	0.228	20.510	1.794	11.820	55.830	0.322	17.230	16.640	0.631
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
1	20:35:18	-0.200	-0.063	ppb -0.101	ррb тм 1468.000	ppb 101.126%	ppb 101.947%	ppb 0.018	ppb 0.257	-0.018	-0.016
	20:36:23	-0.200	-0.065	-0.101		101.126%	101.947%	0.018	0.257	-0.016	-0.016
3		-0.193	-0.065	-0.101	тм 1485.000	101.063%	100.296%	0.017	0.257	-0.018	-0.015
	20.37.27	-0.197	-0.062	-0.099					0.257		-0.021
σ	 	0.004	0.004	0.003	тм 1481.000 тм 12.220	101.350% 0.426%	101.331% 0.902%	0.017 0.001	0.257	-0.017 0.001	0.003
%RSD		1.949	6.845	3.224	<u>тм 0.825</u>	0.426%	0.902%	4.269	0.000	8.250	17.080
Run	Time	208Pb	209Bi	220Bkg	238U	0.420	0.070	4.209	0.013	0.230	17.000
		ppb	ppb	ppb	ppb						
1	20:35:18	0.042	87.664%	0.000	0.000						
2	20:36:23	0.043	87.868%	0.000	0.000						
3	20:37:29	0.040	88.703%	0.000	0.000						
X		0.042	88.079%	0.000	0.000						
σ		0.001	0.551%	0.000	0.000						
%RSD		3.202	0.625	0.000	0.000						

ccv 5/7/2011 20:38:32

User Pre-dilution: 1.00		OBo	10B	11D I	120	22No	2EMa	26 Ma	2741	37CI
Run Time	6Li	9Be ppb	ppb	11B	13C ppb	23Na	25Mg	26Mg	27AI ppb	
1 20:39:37	ppb 102.369%	51.460	56.250	ppb 54.890	0.000	ppb	ppb 577.500	ppb 579.100	474.900	ppb <u>⊤ 0.000</u>
2 20:40:42	99.537%	54.030	57.260	55.840	0.000	± 995.200	497.200	496.900	482.700	<u> </u>
						·				
3 20:41:48	100.362%	51.430	52.290	53.830	0.000	678.300	455.300	465.400	467.900	<u>T 0.000</u>
X	100.756%	52.310	55.270	54.850	0.000	тм 1289.000	510.000	513.800	475.200	<u>т 0.000</u>
σ %RSD	1.457%	1.492	2.629	1.007	0.000	тм 798.600	62.060	58.680	7.372	<u>т 0.000</u>
	1.446 39K	2.851 43Ca	4.756 44Ca	1.835	0.000	<u>тм 61.970</u> 51V	12.170 52Cr	11.420 53Cr	1.551 53CI O	<u>т 0.000</u> 55Мп
Run Time	ppb	ppb	ppb	45Sc ppb	47Ti ppb	ppb	ppb	ppb	ppb	ppb
1 20:39:37	476.100	706.100	700.500	108.468%	50.410	50.560	49.810	50.470	78.300	63.510
2 20:40:42	468.500	535.900	535.000	104.386%	52.170	51.670	51.300	51.860	90.050	54.740
3 20:41:48	449.800	493.600	480.300	104.991%	50.420	50.040	49.880	50.170	95.030	50.820
X	464.800	578.500	571.900	105.948%	51.000	50.750	50.330	50.830	87.790	56.360
σ	13.530	112.500	114.700	2.203%	1.014	0.833	0.843	0.905	8.586	6.499
%RSD	2.911	19.450	20.050	2.079	1.988	1.642	1.674	1.780	9.779	11.530
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:39:37	<u>⊤801.400</u>	798.500	50.370	50.940	м 135.400	53.510	50.310	49.690	49.370	50.810
2 20:40:42	<u> </u>	592.900	52.230	52.920	м 126.200	54.570	50.890	50.930	51.540	51.820
3 20:41:48	<u>т 519.900</u>	515.300	50.110	51.070	м 114.200	52.380	49.550	50.240	49.460	50.360
X	т 637.900	635.600	50.910	51.640	м 125.300	53.490	50.250	50.290	50.120	51.000
σ	т 146.200	146.300	1.155	1.108	м 10.620	1.095	0.670	0.622	1.226	0.750
%RSD	т 22.920	23.020	2.269	2.145	м 8.479	2.046	1.334	1.237	2.445	1.470
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:39:37	51.430	41.820	52.480	0.000	0.000	50.080	51.500	107.992%	50.200	49.650
2 20:40:42	52.800	44.000	54.160	0.000	0.000	52.130	51.820	104.170%	51.270	51.650
3 20:41:48	51.330	40.630	52.300	0.000	0.000	50.490	50.100	104.102%	50.370	49.830
X	51.860	42.150	52.980	0.000	0.000	50.900	51.140	105.422%	50.620	50.380
σ	0.822	1.710	1.022	0.000	0.000	1.086	0.915	2.227%	0.576	1.110
%RSD	1.585	4.056	1.929	0.000	0.000	2.134	1.789	2.112	1.138	2.203
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
1 20 20 27	ppb	ppb	ppb	ppb ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:39:37 2 20:40:42	49.870	104.756%	49.380	48.730	0.269	47.260	48.890	49.260	49.050	104.357%
	51.930	101.661%	50.140	50.010	0.454	50.630	49.800	50.900	50.460	101.325%
3 20:41:48	49.600	102.325%	48.630	48.380	0.450	49.260	48.610	48.980	49.450	100.510%
X	50.470	102.914%	49.390	49.040	0.391	49.050	49.100	49.710	49.650	102.064%
σ %RSD	1.276 2.528	1.630% 1.583	0.753 1.524	0.859 1.752	0.105 26.960	1.696 3.457	0.619 1.260	1.033 2.077	0.729 1.468	2.027% 1.986
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	2.077 205TI	206Pb	207Pb
Kuii IIIIC	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:39:37	49.550	48.780	48.800	54.900	101.808%	101.264%	50.420	49.940	50.270	50.330
2 20:40:42	50.430	50.430	50.660	53.050	99.034%	98.339%	51.050	50.710	51.660	51.260
3 20:41:48	49.710	49.890	49.900	51.360	99.859%	99.448%	50.420	49.900	49.690	50.450
Х	49.900	49.700	49.780	53.100	100.233%	99.683%	50.630	50.180	50.540	50.680
σ	0.471	0.840	0.932	1.771	1.425%	1.477%	0.365	0.460	1.010	0.507
%RSD	0.945	1.690	1.873	3.335	1.421	1.481	0.721	0.916	1.999	1.000
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 20:39:37	50.190	98.214%	0.000	0.000						
2 20:40:42	51.300	97.256%	0.000	0.000						
3 20:41:48	49.860	97.238%	0.000	0.000						
X	50.450	97.569%	0.000	0.000						
σ	0.753	0.558%	0.000	0.000						
%RSD	1.492	0.572	0.000	0.000						

ccb 5/7/2011 20:42:50

User Pre-dilution: 1.00		1								1
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:43:55	97.414%	-0.037	3.198	4.064	0.000	142.000	5.616	6.078	2.764	<u>T 0.000</u>
2 20:45:00	100.710%	-0.106	2.444	3.162	0.000	103.500	3.237	3.878	2.102	<u>T 0.000</u>
3 20:46:05	95.874%	-0.126	2.016	2.381	0.000	112.200	4.242	5.017	2.092	<u>T 0.000</u>
X	97.999%	-0.090	2.553	3.202	0.000	119.200	4.365	4.991	2.319	<u>т 0.000</u>
σ	2.471%	0.047	0.598	0.842	0.000	20.170	1.194	1.100	0.385	<u>т 0.000</u>
%RSD	2.521	52.250	23.440	26.310	0.000	16.910	27.350	22.040	16.610	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:43:55	-5.996	-11.020	-6.911	101.273%	-0.459	-0.057	-0.177	0.505	85.270	0.443
2 20:45:00	-9.975	-19.470	-11.830	105.427%	-0.497	-0.174	-0.260	0.430	82.220	0.126
3 20:46:05	-5.496	-16.220	-10.170	100.557%	-0.526	-0.075	-0.254	0.317	84.990	0.205
X	-7.156	-15.570	-9.636	102.419%	-0.494	-0.102	-0.230	0.417	84.160	0.258
σ	2.454	4.261	2.502	2.629%	0.034	0.063	0.046	0.094	1.683	0.165
%RSD	34.300	27.360	25.970	2.567	6.804	61.630	20.130	22.620	2.000	64.060
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:43:55	14.730	20.420	-0.007	0.070	50.940	1.868	-0.217	-0.478	-0.310	-0.504
2 20:45:00	7.204	14.240	-0.070	-0.031	40.810	1.404	-0.332	-0.529	-0.379	-0.628
3 20:46:05	10.920	17.540	-0.083	-0.051	36.410	1.267	-0.317	-0.498	-0.354	-0.649
X	10.950	17.400	-0.053	-0.004	42.720	1.513	-0.289	-0.502	-0.348	-0.594
σ	3.761	3.092	0.041	0.065	7.453	0.315	0.063	0.026	0.035	0.078
%RSD	34.340	17.770	76.220	1761.000	17.450	20.800	21.790	5.145	10.060	13.150
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:43:55	-0.236	-11.760	0.525	0.000	0.000	-0.301	0.038	101.410%	-0.099	-0.092
2 20:45:00	-0.226	-13.360	-0.075	0.000	0.000	-0.379	-0.108	107.137%	-0.193	-0.164
3 20:46:05	-0.229	-12.640	0.213	0.000	0.000	-0.352	-0.120	100.465%	-0.215	-0.167
X	-0.230	-12.590	0.221	0.000	0.000	-0.344	-0.063	103.004%	-0.169	-0.141
σ	0.005	0.801	0.300	0.000	0.000	0.040	0.088	3.610%	0.061	0.043
%RSD	2.181	6.365	135.700	0.000	0.000	11.480	139.900	3.505	36.330	30.160
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
itan mile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:43:55	0.027	100.109%	-0.237	0.401	0.215	-0.096	0.429	-0.021	0.006	99.351%
2 20:45:00	-0.100	104.856%	-0.064	0.326	0.206	-0.071	0.367	-0.056	-0.034	103.226%
3 20:46:05	-0.112	98.087%	-0.178	0.319	0.213	-0.069	0.360	-0.078	-0.053	96.679%
X	-0.062	101.017%	-0.160	0.348	0.211	-0.079	0.385	-0.052	-0.027	99.752%
	0.077	3.475%	0.088	0.045	0.005	0.015	0.038	0.029	0.030	3.292%
σ %RSD	124.400	3.440	55.190	13.020	2.333	18.870	9.872	56.050	110.800	3.300
Run Time	118Sn	121Sb	123Sb	13.020 137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
itan mile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:43:55	-0.067	0.746	0.708	0.154	96.246%	96.345%	0.162	0.393	0.102	0.091
2 20:45:00	-0.139	0.391	0.365	-0.013	100.656%	100.744%	0.080	0.316	0.009	0.012
3 20:46:05	-0.164	0.308	0.284	-0.002	95.864%	95.408%	0.000	0.318	-0.024	-0.012
X	-0.123	0.482	0.452	0.046	97.589%	97.499%	0.105	0.342	0.029	0.030
σ	0.051	0.432	0.432	0.094	2.664%	2.849%	0.050	0.044	0.065	0.054
%RSD										177.700
Run Time	40.940 208Pb	48.330 209Bi	49.850	202.500 238U	2.730	2.922	47.550	12.900	226.300	177.700
Ruii I IIIne	208Pb ppb	ppb	220Bkg ppb	ppb						
1 20:43:55	0.160	95.173%	0.000	0.000						
2 20:45:00	0.160	98.830%	0.000	0.000						
	0.041	93.480%	0.000	0.000						
X	0.090	95.828%	0.000	0.000						
σ	0.062	2.735%	0.000	0.000						
%RSD	69.470	2.854	0.000	0.000						

mp58063-mb1 5/7/2011 20:47:09

User Pre-dilution: 1.00	0									
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:48:14	95.092%	-0.107	2.433	2.179	0.000	87.970	3.683	4.287	4.483	<u>т 0.000</u>
2 20:49:20	97.061%	-0.122	2.063	1.883	0.000	81.070	3.962	3.837	4.332	<u>т 0.000</u>
3 20:50:25	92.269%	-0.125	1.729	1.971	0.000	90.280	4.925	5.329	4.507	<u> 7 0.000</u>
X	94.808%	-0.118	2.075	2.011	0.000	86.440	4.190	4.484	4.440	<u>т 0.000</u>
σ	2.409%	0.009	0.352	0.152	0.000	4.792	0.652	0.765	0.095	т 0.000
%RSD	2.541	7.887	16.970	7.566	0.000	5.544	15.550	17.060	2.131	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:48:14	-7.025	18.420	23.230	99.574%	-0.491	-0.139	-0.044	-0.004	113.200	0.059
2 20:49:20	-6.392	15.900	22.600	99.797%	-0.423	-0.291	-0.049	0.207	113.200	0.064
3 20:50:25	-1.949	24.070	26.590	95.970%	-0.473	-0.100	-0.006	0.717	114.600	0.167
X	-5.122	19.460	24.140	98.447%	-0.462	-0.177	-0.033	0.307	113.700	0.097
σ	2.766	4.184	2.144	2.148%	0.035	0.101	0.024	0.370	0.776	0.061
%RSD	54.010	21.500	8.881	2.182	7.647	57.230	71.800	120.800	0.683	63.010
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:48:14	22.850	28.950	-0.090	0.048	31.390	2.547	1.146	0.681	0.836	0.461
2 20:49:20	18.820	26.600	-0.086	0.003	28.910	2.428	1.063	0.612	0.769	0.503
3 20:50:25	<u> 7 39.550</u>	25.400	-0.085	0.045	28.180	2.412	1.242	0.730	0.795	0.697
X	т 27.080	26.980	-0.087	0.032	29.490	2.462	1.150	0.674	0.800	0.553
σ	т 10.990	1.805	0.003	0.025	1.680	0.074	0.090	0.059	0.033	0.126
%RSD	т 40.590	6.690	3.041	77.520	5.696	3.003	7.792	8.769	4.176	22.740
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:48:14	-0.235	-7.629	0.197	0.000	0.000	-0.350	-0.069	99.835%	-0.242	-0.204
2 20:49:20	-0.106	-8.458	0.128	0.000	0.000	-0.344	-0.075	100.346%	-0.261	-0.221
3 20:50:25	-0.236	-6.826	0.568	0.000	0.000	-0.312	-0.075	96.452%	-0.254	-0.218
X	-0.192	-7.637	0.298	0.000	0.000	-0.335	-0.073	98.878%	-0.252	-0.214
σ	0.075	0.816	0.237	0.000	0.000	0.021	0.004	2.116%	0.010	0.009
%RSD	39.090	10.680	79.420	0.000	0.000	6.156	5.038	2.140	3.884	4.335
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:48:14	-0.135	98.235%	0.110	0.309	0.263	0.914	0.353	-0.130	-0.089	96.494%
2 20:49:20	-0.136	99.491%	-0.242	0.317	0.294	1.033	0.359	-0.153	-0.112	97.608%
3 20:50:25	-0.125	95.113%	-0.688	0.321	0.319	0.974	0.355	-0.181	-0.127	93.542%
X	-0.132	97.613%	-0.273	0.316	0.292	0.974	0.356	-0.155	-0.109	95.881%
σ	0.006	2.254%	0.400	0.006	0.028	0.060	0.003	0.026	0.019	2.101%
%RSD	4.723	2.310	146.300	2.008	9.643	6.113	0.783	16.530	17.760	2.191
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:48:14	-0.179	0.217	0.163	0.122	96.482%	96.298%	0.036	0.284	-0.020	-0.014
2 20:49:20	-0.184	0.150	0.106	0.079	97.128%	97.006%	0.044	0.280	-0.019	-0.016
3 20:50:25	-0.180	0.151	0.067	0.119	93.272%	92.758%	0.045	0.278	-0.021	-0.021
X	-0.181	0.173	0.112	0.106	95.627%	95.354%	0.042	0.281	-0.020	-0.017
σ	0.002	0.038	0.048	0.024	2.065%	2.276%	0.005	0.003	0.001	0.003
%RSD	1.223	22.220	43.270	22.580	2.160	2.387	11.360	1.093	4.723	19.540
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 20:48:14	0.044	94.554%	0.000	0.000						
2 20:49:20	0.040	96.101%	0.000	0.000						
3 20:50:25	0.039	92.722%	0.000	0.000						
X	0.041	94.459%	0.000	0.000						
σ	0.003	1.691%	0.000	0.000						
%RSD	6.463	1.791	0.000	0.000						

mp58063-lc1 5/7/2011 20:51:28

Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
ikun mine	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:52:33	95.568%	м 104.700	1.641	1.802	0.000	507.600	459.400	463.400	476.200	<u>⊤ 0.000</u>
2 20:53:38	97.610%	99.130	0.973	1.642	0.000	478.000	431.400	433.400	439.100	т 0.000
3 20:54:43	94.146%	м 109.200	1.205	1.672	0.000	514.200	483.500	479.300	492.000	<u>т 0.000</u>
X X	95.775%	м 104.300	1.203	1.705	0.000	500.000	458.100	458.700	469.100	<u>т 0.000</u>
	1.741%	<u>м 104.300</u> м 5.060	0.340	0.085	0.000	19.260	26.060	23.340	27.150	<u>т 0.000</u>
σ %RSD	1.818	<u>м 3.000</u> м 4.849		4.969	0.000	3.853	5.690	5.089	5.787	<u>т 0.000</u>
Run Time	39K	43Ca	26.670 44Ca	4.909 45Sc	47Ti	5.653	52Cr	53Cr	53CI O	55Mn
ixuii iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:52:33	457.600	478.000	481.100	97.995%	-0.503	м 103.900	м 103.100	м 103.300	128.900	м 103.600
2 20:53:38	430.400	453.800	441.500	101.800%	-0.453	95.560	94.330	93.320	133.400	94.840
3 20:54:43	474.900	475.600	489.600	95.965%	-0.430	м 107.900	м 107.200	м 110.200	132.300	м 106.700
X	454.300	469.100	470.800	98.587%	-0.462	м 102.500	м 101.500	м 102.300	131.500	<u>м 101.700</u>
σ	22.450	13.330	25.650	2.962%	0.037	м 6.302	м 6.565	м 8.504	2.371	м 6.152
%RSD	4.941	2.841	5.449	3.005	8.110	<u>м 6.362</u> м 6.151	<u>м 6.465</u>	м 8.313	1.803	м 6.049
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
Train Time	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:52:33	469.400	491.800	м 104.000	м 103.500	м 127.700	м 104.800	м 104.700	м 102.600	99.840	м 103.600
2 20:53:38	425.600	447.900	95.460	94.530	м 116.200	96.210	94.840	93.500	91.170	94.330
3 20:54:43	т 507.100	508.700	м 107.100	м 106.700	м 129.800	м 108.400	м 106.600	м 106.600	м 104.900	м 106.800
X	т 467.400	482.800	м 102.200	м 101.600	м 124.600	м 103.100	м 102.100	м 100.900	м 98.640	м 101.600
σ	т 40.780	31.400	м 6.000	м 6.287	м 7.347	м 6.238	м 6.306	м 6.729	м 6.939	м 6.491
%RSD	т 8.725	6.504	м 5.873	м 6.191	м 5.898	м 6.049	м 6.179	м 6.667	м 7.035	м 6.389
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:52:33	м 105.900	м 204.800	м 206.500	0.000	0.000	м 205.100	-0.111	99.931%	-0.266	-0.206
2 20:53:38	97.650	м 189.900	м 190.600	0.000	0.000	м 190.500	-0.114	103.600%	-0.254	-0.220
3 20:54:43	м 109.300	м 209.900	м 213.700	0.000	0.000	м 209.900	-0.112	97.465%	-0.260	-0.231
X	м 104.300	м 201.600	м 203.600	0.000	0.000	м 201.800	-0.112	100.332%	-0.260	-0.219
σ	м 6.004	м 10.390	м 11.820	0.000	0.000	м 10.080	0.002	3.087%	0.006	0.013
%RSD	<u>м 5.756</u>	<u>м 5.156</u>	м 5.803	0.000	0.000	м 4.995	1.490	3.077	2.324	5.828
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
4 00 50 00	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:52:33	-0.135	97.624%	м 103.200	м 100.800	0.342	98.680	м 101.100	м 102.000	м 102.500	97.968%
2 20:53:38	-0.153	102.299%	93.760	93.330	0.665	94.580	93.540	93.030	94.060	102.185%
3 20:54:43	-0.139	94.824%	м 103.200	м 104.700	0.827	м 105.900	м 104.600	м 106.400	м 107.900	94.452%
X	-0.142	98.249%	м 100.100	м 99.630	0.612	м 99.710	м 99.740	м 100.500	м 101.500	98.202%
σ %RSD	0.009 6.621	3.776% 3.843	<u>м 5.455</u> м 5.452	<u>м 5.792</u> м 5.814	0.247 40.380	<u>м 5.711</u> м 5.727	<u>м 5.646</u> м 5.661	<u>м 6.828</u> м 6.795	<u>м 6.956</u> <u>м 6.856</u>	3.872% 3.943
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
itan mine	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 20:52:33	-0.193	м 105.600	м 104.800	м 103.800	97.570%	96.432%	м 105.000	м 105.200	м 104.500	м 104.900
2 20:53:38	-0.192	96.740	96.340	95.250	101.892%	102.220%	97.770	97.860	96.530	95.990
3 20:54:43	-0.191	м 111.600	м 110.400	м 108.800	95.363%	96.018%	м 107.200	м 107.600	м 107.700	м 108.100
Х	-0.192	м 104.600	м 103.800	м 102.600	98.275%	98.223%	м 103.300	м 103.500	м 102.900	м 103.000
σ	0.001	м 7.455	м 7.066	м 6.865	3.321%	3.468%	м 4.944	м 5.056	м 5.739	м 6.273
%RSD	0.457	м 7.125	м 6.804	м 6.690	3.379	3.530	м 4.785	м 4.883	м 5.578	м 6.090
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 20:52:33	м 104.700	95.250%	0.000	0.000						
2 20:53:38	96.330	100.624%	0.000	0.000						
3 20:54:43	м 108.000	94.613%	0.000	0.000						
X	м 103.000	96.829%	0.000	0.000						
σ	м 6.022	3.302%	0.000	0.000						
%RSD	м 5.845	3.410	0.000	0.000						

mp58063-s1 5/7/2011 20:55:45

	-dilution: 1.00		0.0	100	445	100	0011	0514	0/14	07.41	0701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	20 57 51	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:56:51	82.797%	м 112.500	м 339.700	м 342.000	0.000	тм 262900.000	тм 21770.000	тм 21590.000	T514.600	<u>1 0.000</u>
2	20:57:56	77.469%	м 113.500	м 340.200	м 348.200	0.000	тм 265400.000	тм 21930.000	тм 21650.000	<u>T 513.000</u>	<u>T 0.000</u>
3	20:59:00	82.762%	м 115.900	м 352.700	м 358.100	0.000	тм 270300.000	тм 22370.000	тм 22050.000	<u>⊤525.100</u>	<u>T 0.000</u>
X		81.010%	м 114.000	м 344.200	м 349.400	0.000	тм 266200.000	тм 22030.000	тм 21770.000	<u>т 517.600</u>	<u>т 0.000</u>
σ		3.066%	м 1.751	м 7.382	м 8.124	0.000	тм 3764.000	тм 311.900	тм 252.500	<u>т 6.591</u>	<u>т 0.000</u>
%RSD		3.785	м 1.537	м 2.145	м 2.325	0.000	тм 1.414	<u>тм 1.416</u>	<u>тм 1.160</u>	<u>T 1.273</u>	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1	20:56:51	ppb	ррb м 110100.000	ррb <u>тм 120800.000</u>	ppb	ppb 0.310	ррb м 100.200	ppb	ppb 100.700	ppb	ppb
		<u>тм 9565.000</u>			101.389%	0.319		м 100.400	м 100.700	138.100	<u>тм 611.100</u>
2	20:57:56	<u>тм 9615.000</u>	м 109100.000	тм 120400.000	98.406%	0.480	99.130	99.610	99.660	162.800	тм 608.400
3	20.59.00	тм 9802.000	м 111900.000	тм 123300.000	105.529%	0.388	м 101.900	м 102.000	м 101.800	189.700	<u>тм 621.600</u>
X		<u>тм 9661.000</u>	м 110400.000	тм 121500.000	101.774%	0.395	м 100.400	м 100.700	м 100.700	163.500	тм 613.700
σ %RSD		тм 125.000	м 1436.000	тм 1594.000	3.577%	0.081	м 1.370	м 1.230	<u>м 1.047</u>	25.830	<u>тм 7.004</u>
	Time o	<u>тм 1.294</u>	м 1.301	тм 1.312	3.515	20.370	м 1.365	м 1.222	м 1.040	15.790	<u>тм 1.141</u>
Run	Time	56Fe ppb	57Fe ppb	59Co ppb	60Ni ppb	62Ni ppb	63Cu ppb	65Cu ppb	66Zn ppb	67Zn ppb	68Zn ppb
1	20:56:51	тм 3745.000	м 3973.000	92.940	94.000	м 118.200	94.660	92.600	м 160.500	м 160.700	м 164.700
2	20:57:56	тм 3763.000	м 3976.000	92.640	94.110	м 120.500	94.050	91.960	м 159.600	м 163.400	<u>м 165.100</u>
3	20:59:00	тм 3823.000	м 4052.000	94.530	95.630	м 115.600	95.620	94.050	м 163.100	м 166.500	м 168.400
X	20.07.00	тм 3777.000	м 4000.000	93.370	94.580	м 118.100	94.780	92.870	м 161.100	м 163.500	м 166.100
σ		тм 40.960	м 44.600	1.013	0.910	м 2.455	0.792	1.070	м 1.808	м 2.876	м 2.009
%RSD		тм 1.085	<u>м 1.115</u>	1.085	0.963	<u>м 2.100</u> м 2.078	0.836	1.152	<u>м 1.123</u>	<u>м 2.373</u> м 1.759	<u>м 2.30 ў</u> м 1.210
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:56:51	м 103.500	м 191.900	м 186.100	0.000	0.000	м 184.000	тм 828.500	96.558%	9.971	10.140
2	20:57:56	м 103.900	м 191.600	м 184.900	0.000	0.000	м 183.300	тм 827.800	93.350%	9.790	10.320
3	20:59:00	м 106.000	м 200.800	м 188.800	0.000	0.000	м 186.300	тм 837.500	99.102%	10.060	10.210
X		м 104.500	м 194.800	м 186.600	0.000	0.000	м 184.500	тм 831.300	96.337%	9.940	10.220
σ		м 1.341	м 5.254	м 1.991	0.000	0.000	м 1.602	<u>тм 5.404</u>	2.882%	0.138	0.091
%RSD		<u>м 1.283</u>	<u>м 2.697</u>	м 1.067	0.000	0.000	<u>м 0.868</u>	<u>тм 0.650</u>	2.992	1.388	0.894
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:56:51	10.140	87.442%	99.330	96.900	0.663	99.110	96.160	99.170	98.780	91.357%
2	20:57:56	10.190	83.828%	97.910	98.160	0.743	99.120	97.180	99.610	99.250	86.502%
3	20:59:00	10.360	90.002%	96.340	98.330	1.014	м 101.500	97.550	99.980	99.820	93.443%
X		10.230	87.091%	97.860	97.800	0.806	м 99.900	96.960	99.590	99.280	90.434%
σ		0.115	3.102%	1.498	0.784	0.184	м 1.362	0.721	0.404	0.523	3.561%
%RSD Run	Time	1.120 118Sn	3.562 121Sb	1.530 123Sb	0.802 137Ba	22.790 159Tb	м 1.364 165Ho	0.743 203TI	0.406 205TI	0.527 206Pb	3.938 207Pb
Run	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	20:56:51	-0.176	м 108.600	м 109.300	м 348.300	95.410%	95.465%	м 104.800	м 105.200	м 105.300	м 105.200
	20:57:56	-0.099	м 109.100	м 108.400	м 351.100	90.396%	91.292%	м 104.700	м 104.800	м 105.700	м 105.600
3	20:59:00	-0.154	м 110.400	м 109.500	м 353.200	96.359%	97.331%	м 106.500	м 106.400	м 106.300	м 107.000
Х		-0.143	м 109.300	м 109.100	м 350.800	94.055%	94.696%	м 105.300	м 105.400	м 105.700	м 105.900
σ		0.040	м 0.916	м 0.603	м 2.459	3.204%	3.092%	м 1.016	м 0.867	м 0.501	м 0.900
%RSD		27.810	м 0.838	м 0.553	м 0.701	3.407	3.265	м 0.965	м 0.823	м 0.474	м 0.849
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	20:56:51	м 105.900	86.642%	0.000	0.000						
2	20:57:56	м 105.800	82.551%	0.000	0.000						
3	20:59:00	м 107.000	87.616%	0.000	0.000						
X		м 106.200	85.603%	0.000	0.000						
σ		м 0.654	2.688%	0.000	0.000						
%RSD		м 0.616	3.140	0.000	0.000						

Inst QC: MA26325

mp58063-s2 5/7/2011 21:00:03

	-dilution: 1.00	5/ // 2011 21:U	0.03								
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Itan	111110	ppb	ppb	ppb	ppb	ppb	dqq	ppb	ppb	ppb	ppb
1	21:01:08	83.321%	м 113.300	м 345.100	м 353.300	0.000	тм 270900.000	тм 22380.000	тм 22120.000	495.400	⊤ 0.000
2	21:02:14	83.640%	м 115.600	м 346.700	м 355.500	0.000	тм 268600.000	тм 22150.000	тм 22000.000	<u> </u>	т 0.000
3	21:03:19	84.514%	м 109.600	м 341.600	м 344.800	0.000	тм 258100.000	тм 21200.000	тм 20950.000	464.900	T 0.000
X		83.825%	м 112.800	м 344.500	м 351.200	0.000	тм 265900.000	тм 21910.000	тм 21690.000	т 492.300	т 0.000
σ		0.617%	м 3.002	м 2.602	м 5.679	0.000	тм 6794.000	тм 623.400	тм 644.500	т 25.960	т 0.000
%RSD		0.736	м 2.660	м 0.756	м 1.617	0.000	тм 2.555	тм 2.845	тм 2.971	т 5.273	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	21:01:08	тм 9836.000	м 114200.000	тм 125500.000	101.077%	0.423	м 101.800	м 102.600	м 102.800	217.700	тм 628.200
2	21:02:14	тм 9772.000	м 113300.000	тм 124600.000	101.776%	0.633	м 101.800	м 101.200	м 103.200	224.300	тм 622.900
3	21:03:19	тм 9487.000	м 107500.000	тм 118300.000	102.241%	0.466	96.380	96.190	98.430	240.600	<u>тм 596.100</u>
X		тм 9699.000	м 111700.000	тм 122800.000	101.698%	0.507	м 99.980	м 99.990	м 101.500	227.500	<u>тм 615.700</u>
σ		тм 185.800	м 3612.000	тм 3929.000	0.586%	0.111	м 3.122	м 3.359	м 2.645	11.780	<u>тм 17.190</u>
%RSD		<u>тм 1.915</u>	м 3.235	<u>тм 3.200</u>	0.576	21.860	м 3.123	м 3.360	м 2.606	5.180	тм 2.792
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	21:01:08	тм 3852.000	м 4131.000	94.480	95.450	м 113.500	97.140	95.840	м 164.000	м 166.400	м 169.000
2	21:02:14	тм 3841.000	м 4094.000	93.710	94.520	м 112.800	96.650	94.140	м 162.100	м 163.700	м 168.200
3	21:03:19	тм 3663.000	м 3919.000	89.640	91.540	м 106.600	91.780	90.110	м 153.800	м 156.300	м 159.400
X		тм 3785.000	м 4048.000	92.610	93.840	м 111.000	95.190	93.360	м 160.000	м 162.100	м 165.500
σ		тм 106.200	м 113.400	2.601	2.045	м 3.774	2.965	2.945	<u>м 5.430</u>	м 5.227	<u>м 5.352</u>
%RSD		<u>тм 2.806</u>	м 2.801	2.809	2.180	м 3.401	3.115	3.154	м 3.395	м 3.224	м 3.233
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	04.04.00	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	21:01:08	м 104.600	м 200.600	м 186.400	0.000	0.000	м 184.900	тм 845.900	97.142%	9.953	10.450
2	21:02:14	м 104.700	м 203.300	м 186.600	0.000	0.000	м 186.400	тм 848.600	96.006%	10.110	10.640
3	21:03:19	99.940	м 193.800	м 178.100	0.000	0.000	м 177.700	тм 800.300	97.723%	9.439	9.551
X		м 103.100	м 199.200	м 183.700	0.000	0.000	м 183.000	тм 831.600	96.957%	9.834	10.220
σ %RSD		м 2.717	м 4.848	м 4.836	0.000	0.000	м 4.672	<u>тм 27.160</u>	0.873%	0.351	0.583
	Time	м 2.636	м 2.433	м 2.633	0.000	0.000	м 2.553	<u>тм 3.266</u>	0.900	3.573	5.707 115I n
Run	Tille	98Mo ppb	103Rh ppb	106Cd ppb	107Ag ppb	108Mo O ppb	108Cd ppb	109Ag ppb	111Cd ppb	114Cd ppb	ppb
1	21:01:08	10.490	87.326%	м 100.400	98.340	0.729	м 101.200	97.220	м 100.900	м 100.200	90.245%
2	21:02:14	10.490	86.725%	97.960	98.580	0.705	98.700	97.640	м 101.300	м 100.300	89.037%
3	21:03:19	9.707	89.541%	88.640	92.260	1.143	96.100	91.660	92.390	92.820	93.418%
X	21.03.17	10.230	87.864%	м 95.670	96.400	0.859	м 98.680	95.500	м 98.180	м 97.760	90.900%
σ		0.451	1.483%	м 6.21 <u>5</u>	3.581	0.246	<u>м 2.569</u>	3.340	<u>м 5.016</u>	м 4.282	2.263%
%RSD		4.413	1.688	<u>м 6.213</u> м 6.496	3.715	28.680	м 2.603	3.497	<u>м 5.109</u>	м 4.380	2.489
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	21:01:08	-0.164	м 109.300	м 109.300	м 358.000	94.368%	95.252%	м 105.600	м 105.100	м 104.600	м 104.900
2	21:02:14	-0.164	м 110.300	м 110.300	м 358.400	94.442%	94.292%	м 105.000	м 105.800	м 106.200	м 106.500
3	21:03:19	-0.167	м 102.300	м 101.500	м 335.200	97.223%	96.826%	99.660	м 100.700	99.340	99.900
X		-0.165	м 107.300	м 107.000	м 350.500	95.345%	95.457%	м 103.400	м 103.900	м 103.400	м 103.800
σ		0.002	м 4.368	м 4.826	м 13.260	1.627%	1.280%	м 3.273	м 2.781	м 3.592	м 3.459
%RSD		1.209	м 4.072	м 4.509	м 3.784	1.707	1.341	м 3.165	м 2.677	м 3.475	м 3.333
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	21:01:08	м 105.000	86.658%	0.000	0.000						
2	21:02:14	м 106.500	86.056%	0.000	0.000						
3	21:03:19	м 100.000	88.396%	0.000	0.000						
X		м 103.900	87.036%	0.000	0.000						
σ		м 3.415	1.215%	0.000	0.000						
%RSD		м 3.288	1.396	0.000	0.000						

ja74098-1 5/7/2011 21:04:21

User Pre-dilution			00	400	445	100	0011	0514	0/14	07.41	0701
Run T	ime	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 01 01	L	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:05		81.306%	0.294	м 345.100	м 351.000	0.000	тм 265600.000	тм 21450.000	тм 21190.000	14.180	<u>⊤ 0.000</u>
2 21:00		84.110%	-0.008	м 338.300	м 345.300	0.000	тм 259100.000	тм 20940.000	тм 20710.000	12.000	<u>T 0.000</u>
3 21:07	7:36	81.894%	-0.121	м 343.800	м 351.800	0.000	тм 262200.000	тм 21150.000	тм 21020.000	<u>⊤17.410</u>	<u>T 0.000</u>
X		82.437%	0.055	м 342.400	м 349.400	0.000	тм 262300.000	тм 21180.000	тм 20970.000	<u>т 14.530</u>	<u>т 0.000</u>
σ		1.479%	0.215	м 3.584	<u>м 3.565</u>	0.000	тм 3248.000	тм 253.700	тм 240.900	<u>т 2.720</u>	<u>т 0.000</u>
%RSD		1.794	390.500	м 1.047	м 1.021	0.000	<u>тм 1.238</u>	<u>тм 1.198</u>	<u>тм 1.149</u>	<u>т 18.720</u>	<u>т 0.000</u>
Run T	ime	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CIO	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:05		тм 9216.000	м 110200.000	тм 121800.000	97.868%	0.527	1.187	5.490	6.751	270.300	<u>тм 511.300</u>
2 21:00		тм 9085.000	м 109200.000	тм 120900.000	97.638%	0.628	1.242	5.178	5.802	275.500	<u>тм 513.500</u>
3 21:07	7:36	тм 9074.000	м 109000.000	тм 120400.000	97.252%	0.507	1.351	5.147	6.302	280.200	<u>тм 511.100</u>
X		тм 9125.000	м 109500.000	тм 121000.000	97.586%	0.554	1.260	5.272	6.285	275.300	<u>тм 511.900</u>
σ		_{TM} 78.790	м 673.100	тм 699.500	0.311%	0.065	0.084	0.190	0.475	4.972	тм 1.319
%RSD		<u>тм 0.863</u>	<u>м 0.615</u>	<u>тм 0.578</u>	0.319	11.770	6.640	3.605	7.554	1.806	<u>тм 0.258</u>
Run T	ime	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:05	5:26	тм 3318.000	м 3542.000	0.025	3.615	20.910	4.747	3.092	71.530	75.940	75.980
2 21:00	6:31	тм 3323.000	м 3549.000	-0.198	3.393	20.150	4.659	2.719	70.280	75.550	75.440
3 21:07	7:36	тм 3300.000	м 3499.000	-0.268	3.044	19.360	4.464	2.822	71.260	73.520	74.930
X		тм 3314.000	м 3530.000	-0.147	3.351	20.140	4.623	2.878	71.020	75.010	75.450
σ		тм 11.890	м 27.050	0.153	0.288	0.776	0.145	0.192	0.659	1.297	0.527
%RSD		тм 0.359	м 0.766	103.900	8.592	3.854	3.130	6.687	0.928	1.729	0.699
Run T	ime	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:05	5:26	3.277	20.470	1.579	0.000	0.000	1.507	тм 829.500	93.419%	10.120	10.060
2 21:06	6:31	2.838	22.080	1.028	0.000	0.000	0.813	тм 825.300	92.974%	10.130	10.240
3 21:0	7:36	3.026	21.100	1.013	0.000	0.000	0.922	тм 828.200	92.210%	10.040	10.060
х		3.047	21.220	1.207	0.000	0.000	1.081	тм 827.600	92.868%	10.090	10.120
σ		0.220	0.811	0.323	0.000	0.000	0.374	тм 2.136	0.612%	0.050	0.101
%RSD		7.221	3.823	26.740	0.000	0.000	34.560	тм 0.258	0.659	0.491	0.998
Run T	ime	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:05	5:26	10.170	84.739%	-3.069	0.562	1.055	9.399	0.594	-0.509	-0.128	87.055%
2 21:00		10.290	83.843%	-4.245	0.363	1.087	8.785	0.396	-0.702	-0.424	87.177%
3 21:07		10.280	83.516%	-3.990	0.333	1.047	8.431	0.368	-0.707	-0.422	85.855%
x	7.00	10.250	84.033%	-3.768	0.419	1.063	8.872	0.453	-0.639	-0.325	86.696%
σ		0.066	0.633%	0.619	0.124	0.021	0.490	0.123	0.113	0.170	0.730%
%RSD		0.643	0.754	16.420	29.600	2.005	5.521	27.200	17.660	52.390	0.843
	ime	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:05	5:26	-0.028	1.108	1.092	м 242.800	91.767%	92.094%	0.427	0.653	0.478	0.454
2 21:00		0.002	0.755	0.772	м 240.000	91.542%	92.081%	0.202	0.431	0.212	0.171
3 21:07		-0.001	0.744	0.648	м 242.900	91.209%	91.390%	0.194	0.430	0.168	0.171
X	7100	-0.009	0.869	0.838	м 241.900	91.506%	91.855%	0.274	0.505	0.286	0.258
σ		0.016	0.207	0.229	м 24 1.900 м 1.650	0.281%	0.403%		0.128	0.260	0.236
%RSD								0.132	25.390		
	ime	175.100 208Pb	23.870 209Bi	27.380 220Bkg	<u>м 0.682</u> 238U	0.307	0.439	48.180	25.390	58.740	65.770
Kuii I	mie	ppb	ppb	ppb	ppb						
1 21:05	5:26	0.518	84.356%	0.000	0.000						
2 21:00		0.318	84.382%	0.000	0.000						
			83.566%								
	1.30	0.214		0.000	0.000						
X		0.329	84.101%	0.000	0.000						
σ		0.166	0.464%	0.000	0.000						
%RSD		50.400	0.551	0.000	0.000						

mp58063-s3 5/7/2011 21:08:39

User Pre-dilution: 1						2011		2/11		0701
Run Time		9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:09:44	=	м 118.800	м 380.100	м 386.400	0.000	тм 283700.000	тм 23600.000	тм 23220.000	<u>⊤ 528.900</u>	<u>т 0.000</u>
2 21:10:49	=	м 115.100	м 367.600	м 376.900	0.000	тм 274800.000	тм 22520.000	тм 22380.000	<u> 7 509.300</u>	<u>т 0.000</u>
3 21:11:54	_	м 114.300	м 374.500	м 377.700	0.000	тм 274500.000	тм 22620.000	тм 22350.000	<u> 7 506.100</u>	<u>т 0.000</u>
X	80.527%	м 116.100	м 374.100	м 380.300	0.000	тм 277700.000	тм 22910.000	тм 22650.000	<u>т 514.800</u>	<u>т 0.000</u>
σ	0.983%	<u>м 2.416</u>	<u>м 6.284</u>	<u>м 5.267</u>	0.000	<u>тм 5264.000</u>	<u>тм 596.200</u>	тм 494.200	<u>т 12.310</u>	<u>т 0.000</u>
%RSD	1.221	м 2.082	<u>м 1.680</u>	<u>м 1.385</u>	0.000	<u>тм 1.896</u>	<u>тм 2.602</u>	<u>тм 2.182</u>	<u>т 2.392</u>	<u>т 0.000</u>
Run Time	9 39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:09:44	1	м 119100.000	тм 131600.000	95.069%	0.416	м 103.200	м 103.500	м 101.500	303.500	тм 659.500
2 21:10:49	<u>тм 10080.000</u>	м 115900.000	тм 127100.000	96.146%	0.354	м 100.200	м 100.200	99.680	297.800	<u>тм 636.500</u>
3 21:11:54	<u>тм 9973.000</u>	м 114100.000	тм 124900.000	97.319%	0.471	98.610	98.930	м 100.800	283.400	тм 628.000
X	тм 10110.000	м 116400.000	тм 127900.000	96.178%	0.414	м 100.700	м 100.900	м 100.700	294.900	<u>тм 641.300</u>
σ	<u>тм 161.100</u>	м 2548.000	тм 3410.000	1.125%	0.058	м 2.356	м 2.342	м 0.918	10.330	тм 16.310
%RSD	<u>тм 1.594</u>	м 2.189	<u>тм 2.667</u>	1.170	14.120	м 2.341	м 2.322	м 0.912	3.502	тм 2.543
Run Time	e 56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:09:44	<u>тм 4059.000</u>	м 4347.000	95.700	96.240	м 113.300	95.420	94.220	м 167.500	м 173.200	м 172.300
2 21:10:49	<u>тм 3921.000</u>	м 4223.000	92.220	93.490	м 111.500	93.100	91.240	м 163.200	м 162.500	м 168.400
3 21:11:54	1 3868.000	м 4176.000	91.760	93.180	м 110.500	92.590	91.520	м 162.900	м 164.800	м 167.300
X	тм 3950.000	м 4249.000	93.220	94.300	м 111.800	93.700	92.330	м 164.600	м 166.800	м 169.300
σ	тм 98.660	м 88.340	2.154	1.686	м 1.396	1.510	1.648	м 2.568	м 5.632	м 2.631
%RSD	тм 2.498	м 2.079	2.310	1.788	м 1.249	1.611	1.785	м 1.560	м 3.376	м 1.554
Run Time	9 75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:09:44		м 215.100	м 188.100	0.000	0.000	м 187.800	тм 890.500	91.965%	10.670	10.760
2 21:10:49	м 102.900	м 205.100	м 182.500	0.000	0.000	м 182.400	тм 853.600	93.140%	10.140	10.250
3 21:11:54	м 103.100	м 206.700	м 184.200	0.000	0.000	м 184.800	тм 864.200	91.616%	10.300	10.650
X	м 103.700	м 208.900	м 184.900	0.000	0.000	м 185.000	тм 869.400	92.240%	10.370	10.550
σ	м 1.196	м 5.366	м 2.881	0.000	0.000	м 2.706	тм 18.970	0.799%	0.271	0.265
%RSD	<u>м 1.153</u>	<u>м 2.568</u>	<u>м 1.558</u>	0.000	0.000	м 1.463	тм 2.181	0.866	2.612	2.510
Run Time		103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	dqq	ppb	ppb	ppb	ppb
1 21:09:44	_	82.021%	99.230	99.570	0.967	м 103.400	98.420	м 102.400	м 100.900	85.496%
2 21:10:49	_	83.719%	97.720	96.320	0.621	96.990	96.070	98.630	97.980	87.514%
3 21:11:54	=	83.061%	96.170	97.340	0.981	м 100.900	96.920	99.370	99.310	85.867%
X	10.630	82.934%	97.710	97.750	0.856	м 100.400	97.140	м 100.100	м 99.390	86.292%
σ	0.238	0.856%	1.531	1.663	0.204	м 3.248	1.193	м 2.016	м 1.448	1.074%
%RSD	2.236	1.032	1.567	1.701	23.850	м 3.234	1.228	<u>м 2.013</u>	<u>м 1.457</u>	1.245
Run Time		121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
Ttall Till	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:09:44	_	м 111.500	м 111.600	м 373.300	89.744%	90.920%	м 107.900	м 108.600	м 108.600	м 109.200
2 21:10:49	=	м 106.300	м 106.700	м 355.900	91.915%	92.190%	м 103.400	м 103.800	м 103.600	м 104.300
3 21:11:54	=	м 109.300	м 108.400	м 363.000	91.288%	91.799%	м 105.300	м 105.500	м 105.200	м 105.400
X	-0.161	м 109.000	м 108.900	м 364.100	90.982%	91.637%	м 105.500	м 106.000	м 105.800	м 106.300
σ	0.010	м 2.652	м 2.502	м 8.764	1.117%	0.651%	м 2.230	м 2.442	м 2.576	м 2.578
%RSD	5.890	м 2.432	м 2.298	<u>м 8.704</u> м 2.407	1.11778	0.051%	<u>м 2.230</u> м 2.113	м 2.442 м 2.304	<u>м 2.370</u> м 2.434	<u>м 2.425</u>
Run Time		209Bi	220Bkg	238U	1.220	0.710	M Z. 113	м 2.304	<u>m 2.434</u>	M 2.420
IXUIT TITIL	ppb	ppb	ppb	ppb						
1 21:09:44		82.022%	0.000	0.000						
2 21:10:49	=	85.180%	0.000	0.000						
3 21:11:54	_	83.843%	0.000	0.000						
<u> </u>		83.682%	0.000							
X	м 106.600			0.000						
σ	м 2.616	1.585%	0.000	0.000						
%RSD	м 2.454	1.895	0.000	0.000						

mp58063-s4 5/7/2011 21:12:57

	-dilution: 1.00		OD a	100	110	120	22No	25Ma	2/14~	2741	37CI
Run	Time	6Li ppb	9Be ppb	10B ppb	11B ppb	13C ppb	23Na ppb	25Mg ppb	26Mg ppb	27AI ppb	
1	21:14:02	81.381%	м 110.000	м 360.900	м 363.300	0.000	тм 266000.000	тм 21840.000	тм 21710.000	<u>⊤ 493.400</u>	ppb
2	21:15:07	80.824%	м 112.500	м 357.400	м 365.300	0.000	тм 266800.000	тм 21910.000	тм 21790.000	т 491.800	T 0.000
3	21:16:12	82.357%	м 109.900	м 351.100	м 360.600	0.000	тм 264100.000	тм 21820.000	тм 21650.000	т 492.400	<u>T 0.000</u>
X	21.10.12	81.521%	м 110.800	м 356.500	м 363.100	0.000	тм 265600.000	тм 21860.000	тм 21710.000	т 492.500	<u>т 0.000</u>
σ		0.776%	м 1.480	м 4.938	м 2.377	0.000	тм 1422.000	тм 44.420	тм 70.180	т 0.790	т 0.000
%RSD	! 	0.952	<u>м 1.335</u>	<u>м 1.785</u> м 1.385	м 0.655	0.000	тм 0.535	тм 0.203	тм 0.323	т 0.161	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	21:14:02	тм 9768.000	м 112400.000	тм 123700.000	95.010%	0.438	98.180	98.130	97.880	295.600	тм 621.500
2	21:15:07	тм 9717.000	м 111600.000	тм 122400.000	95.732%	0.510	98.260	97.830	99.810	280.900	тм 618.900
3	21:16:12	тм 9799.000	м 112500.000	тм 123700.000	94.916%	0.620	97.580	99.170	98.310	304.700	тм 624.400
Х		тм 9761.000	м 112200.000	тм 123300.000	95.219%	0.523	98.000	98.380	98.670	293.700	тм 621.600
σ		тм 41.550	м 512.800	тм 777.500	0.447%	0.092	0.370	0.704	1.014	12.040	тм 2.735
%RSD		тм 0.426	<u>м 0.457</u>	<u>тм 0.631</u>	0.469	17.550	0.378	0.715	1.027	4.098	тм 0.440
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	21:14:02	тм 3825.000	м 4129.000	91.880	93.480	м 111.900	92.460	90.990	м 160.500	м 162.400	м 165.000
2	21:15:07	тм 3807.000	м 4078.000	91.180	92.520	м 107.100	91.920	90.010	м 158.100	м 161.000	м 164.300
3	21:16:12	тм 3842.000	м 4112.000	91.580	92.320	м 109.100	92.110	90.250	м 161.000	м 159.700	м 162.700
X		тм 3825.000	м 4107.000	91.550	92.770	м 109.400	92.160	90.420	м 159.900	м 161.000	м 164.000
σ		<u>тм 17.470</u>	м 25.930	0.354	0.620	<u>м 2.425</u>	0.273	0.508	<u>м 1.569</u>	<u>м 1.347</u>	<u>м 1.167</u>
%RSD		<u>тм 0.457</u>	м 0.632	0.387	0.668	м 2.218	0.296	0.562	м 0.982	м 0.836	м 0.712
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	21:14:02	м 101.800	м 206.000	м 181.200	0.000	0.000	м 181.500	тм 846.200	91.348%	10.190	10.340
2	21:15:07	м 100.900	м 206.200	м 180.700	0.000	0.000	м 179.700	тм 843.600	91.300%	9.940	10.290
3	21:16:12	м 102.000	м 204.800	м 182.600	0.000	0.000	м 181.400	тм 850.000	90.540%	10.070	10.390
X]	м 101.500	м 205.700	м 181.500	0.000	0.000	м 180.900	тм 846.600	91.063%	10.070	10.340
σ		м 0.569	м 0.749	м 0.959	0.000	0.000	м 0.974	тм 3.203	0.453%	0.123	0.050
%RSD		м 0.560	м 0.364	м 0.528	0.000	0.000	м 0.539	тм 0.378	0.498	1.225	0.482
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo 0	108Cd	109Ag	111Cd	114Cd	115In
1	21:14:02	ppb 10.300	ppb 82.484%	ppb 96.930	ppb 96.300	ppb 0.698	ppb 97.500	ppb 95.020	ppb 97.360	ppb 97.720	ppb 85.458%
2	21:15:07	10.200	83.364%	93.400	94.820	0.711	94.440	93.860	98.120	96.120	86.102%
3	21:16:12	10.600	81.975%	92.650	96.210	0.913	96.540	95.310	97.710	97.820	85.341%
X	21.10.12	10.370	82.608%	94.330	95.780	0.774	96.160	94.730	97.730	97.220	85.634%
σ		0.209	0.703%	2.284	0.831	0.120	1.564	0.767	0.385	0.953	0.410%
%RSD		2.014	0.851	2.422	0.868	15.560	1.626	0.809	0.393	0.980	0.478
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	21:14:02	-0.176	м 106.700	м 107.100	м 353.700	89.980%	90.978%	м 102.600	м 102.800	м 102.800	м 103.100
2	21:15:07	-0.170	м 105.900	м 105.200	м 350.100	90.773%	91.053%	м 102.700	м 103.300	м 102.800	м 103.800
	21:16:12	-0.182	м 107.000	м 107.200	м 353.100	90.640%	90.995%	м 103.500	м 103.600	м 103.700	м 103.400
X		-0.176	м 106.600	м 106.500	м 352.300	90.464%	91.009%	м 102.900	м 103.300	м 103.100	м 103.400
σ	İ	0.006	м 0.552	м 1.104	м 1.935	0.425%	0.040%	м 0.481	м 0.378	м 0.528	м 0.366
%RSD		3.513	м 0.518	м 1.036	м 0.549	0.470	0.044	м 0.468	м 0.366	м 0.512	м 0.354
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	21:14:02	м 103.500	83.816%	0.000	0.000						
2	21:15:07	м 103.400	83.787%	0.000	0.000						
3	21:16:12	м 104.000	83.269%	0.000	0.000						
X		м 103.600	83.624%	0.000	0.000						
σ		м 0.365	0.308%	0.000	0.000						
%RSD]	м 0.352	0.368	0.000	0.000						

ja74098-1f 5/7/2011 21:17:15

User Pre-dilution: 1.00	00									
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:18:20	78.131%	0.075	м 368.900	м 377.400	0.000	тм 278300.000	тм 22510.000	тм 22270.000	12.350	т 0.000
2 21:19:25	80.121%	-0.066	м 366.200	м 374.400	0.000	тм 270900.000	тм 21870.000	тм 21670.000	11.260	т 0.000
3 21:20:30	78.331%	-0.086	м 373.900	м 383.400	0.000	тм 274300.000	тм 22300.000	тм 22070.000	10.980	T 0.000
X	78.861%	-0.026	м 369.700	м 378.400	0.000	тм 274500.000	тм 22230.000	тм 22000.000	11.530	т 0.000
	1.096%	0.088	<u>м 3.7.700</u> м 3.918	<u>м 37 0.400</u> м 4.601	0.000	тм 3732.000	тм 326.900	тм 306.800	0.722	<u>т 0.000</u>
σ %RSD										
	1.390	340.600	м 1.060	м 1.216	0.000	<u>тм 1.360</u>	<u>тм 1.471</u>	<u>тм 1.395</u>	6.265	<u>T 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 21 10 20	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:18:20	тм 9602.000	м 114800.000	тм 126900.000	92.865%	0.463	0.931	5.507	4.904	292.100	тм 541.900
2 21:19:25	тм 9519.000	м 112600.000	тм 124900.000	93.834%	0.320	1.021	5.261	6.825	285.400	тм 530.100
3 21:20:30	тм 9563.000	м 114500.000	тм 125900.000	93.105%	0.703	0.910	5.308	4.896	295.900	<u>тм 539.400</u>
X	<u>тм 9561.000</u>	м 114000.000	тм 125900.000	93.268%	0.496	0.954	5.359	5.542	291.100	<u>тм 537.100</u>
σ	_{TM} 41.240	м 1184.000	тм 1021.000	0.505%	0.194	0.059	0.130	1.111	5.304	тм 6.191
%RSD	тм 0.431	м 1.038	<u>тм 0.811</u>	0.542	39.100	6.175	2.434	20.050	1.822	тм 1.153
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
,	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:18:20	тм 3510.000	м 3757.000	-0.142	3.361	19.810	3.858	2.083	72.290	74.910	76.820
2 21:19:25	тм 3450.000	м 3709.000	-0.236	3.354	17.930	3.720	1.972	69.540	74.250	74.670
3 21:20:30	тм 3512.000	м 3752.000	-0.269	3.185	18.310	3.599	1.910	71.800	73.420	74.820
X	тм 3490.000	м 3739.000	-0.216	3.300	18.680	3.726	1.988	71.210	74.190	75.440
	тм 35.080	м 26.470	0.066	0.099	0.995		0.087	1.466	0.750	
σ %RSD						0.130				1.201
	<u>тм 1.005</u>	м 0.708	30.650	3.010	5.323	3.476	4.400	2.058	1.011	1.592
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 21 10 20	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:18:20	3.063	22.450	1.210	0.000	0.000	1.214	тм 879.800	87.862%	10.540	10.480
2 21:19:25	3.157	20.590	1.117	0.000	0.000	0.832	тм 867.300	89.273%	10.490	10.530
3 21:20:30	2.959	22.380	1.001	0.000	0.000	0.993	тм 877.700	88.075%	10.610	10.690
X	3.060	21.810	1.109	0.000	0.000	1.013	тм 874.900	88.404%	10.550	10.570
σ	0.099	1.051	0.105	0.000	0.000	0.192	<u>тм 6.670</u>	0.760%	0.058	0.111
%RSD	3.226	4.819	9.434	0.000	0.000	18.910	<u>тм 0.762</u>	0.860	0.552	1.051
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:18:20	10.690	80.416%	-3.673	0.467	0.459	0.253	0.507	-0.021	0.089	83.452%
2 21:19:25	10.680	79.914%	-4.401	0.341	0.498	0.127	0.396	-0.177	-0.048	83.024%
3 21:20:30	10.540	80.106%	-3.658	0.336	0.457	0.223	0.363	-0.150	-0.073	82.779%
X	10.630	80.145%	-3.911	0.381	0.471	0.201	0.422	-0.116	-0.011	83.085%
σ	0.082	0.253%	0.425	0.074	0.023	0.066	0.076	0.083	0.087	0.341%
%RSD	0.770	0.316	10.860	19.470	4.862	32.620	17.900	71.580	820.600	0.410
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
itan inno	ppb	ppb	ppb	ppb	ppb	ppb	ppb	dqq	ppb	ppb
1 21:18:20	-0.153	0.794	0.768	м 254.700	88.055%	89.035%	0.338	0.560	0.298	0.309
0 04 40 05	-0.161	0.659	0.624	м 255.500	88.266%	88.993%	0.210	0.440	0.166	0.169
3 21:20:30	-0.150	0.616	0.566	м 256.400	87.751%	88.331%	0.210	0.440	0.135	0.109
X	-0.154	0.690	0.653	м 255.500	88.024%	88.786%	0.256	0.480	0.200	0.199
σ	0.005	0.093	0.104	м 0.838	0.259%	0.394%	0.072	0.070	0.087	0.099
%RSD	3.484	13.480	15.960	м 0.328	0.294	0.444	27.940	14.560	43.320	49.890
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 21:18:20	0.359	81.825%	0.000	0.000						
2 21:19:25	0.220	81.655%	0.000	0.000						
3 21:20:30	0.190	81.597%	0.000	0.000						
X	0.256	81.693%	0.000	0.000						
σ	0.090	0.119%	0.000	0.000						
%RSD	35.030	0.145	0.000	0.000						

ja74098-2 5/7/2011 21:21:32

User Pre-dilution: 1.00		9Be	10B	110	120	22No	OEM#	2/14	2741	37CI
Run Time	6Li ppb	ppb	ppb	11B ppb	13C ppb	23Na ppb	25Mg ppb	26Mg ppb	27AI ppb	ppb
1 21:22:37	78.154%	-0.097	м 212.300	м 213.600	0.000	тм 42980.000	м 11980.000	тм 12280.000	<u> </u>	<u>1 0.000</u>
2 21:23:43	78.666%	-0.092	м 204.400	м 202.800	0.000	тм 40280.000	м 11100.000	тм 11380.000	<u>⊤ 50.800</u>	± 0.000
3 21:24:48	78.652%	-0.086	м 205.000	м 205.000	0.000	тм 41530.000	тм 11950.000	тм 11970.000	<u>⊤ 54.910</u>	T 0.000
X X	78.491%	-0.091	м 207.200	м 207.100	0.000	тм 41590.000	тм 11680.000	тм 11880.000	т 53.140	<u>т 0.000</u>
σ	0.291%	0.005	м 4.413	м 5.686	0.000	тм 1351.000	тм 502.700	тм 457.300	<u>т 2.118</u>	т 0.000
%RSD	0.371	5.815	<u>м 2.130</u>	<u>м 3.745</u>	0.000	тм 3.249	тм 4.306	тм 3.849	<u>т 3.985</u>	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
,	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:22:37	тм 3584.000	м 94910.000	тм 106200.000	85.205%	1.453	1.100	4.280	4.521	228.400	тм 812.000
2 21:23:43	тм 3373.000	м 86900.000	тм 96860.000	88.697%	0.887	0.828	3.818	3.098	207.800	тм 742.500
3 21:24:48	тм 3506.000	м 91250.000	тм 101500.000	86.774%	1.197	1.211	4.063	4.779	200.300	тм 777.100
X	тм 3488.000	м 91020.000	тм 101500.000	86.892%	1.179	1.046	4.054	4.132	212.200	тм 777.200
σ	тм 106.500	м 4006.000	тм 4685.000	1.749%	0.283	0.197	0.231	0.905	14.540	тм 34.750
%RSD	<u>тм 3.055</u>	м 4.402	<u>тм 4.615</u>	2.013	24.020	18.860	5.703	21.910	6.856	тм 4.471
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:22:37	тм 5286.000	м 5613.000	5.892	17.320	30.820	2.933	2.273	м 204.600	м 196.800	м 205.500
2 21:23:43	тм 4805.000	м 5112.000	5.392	16.060	30.090	2.765	2.228	м 187.400	м 184.000	м 188.500
3 21:24:48	тм 5101.000	м 5395.000	5.669	16.650	31.280	2.846	2.403	м 196.900	м 187.100	м 198.600
X	тм 5064.000	м 5373.000	5.651	16.680	30.730	2.848	2.301	м 196.300	м 189.300	м 197.500
σ	тм 242.700	м 251.000	0.251	0.634	0.598	0.084	0.091	м 8.577	<u>м 6.691</u>	м 8.539
%RSD	<u>тм 4.793</u>	м 4.671	4.437	3.800	1.945	2.951	3.949	м 4.369	<u>м 3.535</u>	м 4.323
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 21 22 27	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:22:37	1.194	9.352	-0.522	0.000	0.000	0.065	тм 664.700	87.298%	19.320	19.460
2 21:23:43	0.981	6.403	-0.747	0.000	0.000	0.008	тм 607.500	89.658%	17.370	17.250
3 21:24:48	1.124	6.288	-0.534	0.000	0.000	0.039	тм 647.600	86.995%	18.710	19.210
X	1.099	7.348	-0.601	0.000	0.000	0.037	тм 639.900	87.984%	18.470	18.640
σ %RSD	0.109	1.737	0.127	0.000	0.000	0.029	тм 29.370	1.458%	1.000	1.214
Run Time	9.907	23.630	21.060	0.000	0.000	76.440	<u>тм 4.590</u>	1.657	5.416	6.514
Rull Illile	98Mo ppb	103Rh ppb	106Cd ppb	107Ag ppb	108Mo O ppb	108Cd ppb	109Ag ppb	111Cd ppb	114Cd ppb	115I n ppb
1 21:22:37	19.330	77.869%	-3.143	0.312	0.419	0.166	0.364	-0.198	-0.114	81.111%
2 21:23:43	17.670	81.604%	-4.251	0.333	0.487	0.122	0.357	-0.280	-0.173	85.244%
3 21:24:48	18.960	77.730%	-3.027	0.326	0.409	0.133	0.360	-0.200	-0.120	81.317%
X X	18.650	79.067%	-3.474	0.324	0.438	0.140	0.360	-0.226	-0.136	82.557%
σ	0.871	2.198%	0.676	0.011	0.043	0.023	0.004	0.047	0.032	2.329%
%RSD	4.668	2.779	19.450	3.293	9.726	16.130	1.034	20.670	23.920	2.821
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:22:37	-0.120	0.260	0.233	м 164.300	85.559%	86.379%	0.064	0.309	0.406	0.365
2 21:23:43	-0.135	0.217	0.192	м 149.500	90.170%	91.051%	0.069	0.296	0.367	0.362
3 21:24:48	-0.092	0.226	0.213	м 159.800	86.536%	87.613%	0.065	0.295	0.405	0.355
X	-0.116	0.234	0.213	м 157.900	87.422%	88.348%	0.066	0.300	0.393	0.361
σ	0.022	0.022	0.020	м 7.606	2.430%	2.421%	0.002	0.008	0.022	0.005
%RSD	19.040	9.556	9.631	м 4.817	2.779	2.741	3.761	2.560	5.543	1.501
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 21:22:37	0.438	82.738%	0.000	0.000						
2 21:23:43	0.410	86.978%	0.000	0.000						
3 21:24:48	0.434	83.936%	0.000	0.000						
X	0.427	84.551%	0.000	0.000						
σ	0.015	2.185%	0.000	0.000						
%RSD	3.547	2.585	0.000	0.000						

ja74098-3 5/7/2011 21:25:50

User Pre-dilution: 1.00		OD a	100	110	120	22No	2514~	2/14~	27.41	2701
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 21:26:55	ppb 77.164%	ppb -0.119	ррb м 353.000	ррb м 353.000	ppb 0.000	ррb тм 261600.000	ррb тм 21140.000	ррb тм 20880.000	ppb 11.210	ppb <u>⊤ 0.000</u>
2 21:28:01	77.104 %	-0.119	м 367.200	м 369.200	0.000	тм 269000.000	тм 21700.000	тм 21420.000	11.310	± 0.000
			·	·		-				·
3 21:29:06	78.875%	-0.141	м 355.400	м 357.800	0.000	тм 262000.000	тм 21150.000	тм 20900.000	11.490	T 0.000
X	77.709%	-0.121	м 358.500	м 360.000	0.000	тм 264200.000	тм 21330.000	тм 21070.000	11.340	<u>т 0.000</u>
%RSD	1.010%	0.020	м 7.569	м 8.322	0.000	тм 4189.000	тм 323.500	тм 301.900	0.144	<u>т 0.000</u>
Run Time	1.299 39K	16.520	м 2.111	м 2.312	0.000 47Ti	<u>тм 1.586</u> 51V	<u>тм 1.517</u>	<u>тм 1.433</u> 53Сr	1.272	<u>т 0.000</u> 55Мп
Ruii Iiiile	ppb	43Ca ppb	44Ca ppb	45Sc ppb	ppb	ppb	52Cr ppb	ppb	53CI O ppb	ppb
1 21:26:55	тм 9179.000	м 109500.000	тм 121300.000	90.035%	0.312	0.913	4.991	4.903	253.200	тм 510.300
2 21:28:01	тм 9377.000	м 112100.000	тм 124200.000	90.550%	0.452	0.569	5.070	4.150	283.400	тм 522.300
3 21:29:06	тм 9244.000	м 109800.000	тм 122000.000	90.755%	0.432	0.851	4.967	4.670	291.700	тм 514.900
	тм 9267.000					0.778		4.574	276.100	<u>тм 515.900</u>
X	тм 100.700	<u>м 110400.000</u> м 1418.000	тм 122500.000 тм 1557.000	90.446% 0.371%	0.417 0.092	0.778	5.010 0.054	0.385	20.220	<u>тм 6.029</u>
σ %RSD	тм 1.087	м 1.284	тм 1.271	0.37178	22.130	23.590	1.074	8.424	7.324	<u>тм 1.169</u>
Run Time	<u>™ 1.087</u> 56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
Kun I nine	ppb	ppb	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb
1 21:26:55	тм 3281.000	м 3507.000	-0.270	3.004	18.300	3.483	1.684	69.450	71.810	73.030
2 21:28:01	тм 3351.000	м 3582.000	-0.258	3.052	16.790	3.381	1.838	71.830	74.800	75.960
3 21:29:06	тм 3304.000	м 3518.000	-0.268	3.116	16.440	3.358	1.774	71.180	73.900	74.140
x	тм 3312.000	м 3536.000	-0.265	3.058	17.170	3.407	1.766	70.820	73.500	74.370
σ	тм 35.910	м 40.320	0.006	0.056	0.989	0.066	0.078	1.230	1.531	1.482
%RSD	тм 1.084	<u>м 40.320</u> м 1.140	2.294	1.847	5.757	1.943	4.394	1.737	2.083	1.993
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:26:55	2.859	16.950	0.597	0.000	0.000	0.782	тм 831.600	87.711%	10.590	10.450
2 21:28:01	3.070	19.680	0.839	0.000	0.000	0.834	тм 857.800	86.628%	10.800	10.760
3 21:29:06	2.838	21.850	0.689	0.000	0.000	0.692	тм 834.500	87.871%	10.220	10.780
X	2.923	19.490	0.708	0.000	0.000	0.770	тм 841.300	87.403%	10.540	10.660
σ	0.128	2.455	0.122	0.000	0.000	0.072	тм 14.360	0.676%	0.291	0.186
%RSD	4.388	12.600	17.190	0.000	0.000	9.333	тм 1.707	0.774	2.759	1.745
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:26:55	10.480	79.064%	-3.872	0.309	0.470	0.226	0.351	-0.215	-0.090	82.799%
2 21:28:01	10.910	78.305%	-3.893	0.315	0.460	0.066	0.352	-0.183	-0.054	82.100%
3 21:29:06	10.580	79.150%	-3.415	0.319	0.433	0.129	0.350	-0.156	-0.049	83.030%
X	10.660	78.840%	-3.726	0.315	0.454	0.140	0.351	-0.185	-0.065	82.643%
σ	0.227	0.465%	0.270	0.005	0.019	0.080	0.001	0.030	0.022	0.484%
%RSD	2.130	0.590	7.243	1.591	4.134	57.260	0.311	15.990	34.440	0.586
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:26:55	-0.154	0.538	0.449	м 242.500	87.449%	88.107%	0.039	0.281	0.139	0.126
2 21:28:01	-0.178	0.576	0.543	м 248.100	87.178%	88.065%	0.043	0.277	0.129	0.133
3 21:29:06	-0.158	0.569	0.494	м 244.200	88.989%	89.471%	0.034	0.275	0.128	0.156
X	-0.164	0.561	0.496	м 245.000	87.872%	88.548%	0.039	0.278	0.132	0.139
σ	0.013	0.020	0.047	м 2.851	0.977%	0.800%	0.005	0.003	0.006	0.016
Run Time	7.804	3.554 209Bi	9.527	<u>м 1.164</u> 238U	1.112	0.904	12.420	1.066	4.629	11.330
Run Time	208Pb ppb	ppb	220Bkg ppb	2380 ppb						
1 21:26:55	0.183	80.371%	0.000	0.000						
2 21:28:01	0.186	81.018%	0.000	0.000						
3 21:29:06	0.189	81.807%	0.000	0.000						
X	0.186	81.065%	0.000	0.000						
σ	0.003	0.719%	0.000	0.000						
%RSD	1.481	0.887	0.000	0.000						
		3.007	3.000	2.000						

ccv 5/7/2011 21:30:10

User Pre-dilution: 1.000										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:31:15	89.140%	50.860	60.130	59.310	0.000	726.100	447.800	452.200	441.200	<u>T 0.000</u>
2 21:32:20	87.741%	54.470	58.850	58.730	0.000	577.200	466.200	461.900	463.400	<u> </u>
3 21:33:25	88.483%	52.940	56.480	57.890	0.000	531.300	461.000	464.900	465.500	<u>T 0.000</u>
X	88.455%	52.760	58.490	58.640	0.000	611.500	458.300	459.700	456.700	<u>т 0.000</u>
σ	0.700%	1.814	1.853	0.711	0.000	101.800	9.480	6.632	13.480	<u>т 0.000</u>
%RSD	0.792	3.439	3.169	1.212	0.000	16.650	2.068	1.443	2.952	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:31:15	436.700	611.200	606.700	86.814%	49.810	48.690	48.110	49.940	242.800	48.840
2 21:32:20	453.800	537.200	538.100	85.363%	52.290	50.840	50.550	48.900	254.300	50.750
3 21:33:25	455.100	518.800	513.100	85.778%	52.570	51.170	51.000	51.270	244.900	50.630
X	448.600	555.700	552.600	85.985%	51.560	50.240	49.890	50.040	247.300	50.070
σ	10.270	48.900	48.470	0.747%	1.522	1.345	1.557	1.189	6.117	1.068
%RSD	2.289	8.800	8.771	0.869	2.952	2.678	3.121	2.377	2.474	2.133
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:31:15	434.400	462.000	48.130	48.680	59.590	47.860	47.270	49.060	49.490	48.670
2 21:32:20	454.600	478.400	50.480	50.790	61.630	49.960	49.920	50.380	50.250	50.230
3 21:33:25	458.400	479.200	51.030	51.840	59.210	50.250	50.250	51.060	51.010	50.900
X	449.100	473.200	49.880	50.440	60.140	49.350	49.140	50.170	50.250	49.930
σ	12.900	9.717	1.537	1.608	1.303	1.300	1.634	1.017	0.761	1.143
%RSD	2.872	2.054	3.080	3.189	2.167	2.635	3.324	2.026	1.515	2.288
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:31:15	49.220	54.730	50.360	0.000	0.000	49.390	49.730	89.813%	49.300	49.540
2 21:32:20	51.320	56.790	52.180	0.000	0.000	51.900	50.960	88.776%	51.210	51.290
3 21:33:25	51.990	58.200	53.140	0.000	0.000	52.230	51.600	87.921%	51.800	51.690
Х	50.840	56.570	51.890	0.000	0.000	51.170	50.760	88.836%	50.770	50.840
σ	1.448	1.746	1.417	0.000	0.000	1.552	0.949	0.947%	1.307	1.140
%RSD	2.848	3.086	2.730	0.000	0.000	3.032	1.870	1.067	2.574	2.242
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
ixuii iiiic	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:31:15	49.540	87.331%	45.200	48.080	0.596	47.900	47.880	47.490	48.080	89.020%
2 21:32:20	51.180	86.751%	50.570	50.090	0.357	49.490	49.420	50.470	50.710	88.180%
3 21:33:25	52.040	86.722%	52.380	50.680	0.468	52.880	50.240	51.210	51.690	87.019%
X	50.920	86.935%	49.380	49.610	0.473	50.090	49.180	49.720	50.160	88.073%
σ	1.273	0.344%	3.730	1.363	0.119	2.544	1.198	1.966	1.866	1.005%
%RSD	2.500	0.34476	7.554	2.747	25.210	5.079	2.437	3.954	3.720	1.141
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
itan imis	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:31:15	48.940	48.030	48.080	48.530	91.126%	91.436%	49.140	48.590	49.230	48.910
2 21:32:20	50.870	50.220	50.080	51.130	89.145%	89.525%	50.350	49.960	50.660	50.610
3 21:33:25	51.900	51.810	51.890	52.130	88.644%	88.523%	51.680	50.880	51.990	52.000
X	50.570	50.020	50.020	50.600	89.638%	89.828%	50.390	49.810	50.620	50.510
σ	1.503	1.900	1.908	1.856	1.312%	1.480%	1.270	1.150	1.381	1.544
%RSD	2.972	3.798	3.814	3.667	1.31276	1.648	2.521	2.309	2.729	3.057
Run Time	208Pb	209Bi	220Bkg	238U	1.404	1.040	2.321	2.307	2.124	3.037
itan iiiie	ppb	ppb	ppb	ppb						
1 21:31:15	48.960	91.627%	0.000	0.000						
2 21:32:20	50.580	91.199%	0.000	0.000						
3 21:33:25	51.650	90.173%	0.000	0.000						
X X	50.390	91.000%	0.000	0.000						
σ %RSD	1.356 2.691	0.747% 0.821	0.000 0.000	0.000						
70K3D	2.091	U.02 I	0.000	0.000						

ccb 5/7/2011 21:34:28

User Pre-dilution: 1.00										
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:35:33	91.534%	-0.076	5.079	5.424	0.000	39.780	3.104	3.408	2.515	<u>T 0.000</u>
2 21:36:38	91.363%	-0.081	4.452	4.994	0.000	32.330	2.107	2.469	2.310	<u>T 0.000</u>
3 21:37:43	85.924%	-0.112	3.444	4.677	0.000	42.730	2.860	3.118	<u> 7.545</u>	<u>т 0.000</u>
X	89.607%	-0.090	4.325	5.031	0.000	38.280	2.690	2.998	<u>т 4.123</u>	<u>т 0.000</u>
σ	3.191%	0.019	0.825	0.375	0.000	5.358	0.519	0.481	<u>т 2.965</u>	<u>т 0.000</u>
%RSD	3.561	21.590	19.070	7.454	0.000	14.000	19.300	16.030	<u>т 71.900</u>	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:35:33	-3.947	-12.370	-4.082	88.930%	-0.486	0.096	-0.003	0.580	223.500	0.039
2 21:36:38	-2.842	-14.820	-9.438	89.971%	-0.510	0.070	0.044	0.079	227.100	-0.034
3 21:37:43	1.118	-11.960	-6.786	86.381%	-0.482	-0.228	-0.016	0.113	233.800	0.031
X	-1.890	-13.050	-6.768	88.427%	-0.493	-0.021	0.008	0.257	228.100	0.012
σ	2.664	1.545	2.678	1.847%	0.015	0.180	0.031	0.280	5.216	0.040
%RSD	140.900	11.840	39.560	2.089	3.038	868.400	372.200	108.600	2.287	328.800
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:35:33	2.779	2.878	-0.009	-0.139	8.186	0.130	-0.274	-0.467	-0.303	-0.536
2 21:36:38	3.439	2.571	-0.059	-0.208	7.493	0.080	-0.315	-0.453	-0.394	-0.610
3 21:37:43	5.585	4.554	-0.061	-0.212	7.967	0.085	-0.299	-0.481	-0.323	-0.635
X	3.934	3.335	-0.043	-0.186	7.882	0.098	-0.296	-0.467	-0.340	-0.594
σ	1.467	1.067	0.029	0.041	0.354	0.028	0.021	0.014	0.048	0.052
%RSD	37.290	32.000	68.130	22.140	4.494	28.270	6.964	3.008	14.080	8.705
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:35:33	-0.213	2.594	-0.042	0.000	0.000	-0.178	0.043	92.305%	-0.159	-0.098
2 21:36:38	-0.074	2.406	0.079	0.000	0.000	-0.239	-0.053	90.273%	-0.183	-0.168
3 21:37:43	-0.114	3.966	0.654	0.000	0.000	-0.222	-0.072	87.568%	-0.181	-0.143
X	-0.134	2.989	0.231	0.000	0.000	-0.213	-0.027	90.049%	-0.174	-0.136
σ	0.072	0.852	0.372	0.000	0.000	0.032	0.062	2.376%	0.013	0.036
%RSD	53.690	28.490	161.100	0.000	0.000	14.870	226.800	2.639	7.664	26.100
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:35:33	-0.019	91.681%	-0.483	0.355	0.238	0.017	0.398	-0.063	-0.013	91.994%
2 21:36:38	-0.069	89.726%	0.255	0.334	0.183	-0.096	0.372	-0.031	-0.016	89.591%
3 21:37:43	-0.088	86.585%	-0.058	0.327	0.208	-0.036	0.359	-0.068	-0.038	85.200%
X	-0.059	89.331%	-0.096	0.339	0.209	-0.038	0.377	-0.054	-0.023	88.928%
σ	0.036	2.571%	0.370	0.014	0.028	0.056	0.020	0.020	0.013	3.445%
%RSD	61.300	2.878	387.600	4.212	13.290	147.500	5.363	37.590	59.120	3.874
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:35:33	-0.085	0.608	0.575	0.072	92.758%	92.878%	0.146	0.374	0.109	0.116
2 21:36:38	-0.137	0.387	0.335	-0.009	89.073%	89.627%	0.119	0.345	0.053	0.048
3 21:37:43	-0.135	0.330	0.278	-0.054	85.992%	85.773%	0.101	0.337	0.000	0.007
X	-0.119	0.442	0.396	0.003	89.274%	89.426%	0.122	0.352	0.054	0.057
σ	0.030	0.147	0.158	0.064	3.388%	3.557%	0.023	0.019	0.054	0.055
%RSD	24.790	33.280	39.770	1907.000	3.795	3.977	18.810	5.437	101.000	96.970
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 21:35:33	0.177	91.872%	0.000	0.000						
2 21:36:38	0.106	89.156%	0.000	0.000						
3 21:37:43	0.065	85.312%	0.000	0.000						
X	0.116	88.780%	0.000	0.000						
σ	0.056	3.296%	0.000	0.000						
%RSD	48.770	3.713	0.000	0.000						

ja74098-2f 5/7/2011 21:38:47

User Pre-dilution: 1.00	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kuii Iiiie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:39:52	77.520%	-0.119	м 205.600	м 202.800	0.000	тм 42710.000	тм 12380.000	тм 12350.000	<u>⊤ 24.810</u>	± 0.000
2 21:40:57	76.875%	-0.130	м 209.800	м 211.400	0.000	тм 43280.000	тм 12590.000	тм 12600.000	18.720	⊤ 0.000
3 21:42:03	74.558%	-0.105	м 212.600	м 216.900	0.000	тм 43500.000	тм 12550.000	тм 12530.000	18.140	T 0.000
X	76.318%	-0.118	м 209.300	м 210.400	0.000	тм 43160.000	тм 12510.000	тм 12490.000	т 20.560	т 0.000
σ	1.558%	0.012	м 3.497	м 7.118	0.000	тм 406.500	тм 115.100	тм 127.800	т 3.696	т 0.000
%RSD	2.041	10.230	м 1.670	м 3.383	0.000	тм 0.942	тм 0.920	тм 1.023	т 17.980	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:39:52	тм 3682.000	м 95240.000	тм 106000.000	86.136%	0.980	1.089	2.830	3.309	168.300	тм 808.900
2 21:40:57	тм 3774.000	м 97630.000	тм 109200.000	83.403%	0.891	0.875	2.861	2.906	172.800	тм 835.100
3 21:42:03	тм 3713.000	м 95810.000	тм 106400.000	84.663%	0.741	1.076	2.774	2.683	162.500	тм 813.400
X	тм 3723.000	м 96230.000	тм 107200.000	84.734%	0.871	1.013	2.822	2.966	167.900	<u>тм 819.100</u>
σ	<u>тм 47.100</u>	м 1250.000	тм 1724.000	1.368%	0.121	0.120	0.045	0.317	5.166	тм 14.000
%RSD	<u>тм 1.265</u>	м 1.299	<u>тм 1.608</u>	1.614	13.900	11.870	1.579	10.700	3.078	<u>тм 1.709</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 01 00 50	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:39:52	тм 5619.000	м 5941.000	4.805	14.380	24.430	2.344	1.968	м 165.700	м 160.800	м 165.800
2 21:40:57	тм 5793.000	м 6159.000	4.915	14.610	23.910	2.446	1.911	м 169.600	м 166.700	м 171.800
3 21:42:03	тм 5644.000	м 5951.000	4.817	14.160	22.920	2.476	2.131	м 168.700	м 162.800	м 168.800
X	тм 5685.000	м 6017.000	4.846	14.380	23.760	2.422	2.003	м 168.000	м 163.400	м 168.800
σ %RSD	тм 94.070	м 122.700	0.060	0.225	0.766	0.069	0.114	м 2.040	м 2.983	м 2.966
Run Time	<u>тм 1.655</u> 75Аs	<u>м 2.039</u> 77Se	1.242 78Se	1.564 79Br	3.223 81Br	2.850 82Se	5.694 88Sr	<u>м 1.215</u> 89Ү	<u>м 1.825</u> 95Мо	<u>м 1.757</u> 97Мо
Ruii Iiiile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:39:52	1.005	1.554	-0.471	0.000	0.000	-0.083	тм 671.900	86.008%	17.240	17.220
2 21:40:57	0.928	1.806	-0.502	0.000	0.000	0.145	тм 682.500	84.849%	17.290	17.610
3 21:42:03	1.039	0.442	-0.386	0.000	0.000	0.030	тм 678.200	84.730%	17.220	17.860
X	0.991	1.267	-0.453	0.000	0.000	0.031	тм 677.500	85.196%	17.250	17.560
σ	0.057	0.726	0.060	0.000	0.000	0.114	тм 5.338	0.706%	0.035	0.323
%RSD	5.756	57.290	13.210	0.000	0.000	371.600	тм 0.788	0.828	0.201	1.838
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:39:52	17.140	77.955%	-2.511	0.311	0.382	0.231	0.351	-0.210	-0.134	81.262%
2 21:40:57	17.740	76.779%	-2.816	0.306	0.394	0.104	0.345	-0.225	-0.143	79.351%
3 21:42:03	17.770	75.940%	-2.450	0.318	0.377	0.206	0.350	-0.210	-0.130	79.414%
X	17.550	76.891%	-2.592	0.312	0.384	0.180	0.349	-0.215	-0.136	80.009%
σ	0.355	1.012%	0.197	0.006	0.009	0.067	0.003	0.009	0.006	1.085%
%RSD	2.020	1.316	7.580	1.934	2.296	37.350	0.918	4.076	4.684	1.357
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:39:52	-0.158	0.417	0.400	м 162.700	85.031%	85.325%	0.045	0.283	0.055	0.054
2 21:40:57	-0.165	0.382	0.345	м 165.800	83.881%	85.391%	0.039	0.277	0.057	0.052
3 21:42:03	-0.166	0.359	0.307	м 164.300	84.905%	85.225%	0.039	0.279	0.043	0.045
X	-0.163	0.386	0.351	м 164.300	84.606%	85.314%	0.041	0.280	0.052	0.050
σ	0.005	0.030	0.046	м 1.550	0.631%	0.084%	0.003	0.003	0.007	0.004
%RSD Time	2.889 208Pb	7.671	13.230	<u>м 0.943</u>	0.745	0.098	8.425	1.154	14.550	8.832
Run Time		209Bi ppb	220Bkg ppb	238U ppb						
1 21:39:52	ppb 0.114	82.294%	0.000	0.000						
2 21:40:57	0.114	81.769%	0.000	0.000						
3 21:42:03	0.100	81.650%	0.000	0.000						
X X	0.101	81.904%	0.000	0.000						
σ	0.006	0.342%	0.000	0.000						
%RSD	5.934	0.34278	0.000	0.000						
		2	2,230							

ja74098-3f 5/7/2011 21:43:06

User Pre-dilution: 1.00 Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
Kun mine	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:44:11	74.489%	-0.106	м 364.700	м 362.100	0.000	тм 268400.000	тм 21780.000	тм 21500.000	11.560	<u>т 0.000</u>
2 21:45:16	79.031%	-0.119	м 347.100	м 352.800	0.000	тм 263200.000	тм 21430.000	тм 21190.000	11.790	⊤ 0.000
3 21:46:21	79.604%	-0.103	м 344.400	м 342.400	0.000	тм 257700.000	тм 20850.000	тм 20630.000	11.070	⊤ 0.000
X	77.708%	-0.109	м 352.100	м 352.400	0.000	тм 263100.000	тм 21350.000	тм 21110.000	11.480	т 0.000
σ	2.802%	0.009	м 10.980	м 9.844	0.000	тм 5356.000	тм 466.800	тм 438.300	0.369	т 0.000
%RSD	3.606	7.952	м 3.117	м 2.793	0.000	тм 2.036	тм 2.186	тм 2.077	3.213	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:44:11	тм 9391.000	м 110900.000	тм 123300.000	87.926%	0.568	1.160	4.936	5.283	240.600	тм 521.800
2 21:45:16	тм 9450.000	м 112800.000	тм 125000.000	88.391%	0.439	1.354	5.208	6.915	260.800	тм 527.700
3 21:46:21	тм 9289.000	м 109200.000	тм 120500.000	89.924%	0.306	1.176	4.934	5.171	275.200	тм 510.000
X	тм 9377.000	м 111000.000	тм 122900.000	88.747%	0.438	1.230	5.026	5.790	258.800	<u>тм 519.900</u>
σ	_{TM} 81.840	м 1775.000	тм 2297.000	1.045%	0.131	0.108	0.158	0.977	17.360	тм 9.014
%RSD	<u>тм 0.873</u>	м 1.599	<u>тм 1.869</u>	1.178	29.970	8.748	3.139	16.870	6.707	тм 1.734
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:44:11	тм 3354.000	м 3594.000	-0.267	3.071	14.820	3.652	1.995	70.880	73.610	75.660
2 21:45:16	тм 3405.000	м 3639.000	-0.301	3.401	14.590	3.557	2.137	71.350	75.980	76.170
3 21:46:21	тм 3264.000	м 3497.000	-0.286	3.199	12.840	3.462	2.015	69.040	71.620	72.850
X	тм 3341.000	м 3577.000	-0.285	3.224	14.080	3.557	2.049	70.430	73.740	74.890
σ	тм 71.260	м 72.840	0.017	0.166	1.082	0.095	0.077	1.223	2.181	1.784
%RSD	тм 2.133	м 2.037	6.047	5.153	7.686	2.671	3.758	1.736	2.957	2.382
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 21:44:11	ppb 2.715	ppb 16.060	ppb 0.796	ppb 0.000	ppb 0.000	ppb 0.833	ррb тм 855.400	ppb 84.807%	ppb 10.280	ppb 10.410
2 21:45:16			0.688					84.797%	10.280	
3 21:46:21	2.950 2.761	18.310 19.360	0.544	0.000	0.000	1.015 0.837	<u>тм 864.700</u> <u>тм 830.400</u>	86.814%	10.500	10.720 10.260
	2.809									
σ	0.125	17.910 1.684	0.676	0.000	0.000	0.895	тм 850.200	85.473%	10.330	10.460 0.235
%RSD	4.431	9.400	0.127 18.750	0.000	0.000	0.104 11.620	<u>тм 17.720</u> тм 2.084	1.162% 1.360	0.159 1.538	2.245
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
Kun mile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:44:11	10.480	76.887%	-4.723	0.299	0.525	0.235	0.347	-0.240	-0.125	80.408%
2 21:45:16	10.640	76.877%	-4.447	0.306	0.507	0.234	0.348	-0.221	-0.112	80.769%
3 21:46:21	10.230	78.815%	-3.311	0.295	0.431	0.195	0.346	-0.158	-0.061	82.320%
Х	10.450	77.526%	-4.161	0.300	0.488	0.221	0.347	-0.206	-0.099	81.166%
σ	0.204	1.116%	0.749	0.005	0.050	0.023	0.001	0.043	0.034	1.016%
%RSD	1.950	1.440	17.990	1.811	10.200	10.420	0.202	20.790	34.080	1.252
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:44:11	-0.141	0.679	0.654	м 246.500	85.624%	86.469%	0.024	0.266	0.135	0.137
2 21:45:16	-0.147	0.633	0.616	м 250.900	86.274%	86.714%	0.026	0.267	0.122	0.125
3 21:46:21	-0.150	0.631	0.562	м 241.700	87.728%	88.221%	0.024	0.265	0.146	0.121
X	-0.146	0.648	0.611	м 246.400	86.542%	87.135%	0.025	0.266	0.134	0.128
σ	0.005	0.027	0.046	м 4.615	1.077%	0.949%	0.001	0.001	0.012	0.008
%RSD	3.196	4.136	7.543	м 1.873	1.245	1.089	4.681	0.442	9.122	6.642
Run Time	208Pb	209Bi	220Bkg	238U						
4 8 4 4 4 4 4	ppb	ppb	ppb	ppb						
1 21:44:11	0.186	79.640%	0.000	0.000						
2 21:45:16	0.178	79.476%	0.000	0.000						
3 21:46:21	0.183	81.338%	0.000	0.000						
X	0.182	80.151%	0.000	0.000						
σ	0.004	1.031%	0.000	0.000						
%RSD	2.053	1.287	0.000	0.000						

ja74099-1 5/7/2011 21:47:24

1 21:48:29	Run	-dilution: 1.00 Time	6Li l	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 12 14 18 19	Run	111110										ppb
2 21.49.34 77.904%	1	21:48:29										<u>⊤ 0.000</u>
The color The	2	21:49:34	77.904%	-0.130	м 170.200	м 170.200	0.000	тм 24080.000	м 7331.000	м 7369.000		т 0.000
No. 1819 No.	3	21:50:39	78.256%	-0.130	м 166.200	м 164.100	0.000	тм 23460.000	м 7117.000	м 7143.000	⊤63.780	<u>т 0.000</u>
Run Time 39K 43Ca 44Ca 45Sc 47Ti 51V 52Cr 53Cr 53Cl 53C	X		78.054%	-0.124	м 168.200	м 168.300	0.000	тм 23930.000	м 7268.000	м 7323.000	<u>т 66.010</u>	<u>т 0.000</u>
Run Time 39K 43Ca 44Ca 44Sc 44Sc 44Sc 47Ti 51V 52Cr 53Cr 53Cl 53Cl 1	σ		0.181%	0.010	м 2.006	м 3.711	0.000	тм 420.300	м 131.400	м 162.100	<u>т 2.032</u>	<u>т 0.000</u>
Property Property	%RSD		0.233	7.839	м 1.193	м 2.205	0.000	<u>тм 1.756</u>	<u>м 1.808</u>	м 2.213	<u>т 3.078</u>	<u>т 0.000</u>
1 21-48-29 \(\times \frac{1}{2} \) \(Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
2 21:49:34 w 2492.000 w 101000.000 w 112000.000 81.066% 2.218 0.074 0.429 0.555 144.400 w 322 3 21:50:39 w 2459.000 w 98040.000 w 108700.0000 82:504% 2.260 0.456 0.468 1.048 124.400 w 321 3 3 3 3 3 3 3 3 3												ppb
3 21:50:39 m.2459.000 m.10800.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.10870.000 m.1088850 m.10870.000 m.11890.000 m.10870.000 m.11890.000 m.10870.000 m.11890.000 m.10870.000 m.11890.000 m.10870.000 m.11890.000 m.10870.000 m.11890.000 m.10870.000 m.11890.000 m.11890.000 m.10870.000 m.11890.000 m.10870.000 m.11890.000 m.11890.000 m.10870.000 m.11890.0000 m.11890.000 m.11890.000 m.11890.0000 m.11890.0000 m.11890.0000 m.11890.00	_											тм 3272.000
X W2492.000 w100300.000 m111600.000 81.334% 2.183 0.228 0.452 0.833 146.800 m320 m320 m320 m32750 w196.000 w2715.000 1.661% 0.100 0.202 0.660 0.718 22.920 m380 m32												тм 3221.000
Markon Markon		21:50:39										тм 3110.000
No. No	=]										тм 3201.000
Run Time 56Fe 57Fe 59Co 60Ni 62Ni 63Cu 65Cu 66Zn 67Zn ppb												тм 82.780
Pob		Time o										<u>тм 2.586</u>
1 21:48:29 w 10870.000 w 11680.000 8.036 2.938 11.670 3.261 3.041 5.408 8.567 2 21:49:34 w 10710.000 w 11490.000 7.906 3.088 11.620 3.297 2.919 5.068 7.862 3 21:50:39 w 10320.000 w 11420.000 7.540 2.820 11.840 3.130 2.690 4.949 6.776 x	Run	Time										68Zn ppb
2 21:49:34	1	21.48.29										6.647
3 21:50:39 M 10320.000 M 11420.000 7.540 2.820 11.840 3.130 2.690 4.949 6.776 2.820 2.												6.825
x 10630.000 11420.000 7.828 2.949 11.710 3.230 2.884 5.141 7.735 σ												6.649
m ≥ 283 300 m ≥ 297.000 0.257 0.135 0.115 0.088 0.178 0.238 0.902 m ≥ 2644 m ≥ 2.600 3.286 4.565 0.985 2.715 6.182 4.634 11.660 Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 6.000 ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb 1 21:48:29 3.160 4.080 -0.561 0.000 0.000 -0.109 m ≥ 712.600 86.863% 0.789 2 21:49:34 3.092 0.745 -0.386 0.000 0.000 -0.034 m ≥ 700.500 87.251% 0.703 3 21:50:39 3.046 -1.665 -0.699 0.000 0.000 0.000 0.008 m ≤ 880.800 88.561% 0.640 x 3.099 1.053 -0.549 0.000 0.000 0.045 m ≥ 680.800 87.558% 0.710 σ 0.057 2.885 0.156 0.000 0.000 0.059 m ≥ 6.050 0.890% 0.075 m ≥ 8885 1.842 273.900 28.510 0.000 0.000 131.100 m ≥ 2.299 1.016 10.550 Run Time 98Mo 10.3Rh 106Cd 107Ag 108Mo 0 108Cd 109Ag 111Cd 114Cd 1 ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb 1 21:48:29 0.893 74.683% -3.967 0.308 0.470 0.143 0.350 -0.279 -0.171 77.5 2 21:49:34 0.827 76.361% -3.963 0.302 0.461 0.004 0.350 -0.257 -0.170 78.3 σ 0.045 1.161% 0.672 0.003 0.042 0.071 0.001 0.033 0.028 0.038 π π π 1185n 1215b 1235b 1378a 159Tb 165Ho 203Tl 205Tl 206Pb 20 π 1 21:48:29 -0.047 0.119 0.060 99.320 82.010% 82.952% 0.025 0.266 0.627 π 1 21:48:29 -0.047 0.119 0.060 99.320 82.010% 84.325% 0.026 0.266 0.629 π π π 1185n 1215b 1235b 1378a 159Tb 165Ho 203Tl 206Fb		21.00.07										6.707
Mail Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 000												0.102
Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 60 60 60 60 60 60 60 6												1.523
1 21:48:29 3.160 4.080 -0.561 0.000 0.000 -0.109 m√112.600 86.863% 0.789 2 21:49:34 3.092 0.745 -0.386 0.000 0.000 -0.034 m√00.500 87.251% 0.703 3 21:50:39 3.046 -1.665 -0.699 0.000 0.000 -0.045 m√698.000 88.561% 0.640 x 3.099 1.053 -0.549 0.000 0.000 -0.045 m√698.000 87.558% 0.710 σ 0.057 2.885 0.156 0.000 0.000 0.000 9.059 m√16.050 0.890% 0.075 8x850 1.842 273.900 28.510 0.000 0.000 131.100 m√2.299 1.016 10.550 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 1 1 21:48:29 0.893 74.683% -3.967 0.308 0.470 0.143 0.350 -0.279 -0.171 77.9	Run	Time										97Mo
2 21:49:34 3.092 0.745 -0.386 0.000 0.000 -0.034 m/700.500 87.251% 0.703 3 21:50:39 3.046 -1.665 -0.699 0.000 0.000 0.008 m/680.800 88.561% 0.640 x 3.099 1.053 -0.549 0.000 0.000 -0.045 m/698.000 87.558% 0.710 σ 0.057 2.885 0.156 0.000 0.000 0.000 0.059 m/6.055 0.899% 0.075 %RSD 1.842 273.900 28.510 0.000 0.000 131.100 m/2.299 1.016 10.550 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 1 1 21:48:29 0.893 74.683% -3.967 0.308 0.470 0.143 0.350 -0.279 -0.171 77.9 2 21:49:34 0.827 76.361% -3.			ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
3 21:50:39 3.046	1	21:48:29	3.160	4.080	-0.561	0.000	0.000	-0.109	тм 712.600	86.863%	0.789	0.846
X 3.099 1.053 -0.549 0.000 0.000 -0.045 m 698.000 87.558% 0.710 σ 0.057 2.885 0.156 0.000 0.000 0.059 m 16.050 0.890% 0.075 MCRSD 1.842 273.900 28.510 0.000 0.000 131.100 m 2.299 1.016 10.550 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 1 ppb <td>2</td> <td>21:49:34</td> <td>3.092</td> <td>0.745</td> <td>-0.386</td> <td>0.000</td> <td>0.000</td> <td>-0.034</td> <td>тм 700.500</td> <td>87.251%</td> <td>0.703</td> <td>0.750</td>	2	21:49:34	3.092	0.745	-0.386	0.000	0.000	-0.034	тм 700.500	87.251%	0.703	0.750
σ 0.057 2.885 0.156 0.000 0.000 0.059 ™ 16.050 0.890% 0.075 MARSD 1.842 273.900 28.510 0.000 0.000 131.100 № 2.299 1.016 10.550 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 1 ppb	3	21:50:39	3.046	-1.665	-0.699	0.000	0.000	0.008	тм 680.800	88.561%	0.640	0.718
Name	X		3.099	1.053	-0.549	0.000	0.000	-0.045	тм 698.000	87.558%	0.710	0.771
Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 14Cd 1 ppb 1111 114Cd 1 1 1148229 -0.171 77.0 1 1 1 1 1 1 1 1 1 1 1 1	σ		0.057	2.885	0.156	0.000	0.000	0.059	тм 16.050	0.890%	0.075	0.066
Ppb Ppb												8.593
1 21:48:29 0.893 74.683% -3.967 0.308 0.470 0.143 0.350 -0.279 -0.171 77.9 2 21:49:34 0.827 76.361% -3.963 0.302 0.461 0.004 0.350 -0.257 -0.170 78.8 3 21:50:39 0.807 76.911% -2.802 0.306 0.393 0.103 0.348 -0.215 -0.121 79.1 X 0.843 75.985% -3.577 0.305 0.441 0.083 0.349 -0.250 -0.154 78.8 3 0.045 1.161% 0.672 0.003 0.042 0.071 0.001 0.033 0.028 0.9 9RSD 5.304 1.528 18.780 0.950 9.609 85.320 0.300 13.000 18.480 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 20 1 21:48:29 -0.0	Run	Time									1	115In
2 21:49:34 0.827 76:361% -3.963 0.302 0.461 0.004 0.350 -0.257 -0.170 78:8 3 21:50:39 0.807 76:911% -2.802 0.306 0.393 0.103 0.348 -0.215 -0.121 79:3 X 0.843 75:985% -3.577 0.305 0.441 0.083 0.349 -0.250 -0.154 78:8 0.045 1.161% 0.672 0.003 0.042 0.071 0.001 0.033 0.028 0.0 8krsb 5.304 1.528 18.780 0.950 9.609 85.320 0.300 13.000 18.480 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 20 1 21:48:29 -0.047 0.119 0.060 99.320 82.010% 82.952% 0.025 0.267 0.639 2 21:49:34 -0.008 0.082		01 40 00										ppb
3 21:50:39 0.807 76.911% -2.802 0.306 0.393 0.103 0.348 -0.215 -0.121 79.105	=											77.945%
X 0.843 75.985% -3.577 0.305 0.441 0.083 0.349 -0.250 -0.154 78.8 σ												78.850%
σ 0.045 1.161% 0.672 0.003 0.042 0.071 0.001 0.033 0.028 0.04 %RSD 5.304 1.528 18.780 0.950 9.609 85.320 0.300 13.000 18.480 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 20 ppb	=	21:50:39										79.752% 78.849%
%RSD 5.304 1.528 18.780 0.950 9.609 85.320 0.300 13.000 18.480 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 20 ppb 0.267												0.904%
Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 200 ppb		<u> </u> 										1.146
ppb ppb <td></td> <td>Time</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>207Pb</td>		Time										207Pb
1 21:48:29 -0.047 0.119 0.060 99.320 82.010% 82.952% 0.025 0.267 0.639 2 21:49:34 -0.008 0.082 0.054 97.120 83.574% 84.703% 0.032 0.266 0.627 3 21:50:39 -0.026 0.082 0.043 94.060 84.938% 85.321% 0.023 0.265 0.623 x -0.027 0.094 0.053 96.830 83.507% 84.325% 0.026 0.266 0.629						$\overline{}$				-		ppb
2 21:49:34 -0.008 0.082 0.054 97.120 83.574% 84.703% 0.032 0.266 0.627 3 21:50:39 -0.026 0.082 0.043 94.060 84.938% 85.321% 0.023 0.265 0.623 X -0.027 0.094 0.053 96.830 83.507% 84.325% 0.026 0.266 0.629	1	21:48:29										0.584
3 21:50:39 -0.026 0.082 0.043 94.060 84.938% 85.321% 0.023 0.265 0.623 x -0.027 0.094 0.053 96.830 83.507% 84.325% 0.026 0.266 0.629	2	21:49:34	-0.008	0.082	0.054	97.120	83.574%	84.703%	0.032	0.266	0.627	0.573
			-0.026	0.082	0.043	94.060	84.938%	85.321%	0.023	0.265	0.623	0.565
σ 0.019 0.021 0.008 2.640 1.465% 1.229% 0.005 0.001 0.009	X		-0.027	0.094	0.053	96.830	83.507%	84.325%	0.026	0.266	0.629	0.574
3.3.7 3.32.1 3.333 2.310 1.10070 1.22770 3.300 0.001 0.007	σ]	0.019	0.021	0.008	2.640	1.465%	1.229%	0.005	0.001	0.009	0.009
%RSD 71.660 22.280 16.100 2.727 1.755 1.457 18.230 0.451 1.354	%RSD		71.660	22.280	16.100	2.727	1.755	1.457	18.230	0.451	1.354	1.653
Run Time 208Pb 209Bi 220Bkg 238U	Run	Time										
ppb ppb ppb ppb												
1 21:48:29 0.653 81.535% 0.000 0.000												
2 21:49:34 0.657 82.765% 0.000 0.000												
3 21:50:39 0.640 82.694% 0.000 0.000	=	21:50:39										
x 0.650 82.332% 0.000 0.000												
σ 0.009 0.690% 0.000 0.000												
%RSD 1.324 0.839 0.000 0.000	/oK3D	I	1.324	0.639	0.000	0.000						

ja74099-2 5/7/2011 21:51:42

	-dilution: 1.00		ODe	100	110	120	22110	OFM«	2/14~	2741	27.01
Run	Time	6Li ppb	9Be ppb	10B ppb	11B	13C	23Na ppb	25Mg ppb	26Mg ppb	27AI ppb	37CI
1	21:52:47	77.410%	-0.141	80.730	ppb 79.430	ppb 0.000	тм 18500.000	м 7098.000	м 7111.000	9.342	ppb <u>⊤ 0.000</u>
2	21:53:53	78.923%	-0.114	78.100	77.500	0.000	тм 18160.000	м 6987.000	м 7033.000	9.151	<u>⊤ 0.000</u>
3	21:54:58	80.117%	-0.109	74.820	75.350	0.000	тм 17410.000	м 6632.000	м 6675.000	8.752	<u>⊤ 0.000</u>
X	21.54.50	78.817%	-0.121	77.880	77.430	0.000	тм 18020.000	м 6906.000	м 6940.000	9.082	<u>т 0.000</u>
σ		1.357%	0.017	2.961	2.043	0.000	тм 561.200	м 243.800	м 232.500	0.301	<u>т 0.000</u>
%RSD		1.721	14.320	3.802	2.638	0.000	тм 3.113	м 3.530	м 3.350	3.313	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	21:52:47	тм 5059.000	м 105700.000	тм 117800.000	81.236%	0.342	0.448	0.567	0.525	119.000	тм 1676.000
2	21:53:53	тм 5024.000	м 104800.000	тм 116500.000	81.775%	0.311	0.482	0.495	0.455	115.600	тм 1664.000
3	21:54:58	тм 4822.000	м 98800.000	тм 110000.000	83.932%	0.304	0.590	0.436	1.638	108.100	тм 1572.000
X		тм 4968.000	м 103100.000	тм 114800.000	82.314%	0.319	0.507	0.499	0.873	114.300	тм 1637.000
σ		тм 128.100	м 3773.000	тм 4205.000	1.426%	0.020	0.074	0.066	0.664	5.613	тм 57.100
%RSD		<u>тм 2.577</u>	м 3.659	<u>тм 3.664</u>	1.733	6.360	14.610	13.180	76.060	4.912	тм 3.488
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	21:52:47	тм 10310.000	м 11050.000	-0.360	9.901	16.690	3.529	2.966	37.180	42.040	42.500
2	21:53:53	тм 10270.000	м 11040.000	-0.414	9.873	17.940	3.432	3.095	37.140	40.410	41.770
3	21:54:58	тм 9669.000	м 10380.000	-0.386	8.967	17.580	3.340	2.996	34.870	37.670	38.600
X		тм 10080.000	м 10820.000	-0.387	9.580	17.400	3.434	3.019	36.390	40.040	40.960
σ		<u>тм 358.600</u>	м 387.400	0.027	0.531	0.643	0.095	0.067	1.321	2.204	2.071
%RSD	 	тм 3.556	м 3.579	6.978	5.544	3.694	2.755	2.233	3.629	5.505	5.057
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1	21:52:47	ppb 10.790	ppb -1.783	ppb -0.377	0.000	ppb 0.000	ppb -0.106	ррb тм 1057.000	ppb 82.551%	ppb 1.231	ppb 1.366
2	21:53:53	10.770	-1.763	-0.334	0.000	0.000	-0.100	тм 1054.000	82.307%	1.291	1.287
3	21:54:58	10.070	-3.332	-0.542	0.000	0.000	-0.171	тм 985.100	84.791%	1.097	1.213
X	21.54.50	10.490	-2.321	-0.418	0.000	0.000	-0.119	тм 1032.000	83.216%	1.206	1.289
σ		0.418	0.876	0.110	0.000	0.000	0.046	тм 40.670	1.369%	0.099	0.076
%RSD		3.981	37.760	26.320	0.000	0.000	38.620	тм 3.941	1.645	8.205	5.910
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
11011		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	21:52:47	1.371	76.966%	-4.315	0.309	0.492	0.135	0.348	-0.318	-0.194	80.509%
2	21:53:53	1.300	77.431%	-4.389	0.302	0.495	0.102	0.349	-0.313	-0.193	80.459%
3	21:54:58	1.181	79.477%	-4.069	0.317	0.471	0.064	0.349	-0.282	-0.177	83.538%
X		1.284	77.958%	-4.258	0.309	0.486	0.100	0.348	-0.304	-0.188	81.502%
σ		0.096	1.336%	0.168	0.007	0.013	0.036	0.001	0.020	0.010	1.763%
%RSD		7.478	1.714	3.933	2.345	2.711	35.750	0.171	6.440	5.249	2.164
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	21:52:47	-0.124	0.192	0.148	м 238.000	84.612%	85.641%	0.030	0.266	0.321	0.286
	21:53:53	-0.112	0.182	0.138	м 235.700	85.456%	85.931%	0.029	0.264	0.312	0.302
3	21:54:58	-0.115	0.154	0.118	м 222.000	88.241%	88.715%	0.024	0.264	0.292	0.279
X		-0.117	0.176	0.135	м 231.900	86.103%	86.762%	0.027	0.265	0.308	0.289
σ		0.006	0.020	0.016	<u>м 8.606</u>	1.899%	1.697%	0.003	0.001	0.015	0.012
%RSD		5.355	11.210	11.570	м 3.711	2.205	1.956	11.760	0.358	4.854	4.108
Run	Time	208Pb	209Bi	220Bkg	238U						
1	21:52:47	ppb 0.355	ppb 83 504%	ppb 0.000	0.000						
	21:52:47	0.355	83.594% 83.532%	0.000	0.000						
3		0.366	83.532%	0.000	0.000						
X	21.04.00	0.340	84.407%	0.000	0.000						
		0.354	1.461%	0.000	0.000						
σ %RSD		3.643	1.731	0.000	0.000						
701.00	ı	5.045	1.751	0.000	3.000						

ja74099-1f 5/7/2011 21:56:01

User Pre-dilution: 1.00		OD a	100	110	120	22110	2EMa.	2/14~	27.41	2701
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 21:57:06	ppb 77.899%	ppb -0.147	ррb м 153.900	ррb м 153.400	ppb 0.000	ррb тм 22820.000	ррb м 6776.000	ррb м 6873.000	ppb 51.540	ppb <u>⊤ 0.000</u>
2 21:58:11	78.029%	-0.147	<u>м 156.200</u>	м 155.400 м 155.400	0.000	тм 22180.000	м 6573.000	м 6610.000	± 59.930	<u>+ 0.000</u>
							<u> </u>			
3 21:59:16	79.019%	-0.125	м 147.900	м 152.500	0.000	тм 22520.000	м 6726.000	м 6805.000	<u>⊤ 64.250</u>	<u>T 0.000</u>
X	78.316%	-0.134	м 152.700	м 153.700	0.000	тм 22500.000	м 6692.000	м 6763.000	<u>т 58.570</u>	<u>т 0.000</u>
σ	0.612%	0.011	м 4.276	м 1.454	0.000	тм 318.900	м 106.000	м 136.700	<u>т 6.463</u>	<u>т 0.000</u>
%RSD	0.782	8.597	м 2.801	<u>м 0.945</u>	0.000	<u>тм 1.417</u>	<u>м 1.584</u>	м 2.022	<u>т 11.030</u>	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 21:57:06	ppb	ррb м 94440.000	ррb тм 105500.000	ppb 80.579%	ppb 2.505	ppb	ppb 0.404	ppb 0.043	ppb 108.800	ррb тм 2997.000
	тм 2408.000					0.251	0.606	0.962		-
2 21:58:11	тм 2337.000	м 90940.000	тм 100800.000	82.333%	2.174	0.071	0.489	0.756	106.300	тм 2859.000
3 21:59:16	тм 2410.000	м 94610.000	тм 105900.000	79.950%	2.103	0.321	0.560	1.284	101.900	тм 2993.000
X	тм 2385.000	м 93330.000	тм 104100.000	80.954%	2.261	0.214	0.552	1.001	105.700	тм 2949.000
σ	тм 41.320	м 2069.000	тм 2810.000	1.235%	0.215	0.129	0.059	0.266	3.464	тм 78.560
%RSD	тм 1.732	м 2.217	тм 2.701	1.526	9.507	60.200	10.640	26.610	3.279	<u>тм 2.664</u>
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
1 21:57:06	ppb	ppb 10950.000	ppb	ppb	ppb	ppb	ppb	ppb 9.070	ppb 0.540	ppb 0.403
1 2	тм 10160.000	м 10850.000	7.334	6.123	14.230	1.905	1.477	8.079	9.569	9.602
2 21:58:11	тм 9691.000	м 10330.000	7.017	5.735	13.400	1.710	1.357	7.689	9.696	9.005
3 21:59:16	тм 10200.000	м 10840.000	7.282	6.095	13.270	1.881	1.578	8.170	9.590	9.789
X	тм 10020.000	м 10670.000	7.211	5.984	13.630	1.832	1.471	7.979	9.618	9.465
σ	тм 282.500	м 299.100	0.170	0.216	0.521	0.106	0.111	0.256	0.068	0.410
%RSD	тм 2.821	м 2.802	2.356	3.612	3.824	5.793	7.550	3.207	0.709	4.327
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
1 01 57 01	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:57:06	2.971	-3.855	-0.365	0.000	0.000	-0.010	<u>тм 663.600</u>	87.101%	0.929	1.087
2 21:58:11	2.765	-4.899	-0.772	0.000	0.000	-0.145	тм 633.300	89.067%	0.948	0.863
3 21:59:16	3.069	-4.891	-0.691	0.000	0.000	0.004	<u>тм 664.300</u>	86.968%	1.024	1.022
X	2.935	-4.548	-0.609	0.000	0.000	-0.051	<u>тм 653.700</u>	87.712%	0.967	0.991
σ	0.155	0.601	0.216	0.000	0.000	0.082	<u>тм 17.730</u>	1.175%	0.050	0.115
%RSD	5.287	13.200	35.400	0.000	0.000	162.000	тм 2.712	1.340	5.166	11.640
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
1 2 2 2 2 2	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:57:06	1.015	76.801%	-3.519	0.300	0.434	0.037	0.352	-0.251	-0.151	79.944%
2 21:58:11	1.041	78.655%	-3.899	0.304	0.452	-0.064	0.351	-0.239	-0.153	81.859%
3 21:59:16	1.043	74.987%	-2.490	0.314	0.376	0.174	0.348	-0.177	-0.119	79.546%
X	1.033	76.814%	-3.303	0.306	0.421	0.049	0.351	-0.222	-0.141	80.449%
σ	0.015	1.834%	0.729	0.007	0.040	0.119	0.002	0.040	0.019	1.236%
%RSD	1.468	2.388	22.070	2.340	9.405	243.300	0.689	17.810	13.520	1.537
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
1 21 57 0/	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 21:57:06	-0.154	0.035	-0.017	88.480	84.008%	85.038%	0.025	0.264	0.555	0.481
2 21:58:11	-0.153	0.032	-0.025	83.250	86.219%	87.192%	0.025	0.264	0.510	0.478
3 21:59:16	-0.148	0.026	-0.015	87.420	84.504%	84.707%	0.023	0.262	0.521	0.483
X	-0.152	0.031	-0.019	86.380	84.910%	85.645%	0.025	0.263	0.529	0.481
σ	0.003	0.004	0.005	2.766	1.160%	1.349%	0.001	0.001	0.023	0.002
%RSD	2.040	14.460	25.990	3.202	1.366	1.575	4.738	0.485	4.429	0.504
Run Time	208Pb	209Bi	220Bkg	238U						
1 01 57 61	ppb	ppb	ppb	ppb						
1 21:57:06	0.568	83.271%	0.000	0.000						
2 21:58:11	0.543	85.234%	0.000	0.000						
3 21:59:16	0.552	82.347%	0.000	0.000						
X	0.554	83.617%	0.000	0.000						
σ	0.013	1.475%	0.000	0.000						
%RSD	2.280	1.763	0.000	0.000						

ja74099-2f 5/7/2011 22:00:18

User Pre-all	ilution: 1.00	U									
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	[ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 2	22:01:23	75.053%	-0.117	87.460	86.990	0.000	тм 19750.000	м 7561.000	м 7609.000	16.740	<u>т 0.000</u>
2 2	22:02:29	78.470%	-0.158	78.520	80.800	0.000	тм 18730.000	м 7158.000	м 7164.000	15.630	<u>т 0.000</u>
3 2	22:03:34	78.360%	-0.136	78.730	80.660	0.000	тм 19100.000	м 7353.000	м 7402.000	16.170	<u> 7 0.000</u>
х		77.294%	-0.137	81.570	82.810	0.000	тм 19190.000	м 7357.000	м 7392.000	16.180	т 0.000
σ		1.942%	0.020	5.101	3.616	0.000	тм 512.700	м 201.300	м 222.600	0.559	т 0.000
%RSD		2.512	14.870	6.253	4.367	0.000	тм 2.671	м 2.736	м 3.011	3.453	т 0.000
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 2	22:01:23	тм 5264.000	м 112300.000	тм 124500.000	80.688%	0.848	0.265	0.155	0.576	110.200	тм 1734.000
	22:02:29	тм 5056.000	м 105800.000	тм 117600.000	82.968%	0.776	0.374	0.078	0.357	105.800	тм 1650.000
	22:03:34	тм 5234.000	м 111100.000	тм 123500.000	80.881%	0.862	0.247	0.120	0.393	111.600	тм 1715.000
Х		тм 5185.000	м 109700.000	тм 121900.000	81.512%	0.829	0.295	0.118	0.442	109.200	тм 1700.000
σ		тм 112.800	м 3474.000	тм 3704.000	1.264%	0.046	0.069	0.039	0.118	3.015	тм 44.030
%RSD		тм 2.176	м 3.166	тм 3.039	1.551	5.556	23.360	32.630	26.600	2.761	тм 2.590
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
Raii	Tillic	dqq	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 2	22:01:23	тм 10150.000	м 10920.000	-0.470	6.259	13.660	2.215	1.806	34.370	39.140	38.730
	22:02:29	тм 9657.000	м 10370.000	-0.476	6.116	13.480	2.046	1.913	32.430	37.440	37.800
	22:03:34	тм 10100.000	м 10840.000	-0.494	6.713	13.050	2.122	1.877	34.080	39.340	38.050
X	22.03.34	тм 9966.000	м 10710.000	-0.480	6.363	13.400	2.128	1.865	33.630	38.640	38.190
		тм 269.400	м 294.000	0.013	0.312	0.313	0.085	0.054	1.050	1.040	0.480
%RSD		тм 2.703	<u>м 294.000</u> м 2.74 <u>5</u>	2.616	4.897	2.338	3.971	2.909	3.121	2.691	1.257
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
Kuii	Tillie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 2	22:01:23	10.800	-2.344	-0.479	0.000	0.000	-0.140	тм 1118.000	82.301%	1.197	1.183
	22:02:29	10.520	-3.334	-0.530	0.000	0.000	-0.159	тм 1076.000	83.300%	1.067	1.073
	22:02:24	10.810	-2.369	-0.462	0.000	0.000	-0.035	тм 1117.000	81.765%	1.177	0.991
	22.03.34		-2.682	-0.490		0.000					1.082
X		10.710			0.000		-0.111	тм 1104.000	82.455%	1.147	
%RSD		0.165	0.565	0.036	0.000	0.000	0.067	тм 23.650	0.779%	0.070	0.096
	Time	1.537	21.060	7.267 106Cd	0.000 107Ag	0.000 108Mo O	60.050 108Cd	<u>тм 2.143</u>	0.945	6.126 114Cd	8.894
Run	Tillle	98Mo ppb	103Rh ppb	ppb	ppb	ppb		109Ag ppb	111Cd	ppb	115In
1 2	22:01:23	1.280	76.360%	-4.105	0.305	0.464	ppb -0.063	0.345	ppb -0.289	-0.175	ppb 80.324%
	22:01:23	1.245	79.032%	-4.837	0.303	0.404	-0.032	0.343	-0.330	-0.173	82.856%
	22:03:34	1.243	76.929%	-4.476	0.306	0.491	-0.032	0.345	-0.319	-0.197	80.212%
	22.03.34	1.269	77.440%	-4.473	0.308	0.491	-0.030	0.344	-0.313	-0.197	81.130%
X											
%RSD		0.020 1.600	1.407%	0.366	0.005 1.639	0.025 5.069	0.019	0.002	0.021	0.019	1.496% 1.843
Run	Time	118Sn	1.817 121Sb	8.182 123Sb	1.039 137Ba	159Tb	44.710 165Ho	0.609 203TI	6.822 205TI	9.508 206Pb	207Pb
Kuii	Tillie	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 2	22:01:23	-0.166	0.178	0.124	м 250.100	85.096%	86.266%	0.020	0.261	0.110	0.107
	22:01:23	-0.165	0.176	0.124	м 236.800	87.487%	88.144%	0.025	0.260	0.096	0.107
	22:03:34	-0.165	0.135	0.111	м 249.200	85.344%	86.254%	0.025	0.261	0.122	0.110
	22.03.34	-0.147	0.143	0.126	м 245.400	85.975%	86.888%			0.122	0.106
X								0.022	0.261		
%RSD		0.011 7.022	0.017	0.016	м 7.472	1.315%	1.087%	0.003	0.000	0.013	0.005 5.071
_	Time		10.590	12.680	м 3.045	1.529	1.252	12.400	0.151	11.810	5.071
Run	rime	208Pb ppb	209Bi ppb	220Bkg	238U						
1 .	22:01:23	0.166	82.920%	ppb 0.000	0.000						
	22:01:23	0.158	86.099%	0.000	0.000						
	22:02:29				0.000						
	22.03.34	0.168	84.745%	0.000							
X		0.164	84.588%	0.000	0.000						
σ		0.005	1.595%	0.000	0.000						
%RSD		3.303	1.886	0.000	0.000						

mp58073-mb1 5/7/2011 22:04:36

User Pre-dilution: 1.000		OD a	100	110	120	22110	OFM.	2/14~	2741	27.01
Run Time	6Li ppb	9Be ppb	10B ppb	11B ppb	13C ppb	23Na ppb	25Mg ppb	26Mg ppb	27AI ppb	37CI ppb
1 22:05:42	82.649%	-0.137	5.407	5.330	0.000	94.400	41.140	41.320	<u>⊤ 10.150</u>	<u> 70.000</u>
2 22:06:47	84.468%	-0.137	3.556	4.209	0.000	40.570	9.080	9.609	4.159	<u>т 0.000</u>
3 22:07:52	87.043%	-0.133	3.523	3.517	0.000	41.040	6.576	6.599	3.927	<u>т 0.000</u>
X X	84.720%	-0.139	4.162	4.352	0.000	58.670	18.930	19.180	т 6.079	<u>т 0.000</u>
σ	2.208%	0.008	1.078	0.915	0.000	30.940	19.270	19.240	т 3.527	т 0.000
%RSD	2.606	5.533	25.910	21.020	0.000	52.740	101.800	100.300	т 58.030	т 0.000
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:05:42	11.360	571.300	575.000	81.847%	-0.434	-0.170	-0.236	-0.354	138.600	8.278
2 22:06:47	1.697	107.900	114.000	83.450%	-0.454	-0.125	-0.221	0.470	148.800	1.593
3 22:07:52	1.348	41.670	49.770	83.759%	-0.454	-0.074	-0.200	0.063	155.000	0.732
X	4.800	240.300	246.200	83.019%	-0.447	-0.123	-0.219	0.060	147.500	3.534
σ	5.680	288.500	286.500	1.027%	0.011	0.048	0.018	0.412	8.299	4.131
%RSD	118.300	120.100	116.300	1.237	2.564	39.050	8.236	689.500	5.627	116.900
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:05:42	71.290	81.470	-0.092	0.026	4.783	1.176	0.899	0.411	0.467	0.391
2 22:06:47	23.220	27.540	-0.094	-0.024	5.418	1.217	1.008	0.316	0.261	0.237
3 22:07:52	15.880	18.260	-0.092	-0.033	4.887	1.247	0.873	0.372	0.264	0.167
X	36.800	42.420	-0.093	-0.010	5.030	1.214	0.927	0.366	0.331	0.265
σ	30.100	34.130	0.001	0.032	0.341	0.036	0.071	0.048	0.118	0.114
Run Time	81.790 75As	80.460 77Se	1.562 78Se	307.500 79Br	6.772 81Br	2.928 82Se	7.686 88Sr	13.040 89Y	35.670 95Mo	43.210 97Mo
Ruii Illile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:05:42	-0.165	-6.043	-0.201	0.000	0.000	-0.281	4.877	84.816%	-0.268	-0.219
2 22:06:47	-0.297	-4.101	-0.169	0.000	0.000	-0.258	0.882	85.836%	-0.278	-0.239
3 22:07:52	-0.235	-4.031	-0.285	0.000	0.000	-0.300	0.287	87.421%	-0.271	-0.237
X	-0.232	-4.725	-0.218	0.000	0.000	-0.280	2.016	86.024%	-0.272	-0.231
σ	0.066	1.142	0.060	0.000	0.000	0.021	2.496	1.312%	0.005	0.011
%RSD	28.580	24.170	27.330	0.000	0.000	7.633	123.900	1.526	1.860	4.796
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:05:42	-0.159	84.945%	-0.031	0.308	0.205	-0.035	0.348	-0.068	-0.053	86.056%
2 22:06:47	-0.156	85.118%	-0.019	0.309	0.204	-0.035	0.349	-0.069	-0.042	85.892%
3 22:07:52	-0.164	87.127%	0.359	0.300	0.182	-0.007	0.347	-0.045	-0.040	86.834%
X	-0.160	85.730%	0.103	0.305	0.197	-0.026	0.348	-0.061	-0.045	86.261%
σ	0.004	1.213%	0.222	0.005	0.013	0.017	0.001	0.014	0.007	0.503%
%RSD	2.548	1.415	214.900	1.661	6.601	64.240	0.344	22.290	14.690	0.583
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
1 22:05:42	ppb -0.164	ppb -0.063	ppb -0.099	ppb 1.215	ppb 88.400%	ppb 88.210%	ppb 0.017	ppb 0.259	-0.022	-0.018
2 22:06:47	-0.165	-0.066	-0.099	0.313	87.680%	88.613%	0.017	0.259	-0.022	-0.018
3 22:07:52	-0.163	-0.051	-0.090	0.094	88.373%	89.495%	0.018	0.260	-0.020	-0.012
X X	-0.162	-0.060	-0.095	0.541	88.151%	88.773%	0.018	0.259	-0.020	-0.016
σ	0.004	0.008	0.005	0.594	0.408%	0.657%	0.002	0.001	0.001	0.003
%RSD	2.162	13.020	4.761	109.900	0.463	0.740	9.192	0.202	4.933	20.950
Run Time	208Pb	209Bi	220Bkg	238U	220	20		-		
· · · · · ·	ppb	ppb	ppb	ppb						
1 22:05:42	0.039	88.955%	0.000	0.000						
2 22:06:47	0.042	89.304%	0.000	0.000						
3 22:07:52	0.040	90.994%	0.000	0.000						
Х	0.041	89.751%	0.000	0.000						
σ	0.002	1.091%	0.000	0.000						
%RSD	3.741	1.215	0.000	0.000						

mp58073-lc1 5/7/2011 22:08:54

	-dilution: 1.00		0.0	100	445	100	001	0514	0/14	07.41	0701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1	22 00 50	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:09:59	86.359%	м 103.500	3.088	3.266	0.000	453.000	445.700	452.100	450.300	<u>T 0.000</u>
2	22:11:04	85.517%	м 110.800	3.129	3.188	0.000	468.900	470.000	469.100	478.400	<u>T 0.000</u>
3	22:12:10	82.664%	м 112.500	2.804	2.698	0.000	477.100	479.400	476.600	483.400	<u>T 0.000</u>
X		84.846%	м 108.900	3.007	3.051	0.000	466.300	465.000	465.900	470.700	<u>т 0.000</u>
σ		1.937%	м 4.804	0.177	0.308	0.000	12.270	17.390	12.590	17.860	<u>т 0.000</u>
%RSD	I	2.283	м 4.411	5.885	10.090	0.000	2.631	3.740	2.701	3.795	<u>T 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1	22:09:59	ррb т 493.200	ppb 449.900	ppb 467.500	ppb 84.194%	ppb -0.423	ррb м 100.200	ppb 99.740	ppb 99.220	ppb 183.000	ррb м 100.900
2	22:11:04	469.700	495.900	492.700	83.104%	-0.502	м 106.500	м 106.000	м 106.500	172.300	м 106.200
3	22:12:10	475.600	473.600	495.900	82.415%	-0.435	м 107.500	м 107.000	м 107.400	172.800	м 106.900
X		<u>т 479.500</u>	473.100	485.300	83.238%	-0.453	м 104.700	м 104.200	м 104.400	176.100	м 104.700
σ %RSD		<u>T 12.200</u>	23.000	15.570	0.897%	0.043	м 3.946	м 3.921	м 4.479	6.021	м 3.280
	Time	<u>† 2.544</u>	4.860	3.208	1.078	9.462	м 3.767	м 3.762	м 4.291	3.420	м 3.133
Run	Time	56Fe ppb	57Fe ppb	59Co ppb	60Ni ppb	62Ni ppb	63Cu ppb	65Cu ppb	66Zn	67Zn ppb	68Zn
1	22:09:59	440.500	462.800	м 100.200	99.660	м 104.400	м 100.700	м 100.500	ppb 99.390	99.220	ppb 99.810
2	22:11:04	469.800	495.600	м 105.700	м 104.400	м 109.200	м 106.500	м 106.500	м 106.200	м 105.900	м 106.700
3	22:11:01	471.200	498.300	м 106.200	м 104.700	м 109.400	м 107.000	м 106.000	м 106.500	м 104.500	<u>м 106.700</u>
X	22.12.10	460.500	485.600	м 104.000	м 102.900	м 107.700	м 104.700	м 104.300	м 104.000	м 103.200	м 104.400
σ		17.330	19.730	м 3.310	м 2.831	м 2.812	м 3.516	м 3.344	м 4.020	м 3.540	м 3.945
%RSD		3.763	4.064	<u>м 3.182</u>	м 2.750	<u>м 2.612</u>	м 3.357	м 3.205	м 3.864	м 3.430	м 3.780
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:09:59	м 103.100	м 202.000	м 200.800	0.000	0.000	м 200.800	-0.020	87.981%	-0.274	-0.217
2	22:11:04	м 108.100	м 215.000	м 211.300	0.000	0.000	м 209.900	-0.051	86.333%	-0.278	-0.231
3	22:12:10	м 109.500	м 213.000	м 213.200	0.000	0.000	м 212.600	-0.070	85.501%	-0.272	-0.236
X		м 106.900	м 210.000	м 208.500	0.000	0.000	м 207.800	-0.047	86.605%	-0.275	-0.228
σ		м 3.346	м 7.013	м 6.669	0.000	0.000	м 6.171	0.025	1.262%	0.003	0.010
%RSD		<u>м 3.129</u>	<u>м 3.339</u>	<u>м 3.199</u>	0.000	0.000	<u>м 2.970</u>	54.410	1.458	1.179	4.340
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:09:59	-0.151	87.353%	м 100.900	99.330	0.456	98.000	98.910	м 100.100	м 101.100	88.801%
2	22:11:04	-0.157	84.310%	м 107.300	м 105.100	0.505	м 104.600	м 105.000	м 108.200	м 108.000	85.897%
3	22:12:10	-0.161	85.154%	м 105.300	м 104.000	0.927	м 108.900	м 103.800	м 106.300	м 105.300	86.983%
X		-0.157	85.605%	м 104.500	м 102.800	0.629	м 103.800	м 102.600	м 104.900	м 104.800	87.227%
σ		0.005	1.571%	м 3.254	м 3.063	0.259	м <u>5.469</u>	м 3.224	м 4.231	м 3.477	1.468%
%RSD Run	Time	3.127 118Sn	1.835 121Sb	<u>м 3.114</u> 123Sb	<u>м 2.979</u> 137Ва	41.160 159Tb	<u>м 5.267</u> 165Но	<u>м 3.143</u> 203ТІ	м 4.034 205TI	<u>м 3.317</u> 206Рb	1.682 207Pb
Kuii	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:09:59	-0.212	м 103.500	м 103.500	м 101.200	91.557%	91.577%	м 102.100	м 102.500	м 101.700	м 101.100
	22:11:04	-0.207	м 111.700	м 111.200	м 108.900	88.323%	88.142%	м 108.300	м 108.800	м 109.400	м 109.800
	22:12:10	-0.208	м 109.700	м 109.300	м 107.900	88.880%	89.786%	м 107.700	м 107.900	м 107.900	м 107.800
X		-0.209	м 108.300	м 108.000	м 106.000	89.587%	89.835%	м 106.000	м 106.400	м 106.300	м 106.200
σ		0.003	м 4.240	м 4.019	м 4.150	1.729%	1.718%	м 3.419	м 3.395	м 4.130	м 4.554
%RSD		1.330	м 3.915	м 3.721	м 3.915	1.930	1.913	м 3.224	м 3.191	м 3.883	м 4.287
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
	22:09:59	м 101.500	92.181%	0.000	0.000						
2	22:11:04	м 109.800	89.138%	0.000	0.000						
3	22:12:10	м 108.100	90.174%	0.000	0.000						
X		м 106.500	90.498%	0.000	0.000						
σ		м 4.389	1.547%	0.000	0.000						
%RSD		<u>м 4.123</u>	1.709	0.000	0.000						

mp58073-s1 5/7/2011 22:13:12

User Pre-dilution: 1.00		OD a	100	110	120	22110	OEMa I	2/14	2741	2701
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 22:14:17	ppb 81.385%	ррb I м 112.900	ppb м 180.700	ррb м 180.700	ppb 0.000	ррb тм 42460.000	ppb	ррb тм 14810.000	ppb 477.400	ррb <u>т 0.000</u>
2 22:15:22	81.700%		м 183.700	м 186.400	0.000	тм 42390.000	тм 14900.000	тм 14810.000	477.400	<u>T 0.000</u>
		м 112.000		<u> </u>						
3 22:16:28	84.245%	м 103.800	м 170.100	м 177.100	0.000	тм 40320.000	тм 13960.000	тм 13930.000	447.700	<u>T 0.000</u>
X	82.443%	м 109.600	м 178.100	м 181.400	0.000	тм 41720.000	тм 14580.000	тм 14520.000	468.300	<u>T 0.000</u>
σ	1.569%	м 5.044	м 7.143	м 4.652	0.000	тм 1213.000	тм 542.300	тм 506.000	17.860	<u>т 0.000</u>
%RSD	1.903	м 4.603	м 4.009	м 2.564	0.000	<u>тм 2.908</u>	тм 3.718	тм 3.486	3.814	<u>T 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
1 22:14:17	ppb тм 9949.000	ррь J м 95330.000	ррb тм 105600.000	ppb 83.806%	ppb 0.076	ррb м 105.100	ррb I м 146.500	ррb м 149.400	ppb 220.400	ррb м 101.400
2 22:15:22		м 96620.000								
	тм 10080.000		тм 106900.000	82.459%	-0.121	м 105.100	м 148.600	м 147.300	283.900	м 102.000
3 22:16:28	тм 9636.000	м 90420.000	тм 100400.000	83.749%	-0.038	99.620	м 139.300	м 144.200	281.900	95.990
X	тм 9888.000	м 94120.000	тм 104300.000	83.338%	-0.028	м 103.300	м 144.800	м 147.000	262.100	м 99.810
σ %RSD	тм 227.100	м 3271.000	тм 3474.000	0.762%	0.099	м 3.170	м 4.869	м 2.632	36.110	м 3.321
	тм 2.297	м 3.476	тм 3.331	0.914	357.000	м 3.070	м 3.362	м 1.791	13.780	м 3.327
Run Time	56Fe ppb	57Fe ppb	59Co ppb	60Ni ppb	62Ni ppb	63Cu ppb	65Cu ppb	66Zn ppb	67Zn ppb	68Zn ppb
1 22:14:17	438.400	605.400	98.450	96.590	99.830	99.520	99.100	м 106.000	м 106.800	м 106.900
2 22:15:22	± 463.600	602.700	98.510	96.780	м 103.200	99.550	99.440	м 100.000	м 108.600	м 107.600
3 22:16:28	409.900	570.800	93.700	91.200	96.920	94.710	93.700	м 100.900	м 101.300	м 107.300
X ZZ.10.20	т 437.300	593.000	96.880	94.860	м 99.980	97.930	93.700	<u>м 100.900</u> м 104.600	м 101.300	<u>м 102.700</u> м 105.800
	<u>т 26.860</u>	19.240	2.762	3.171	м 3.146	2.786	3.221	м 3.297	м 3.829	<u>м 103.860</u> м 2.654
σ %RSD	<u>т 6.143</u>	3.245	2.762	3.342	<u>м 3.140</u> м 3.14 <u>6</u>	2.786	3.306	<u>м 3.247</u> м 3.151	м 3.627	<u>м 2.654</u> м 2.510
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
itaii iiiio	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:14:17	м 106.200	м 211.600	м 200.900	0.000	0.000	м 202.200	тм 958.700	86.404%	5.280	5.255
2 22:15:22	м 104.900	м 217.900	м 202.000	0.000	0.000	м 199.200	тм 954.900	86.247%	5.257	5.500
3 22:16:28	м 100.300	м 208.400	м 191.000	0.000	0.000	м 190.500	тм 900.700	87.214%	5.068	4.948
X	м 103.800	м 212.600	м 198.000	0.000	0.000	м 197.300	тм 938.100	86.622%	5.202	5.235
σ	м 3.134	м 4.874	м 6.061	0.000	0.000	м 6.067	тм 32.450	0.519%	0.116	0.277
%RSD	<u>м 3.018</u>	м 2.292	м 3.062	0.000	0.000	м 3.075	тм 3.459	0.599	2.234	5.283
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:14:17	5.308	80.290%	м 102.000	м 102.400	1.047	м 107.300	м 101.000	м 102.600	м 103.700	83.318%
2 22:15:22	5.439	78.864%	м 102.600	м 102.100	0.862	м 105.000	м 101.200	м 104.600	м 104.600	82.468%
3 22:16:28	4.983	80.224%	95.960	96.290	0.931	99.730	96.450	97.560	97.430	84.524%
X	5.243	79.793%	м 100.200	м 100.300	0.947	м 104.000	м 99.570	м 101.600	м 101.900	83.437%
σ	0.235	0.805%	м 3.667	м 3.440	0.093	м 3.865	м 2.697	м 3.626	м 3.888	1.033%
%RSD	4.483	1.009	м 3.660	м 3.431	9.854	м 3.716	м 2.709	<u>м 3.569</u>	м 3.816	1.239
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:14:17	-0.163	м 113.100	м 112.300	м 176.000	87.264%	88.195%	м 108.400	м 108.800	м 108.000	м 108.400
2 22:15:22	-0.188	м 112.900	м 111.700	м 175.800	86.648%	87.500%	м 108.400	м 108.800	м 108.500	м 108.600
3 22:16:28	-0.185	м 105.600	м 105.100	м 163.700	88.756%	89.979%	м 103.500	м 103.800	м 102.500	м 102.300
X	-0.179	м 110.500	м 109.700	м 171.800	87.556%	88.558%	м 106.800	м 107.200	м 106.300	м 106.400
σ	0.014	<u>м 4.301</u>	м 3.983	м 7.039	1.084%	1.279%	м 2.854	<u>м 2.896</u>	м 3.324	<u>м 3.575</u>
%RSD	7.622	м 3.891	м 3.630	<u>м 4.096</u>	1.238	1.444	м 2.673	м 2.703	<u>м 3.126</u>	м 3.359
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 22:14:17	м 108.500	84.207%	0.000	0.000						
2 22:15:22	м 108.900	83.848%	0.000	0.000						
3 22:16:28	м 102.400	85.965%	0.000	0.000						
X	м 106.600	84.674%	0.000	0.000						
σ	м 3.678	1.133%	0.000	0.000						
%RSD	м 3.450	1.338	0.000	0.000						

mp58073-s2 5/7/2011 22:17:30

Time	Run	dilution: 1.00-	6Li	9Be	10B	11B	13C	23Na	25Mg	24Ma	27AI	37CI
1 2718-38 79.77%	IXUIT	Tillie							- 1			
2 279 - 40 85 509 % 200 200 200 2131 200 2131 200 2131 200 2131 200 2131 200	1	22 · 18 · 35										
3 27-20-45 89 46-15% 4019-000 418-1000 418-1000 418-1000 30-128-1000				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							
Second Color				<u> </u>						<u> </u>		· · · · · · · · · · · · · · · · · · ·
The color State												
No. Section												· · · · · · · · · · · · · · · · · · ·
Fig. Time 39K												
1 22:18:35	Run	Time										55Mn
2 22 1940			ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
3 22 20.45 m.933.000	1	22:18:35	тм 10070.000	м 96920.000	тм 107100.000	79.683%	0.016	м 105.600	м 149.200	м 150.100	345.600	м 102.400
x x x x x x x x x x	2	22:19:40	тм 9112.000	м 85900.000	тм 94860.000	84.602%	-0.181	93.390	м 131.200	м 133.100	339.600	90.750
Description Description	3	22:20:45	тм 9836.000	м 94160.000	тм 103900.000	80.483%	0.036	м 102.700	м 143.900	м 145.500	367.600	99.470
No. Time Sefe S7Fe S9CO CON1 G2H1 S9Fe S9CO CON1 G2H1	X		тм 9674.000	м 92330.000	тм 101900.000	81.589%	-0.043	м 100.600	м 141.500	м 142.900	351.000	м 97.520
Run Time 56Fe 57Fe 59Co 60Ni 62Ni 63Cu 65Cu 66Fn 67Fn 68Fn ppb	σ		тм 500.800	м 5734.000	тм 6338.000	2.639%	0.120	м 6.394	м 9.232	м 8.784	14.750	м 6.046
Pob Pob	%RSD		<u>тм 5.177</u>	<u>м 6.211</u>	<u>тм 6.217</u>	3.235	277.900	<u>м 6.358</u>	<u>м 6.527</u>	<u>м 6.147</u>	4.203	м 6.200
1 22:18:35 422:800 598:400 98:790 97:360 ±100.700 99:390 98:500 ±106.600 ±104.600 ±104.600 ±109.600 2 22:19:40 37:900 57:200 96:600 94:170 96:620 97:650 97:700 ±105:200 ±107:400 ±107:200 3 22:20:45 409:300 579:200 96:600 94:170 96:620 97:650 97:500 ±102:300 ±104:200 ±107:200 3 22:20:45 409:300 579:200 96:600 94:170 96:620 97:650 97:500 ±102:300 ±104:200 401:000 570:000 94:380 92:420 ±5.527 5.569 6.449 ±6.521 ±6.490 5 20:200 6.713 5.939 6.192 6.496 ±5.527 5.841 6.792 ±6.199 ±4.844 ±6.972 Run Time 75:784 77:56 78:565 79:56 78:560 79:56 81:81 82:56 88:57 88:77 59:500 88:570 88:57 88:57 88:57 88:57 89:79 59:500 59:500 88:579 47:500 1 22:18:35 ±106:000 ±225:500 ±202:600 0.000 0.000 ±199:300 ±959:300 83:24% 5.371 5.551 2 22:19:40 94:370 ±20:1400 ±196:700 0.000 0.000 ±199:300 ±959:500 83:39% 4.709 4.702 2 22:20:45 ±103:400 ±221:100 ±196:700 0.000 0.000 ±199:300 ±93:700 83:38% 5.127 5.333 3 22:20:45 ±6.002 ±0.934 ±5.220 0.000 0.000 ±199:300 ±93:700 83:38% 5.127 5.333 4 50:400 ±6.002 ±5.934 ±5.220 0.000 0.000 ±199:300 ±93:700 83:38% 5.127 5.333 4 50:400 ±6.002 ±5.934 ±5.220 0.000 0.000 ±199:400 ±101:100 ±5.4840 2.767% 0.335 0.441 50:400 ±6.002 ±5.934 ±5.935 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.76 0.000 ±5.779 ±5.77 ±5.77 ±5.33 ±5.776 ±5.33 ±5.776 ±5.33 ±5.77	Run	Time	*	57Fe			62Ni			66Zn	67Zn	68Zn
22:19-40 370,900 532:500 87.750 85.740 89.670 88.990 87.580 99.010 97.700 95.970 3 22:20.45 400.300 579.200 96.600 94.170 96.620 97.550 97.750 ±105.200 ±107.200												
3 22:20.45 409.300 579.200 96.600 94.170 96.620 97.650 97.700 \(\frac{\text{v} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \												
X												
Column Column		22:20:45										
No. Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 97Mo 97Mo 98Do 99Do 9												
Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89V 95Mo 97Mo ppb												
Pot Pot		Time o	The state of the s									
1 22:18:35 w106:000 w225:500 w202:600 0.000 0.000 w199:300 w959:800 83.294% 5.371 5.551 2 22:19:40 94.370 w201:400 w181:200 0.000 0.000 w185:300 w937:600 88.359% 4.709 4.702 3 22:20:45 w103:400 w21:000 w196:700 0.000 0.000 w195:300 w937:600 88.8369% 5.127 5.331 x	Run	Time										
2 22:19:40	1	22.18.35										
3 22:20:45 w103:400 w21:100 w196:700 0.000 0.000 w195:300 w937:600 83.896% 5.127 5.333 x w101:300 w121:6000 w193:500 0.000 0.000 w191:600 w917:700 85.183% 5.069 5.195 0.000 0.000 w101:100 w54.840 2.767% 0.335 0.441 0.000 w6.027 w12.860 w11:070 0.000 0.000 w10:110 w54.840 2.767% 0.335 0.441 0.000 0.000 w10:110 w54.840 2.767% 0.335 0.441 0.000 w10:110 w54.840 0.767% 0.335 0.441 0.000 0.000 w10:110 w54.840 0.767% 0.335 0.441 0.000 0.000 w10:110 w54.840 0.767% 0.335 0.441 0.000 0.000 w10:110 w54.840 0.767% 0.335 0.441 0.000 w10:110 w54.840 0.767% 0.335 0.441 0.000 w10:110 w54.840 0.767% 0.335 0.441 0.000 w10:110 w54.840 0.767% 0.335 0.441 0.000 w10:110 w54.840 0.767% 0.335 0.441 0.000 w10:110 w54.840 0.767% 0.335 0.441 0.000 w10:110 w54.840 0.767% 0.324 0.000 0.000 w10:110 0.000 w10	2											
x u101.300 w216.000 u193.500 0.000 0.000 w191.600 m917.700 85.183% 5.069 5.195 6.697 u12.860 w11.070 0.000 0.000 w101.10 w54.840 2.767% 0.335 0.441 0.500 w6.021 w5.954 w5.720 0.000 0.000 w10.110 w54.840 2.767% 0.335 0.441 0.500 w6.021 w6.021 w5.954 w5.720 0.000 0.000 w5.279 m5.975 3.248 6.598 8.494 0.000 0.000 w5.279 m5.975 3.248 6.598 8.494 0.000 0.000 w6.5279 m5.975 3.248 6.598 8.494 0.000 0.000 w6.5279 w5.975 3.248 6.598 8.494 0.000 0.000 w6.5279 w5.975 3.248 6.598 8.494 0.000 0.000 w6.5279 w5.975 3.248 6.598 8.494 0.000 w6.5279 w5.975 3.248 6.598 8.494 w5.200 w6.520 w6.528 w6.52				· · · · · · · · · · · · · · · · · · ·	'							
w6.097 w12.860 w11.070 0.000 0.000 w10.110 m54.840 2.767% 0.335 0.441		22.20.43										
Number Number	=											
Run Time 98Mo 103Rh 106Cd 107Ag 108Mo 108Cd 109Ag 111Cd 114Cd 115In ppb pp												
Ppb Ppb		Time										
1 22:18:35 5.490 75.721% w100.500 w102.500 1.140 w107.000 w102.000 w105.500 w103.300 79.575% 2 22:19:40 4.798 81.112% 91.310 92.550 0.704 92.280 91.770 93.190 92.160 84.468% 3 22:20:45 5.180 77.357% 97.250 99.650 0.983 w101.900 98.690 w102.700 w101.900 w102.700 w101.900 w102.700 w101.900 w102.700 w101.900 w102.700 w101.900 w102.700 w101.900 w102.700 w101.900 w102.700 w101.900 w102.700 w101.900 w102.700 w101.900 w102.700 w101.900 w102.700 w102.700 w101.900 w102.700				i	*							
3 22:20:45 5.180 77.357% 97.250 99.650 0.983 \(\frac{\mu}{101.900} \) 98.690 \(\frac{\mu}{102.700} \) \(\mu \) 101.900 80.375%	1	22:18:35										
X 5.156 78.063% M.96.370 M.98.250 0.942 M.100.400 M.97.490 M.100.500 M.99.120 81.473%	2	22:19:40	4.798	81.112%	91.310	92.550	0.704	92.280	91.770	93.190	92.160	84.468%
σ 0.346 2.764% м.4.679 м.5.139 0.221 м.7.494 м.5.230 м.6.460 м.6.070 2.625% %RSD 6.716 3.540 м.4.855 м.5.231 23.470 м.7.464 м.5.365 м.6.429 м.6.124 3.221 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb	3	22:20:45	5.180	77.357%	97.250	99.650	0.983	м 101.900	98.690	м 102.700	м 101.900	80.375%
σ 0.346 2.764% м.4.679 м.5.139 0.221 м.7.494 м.5.230 м.6.460 м.6.070 2.625% %RSD 6.716 3.540 м.4.855 м.5.231 23.470 м.7.464 м.5.365 м.6.429 м.6.124 3.221 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb	Х		5.156	78.063%	м 96.370	м 98.250	0.942	м 100.400	м 97.490	м 100.500	м 99.120	81.473%
Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb	σ		0.346	2.764%	м 4.679	м 5.139	0.221	м 7.494	м 5.230	м 6.460	м 6.070	2.625%
Ppb Ppb	%RSD		6.716	3.540	м 4.855	м 5.231	23.470	м7.464	м 5.365	м 6.429	м 6.124	3.221
1 22:18:35 -0.193 м112.300 м112.700 м176.500 84.366% 85.459% м108.200 м108.900 м108.000 м108.400 2 22:19:40 -0.199 99.450 99.710 м156.700 88.936% 90.340% 98.690 99.270 96.910 97.110 3 22:20:45 -0.194 м110.100 м109.300 м172.100 85.199% 85.961% м106.900 м106.400 м105.700 м106.400 X -0.195 м107.300 м107.200 м168.400 86.167% 87.253% м104.600 м104.900 м103.500 м104.000 Φ 0.003 м6.876 м6.725 м10.420 2.434% 2.685% м5.177 м4.994 м5.837 м6.019 %RRSD 1.635 м6.408 м6.272 м6.188 2.825 3.077 м4.948 м4.763 м5.638 м5.790 Run Time 208Pb 209Bi 220Bkg 238U 238U 221944 2221944 2221944	Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
2 22:19:40 -0.199 99.450 99.710 M 156.700 88.936% 90.340% 98.690 99.270 96.910 97.110 3 22:20:45 -0.194 M 10.100 M 109.300 M 172.100 85.199% 85.961% M 106.900 M 106.400 M 105.700 M 106.400 X -0.195 M 107.300 M 107.200 M 168.400 86.167% 87.253% M 104.600 M 104.900 M 103.500 M 104.000 σ 0.003 M 6.876 M 6.725 M 10.420 2.434% 2.685% M 5.177 M 4.994 M 5.837 M 6.019 M 1 Column Time 208Pb 209Bi 220Bkg 238U Ppb<			ppb		ppb	ppb	ppb		ppb	ppb	ppb	ppb
3 22:20:45 -0.194 M 110.100 M 109.300 M 172.100 85.199% 85.961% M 106.900 M 106.400 M 105.700 M 106.400 X												
X -0.195 M107.300 M107.200 M168.400 86.167% 87.253% M104.600 M104.900 M103.500 M104.000 σ 0.003 M6.876 M6.725 M10.420 2.434% 2.685% M5.177 M4.994 M5.837 M6.019 M6.875 M6.408 M6.272 M6.188 2.825 3.077 M4.948 M4.763 M5.638 M5.790 Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb 1 22:18:35 M108.900 81.574% 0.000 0.000 2 22:19:40 97.320 86.297% 0.000 0.000 3 22:20:45 M106.200 82.753% 0.000 0.000 X M104.100 83.541% 0.000 0.000 σ M6.061 2.458% 0.000 0.000 σ M6.061 2.458% 0.000 0.000 π M104.600 M104.600 M104.900 M104.900 M104.000 M104												
σ 0.003 M6.876 M6.725 M10.420 2.434% 2.685% M5.177 M4.994 M5.837 M6.019 %RSD 1.635 M6.408 M6.272 M6.188 2.825 3.077 M4.948 M4.763 M5.638 M5.790 Run Time 208Pb 209Bi 220Bkg 238U 238U 238U M4.948 M4.763 M5.638 M5.790 1 22:18:35 M108.900 81.574% 0.000	3	22:20:45	-0.194	м 110.100	м 109.300	м 172.100	85.199%	85.961%	м 106.900	м 106.400	м 105.700	м 106.400
%RSD 1.635 M.6.408 M.6.272 M.6.188 2.825 3.077 M.4.948 M.4.763 M.5.638 M.5.790 Run Time 208Pb 209Bi 220Bkg 238U	X		-0.195	м 107.300	м 107.200	м 168.400	86.167%	87.253%	м 104.600	м 104.900	м 103.500	м 104.000
Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb ppb 1 22:18:35 м 108.900 81.574% 0.000 0.000 2 22:19:40 97.320 86.297% 0.000 0.000 3 22:20:45 м 106.200 82.753% 0.000 0.000 x м 104.100 83.541% 0.000 0.000 σ м 6.061 2.458% 0.000 0.000			0.003	<u>м 6.876</u>	<u>м 6.725</u>	м 10.420	2.434%	2.685%	<u>м 5.177</u>	<u>м 4.994</u>	м 5.837	<u>м 6.019</u>
ppb ppb ppb ppb 1 22:18:35 м 108.900 81.574% 0.000 0.000 2 22:19:40 97.320 86.297% 0.000 0.000 3 22:20:45 м 106.200 82.753% 0.000 0.000 X м 104.100 83.541% 0.000 0.000 σ м 6.061 2.458% 0.000 0.000						-	2.825	3.077	м 4.948	м 4.763	<u>м 5.638</u>	м 5.790
1 22:18:35 M 108.900 81.574% 0.000 0.000 2 22:19:40 97.320 86.297% 0.000 0.000 3 22:20:45 M 106.200 82.753% 0.000 0.000 X M 104.100 83.541% 0.000 0.000 σ M 6.061 2.458% 0.000 0.000	Run	Time	i									
2 22:19:40 97.320 86.297% 0.000 0.000 3 22:20:45 м 106.200 82.753% 0.000 0.000 x м 104.100 83.541% 0.000 0.000 σ м 6.061 2.458% 0.000 0.000	1	22,10,25										
3 22:20:45 M 106.200 82.753% 0.000 0.000 χ M 104.100 83.541% 0.000 0.000 σ M 6.061 2.458% 0.000 0.000												
x м 104.100 83.541% 0.000 0.000 σ м 6.061 2.458% 0.000 0.000												
<u>σ</u> <u>м6.061</u> 2.458% 0.000 0.000		22:20:45										
M 3.020 2.743 0.000 0.000												
	/0K3D		M 5.62U	2.743	0.000	0.000						

ccv 5/7/2011 22:21:49

	-dilution: 1.00		00 -	100	110	120	221-	2514	2/14-	0741	2701
Run	Time	6Li	9Be	10B	11B	13C ppb	23Na	25Mg	26Mg	27AI	37CI
1	22:22:54	ppb 85.132%	ppb 52.900	ppb 5 7.060	ppb 58.820	0.000	ppb 542.900	ppb 484.700	ppb 490.300	ppb 452.400	ррb <u>т 0.000</u>
2	22:23:59	87.126%	52.800	56.400	56.160	0.000	469.600	453.600	453.900	451.400	<u> </u>
3		85.241%									<u>⊤ 0.000</u>
	22:25:04	85.833%	53.180 52.960	55.860	55.140 56.700	0.000	448.900	443.200	445.500 463.200	446.800	<u>т 0.000</u>
X				56.440			487.100	460.500		450.200	
σ %RSD		1.121%	0.197	0.601	1.901	0.000	49.400	21.590	23.810	2.954	<u>т 0.000</u>
=	Time	1.306 39K	0.371 43Ca	1.065 44Ca	3.352 45Sc	0.000 47Ti	10.140 51V	4.689 52Cr	5.140 53Cr	0.656 53CI O	<u>т 0.000</u> 55Мп
Run	Tille	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:22:54	469.300	811.000	778.300	78.372%	50.730	51.320	50.620	53.060	282.100	49.900
2	22:23:59	454.100	547.100	556.600	78.752%	53.310	50.540	51.210	50.350	287.100	50.440
3	22:25:04	439.200	484.900	494.200	81.167%	50.040	48.760	48.630	48.880	270.100	48.690
X	LL.LU.U.	454.200	614.300	609.700	79.430%	51.360	50.210	50.160	50.760	279.800	49.680
σ		15.050	173.200	149.300	1.516%	1.722	1.311	1.350	2.121	8.723	0.896
%RSD		3.313	28.190	24.490	1.909	3.353	2.611	2.691	4.179	3.118	1.803
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	dqq	ppb	ppb	ppb	ppb	ppb	ppb
1	22:22:54	437.800	476.000	50.290	50.780	53.060	49.420	49.870	50.450	50.280	50.900
2	22:23:59	443.800	473.200	49.970	50.830	52.210	49.310	49.740	51.070	51.760	50.870
3	22:25:04	426.200	462.000	49.000	48.750	51.510	47.650	47.970	48.730	48.740	48.970
X		435.900	470.400	49.760	50.120	52.260	48.800	49.190	50.090	50.260	50.250
σ		8.949	7.399	0.671	1.188	0.777	0.992	1.063	1.214	1.511	1.106
%RSD		2.053	1.573	1.349	2.371	1.487	2.033	2.162	2.424	3.006	2.202
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	[ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:22:54	51.330	59.210	51.210	0.000	0.000	52.400	52.660	82.484%	50.390	50.650
2	22:23:59	51.300	60.440	51.770	0.000	0.000	52.420	51.350	82.232%	51.330	51.160
3	22:25:04	50.140	56.730	50.530	0.000	0.000	51.110	49.810	83.892%	50.190	50.240
X		50.920	58.790	51.170	0.000	0.000	51.980	51.270	82.869%	50.630	50.680
σ		0.677	1.888	0.619	0.000	0.000	0.747	1.428	0.895%	0.607	0.464
%RSD		1.329	3.210	1.209	0.000	0.000	1.436	2.785	1.080	1.199	0.915
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115I n
1	22:22:54	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb 40.500	ppb	ppb
2	22:22:54	50.710 51.190	81.701% 81.485%	50.220 50.990	49.140 49.460	0.373 0.281	49.420 48.790	48.910 49.080	49.580 50.600	49.870 50.480	82.870% 82.884%
3	22:25:04	50.210 50.700	82.910% 82.032%	48.480 49.900	48.880 49.160	0.447 0.367	48.950 49.050	48.430 48.810	49.710 49.960	50.320 50.220	83.047% 82.934%
X		0.492	0.768%	1.287	0.290	0.083	0.324	0.337	0.553	0.316	0.099%
σ %RSD		0.492	0.766%	2.579	0.290	22.640	0.660	0.337	1.107	0.516	0.099%
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:22:54	50.330	50.140	50.080	50.270	85.170%	85.755%	51.140	50.430	50.910	51.120
2	22:23:59	50.430	50.470	50.550	50.900	85.699%	85.693%	50.690	50.060	51.040	50.340
3		50.170	50.210	50.160	49.800	85.688%	86.046%	50.510	49.860	50.330	50.710
X		50.310	50.280	50.260	50.320	85.519%	85.831%	50.780	50.120	50.760	50.720
σ		0.133	0.174	0.253	0.553	0.302%	0.189%	0.325	0.290	0.378	0.391
%RSD		0.265	0.345	0.503	1.099	0.354	0.220	0.639	0.578	0.745	0.771
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1		50.830	86.086%	0.000	0.000						
	22:23:59	50.540	87.254%	0.000	0.000						
=	22:25:04	50.370	87.334%	0.000	0.000						
X		50.580	86.891%	0.000	0.000						
σ		0.233	0.698%	0.000	0.000						
%RSD		0.461	0.804	0.000	0.000						

ccb 5/7/2011 22:26:07

	-diration: 1.00										
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:27:12	86.275%	-0.061	3.229	4.232	0.000	16.780	2.950	3.849	2.673	<u>т 0.000</u>
2	22:28:17	88.668%	-0.084	2.959	3.096	0.000	23.450	3.286	3.303	2.276	<u>T 0.000</u>
3	22:29:23	88.844%	-0.128	2.233	2.785	0.000	21.630	2.245	2.927	2.187	<u>T 0.000</u>
X		87.929%	-0.091	2.807	3.371	0.000	20.620	2.827	3.359	2.379	<u>т 0.000</u>
σ		1.435%	0.034	0.515	0.762	0.000	3.445	0.531	0.464	0.259	<u>т 0.000</u>
%RSD		1.632	37.690	18.360	22.600	0.000	16.710	18.800	13.800	10.880	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:27:12	-2.848	-4.348	-0.602	80.221%	-0.473	-0.033	0.100	-0.591	246.800	0.003
2	22:28:17	-6.223	-7.723	-4.871	85.615%	-0.545	0.279	0.059	1.496	227.400	0.015
3	22:29:23	-2.322	-18.490	-5.685	82.257%	-0.526	-0.271	0.039	-0.748	243.200	-0.008
Х		-3.798	-10.190	-3.719	82.698%	-0.515	-0.009	0.066	0.053	239.100	0.003
σ		2.117	7.388	2.730	2.724%	0.037	0.276	0.031	1.253	10.310	0.012
%RSD		55.730	72.510	73.400	3.294	7.235	3160.000	46.870	2381.000	4.311	392.800
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:27:12	<u>⊤20.960</u>	2.672	-0.004	-0.179	1.612	-0.088	-0.246	-0.441	-0.203	-0.560
2	22:28:17	-0.049	1.771	-0.064	-0.220	1.544	-0.191	-0.293	-0.560	-0.392	-0.556
3	22:29:23	1.969	1.222	-0.074	-0.183	1.246	-0.204	-0.329	-0.498	-0.259	-0.601
X	22.27.20	т 7.628	1.888	-0.047	-0.194	1.467	-0.161	-0.289	-0.500	-0.284	-0.572
σ		<u>т 11.590</u>	0.732	0.038	0.023	0.195	0.064	0.042	0.059	0.097	0.025
%RSD		<u>т 152.000</u>	38.770	80.390	11.710	13.260	39.630	14.370	11.880	34.180	4.369
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
Ran	Time	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:27:12	-0.115	3.634	-0.042	0.000	0.000	-0.097	0.095	83.426%	-0.130	-0.092
2	22:28:17	-0.325	2.554	-0.462	0.000	0.000	-0.145	0.002	88.298%	-0.186	-0.142
3	22:29:23	-0.323	3.567	-0.402	0.000	0.000	-0.190	-0.066	84.827%	-0.195	-0.160
	22.29.23										
X		-0.240	3.252	-0.216	0.000	0.000	-0.144	0.010	85.517%	-0.170	-0.131
σ %RSD		0.110	0.605	0.219	0.000	0.000	0.047	0.080	2.508%	0.035	0.035
	T'	45.960	18.610	101.200	0.000	0.000	32.590	778.500	2.933	20.800	27.020
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
1	22:27:12	ppb 0.007	ppb 82.671%	ppb 0.465	ppb 0.352	ppb	-0.034	ppb 0.395	ppb 0.016	ppb 0.022	ppb 83.571%
		-0.007				0.173					
2	22:28:17	-0.100	87.506%	-0.430	0.334	0.229	-0.066	0.361	-0.073	-0.048	88.082%
3	22:29:23	-0.108	84.032%	-0.153	0.311	0.213	-0.034	0.357	-0.074	-0.043	84.155%
X		-0.072	84.736%	-0.039	0.332	0.205	-0.045	0.371	-0.044	-0.023	85.270%
σ		0.056	2.493%	0.458	0.020	0.029	0.019	0.021	0.052	0.039	2.453%
%RSD		78.390	2.943	1171.000	6.125	14.090	41.870	5.550	119.200	169.100	2.877
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	22 27 12	ppb	ppb 0.717	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:27:12	-0.086	0.716	0.638	0.048	84.130%	84.361%	0.174	0.423	0.118	0.123
2		-0.153	0.372	0.341	-0.014	89.324%	89.085%	0.129	0.363	0.036	0.060
3	22:29:23	-0.161	0.297	0.224	-0.059	85.092%	85.051%	0.115	0.363	-0.002	0.008
X		-0.134	0.462	0.401	-0.008	86.182%	86.166%	0.139	0.383	0.050	0.063
σ		0.041	0.224	0.214	0.053	2.763%	2.551%	0.031	0.035	0.061	0.058
%RSD		30.930	48.470	53.260	644.900	3.206	2.961	22.050	9.043	121.700	91.270
Run	Time	208Pb	209Bi	220Bkg	238U						
		ppb	ppb	ppb	ppb						
1	22:27:12	0.180	85.483%	0.000	0.000						
2	22:28:17	0.099	89.776%	0.000	0.000						
3	22:29:23	0.060	86.131%	0.000	0.000						
X		0.113	87.130%	0.000	0.000						
σ		0.061	2.314%	0.000	0.000						
%RSD		54.000	2.656	0.000	0.000						

ja74100-1 5/7/2011 22:30:26

Part Time
1 22:31:31 83:437% -0.105
2 23 23 23 23 24 24 24
3 22:33:42 81:703% -0.125
Section Sec
1.682% 0.013
No. Color No. N
Run Time 39K 43Ca 44Ca 45Sc 47Ti 51V 52Cr 53Cr 53Cr 53Cl O 55Mn
Pob Pob
1 22:31:31 w9210.000 w9630.000 w10100.000 80.681% -0.142 -0.138 41.970 42.890 310.300 1.852
2 22:32:37 № 9540.000 № 9540.000 № 106000.000 80.681% -0.169 -0.008 44.360 44.290 338.000 1.675 3 22:33:42 № 9477.000 № 9480.0000 № 10480.000 № 10480.000 № 60.91% -0.124 -0.093 43.710 43.90 336.000 1.755 № 00 № 2477.000 № 3075.000 № 10480.000 № 60.91% -0.124 -0.093 43.710 43.90 336.000 1.675 № 00 № 25.92 № 3.726 1.546 46.340 79.330 3.89 2.001 7.448 5.192 Run Time Sefe 5.7Fe Seyco 60N1 62N1 63Cu 65Cu 66Cn 727 682n Run Time Sefe 5.7Fe 89Co 0.6N1 1.88 3.061 2.883 9.718 1.0550 1.930 1 22:31:31 -0.500 1.25.50 -0.556 -0.676 1.233 3.298 3.022 10.300 <t< td=""></t<>
3 22:33:42 m968:000 m96360:000 m107400:000 79.448% -0.059 -0.133 44.810 44.510 360.300 1.755 x m9477.000 m107400:0000 m107400:0000 m107400:0000 m107400:0000 m107400:0000 m107400:0000 m107400:0000 m107400:0000
x
□
No. No
Run Time S6Fe S7Fe S9Co 66Ni 62Ni 63Cu 65Cu 66Zn 67Zn 68Zn ppb
PDB PDB
1 22:31:31 -20.500 117.500 -0.519 -0.755 1.695 3.061 2.883 9.718 10.550 10.930 2 22:32:37 -21.590 125.700 -0.548 -0.676 1.330 3.298 3.022 10.300 11.400 11.650 3 22:33:42 -20.990 122.400 -0.537 -0.700 1.437 3.225 2.980 10.090 11.220 11.360 π 0.550 4.376 0.016 0.048 0.224 0.143 0.084 0.325 0.599 0.381 π/850 2.621 3.575 2.921 6.810 15.570 4.435 2.835 3.224 5.338 3.544 Run Time 75As 775e 785e 798r 81Br 825e 88Sr 89Y 95Mo 97Mo 1 22:31:331 0.146 21.360 3.985 0.000 0.000 4.203 №920.000 84.680% 4.941 4.982
2 22:32:37 -21.590 125.700 -0.548 -0.676 1.330 3.298 3.022 10.300 11.400 11.650 3 22:33:42 -20.990 124.100 -0.545 -0.670 1.288 3.318 3.035 10.260 11.700 11.500 x -20.990 122.400 -0.537 -0.700 1.437 3.225 2.980 10.090 11.220 11.360 π/350 4.376 0.016 0.048 0.224 0.143 0.084 0.325 0.599 0.381 π/350 2.621 3.575 2.921 6.810 15.570 4.435 2.835 3.24 5.338 3.354 Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 97Mo 1 22:31:31 0.146 21.360 3.985 0.000 0.000 4.203 №20.000 84.680% 4.941 4.982 2 22:33:31
3 22:33:42 -20.900 124.100 -0.545 -0.670 1.288 3.318 3.035 10.260 11.700 11.500 x
X -20.990 122.400 -0.537 -0.700 1.437 3.225 2.980 10.090 11.220 11.360 σ 0.550 4.376 0.016 0.048 0.224 0.143 0.084 0.325 0.599 0.381 NRSD 2.621 3.575 2.921 6.810 15.570 4.435 2.835 3.224 5.338 3.354 NRSD Time 75As 775e 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 97Mo ppb
Surface Control Co
Run Time
Run Time 75As 77Se 78Se 79Br 81Br 82Se 88Sr 89Y 95Mo 97Mo 1 22:31:31 0.146 21.360 3.985 0.000 0.000 4.203 m 920.000 84.680% 4.941 4.982 2 22:32:37 -0.048 26.440 4.042 0.000 0.000 4.248 m 962.300 82.800% 5.218 5.512 3 22:33:42 0.082 28.890 4.223 0.000 0.000 4.244 m 967.800 82.423% 5.323 5.639 x 0.060 25.570 4.084 0.000 0.000 4.249 m 950.000 83.301% 5.161 5.377 σ 0.099 3.840 0.124 0.000 0.000 0.045 m 26.140 1.209% 0.197 0.349 MRSD 164.700 15.020 3.043 0.000 0.000 1.068 m 2.752 1.451 3.818 6.482 Run
Ppb Pp
1 22:31:31 0.146 21.360 3.985 0.000 0.000 4.203 m 920.000 84.680% 4.941 4.982 2 22:32:37 -0.048 26.440 4.042 0.000 0.000 4.248 m 962.300 82.800% 5.218 5.512 3 22:33:42 0.082 28.890 4.223 0.000 0.000 4.249 m 967.800 82.423% 5.323 5.639 x 0.060 25.570 4.084 0.000 0.000 4.249 m 950.000 83.301% 5.161 5.377 σ 0.099 3.840 0.124 0.000 0.000 1.068 m 26.140 1.209% 0.197 0.349 98RSD 164.700 15.020 3.043 0.000 0.000 1.068 m 2.752 1.451 3.818 6.482 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 109Ag 111Cd 114Cd 115In ppb pp
2 22:32:37 -0.048 26.440 4.042 0.000 0.000 4.248 τ _M 962.300 82.800% 5.218 5.512 3 22:33:42 0.082 28.890 4.223 0.000 0.000 4.294 τ _M 950.800 82.423% 5.323 5.639 X 0.060 25.570 4.084 0.000 0.000 4.249 τ _M 950.000 83.301% 5.161 5.377 σ 0.099 3.840 0.124 0.000 0.000 0.045 τ _M 26.140 1.209% 0.197 0.349 %RSD 164.700 15.020 3.043 0.000 0.000 1.068 τ _M 2.752 1.451 3.818 6.482 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In pbb pbb pbb pbb pbb pbb pbb pbb pbb pbb pbb pbb pbb pbb
3 22:33:42 0.082 28.890 4.223 0.000 0.000 4.294 114.967.800 82.423% 5.323 5.639
X 0.060 25.570 4.084 0.000 0.000 4.249 1M 950.000 83.301% 5.161 5.377 σ 0.099 3.840 0.124 0.000 0.000 0.045 1M 26.140 1.209% 0.197 0.349 %RSD 164.700 15.020 3.043 0.000 0.000 1.068 1 26.140 1.209% 0.197 0.349 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In ppb <t< td=""></t<>
σ 0.099 3.840 0.124 0.000 0.000 0.045 M≥6.140 1.209% 0.197 0.349 %RSD 164.700 15.020 3.043 0.000 0.000 1.068 M≥2.752 1.451 3.818 6.482 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In ppb </td
№RSD 164,700 15.020 3.043 0.000 0.000 1.068 m≥2.752 1.451 3.818 6.482 Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In ppb
Run Time 98Mo 103Rh 106Cd 107Ag 108Mo O 108Cd 109Ag 111Cd 114Cd 115In ppb
ppb ppb
1 22:31:31 5.064 78.588% -4.088 0.303 0.468 0.001 0.350 -0.267 -0.175 81.816% 2 22:32:37 5.395 76.115% -4.463 0.320 0.495 0.038 0.347 -0.296 -0.187 79.477% 3 22:33:42 5.396 75.787% -4.231 0.308 0.478 0.005 0.344 -0.291 -0.169 79.015% X 5.285 76.803% -4.261 0.310 0.480 0.015 0.347 -0.285 -0.177 80.103% σ 0.192 1.485% 0.189 0.009 0.013 0.020 0.003 0.016 0.009 1.502% %RSD 3.623 1.934 4.439 2.877 2.803 137.200 0.840 5.542 5.111 1.875 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb
2 22:32:37 5.395 76.115% -4.463 0.320 0.495 0.038 0.347 -0.296 -0.187 79.477% 3 22:33:42 5.396 75.787% -4.231 0.308 0.478 0.005 0.344 -0.291 -0.169 79.015% x 5.285 76.803% -4.261 0.310 0.480 0.015 0.347 -0.285 -0.177 80.103% σ 0.192 1.485% 0.189 0.009 0.013 0.020 0.003 0.016 0.009 1.502% %RSD 3.623 1.934 4.439 2.877 2.803 137.200 0.840 5.542 5.111 1.875 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb
3 22:33:42 5.396 75.787% -4.231 0.308 0.478 0.005 0.344 -0.291 -0.169 79.015% X 5.285 76.803% -4.261 0.310 0.480 0.015 0.347 -0.285 -0.177 80.103% σ 0.192 1.485% 0.189 0.009 0.013 0.020 0.003 0.016 0.009 1.502% %RSD 3.623 1.934 4.439 2.877 2.803 137.200 0.840 5.542 5.111 1.875 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb 1 22:31:31 -0.167 1.112 1.092 64.300 86.047% 86.854% 0.06
X 5.285 76.803% -4.261 0.310 0.480 0.015 0.347 -0.285 -0.177 80.103% σ 0.192 1.485% 0.189 0.009 0.013 0.020 0.003 0.016 0.009 1.502% %RSD 3.623 1.934 4.439 2.877 2.803 137.200 0.840 5.542 5.111 1.875 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb 1 22:31:31 -0.167 1.112 1.092 64.300 86.047% 86.854% 0.060 0.297 0.137 0.142
G 0.192 1.485% 0.189 0.009 0.013 0.020 0.003 0.016 0.009 1.502% %RSD 3.623 1.934 4.439 2.877 2.803 137.200 0.840 5.542 5.111 1.875 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb 1 22:31:31 -0.167 1.112 1.092 64.300 86.047% 86.854% 0.060 0.297 0.137 0.142
%RSD 3.623 1.934 4.439 2.877 2.803 137.200 0.840 5.542 5.111 1.875 Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb ppb 0.060 0.297 0.137 0.142
Run Time 118Sn 121Sb 123Sb 137Ba 159Tb 165Ho 203Tl 205Tl 206Pb 207Pb ppb
ppb ppb
1 22:31:31 -0.167 1.112 1.092 64.300 86.047% 86.854% 0.060 0.297 0.137 0.142
1 0 00.00.07 0 0.170 1.104 1.000 77.500 00.17107 00.7007 0.054 0.000 0.105 0.107
2 22:32:37 -0.172 1.124 1.082 67.580 83.171% 83.628% 0.054 0.293 0.125 0.126
3 22:33:42 -0.163 1.041 0.981 68.650 82.981% 84.392% 0.047 0.289 0.130 0.111
x -0.167 1.092 1.051 66.840 84.067% 84.958% 0.054 0.293 0.131 0.127
σ 0.004 0.045 0.061 2.268 1.718% 1.686% 0.006 0.004 0.006 0.015
%RSD 2.480 4.123 5.842 3.393 2.043 1.984 11.940 1.443 4.572 12.220
Run Time 208Pb 209Bi 220Bkg 238U ppb ppb ppb ppb
ppb ppb ppb ppb 1 22:31:31 0.194 82.474% 0.000 0.000
x 0.182 81.075% 0.000 0.000
X 0.182 81.075% 0.000 0.000 G 0.011 1.218% 0.000 0.000 %RSD 5.790 1.503 0.000 0.000

ja74100-2 5/7/2011 22:34:44

User Pre-dilution: 1.00			100							0701
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
4 00 05 40	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:35:49	90.391%	-0.119	4.499	5.571	0.000	81.640	25.130	25.050	4.109	<u>T 0.000</u>
2 22:36:55	89.022%	-0.138	3.882	3.979	0.000	63.320	16.980	17.790	4.159	<u>T 0.000</u>
3 22:38:00	88.991%	-0.138	3.121	3.097	0.000	61.450	17.220	17.230	4.152	<u>т 0.000</u>
X	89.468%	-0.132	3.834	4.216	0.000	68.800	19.780	20.020	4.140	<u>т 0.000</u>
σ	0.800%	0.011	0.690	1.254	0.000	11.160	4.638	4.362	0.027	<u>т 0.000</u>
%RSD	0.894	8.459	18.000	29.750	0.000	16.220	23.450	21.780	0.655	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:35:49	72.650	207.800	198.700	82.489%	-0.502	-0.087	0.305	0.394	314.300	0.050
2 22:36:55	71.030	128.600	135.700	84.359%	-0.504	-0.052	0.315	0.356	313.700	0.051
3 22:38:00	72.300	104.900	124.600	84.535%	-0.504	-0.286	0.268	-0.149	319.400	0.048
X	72.000	147.100	153.000	83.794%	-0.503	-0.142	0.296	0.200	315.800	0.049
σ	0.851	53.920	39.930	1.134%	0.001	0.126	0.025	0.303	3.117	0.001
%RSD	1.182	36.660	26.090	1.353	0.251	89.000	8.282	151.300	0.987	2.467
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:35:49	1.438	3.500	-0.087	-0.178	1.334	1.872	1.620	6.220	6.126	6.095
2 22:36:55	2.046	2.934	-0.090	-0.186	1.407	1.747	1.693	6.494	6.544	6.437
3 22:38:00	2.212	3.680	-0.090	-0.155	1.143	1.853	1.629	6.514	5.983	6.533
X	1.899	3.371	-0.089	-0.173	1.295	1.824	1.647	6.410	6.218	6.355
σ	0.407	0.389	0.002	0.016	0.136	0.068	0.039	0.164	0.291	0.230
%RSD	21.460	11.550	2.091	9.204	10.540	3.708	2.392	2.560	4.687	3.619
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:35:49	-0.128	12.610	-0.356	0.000	0.000	-0.235	1.236	86.726%	-0.186	-0.167
2 22:36:55	-0.068	13.820	-0.189	0.000	0.000	-0.178	0.560	85.653%	-0.188	-0.132
3 22:38:00	-0.074	13.260	-0.297	0.000	0.000	-0.192	0.392	86.743%	-0.188	-0.130
X	-0.090	13.230	-0.281	0.000	0.000	-0.202	0.730	86.374%	-0.187	-0.143
σ	0.033	0.608	0.085	0.000	0.000	0.029	0.447	0.624%	0.001	0.021
%RSD	36.880	4.593	30.130	0.000	0.000	14.620	61.250	0.723	0.528	14.810
Run Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:35:49	-0.080	86.671%	0.016	0.307	0.200	-0.066	0.342	-0.060	-0.047	86.116%
2 22:36:55	-0.060	85.853%	-0.131	0.299	0.212	-0.036	0.342	-0.071	-0.047	85.443%
3 22:38:00	-0.076	85.957%	-0.070	0.314	0.206	-0.066	0.342	-0.065	-0.050	86.268%
X	-0.072	86.160%	-0.062	0.307	0.206	-0.056	0.342	-0.066	-0.048	85.942%
σ	0.011	0.445%	0.074	0.008	0.006	0.018	0.000	0.005	0.002	0.439%
%RSD	14.650	0.516	119.200	2.567	2.821	31.490	0.107	8.248	3.582	0.511
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:35:49	0.019	0.078	-0.017	1.072	87.564%	88.469%	0.063	0.296	-0.006	0.001
2 22:36:55	0.077	0.035	0.015	1.028	87.703%	88.390%	0.065	0.297	0.005	0.002
3 22:38:00	0.035	0.045	-0.002	1.035	87.240%	88.441%	0.059	0.296	0.013	0.011
X	0.043	0.053	-0.001	1.045	87.502%	88.434%	0.062	0.296	0.004	0.005
σ	0.030	0.023	0.016	0.024	0.238%	0.040%	0.003	0.000	0.009	0.006
%RSD	68.490	43.110	1242.000	2.272	0.272	0.045	4.735	0.119	247.700	116.300
Run Time	208Pb	209Bi	220Bkg	238U						
	ppb	ppb	ppb	ppb						
1 22:35:49	0.060	89.078%	0.000	0.000						
2 22:36:55	0.064	89.442%	0.000	0.000						
3 22:38:00	0.070	88.845%	0.000	0.000						
X	0.065	89.121%	0.000	0.000						
σ	0.005	0.2010/	0.000	0.000						
U	0.005	0.301%	0.000	0.000						
%RSD	7.022	0.301%	0.000	0.000						

ja74100-1f 5/7/2011 22:39:02

User Pre-dilution: 1.0		0.5	100	445	100	001	0514	0/14	0741	07.01
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
1 00 10 00	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:40:08	80.266%	-0.109	м 184.200	м 181.800	0.000	тм 42100.000	тм 14280.000	тм 14240.000	6.436	<u>⊤ 0.000</u>
2 22:41:13	╡	-0.120	м 187.900	м 186.000	0.000	тм 42620.000	тм 14560.000	тм 14530.000	6.599	<u>T 0.000</u>
3 22:42:18	_	-0.104	м 184.900	м 188.700	0.000	тм 42130.000	тм 14320.000	тм 14290.000	6.443	<u>т 0.000</u>
X	80.649%	-0.111	м 185.700	м 185.500	0.000	тм 42280.000	тм 14390.000	тм 14350.000	6.493	<u>т 0.000</u>
σ	0.596%	0.008	<u>м 1.964</u>	м 3.478	0.000	тм 294.000	<u>тм 150.900</u>	тм 155.500	0.092	<u>т 0.000</u>
%RSD	0.739	7.270	<u>м 1.058</u>	м 1.875	0.000	<u>тм 0.695</u>	<u>тм 1.049</u>	<u>тм 1.083</u>	1.419	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:40:08	тм 9425.000	м 93040.000	тм 104200.000	81.283%	-0.198	-0.576	42.490	41.410	347.100	0.506
2 22:41:13	тм 9680.000	м 96960.000	тм 108000.000	79.574%	-0.223	-0.243	44.530	45.060	362.300	0.531
3 22:42:18	<u>тм 9547.000</u>	м 95370.000	тм 105800.000	80.145%	-0.226	0.001	43.650	44.140	369.000	0.527
X	<u>тм 9551.000</u>	м 95120.000	тм 106000.000	80.334%	-0.216	-0.273	43.560	43.540	359.400	0.521
σ	<u>тм 127.100</u>	м 1968.000	тм 1939.000	0.870%	0.016	0.290	1.022	1.896	11.230	0.014
%RSD	<u>тм 1.331</u>	м 2.069	<u>тм 1.830</u>	1.083	7.265	106.100	2.347	4.354	3.124	2.634
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:40:08	-26.160	120.600	-0.563	-0.777	1.505	2.089	2.110	8.865	10.960	10.140
2 22:41:13	-26.330	121.300	-0.581	-0.808	1.419	2.213	2.035	9.116	10.920	10.220
3 22:42:18	-26.500	118.000	-0.564	-0.799	1.207	2.175	2.057	9.194	11.050	9.981
X	-26.330	120.000	-0.569	-0.795	1.377	2.159	2.067	9.058	10.980	10.110
σ	0.172	1.738	0.010	0.016	0.153	0.064	0.039	0.172	0.064	0.121
%RSD	0.653	1.448	1.788	2.064	11.140	2.960	1.880	1.893	0.580	1.196
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:40:08	0.284	24.290	4.116	0.000	0.000	4.340	тм 940.300	84.838%	5.181	5.275
2 22:41:13	0.178	28.250	4.154	0.000	0.000	4.128	тм 964.300	83.419%	5.276	5.537
3 22:42:18	0.150	30.300	3.704	0.000	0.000	4.304	тм 953.100	83.560%	5.110	5.280
X	0.204	27.610	3.991	0.000	0.000	4.257	тм 952.600	83.939%	5.189	5.364
σ	0.071	3.053	0.250	0.000	0.000	0.114	тм 12.020	0.782%	0.083	0.150
%RSD	34.570	11.060	6.257	0.000	0.000	2.675	тм 1.262	0.932	1.602	2.794
Run Time		103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:40:08	5.351	77.500%	-4.785	0.311	0.520	0.101	0.343	-0.324	-0.211	81.123%
2 22:41:13	5.489	76.193%	-4.465	0.306	0.497	0.071	0.342	-0.291	-0.204	79.802%
3 22:42:18	5.377	76.621%	-4.453	0.298	0.494	0.037	0.346	-0.298	-0.199	79.802%
X	5.406	76.772%	-4.568	0.305	0.504	0.070	0.344	-0.305	-0.204	80.242%
σ	0.074	0.666%	0.188	0.007	0.014	0.032	0.002	0.017	0.006	0.763%
%RSD	1.360	0.868	4.124	2.266	2.776	45.910	0.598	5.709	2.931	0.950
Run Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
•	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:40:08	-0.211	0.882	0.930	65.720	84.384%	85.287%	0.035	0.272	0.044	0.038
2 22:41:13	-0.195	0.948	0.910	67.630	83.664%	83.743%	0.037	0.274	0.044	0.046
3 22:42:18	=	0.910	0.888	66.690	84.055%	85.279%	0.038	0.270	0.052	0.047
Х	-0.205	0.914	0.909	66.680	84.034%	84.769%	0.037	0.272	0.047	0.043
σ	0.009	0.033	0.021	0.953	0.361%	0.889%	0.002	0.002	0.004	0.005
%RSD	4.246	3.628	2.359	1.430	0.429	1.049	4.888	0.754	9.486	11.240
Run Time		209Bi	220Bkg	238U	0.127	1.017	1.000	5.754	7. 100	2 10
	ppb	ppb	ppb	ppb						
1 22:40:08		81.008%	0.000	0.000						
2 22:41:13	╡	80.333%	0.000	0.000						
3 22:42:18	≓	80.926%	0.000	0.000						
X	0.101	80.756%	0.000	0.000						
σ	0.002	0.368%	0.000	0.000						
%RSD	1.758	0.30676	0.000	0.000						
	1.750	0.400	0.000	5.000						

ccv 5/7/2011 22:43:22

User Pre-dilution: 1.00										0.701
Run Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:44:27	85.750%	51.960	53.760	56.490	0.000	472.900	456.400	458.600	448.700	<u>т 0.000</u>
2 22:45:32	81.760%	49.300	54.500	51.940	0.000	441.900	432.300	436.200	419.400	<u>т 0.000</u>
3 22:46:37	86.977%	51.510	53.180	53.930	0.000	441.400	441.200	444.100	441.400	<u>т 0.000</u>
X	84.829%	50.920	53.810	54.120	0.000	452.100	443.300	446.300	436.500	<u>т 0.000</u>
σ	2.728%	1.420	0.664	2.280	0.000	18.080	12.200	11.360	15.270	<u>т 0.000</u>
%RSD	3.216	2.789	1.234	4.213	0.000	4.000	2.751	2.545	3.497	<u>т 0.000</u>
Run Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:44:27	452.200	622.200	590.100	80.537%	50.620	49.330	49.700	48.140	328.800	49.030
2 22:45:32	430.200	543.400	515.000	79.048%	46.850	46.260	46.510	47.220	304.800	45.920
3 22:46:37	444.500	501.900	480.500	83.509%	48.520	47.460	48.140	45.180	325.400	47.730
х	442.300	555.900	528.500	81.032%	48.660	47.680	48.110	46.850	319.700	47.560
σ	11.170	61.130	56.030	2.271%	1.892	1.548	1.594	1.517	12.990	1.563
%RSD	2.525	11.000	10.600	2.803	3.888	3.247	3.312	3.239	4.065	3.287
Run Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
	ppb	ppb	dqq	ppb	ppb	dqq	ppb	ppb	ppb	ppb
1 22:44:27	430.600	453.500	49.350	49.230	49.850	48.420	48.490	49.670	49.120	50.150
2 22:45:32	403.400	425.600	45.730	46.330	47.950	44.570	45.140	46.570	46.390	46.370
3 22:46:37	423.400	450.000	47.700	48.640	50.420	47.200	47.190	49.050	49.570	50.230
X	419.100	443.000	47.590	48.070	49.410	46.730	46.940	48.430	48.360	48.920
σ	14.110	15.190	1.816	1.528	1.292	1.971	1.688	1.645	1.722	2.202
%RSD	3.368	3.429	3.815	3.180	2.615	4.219	3.595	3.396	3.561	4.502
Run Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
Kun mine	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:44:27	50.280	64.410	50.610	0.000	0.000	51.210	50.740	84.304%	49.650	49.260
2 22:45:32	47.070	58.340	47.040	0.000	0.000	47.380	47.300	81.996%	46.610	46.990
3 22:46:37	49.660	61.490	49.720	0.000	0.000	49.660	48.850	85.945%	48.490	48.830
X	49.010	61.410	49.120	0.000	0.000	49.420	48.960	84.081%	48.250	48.360
	1.707	3.033	1.861	0.000	0.000		1.722	1.984%	1.536	1.207
σ %RSD						1.927				
Run Time	3.483 98Mo	4.938 103Rh	3.788 106Cd	0.000	0.000 108Mo O	3.898 108Cd	3.516 109Ag	2.359 111Cd	3.183 114Cd	2.495 115In
Ruii Iiiile	ppb	ppb	ppb	107Ag ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:44:27	49.840	84.002%	47.790	48.180	0.607	50.600	48.040	49.230	48.960	84.254%
2 22:45:32	46.850	81.151%	46.170	45.840	0.295	44.600	45.530	46.430	46.410	81.091%
			48.900	47.870	0.243	48.360	47.390			86.828%
	48.690 48.460	85.346% 83.500%	47.620	47.300	0.430	47.850	46.990	48.340 48.000	48.400 47.920	84.057%
X										
σ	1.509	2.142%	1.374	1.272	0.160	3.031	1.298	1.433	1.342	2.873%
%RSD Time	3.113 118Sn	2.566 121Sb	2.886 123Sb	2.690 137Ba	37.300 159Tb	6.335 165Ho	2.763 203TI	2.986 205TI	2.800 206Pb	3.418 207Pb
Kull Illile	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1 22:44:27	49.210	49.210	48.880	49.280	86.419%	86.491%	50.000	49.940	50.350	50.250
2 22:45:32	46.560	46.720	46.650	47.250	83.630%	83.879%	47.410	46.790	47.080	46.960
3 22:46:37	48.340	48.630	48.580	48.230	88.273%	88.556%	49.400	48.950	49.030	49.260
						86.309%				
X	48.040	48.190	48.030	48.220	86.107%		48.940	48.560	48.820	48.820
σ	1.349	1.301	1.209	1.068	2.337%	2.344%	1.355	1.611	1.647	1.685
%RSD	2.809	2.701	2.518	2.215	2.715	2.716	2.769	3.318	3.374	3.451
Run Time	208Pb	209Bi	220Bkg	238U						
1 22:44:27	ppb ppb	ppb	ppb D	ppb						
	50.050	87.487%	0.000	0.000						
2 22:45:32	46.890	85.457%	0.000	0.000						
3 22:46:37	49.110	89.092%	0.000	0.000						
X	48.680	87.345%	0.000	0.000						
σ	1.622	1.822%	0.000	0.000						
%RSD	3.332	2.086	0.000	0.000						

ccb 5/7/2011 22:47:40

	-dilution: 1.00						2011		0.111		0701
Run	Time	6Li	9Be	10B	11B	13C	23Na	25Mg	26Mg	27AI	37CI
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:48:45	84.018%	0.162	3.460	3.950	0.000	15.500	4.285	4.456	4.840	<u>т 0.000</u>
2	22:49:50	89.346%	-0.084	2.120	2.816	0.000	17.660	2.382	2.926	2.530	<u>т 0.000</u>
3	22:50:56	88.994%	-0.133	1.857	2.246	0.000	13.390	1.015	1.678	1.946	<u>T 0.000</u>
X		87.453%	-0.018	2.479	3.004	0.000	15.520	2.561	3.020	3.105	<u>т 0.000</u>
σ		2.980%	0.158	0.860	0.867	0.000	2.135	1.642	1.391	1.530	<u>т 0.000</u>
%RSD		3.407	862.100	34.670	28.880	0.000	13.760	64.130	46.060	49.280	<u>т 0.000</u>
Run	Time	39K	43Ca	44Ca	45Sc	47Ti	51V	52Cr	53Cr	53CI O	55Mn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:48:45	2.248	-11.690	-6.625	78.080%	-0.129	0.415	0.471	0.760	288.100	0.237
2	22:49:50	-5.187	-10.460	-7.566	85.420%	-0.481	-0.140	0.110	-1.002	269.000	0.029
3	22:50:56	-0.842	-20.330	-13.140	83.035%	-0.527	-0.355	0.072	-1.086	280.000	-0.067
X		-1.260	-14.160	-9.111	82.178%	-0.379	-0.026	0.218	-0.443	279.100	0.066
σ		3.735	5.382	3.521	3.744%	0.218	0.397	0.220	1.042	9.587	0.156
%RSD		296.400	38.010	38.650	4.556	57.530	1500.000	101.200	235.500	3.436	235.200
Run	Time	56Fe	57Fe	59Co	60Ni	62Ni	63Cu	65Cu	66Zn	67Zn	68Zn
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:48:45	5.325	4.726	0.195	0.107	1.492	0.087	-0.014	-0.170	-0.141	-0.287
2	22:49:50	1.139	1.945	-0.014	-0.162	1.222	-0.155	-0.276	-0.499	-0.359	-0.541
3	22:50:56	1.685	0.610	-0.087	-0.223	1.421	-0.216	-0.337	-0.539	-0.394	-0.625
Х		2.716	2.427	0.031	-0.093	1.378	-0.095	-0.209	-0.403	-0.298	-0.485
σ		2.276	2.100	0.147	0.175	0.140	0.160	0.172	0.202	0.138	0.176
%RSD		83.770	86.510	468.400	189.000	10.160	169.000	82.140	50.240	46.120	36.310
Run	Time	75As	77Se	78Se	79Br	81Br	82Se	88Sr	89Y	95Mo	97Mo
		ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:48:45	0.141	9.405	0.320	0.000	0.000	0.080	0.243	81.316%	0.166	0.140
2	22:49:50	-0.124	6.937	-0.292	0.000	0.000	-0.104	-0.011	86.629%	-0.147	-0.136
3	22:50:56	-0.206	7.492	-0.174	0.000	0.000	-0.248	-0.104	86.282%	-0.222	-0.174
X		-0.063	7.945	-0.049	0.000	0.000	-0.090	0.043	84.742%	-0.068	-0.057
σ		0.181	1.295	0.325	0.000	0.000	0.164	0.180	2.973%	0.206	0.171
%RSD		287.900	16.300	668.500	0.000	0.000	181.700	422.200	3.508	303.200	303.300
Run	Time	98Mo	103Rh	106Cd	107Ag	108Mo O	108Cd	109Ag	111Cd	114Cd	115In
Run	111110	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:48:45	0.241	80.371%	0.603	0.469	0.173	0.096	0.500	0.220	0.203	81.483%
2	22:49:50	-0.031	86.957%	-0.341	0.334	0.221	-0.096	0.375	-0.021	-0.016	86.426%
3	22:50:56	-0.114	85.905%	-0.248	0.315	0.215	-0.096	0.351	-0.080	-0.050	85.538%
X	22.00.00	0.032	84.411%	0.005	0.373	0.203	-0.032	0.408	0.040	0.045	84.483%
σ		0.185	3.538%	0.520	0.084	0.026	0.111	0.080	0.159	0.137	2.635%
%RSD		578.400	4.192	10880.000	22.450	13.020	348.200	19.650	401.300	302.500	3.119
Run	Time	118Sn	121Sb	123Sb	137Ba	159Tb	165Ho	203TI	205TI	206Pb	207Pb
IXIII	Time	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1	22:48:45	0.178	0.969	0.965	0.206	81.868%	82.333%	0.270	0.497	0.298	0.295
	22:49:50	-0.058	0.452	0.429	0.200	87.827%	87.577%	0.270	0.477	0.063	0.243
	22:50:56	-0.038	0.452	0.429	-0.115	86.119%	86.095%	0.121	0.344	0.003	-0.000
=	22.30.30	-0.133	0.273	0.542	0.033	85.271%	85.335%				0.121
X								0.167	0.400	0.121	
σ %RSD		0.162	0.352	0.380	0.162	3.069%	2.703%	0.089	0.084	0.156	0.155
	Time o	4135.000	61.590	70.000	487.000	3.599	3.168	53.480	21.150	128.900	128.200
Run	Time	208Pb	209Bi	220Bkg	238U						
1	22:48:45	ppb 0.353	ppb 82 528%	ppb 0 .000	ppb 0.000						
			82.528%								
	22:49:50	0.120	87.901%	0.000	0.000						
3	22:50:56	0.058	87.199%	0.000	0.000						
X		0.177	85.876%	0.000	0.000						
σ		0.156	2.920%	0.000	0.000						
%RSD		88.060	3.401	0.000	0.000						

Autotune report

Sequence name: 1] XSII Xt NO Screen(050310)

Sequence version: 1/3/2011 14:15:43 Acquired at: 5/7/2011 06:32:32

Result : Passed

Stage	Analyte	Result
Define conditions for stage 1	115In	98568.15
Define conditions for stage 2	115In	98248.04
Define conditions for stage 2	156Ce O/140Ce	0.0091
	7Li	22110.19
	115In	149119.74
Define conditions for stage 3	238U	207746.92
	156Ce O/140Ce	0.0090
	138Ba++/138Ba	0.0245
	7Li	18792.74
	115In	117254.66
Define conditions for stage 4	238U	165435.04
	156Ce O/140Ce	0.0092
	138Ba++/138Ba	0.0240

Performance Report

Sample details

Acquired at : 5/7/2011 10:06:58

Report name: 1] XSII Xt NO Screen(020310) [11/2/2010 10:27:26]

Mass Calibration verification

Acquisition parameters

Sweeps: 20 Dwell: 1.0 mSecs Point spacing: 0.01 amu

Peak width measured at 10% of the peak maximum

Analyte		Limits		Results				
Allalyte	Max. width	Min. width	Max. error	Peak width	Peak error			
7Li	0.85	0.65	0.10	0.78	-0.04			
24Mg	0.85	0.65	0.10	0.79	-0.01			
25Mg	0.85	0.65	0.10	0.78	-0.01			
26Mg	0.85	0.65	0.10	0.77	-0.00			
115In	0.85	0.65	0.10	0.81	-0.00			
206Pb	0.85	0.65	0.10	0.80	0.01			
207Pb	0.85	0.65	0.10	0.79	0.01			
208Pb	0.85	0.65	0.10	0.79	0.01			
238U	0.85	0.65	0.10	0.77	0.04			

Sample details

Acquired at : 5/7/2011 10:06:58

Report name : 1] XSII Xt NO Screen(020310) [11/2/2010 10:27:26]

Tune conditions

une conditions								
Major			Minor					
Extraction	-164.7		Lens 3	-195.3				
Lens 1	-1231		Forward power	1302				
Lens 2	-80.0		Horizontal	53				
Focus	19.4		Vertical	300				
D1	-30.6		DA	-60.4				
D2	-140		Cool	13.0				
Pole Bias	0.2		Auxiliary	0.80				
Hexapole Bias	-4.0		Sampling Depth	100				
Nebuliser	0.89							

Global					
Standard resolution	160				
High resolution	125				
Analogue Detector	1890				
PC Detector	3754				

Add. Gases

Sensitivity and stability results

Acquisition parameters

Sweeps: 130

Run	Run Time 5Bkg		7Li	24Mg	25Mg	26Mg	56Ar O	59Co	138Ba++	101Bkg
Dw	ell (mSecs)	100.0	10.0	10.0	10.0	10.0	10.0	10.0	30.0	100.0
Limits	%RSD	-	5.0%	5.0%	5.0%	5.0%	-	-	-	-
LIIIIIIS	Countrate	-	>15000	>1000	>1000	>1000	-	-	-	-
1	10:07:31	0.000	21060.521	36386.520	5021.386	5971.961	519484.87	81020.203	2744.260	0.077
2	10:08:45	0.000	21354.282	36724.799	5095.274	6072.027	522717.09	81949.243	2754.263	0.308
3	10:09:59	0.000	21200.075	36157.918	4875.153	5819.554	523199.86	81000.800	2742.978	0.077
4	10:11:13	0.000	21442.180	36911.707	4968.280	5946.560	524745.22	82061.014	2829.671	0.154
5	10:12:28	0.000	21181.571	36172.591	5018.308	5986.586	524857.59	81194.051	2716.816	0.000
X		0.000	21247.726	36470.707	4995.680	5959.338	523000.92	81445.062	2757.598	0.123
σ		0.00	150.71	336.47	81.19	91.25	2177.88	518.28	42.60	0.12
%RSD		0.000	0.709	0.923	1.625	1.531	0.416	0.636	1.545	94.786

Run	Time	115In	138Ba	140Ce	156Ce O	204Pb	206Pb	207Pb	208Pb	220Bkg
Dw	Dwell (mSecs)		10.0	10.0	30.0	10.0	10.0	10.0	10.0	100.0
Limits	%RSD	5.0%	-	-	-	-	5.0%	5.0%	5.0%	-
LIIIIII	Countrate	>100000	-	-	-	-	>100	>100	>100	<1
1	10:07:31	185087.48	136291.74	194058.59	1641.687	3501.443	64659.129	54183.299	134452.34	0.000
2	10:08:45	187119.99	137509.10	196453.05	1646.303	3548.385	65225.461	55246.592	137462.24	0.000
3	10:09:59	184149.48	135368.87	193089.82	1612.451	3401.405	64656.805	54081.928	134582.71	0.000
4	10:11:13	187438.77	138191.64	197871.00	1674.770	3548.385	65337.802	55196.288	136950.76	0.000
5	10:12:28	184124.37	135687.42	194555.97	1633.224	3674.589	64574.686	54529.978	134717.77	0.077
X		185584.02	136609.75	195205.69	1641.687	3534.841	64890.777	54647.617	135633.17	0.015
σ		1599.56	1204.45	1928.38	22.60	98.51	360.61	549.83	1450.63	0.03
%RSD		0.862	0.882	0.988	1.376	2.787	0.556	1.006	1.070	223.607

Run	Time	238U
Dw	ell (mSecs)	10.0
Limits	%RSD	5.0%
LIIIIIIS	Countrate	>150000
1	10:07:31	251107.71
2	10:08:45	254005.01
3	10:09:59	247610.65
4	10:11:13	252084.97
5	10:12:28	248985.91
X		250758.85
σ		2523.51
%RSD		1.006

Ratio results

Run	Time	138Ba++/138Ba	115In/220Bkg	156Ce O/140Ce
Ra	itio limits	< 0.0450	>100000.0000	< 0.0200
1	10:07:31	0.020	INF	0.008
2	2 10:08:45		INF	0.008
		0.020	INF	0.008

3	10:09:59			
4	10:11:13	0.020	INF	0.008
5	10:12:28	0.020	2393616.8	0.008
Х		0.0202	2393616.8	0.0084
σ		0.00	0.00	0.00
%RSD		0.9399	0.0000	0.5951

Result: The performance report passed.

Aqueous Digestion Log MP Batch ID: <u>MP 580 73</u>

ICP-MS

ICP-MS DIGESTION METHOD: EPA 200.8 Heating Method (circle one) Digestion Block

	BOIL BIOCK
Method Blank ID:	MC 580 73 Prep Date: 5/7/11
Lab Control/Spike Blank ID:	Start Time: 1:00 Start Temp: 924542 Thermometer ID #: 140
Lab Control Source:	
	End Time: 13:00 End Temp: 937293
DUP 1 Sample ID:	Acceptable temperature Ranges:
DUP 2 Sample ID:	EPA 200.8 90 to 95 deg. C
MS 1 Sample ID: J7744 00 ~	
MS 2 Sample ID: カカリ (ロロイ)	
Note: Serial dilution shown for OC tra	oking only. Not a consent discount

Note: Serial dilution s	shown for	QC tracking	ig only. No	t a separate dige	state.			
		Initial	Final	Acids Use		Spikes Used	1	
_	Pres	Sample	Volume	Amount and	Added -		Added -	
Sample ID	Y/N	Volume	in ML	Name	Y or N	Amount and Name	YorN	Comments
MP 5807 3-MB	N	50	50	1.0 ml of 1:1 HNO3	Ч			
	,	1				0.25 ml Se (20 ppm),		
MP Cuna LO 1	\sim		1		7	0.25 ml CAL-1 6020,	4	
MP58073-LC_1	~~			0.50 ml 1:1 HCL	1	0.10 ml min (200 ppm)		
			1			0.25 ml Se (20 ppm),	'	
MP 580 73 -S_1	4		\			0.25 ml CAL-1 6020,	4	
500 #3 O		 				0.10 ml min (200 ppm)		
			}			0.25 ml Se (20 ppm), 0.25 ml CAL-1 6020,		
MP 58073-S 2	7		1			0.10 ml min (200 ppm)	4	
MP -SD		1				0.10 mm (200 ppm)		
1775047-1	7	1						
2 -2		 						
3 1974 100 -1	-1-	 	 					
4 1 -2		 -						
5 (4) 2 - 2 - 1 6			<u> </u>	a topical and a section.	,, .	the state of the same of the s		
<u> </u>								
7 775038-1								
8774600-1	<u> </u>	4	<u> </u>					
9			-					
10								
11	-							
12								
13								
14		-						
15								
16							-	•
17								5/2.
18								
19							 	111
20								
. /								

Analyst:

QC Reviewer:

Form AA018F-01 Rev. Date:01/15/10

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chromium, Hexavalent	GP58488/GN50164	0.0055	0.0	mg/l	0.0501	0.0518	103.5	90-110%

Associated Samples: Batch GP58488: JA74100-1, JA74100-1F, JA74100-2 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JA74100
Account: HWINJM - Honeywell International Inc.
Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Chromium, Hexavalent	GP58488/GN50164	JA74098-1	mg/l	0.0	0.0	0.0	0-20%

Associated Samples: Batch GP58488: JA74100-1, JA74100-1F, JA74100-2 (*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JA74100

Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chromium, Hexavalent	GP58488/GN50164	JA74098-1	mg/l	0.0	0.0501	0.0	0.0N(a)	85-115%

Associated Samples:

ASSOCIATED SAMPLES (APRIL 1997) AND ASSOCIATED SAMPLES (*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

- (a) Spike recovery indicates possible matrix interference.

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: 611042602.TXT Date Analyzed: 04/26/11 Methods: SW846 7199 Run ID: GN50164

Analyst: AE

Parameters: Chromium, Hexavalent

Time	Sample Description	Dilution PS Factor Recov	Comments
09:33	GN50164-STD1	1	STDA
09:41	GN50164-STD2	1	STDB
09:49	GN50164-STD3	1	STDC
09:57	GN50164-STD4	1	STDD
10:05	GN50164-STD5	1	STDE
15:33	GN50164-CCV1	1	
15:40	GN50164-CCB1	1	
15:48	GP58488-MB1	1	
15:56	GP58488-MB1	1	
16:22	GP58488-B1	1	
16:29	GP58488-B1	1	
16:37	GP58488-S1	1	
16:45	GP58488-S1	1	
16:53	GP58488-D1	1	
17:01	GP58488-D1	1	
17:09	JA74098-1	1	(sample used for QC only; not part of login JA74100)
17:17	JA74098-1	1	(sample used for QC only; not part of login JA74100)
17:25	GP58488-S2	1	
17:32	GP58488-S2	1	
17:40	GP58488-D2	1	
17:48	GP58488-D2	1	
17:56	JA74098-1F	1	(sample used for QC only; not part of login JA74100)
18:04	JA74098-1F	1	(sample used for QC only; not part of login JA74100)
18:12	GP58488-S1	1	
18:20	GP58488-S1	1	confirmation
18:28	GP58488-S2	1	confirmation
18:36	GP58488-S2	1	
18:44	GN50164-CCV2	1	
18:52	GN50164-CCB2	1	
19:00	ZZZZZZ	1	
19:08	ZZZZZZ	1	
19:16	ZZZZZZ	1	
19:23	ZZZZZZ	1	

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: 611042602.TXT Date Analyzed: 04/26/11 Methods: SW846 7199 Run ID: GN50164

Analyst: AE

Parameters: Chromium, Hexavalent

Time		Dilution PS Factor Recov	Comments	
19:31	ZZZZZZ	1		
19:39	ZZZZZZ	1		
19:47	ZZZZZZ	1		
19:55	ZZZZZZ	1		
20:03	ZZZZZZ	1		
20:11	ZZZZZZ	1		
20:19	ZZZZZZ	1		
20:27	ZZZZZZ	1		
20:35	ZZZZZZ	1		
20:43	ZZZZZZ	1		
20:50	ZZZZZZ	1		
20:58	ZZZZZZ	1		
21:06	JA74100-1	1		
21:14	JA74100-1	1		
21:22	JA74100-1F	1		
21:30	JA74100-1F	1		
21:38	GN50164-CCV3	1		
21:46	GN50164-CCB3	1		
21:54	JA74100-2	1		
22:02	JA74100-2	1		
22:10	GN50164-CCV4	1		
22:17	GN50164-CCB4	1		

Refer to raw data for calibration curve and standards.

182 of 277
ACCUTESTS
PA74100
LABORATORIES JA74100

Instrument QC Summary Inorganics Analyses

Login Number: JA74100 Account: HWINJM - Honeywell International Inc. Project: HLANJPR: SA-5 Site 117, Jersey City, NJ

File ID: 611042602.TXT Date Analyzed: 04/26/11 Methods: SW846 7199
Run ID: GN50164 Units: mg/l

Sample Number	Parameter	Result	RL	IDL/MDL	True Value	% Recov.	QC Limits
GN50164-CCV1	Chromium, Hexavalent	0.25	0.0050	0.0032	. 25	100.0	90-110
GN50164-CCB1	Chromium, Hexavalent	0.0032 U	0.0050	0.0032			
GN50164-CCV2	Chromium, Hexavalent	0.26	0.0050	0.0032	.25	104.0	90-110
GN50164-CCB2	Chromium, Hexavalent	0.0032 U	0.0050	0.0032			
GN50164-CCV3	Chromium, Hexavalent	0.25	0.0050	0.0032	.25	100.0	90-110
GN50164-CCB3	Chromium, Hexavalent	0.0032 U	0.0050	0.0032			
GN50164-CCV4	Chromium, Hexavalent	0.24	0.0050	0.0032	.25	96.0	90-110
GN50164-CCB4	Chromium, Hexavalent	0.0096 *(a) 0.0050	0.0032			

^(!) Outside of QC limits

⁽a) All reported results are < DL

Raw Data

Page 1 of 3 Printed: 4/27/2011 9:33:49 AM

NJCHMIC2_local		
Accutest\2011\4pril		
accutest	Created:	4/26/2011 4:21:35 PM by chemistry
35		(Modified, not saved)

Name	ne	Type	Pos. Program	Method	Status	Inj. Date/Time		Dil. Factor
	BLANKCONF	Unknown	1 hexachrome_ASDV	hexachrome	Finished	4/26/2011 9:26:16 AM	1.0000	1.0000
	STDA	Standard	2 hexachrome_ASDV	hexachrome	Finished	4/26/2011 9:33:42 AM	1.0000	1.0000
	STDB	Standard	3 hexachrome_ASDV	hexachrome	Finished	4/26/2011 9:41:37 AM	1.0000	1.0000
	STDC	Standard	4 hexachrome_ASDV	hexachrome	Finished	4/26/2011 9:49:31 AM	1.0000	1.0000
	STDD	Standard	5 hexachrome_ASDV	hexachrome	Finished	4/26/2011 9:57:25 AM	1.0000	1.0000
	STDE	Standard	6 hexachrome_ASDV	hexachrome	Finished	4/26/2011 10:05:19 AM	1,0000	1.0000
	CCV	Unknown	7 hexachrome_ASDV	hexachrome	Finished	4/26/2011 3:33:01 PM	1.0000	1.0000
	CCB	Unknown	8 hexachrome_ASDV	hexachrome	Finished	4/26/2011 3:40:31 PM	1.0000	1.0000
	GP58488-MB1	Unknown	9 hexachrome_ASDV	hexachrome	Finished	4/26/2011 3:48:26 PM	1.0000	1.0000
	GP58488-MB1	Unknown	10 hexachrome_ASDV	hexachrome	Finished	4/26/2011 3:56:20 PM	1.0000	1.0000
	GP58488-B1	Unknown	11 hexachrome_ASDV	hexachrome	Finished	4/26/2011 4:22:14 PM	1.0000	1.0000
	GP58488-B1	Unknown	12 hexachrome_ASDV	hexachrome	Finished	4/26/2011 4:29:47 PM	1.0000	1.0000
	GP58488-S1	Unknown	13 hexachrome_ASDV	hexachrome	Finished	4/26/2011 4:37:42 PM	1.0000	1.0000
	GP58488-S1	Unknown	14 hexachrome_ASDV	hexachrome	Finished	4/26/2011 4:45:36 PM	1.0000	1.0000
	GP58488-D1	Unknown	15 hexachrome_ASDV	hexachrome	Finished	4/26/2011 4:53:31 PM	1.0000	1.0000
	GP58488-D1	Unknown	16 hexachrome_ASDV	hexachrome	Finished	4/26/2011 5:01:37 PM	1.0000	1.0000
	JA74098-1	Unknown	17 hexachrome_ASDV	hexachrome	Finished	4/26/2011 5:09:14 PM	1.0000	1.0000
	JA74098-1	Unknown	18 hexachrome_ASDV	hexachrome	Finished	4/26/2011 5:17:09 PM	1.0000	1.0000
	GP58488-S2	Unknown	19 hexachrome_ASDV	hexachrome	Finished	4/26/2011 5:25:04 PM	1.0000	1.0000
	GP58488-S2	Unknown	20 hexachrome_ASDV	hexachrome	Finished	4/26/2011 5:32:58 PM	1.0000	1.0000
	GP58488-D2	Unknown	21 hexachrome_ASDV	hexachrome	Finished	4/26/2011 5:40:53 PM	1.0000	1.0000
	GP58488-D2	Unknown	22 hexachrome_ASDV	hexachrome	Finished	4/26/2011 5:48:47 PM	1.0000	1.0000
	JA74098-1F	Unknown	23 hexachrome_ASDV	hexachrome	Finished	4/26/2011 5:56:41 PM	1.0000	1.0000
	JA74098-1F	Unknown	24 hexachrome_ASDV	hexachrome	Finished	4/26/2011 6:04:36 PM	1.0000	1.0000
	GP58488-S1	Unknown	3 hexachrome_ASDV	hexachrome	Finished	4/26/2011 6:12:31 PM	1.0000	1.0000
	GP58488-S1	Unknown	4 hexachrome_ASDV	hexachrome	Finished	4/26/2011 6:20:33 PM	1.0000	1.0000
	GP58488-S2	Unknown	5 hexachrome_ASDV	hexachrome	Finished	4/26/2011 6:28:28 PM	1.0000	1.0000
				l	1			

Chromeleon @ Dionex Corporation, Version 6.80 SR10 Build 2818 (166959)

accutest 56

Timebase: #Samples:

Location:

Title: Datasource:

611042602 chemistry

Sequence:

Operator:

Sequence: Operator:	611042602 chemistry	Page 2 of 3 Printed: 4/27/2011 9:33:50 AM
Title:		
Datasouroe:	NJCHMIC2_local	
Location:	Accutest/2011/April	
Timebase:	accutest	Created: 4/26/2011 4:21:35 PM by chemistry
#Samples:	56	(Modified, not saved)

Dil. Factor	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Weight	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Inj. Date/Time	4/26/2011 6:36:22 PM	4/26/2011 6:44:16 PM	4/26/2011 6:52:18 PM	4/26/2011 7:00:13 PM	4/26/2011 7:08:08 PM	4/26/2011 7:16:02 PM	4/26/2011 7:23:57 PM	4/26/2011 7:31:51 PM	4/26/2011 7:39:46 PM	4/26/2011 7:47:40 PM	4/26/2011 7:55:34 PM	4/26/2011 8:03:29 PM	4/26/2011 8:11:24 PM	4/26/2011 8:19:18 PM	4/26/2011 8:27:13 PM	4/26/2011 8:35:07 PM	4/26/2011 8:43:02 PM	4/26/2011 8:50:56 PM	4/26/2011 8:58:50 PM	4/26/2011 9:06:45 PM	4/26/2011 9:14:39 PM	4/26/2011 9:22:34 PM	4/26/2011 9:30:29 PM	4/26/2011 9:38:23 PM	4/26/2011 9:46:18 PM	4/26/2011 9:54:12 PM	4/26/2011 10:02:06 PM
Status	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished	Finished
Method	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome	hexachrome
Pos. Program	6 hexachrome_ASDV	25 hexachrome_ASDV	26 hexachrome_ASDV	27 hexachrome_ASDV	28 hexachrome_ASDV	29 hexachrome_ASDV	30 hexachrome_ASDV	31 hexachrome_ASDV	32 hexachrome_ASDV	33 hexachrome_ASDV	34 hexachrome_ASDV	35 hexachrome_ASDV	36 hexachrome_ASDV	37 hexachrome_ASDV	38 hexachrome_ASDV	39 hexachrome_ASDV	40 hexachrome_ASDV	41 hexachrome_ASDV	42 hexachrome_ASDV	43 hexachrome_ASDV	44 hexachrome_ASDV	45 hexachrome_ASDV	46 hexachrome_ASDV	47 hexachrome_ASDV	48 hexachrome_ASDV	49 hexachrome_ASDV	50 hexachrome_ASDV
Type	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
ame	GP58488-S2	CCV	CCB	JA74098-2	JA74098-2	JA74098-2F	JA74098-2F	JA74098-3	JA74098-3	JA74098-3F	JA74098-3F	JA74099-1	JA74099-1	JA74099-1F	JA74099-1F	JA74099-2	JA74099-2	JA74099-2F	JA74099-2F	JA74100-1	JA74100-1	JA74100-1F	JA74100-1F	SCC CC	CCB	JA74100-2	JA74100-2
No. Name	28	29	30	31	32	33	34	35	36	37	38	33	40	4	42	43	4	45	46	47	48	49	50	51	52	53	54

a	

Page 3 of 3 Printed: 4/27/2011 9:33:50 AM	(Modified, not saved)	
Printed: 4/27/2	4/26/2011 4:21:35 PM by chemistry (Modified, not saved)	Weight Dil. Factor 1.0000 1.0000 1.0000 1.0000
	4/2	
	Created:	Inj. Date/Time 4/26/2011 10:10:01 PM 4/26/2011 10:17:56 PM
		Status Finished Finished
		Method hexachrome hexachrome
		Pos. Program 1 hexachrome_ASDV 2 hexachrome_ASDV
		Type Unknown Unknown
611042602 chemistry	NJCHMIC2_local Accutest\2011\April accutest 56	No. Name 55 CCV 56 CCB
Sequence: Operator:	Title: Datasource: Location: Timebase: #Samples:	

Chromeleon © Dionex Corporation, Version 6.80 SR10 Build 2818 (166959)

ot robby app

70/01/0 .ata ... a Form: GN-206

Date: 4/218/11 370 ::taylsnA

						veagent morner
		. 10.	MOST	26 at		DIL Reagent Information
						סור
						Sd
						50
						.61
						.81
			SO -3		05 =	3F-8POHTATE2M .71
	1		9.0	SS SS	33 1	1-3PUPLAT 2M . 21
	-		€0 °b			16 117 - Alde
ا-الد	JOINLAC		60.p	<u>95</u>	09	JC - GG 1 71
76 -p	POULAC		10.P	<u>59</u> SS	99	13 123 - 2E
<u>d-15</u>	POPLETE		10.P	<u>55</u>	- 0 5	12 1 - 1000/ 12 1
<u> </u>	300 HLUC		<u>୧୯.୭</u> ଜ.ନ	92	<u> </u>	III - hei II
-77-	8P0 ULAT		60.P	<u> </u>	09	101- hel of
<u> </u>	-8POUL AC			<u> </u>	0c	702M-01-461 6
	7 1 1 5		20.P 60.P	55	05 05	3 174-10WIE
6.6 <u>7</u>	-3POULAT			59	<u>05</u>	47-M-
L	- 00 INL 4C		-6 0, p ∂0.P	95	79	P14-111 9
	JH 1010-		€0.P	द्रेंद्र	OG	T-661 8
	-060 NL4C		4.0.p	ŚS	20	5-671 4
	- PPOPL AT	 	9,0,0	55	<u> </u>	anani -hzi e
ر	-3POHLAR		10.0		0C	11-46.15
	1-8POPEAC		<u>C0.P</u>	33	03	01-1611
	1-800110	 	<u>d.05</u>	55	05	84
.500	woodon to	MG e .O	<u>4.04</u>	55	20	88
	1		<u>20 b</u>	55	09	42MOI-KSI and
104C++0	1-3POPFAC		<u>60.P</u>	55	99	SMOI-HEI SM
103100	1-0Dolle	 -	<u> </u>			800
						CCB
						CCB
			05.0	001		CCB
						CCV
						۸٥٥
	 	-				۸٥٥
DIFIC	t 10 blow 7	0 7046 -6	DG-F	001		CCA
. (1)	omments	Spike info	_	(Jui)	(Jui)	Sample ID
	,		nefter Ho	lsni¬ y əmuloV	latini elqma8 emuloV	

pH adj. end time: Method: SW846 7199 Matrix: April 2019 Matrix: April

Hexavalent Chromium PH Adjustment Log

pH Adjust. Date:_____ GN Batch ID:____

A ACCUTEST

ACCUTEST.

GENERAL CHEMISTRY STANDARD PREPARATION LOG

Product: XCE 7199 GN or GP Number: GN 5016V

			-				Final Conc.			
Intermediate	Stock used to	Stock	Stock volume or weight used with	Balance or		Final	of Intermediate Expiration	Expiration		
Standard Description	prepare standard	concentration	units	Autopipet ID (*)	Diluent	Volume	(mg/l)	Date	Analyst	Date
10.0 mg/L Absolute	Absolute 030311	1000 mg/L	2.0 mL	A	Dilution	200 mL	10.0 mg/L	3/3/2014	a 2	11/077/h
1.0 mg/L Absolute	10.0 mg/L Absolute	10.0 mg/L	20.0 mL	А	Water	200 mL	1.0 mg/L	3/3/2014	1	
										_
					Dilution					
5.0 mg/L Ultra	Ultra L00439	1000 mg/L	1.0 mL	A	Water	200 mL	5.0 mg/L	5/31/2017	→	,
	Intermediate or Stock	Intermediate	Intermediate or				Final Conc.			
	used to prepare	or Stock	Stock volume	Balance or		Final	of Standard	Expiration		
Standard Description	standard	concentration	lm ui pesn	Autopipet ID (*)	Diluent	Volume	(mg/l)	Date	Analyst	Date
0.005 mg/L	1.0 mg/L Absolute	1.0 mg/L	0.50 mL	A	Dilution	100 mL	0.005 mg/L	11(ma/h	905	4/2/2/11
0.050 mg/L	1.0 mg/L Absolute	1.0 mg/L	5.0 mL	A	Water	100 mL	0.05 mg/L			, ,
0.100 mg/L	10 mg/L Absolute	10.0 mg/L	1.0 mL	V		100 mL	0.1 mg/L		-	
0.500 mg/L	10 mg/L Absolute	10.0 mg/L	5.0 mL	A		100 mL	0.5 mg/L	-	→	ナ
								, ,		
0.250 mg/L - CCV	10 mg/L	10.0mg/L	2.50mL	A	Dilution	100mL	0.250 mg/L	anz h	98	را(اهلاراب را
					Water					
* If Class A glass pipe	* If Class A glass pipets are used, enter an A. For balances or autopipets, then enter the appropriate Accutest ID number.	A. For balances	or autopipets, then	nenter the appropris	ate Accutes	t ID numbe	¥.			

All Standards prepared with dilution water pHed between 9 and 9.5 - No further pH agjustment necessary

Form: GN121-01 Rev. Date: 1/13/09

GNSOILLY

Reagent Information Log - XCR - 7199 AQ

Reagent	Reagent # or Manufacturer/Lot
Calibration Source: Hexavalent Chromium, 1000 mg/L Stock	3/3/14 absolute Grade lot 630311
Calibration Checks: Hexavalent Chromium, 1000 mg/L Stock	5/31/17 Ultra lot L00439
Spiking Solution Source	3/3/14 absolute Grade lot 03031
Post-column reagent	5/1/11 GNEY- 28/210-1CXCL
Eluent	10/15/11 GNEY-28023-1CXCR
Buffer Solution	9/12/11 GNE3-27698-100
Dilution water	9/12/11/ GNE3- 27839- 1CXCR

All standards and stocks were made as described in the SOP for this method (circle one): Y or N If no (N), see attached page for standards prep.

Form: GN-0871-78 Rev. Date: 09/19/07

STDA 2	Injection Volume: Channel:	25.0 UV_VIS_1
standard	Wavelength:	n.a.
hexachrome_ASDV	Bandwidth:	n.a.
hexachrome	Dilution Factor:	1.0000
4/26/2011 9:33	Sample Weight:	1.0000 1.0000
	2 standard hexachrome_ASDV hexachrome	2 Channel: standard Wavelength: hexachrome_ASDV Bandwidth: hexachrome Dilution Factor: 4/26/2011 9:33 Sample Weight:

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
Total:			0.000	0.000	0.00	0.000	000

3 STDB			
Sample Name: Vial Number:	STDB	Injection Volume: Channel:	25.0 UV VIS 1
Sample Type:	ડ standard	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 9:41	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	3.32	Cr-6	0.000	0.000	100.00	0.0051	BMB
Total:			0.000	0.000	100.00	0.005	

4 STDC			
Sample Name: Vial Number:	STDC 4	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 9:49	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	3.32	Cr-6	0.003	0.000	100.00	0.0510	ВМВ
Total:			0.003	0.000	100.00	0.051	

5 STDD			
Sample Name: Vial Number:	STDD 5	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 9:57	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	3.32	Cr-6	0.006	0.001	100.00	0.0988	BMB
Total:			0.006	0.001	100.00	0.099	

6 STDE			
Sample Name: Vial Number:	STDE 6	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 10:05	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU* <u>min</u>	Rel.Area %	Amount ppm	Type
1	2.66	n.a.	0.000	0.000	0.23	n.a.	вм
2	2.75	n.a.	0.001	0.000	0.63	n.a.	MB
3	3.32	Cr-6	0.032	0.005	99.06	0.5001	BMB
4	4.10	n.a.	0.000	0.000	0.08	n.a.	BMB
Total:			0.034	0.005	100.00	0.500	

6 STDE			
Sample Name: Vial Number:	STDE 6	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	standard	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 10:05	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Cal.Type	Points	Coeff.Det. %	Offset	Slope	Curve
1	2.66	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
2	2.75	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
3	3.32	Cr-6	LOff	4	99.9984	0.0000	0.0094	0.0000
4	4.10	n.a.	n.a.	n.a.	n. <u>a.</u>	n.a.	n.a.	n.a.
Average:					99.9984	0.0000	0.0094	0.0000

hexachrome/Calibration(Batch)

7 CCV			
Sample Name: Vial Number:	CCV 7	Injection Volume: Channel:	25.0 UV VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 15:33	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.67	n.a.	0.000	0.000	0.51	n.a.	вм
2	2.71	n.a.	0.000	0.000	0.44	n.a.	MB
3	3.09	n.a.	0.000	0.000	0.18	n.a.	BMB
4	3.32	Cr-6	0.016	0.002	98.12	0.2461	BMB
5	3.90	n.a.	0.000	0.000	0.31	n.a.	BMB
6	4.01	n.a.	0.000	0.000	0.28	n.a.	BMB
7	4.28	n.a	0.000	0.000	0.17	n.a.	BMB
Total:			0.017	0.002	100.00	0.246	

Sample Name:	CCB	Injection Volume:	25.0
Vial Number:	8	Channel:	UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 15:40	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.91	n.a.	0.000	0.000	23.21	n.a.	BMB
2	3.18	n.a.	0.000	0.000	5.62	n.a.	BMB
3	3.31	Cr-6	0.000	0.000	14.49	0.0015	BMB
4	3.68	n.a.	0.000	0.000	15.28	n.a.	BMB
5	3.88	n.a.	0.000	0.000	6.48	n.a.	BMB
6	4.16	n.a.	0.000	0.000	9.18	n.a.	BMB
7	4.27	n.a.	0.000	0.000	5.79	n.a.	BMB
8	4.57	n.a.	0.000	0.000	14.19	n.a.	BMB
9	4.72	n.a	0.000	0.000	5.77	n.a.	вмв
Total:			0.001	0.000	100.00	0.002	

9 GP58488-MB1

Sample Name:	GP58488-MB1	Injection Volume:	25.0
Vial Number:	9	Channel:	UV_VIS_
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 15:48	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.92	n.a.	0.000	0.000	8.04	n.a.	вмв
2	3.06	n.a.	0.000	0.000	6.80	n.a.	BMB
3	3.15	n.a.	0.000	0.000	6.26	n.a.	BMB
4	3.60	n.a.	0.000	0.000	8.24	n.a.	BMB
5	3.66	n.a.	0.000	0.000	6.27	n.a.	BMB
6	3.87	n.a.	0.000	0.000	19.61	n.a.	BMB
7	3.97	n.a.	0.000	0.000	11.71	n.a.	BMB
8	4.22	n.a.	0.000	0.000	9.64	n.a.	ВМ
9	4.30	n.a.	0.000	0.000	14.19	n.a.	MB
10	4.73	n.a.	0.000	0.000	9.26	n.a.	BMB
Total:			0.001	0.000	100.00	0.000	

1	0	GF	°58	48	8-M	B 1

Sample Name:	GP58488-MB1	Injection Volume:	25.0
Vial Number:	10	Channel:	UV_VIS_
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 15:56	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.67	n.a.	0.000	0.000	15.76	n.a.	BMB
2	2.83	n.a.	0.000	0.000	15.27	n.a.	BMB
3	3.28	Cr-6	0.000	0.000	8.75	0.0013	BMB
4	3.35	n.a.	0.000	0.000	7.77	n.a.	ьмВ
5	3.83	n.a.	0.000	0.000	10.07	n.a.	BMB
6	3.98	n.a.	0.000	0.000	10.28	n.a.	BMB
7	4.54	n.a.	0.000	0.000	11.42	n.a.	BMB
8	4.68	n.a.	0.000	0.000	10.07	n.a.	BMB
9	4.89	n.a.	0.000	0.000	10.60	n.a.	BMB
Total:			0.002	0.000	100.00	0.001	

11 GP58488-B1						
Sample Name: Vial Number:	GP58488-B1 11	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	4/26/2011 16:22	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

			YN 82 4121[N				
No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	3.07	n.a.	0.000	0.000	1.39	n.a.	BMB
2	3.33	Cr-6	0.003	0.000	78.09	0.0407	BMB
3	3.60	n.a.	0.000	0.000	0.69	n.a.	BMB
4	3.93	n.a.	0.000	0.000	0.84	n.a.	BMB
5	4.02	n.a.	0.002	0.000	18.99	n.a.	BMB
Total:			0.005	0.000	100.00	0.041	

11 GP5848	8-B1		
Sample Name:	GP58488-B1	Injection Volume: Channel:	25.0 UV VIS 1
Vial Number:	11		00_010_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 16:22	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	3.07	n.a.	0.000	0.000	1.31	n.a.	BMB
2	3.33	Cr-6	0.003	0.000	79.30	0.0437	BMB*
3	3.60	n.a.	0.000	0.000	0.65	n.a.	BMB
4	3.93	n.a.	0.000	0.000	0.80	n.a.	BMB
5	4.02	n.a.	0.002	0.000	17.95	n.a.	BMB
Total:			0.005	0.001	100.00	0.044	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

12 GP58488-B1					
Sample Name: Vial Number:	GP58488-B1 12	Injection Volume: Channel:	25.0 UV_VIS_1		
Sample Type:	unknown	Wavelength:	n.a.		
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.		
Quantif. Method:	hexachrome	Dilution Factor:	1.0000		
Recording Time: Run Time (min):	4/26/2011 16:29 5.00	Sample Weight: Sample Amount:	1.0000 1.0000		

				1"	X.(9.121131	
No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.70	n.a.	0.000	0.000	1.31	n.a.	BMB
2	2.83	n.a.	0.000	0.000	0.61	n.a.	BMB
3	2.92	n.a.	0.000	0.000	0.96	n.a.	BMB
4	3.07	n.a.	0.000	0.000	1.07	n.a.	BMB
5	3.32	Cr-6	0.003	0.000	85.37	0.0484	ВМ
6	3.66	n.a.	0.000	0.000	0.81	n.a.	MB
7	3.76	n.a.	0.000	0.000	0.69	n.a.	BMB
8	4.16	n.a.	0.000	0.000	1.74	n.a.	BMB
9	4.23	n.a.	0.001	0.000	4.92	n.a.	BMB
10	4.45	n.a.	0.000	0.000	1.22	n.a.	BMB
11	4.89	n.a.	0.000	0.000	1.30	n.a.	BMB

QC Reports: GN50164

Operator:chemistry Timebase:accutest Sequence:611042602

Page 2-2 4/27/2011 8:34 AM

Total:	0.005	0.001	100.00	0.048

<u>د</u>

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

12 GP58488-B1						
Sample Name: Vial Number:	GP58488-B1 12	Injection Volume: Channel:	25.0 UV_VI\$_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	4/26/2011 16:29	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.70	n.a.	0.000	0.000	1.35	n.a.	BMB
2	2.83	n.a.	0.000	0.000	0.63	n.a.	BMB
3	2.92	n.a.	0.000	0.000	0.99	n.a.	BMB
4	3.07	n.a.	0.000	0.000	1.11	n.a.	BMB
5	3.32	Cr-6	0.003	0.000	85.75	0.0471	BMB*
6	3.76	n.a.	0.000	0.000	0.71	n.a.	BMB
7	4.16	n.a.	0.000	0.000	1.80	n.a.	BMB
8	4.23	n.a.	0.001	0.000	5.07	n.a.	BMB
9	4.45	n.a.	0.000	0.000	1.26	n.a.	BMB
10	4.89	n.a.	0.000	0.000	1.34	n.a.	BMB
Total:			0.005	0.001	100.00	0.047	

Recording Time:

Run Time (min):

1.0000

1.0000

Sample Weight: Sample Amount:

4/26/2011 16:37

5.00

13 124-10MS						
Sample Name: Vial Number:	124-10MS 13	Injection Volume: Channel:	25.0 UV VIS 1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			

0.00160 611042602 #13 AU	124-10MS	UV_VIS_1
0.00 100 100		
0.00140		5 - 3.510
0.00120-		
0.00400		
0.00100		
0.00080-		
]		
0.00060-		
0.00040		6 - 3.630
0.00040		7 - 3.690
0.00020	1 4	10 4547
	1-2-82,954	6-3.17 8-9997.090
-0.00000-1 A. A. A. A. MI	JUL 2011 MAN WAN (V 3/M3/1684	Myself on Muritin
-0.00020	MARM . M NATA	min
0.00 0.50 1.00 1	50 2.00 2.50 3.00 3	.50 4.00 4.50 5.00 018 4\27\M

				V	M DC	<u> </u>	
No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.84	n.a.	0.000	0.000	5.42	n.a.	ВМ
2	2.95	n.a.	0.000	0.000	5.94	n.a.	MB
3	3.08	n.a.	0.000	0.000	2.21	n.a.	BMB
4	3.18	Cr-6	0.000	0.000	1.97	0.0009	BMB
5	3.51	n.a.	0.001	0.000	44.88	n.a.	BM
6	3.63	n.a.	0.000	0.000	20.40	n.a.	М
7	3.69	n.a.	0.000	0.000	6.51	n.a.	MB
8	3.98	n.a.	0.000	0.000	2.58	n.a.	BMB
9	4.09	n.a.	0.000	0.000	2.11	n.a.	BMB
10	4.52	n.a.	0.000	0.000	3.26	n.a.	BMB
11	4.87	n.a.	0.000	0.000	4.72	n.a.	BMB

hexachrome/Integration

QC Reports: GN50164

Operator:chemistry Timebase:accutest Sequence:611042602

Page 2-2 4/27/2011 8:34 AM

	·				
Total:	0.0	003	0.000	100.00	0.001

...

13 GP58488-S1						
Sample Name: Vial Number:	GP58488-S1	Injection Volume: Channel:	25.0 UV VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	4/26/2011 16:37	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.84	n.a.	0.000	0.000	5.26	n.a.	вм
2	2.95	n.a.	0.000	0.000	5.76	n.a.	MB
3	3.08	n.a.	0.000	0.000	2.14	n.a.	BMB
4	3.18	Cr-6	0.000	0.000	4.94	0.0015	BMB*
5	3.51	n.a.	0.001	0.000	43.53	n.a.	ВМ
6	3.63	n.a.	0.000	0.000	19.78	n.a.	М
7	3.69	n.a.	0.000	0.000	6.31	n.a.	MB
8	3.98	n.a.	0.000	0.000	2.50	n.a.	BMB
9	4.09	n.a.	0.000	0.000	2.05	n.a.	BMB
10	4.52	n.a.	0.000	0.000	3.16	n.a.	BMB
11	4.87	n.a.	0.000	0.000	4.57	n.a.	BMB

QC Reports: GN50164

Operator:chemistry Timebase:accutest Sequence:611042602

	Pa	ige 14	1-78
1/27/20	11	9:34	AM

The state of the s	 				
Total:	0.003	0.000	100.00	0.001	- 1

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

14 124-10MS						
Sample Name: Vial Number:	124-10MS 14	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time: Run Time (min):	4/26/2011 16:45 5.00	Sample Weight: Sample Amount:	1.0000 1.0000			

				411	90 C.	1127111	
No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.59	n.a.	0.000	0.000	6.19	n.a.	BMB
2	2.89	n.a.	0.000	0.000	5.40	n.a.	BMB
3	3.04	n.a.	0.000	0.000	5.51	n.a.	BMB
4	3.29	Cr-6	0.000	0.000	12.64	0.0016	BMB
5	3.49	n.a.	0.000	0.000	7.60	n.a.	BMB
6	3.74	n.a.	0.000	0.000	41.00	n.a.	BMB
7	3.95	n.a.	0.000	0.000	5.37	n.a.	BMB
8	4.38	n.a.	0.000	0.000	6.96	n.a.	BMB
9	4.56	n.a.	0.000	0.000	9.33_	n.a.	BMB
Total:			0.001	0.000	100.00	0.002	

14 GP58488-S1								
Sample Name: Vial Number:	GP58488-S1 14	Injection Volume: Channel:	25.0 UV_VIS_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.					
Quantif. Method:	hexachrome	Dilution Factor:	1.0000					
Recording Time:	4/26/2011 16:45	Sample Weight:	1.0000					
Run Time (min):	5.00	Sample Amount:	1.0000					

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.59	n.a.	0.000	0.000	5.65	n.a.	BMB
2	2.89	n.a.	0.000	0.000	4.94	n.a.	BMB
3	3.04	n.a.	0.000	0.000	5.04	n.a.	BMB
4	3.29	Cr-6	0.000	0.000	12.56	0.0016	BM *
5	3.32	n.a.	0.000	0.000	7.61	n.a.	MB*
6	3.49	n.a.	0.000	0.000	6.95	n.a.	BMB
7	3.74	n.a.	0.000	0.000	37.46	n.a.	BMB
8	3.95	n.a.	0.000	0.000	4.90	n.a.	BMB
9	4.38	n.a.	0.000	0.000	6.35	n.a.	BMB
10	4.56	n.a.	0.000	0.000	8.52	n.a.	ВМВ
Total:			0.002	0.000	100.00	0.002	

15 GP5848	15 GP58488-D1								
Sample Name: Vial Number:	GP58488-D1 15	Injection Volume: Channel:	25.0 UV_VIS_1						
Sample Type:	unknown	Wavelength:	n.a.						
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.						
Quantif. Method:	hexachrome	Dilution Factor:	1.0000						
Recording Time: Run Time (min):	4/26/2011 16:53 5.00	Sample Weight: Sample Amount:	1.0000 1.0000						

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rei.Area %	Amount ppm	Type
1	2.78	n.a.	0.000	0.000	2.14	n.a.	BMB
2	2.95	n.a.	0.000	0.000	2.19	n.a.	BMB
3	3.06	n.a.	0.000	0.000	9.36	n.a.	BMB
4	3.23	Cr-6	0.000	0.000	6.96	0.0018	BMB
5	3.43	n.a.	0.000	0.000	4.97	n.a.	BMB
6	3.51	n.a.	0.000	0.000	2.46	n.a.	BMB
7	3.95	n.a.	0.000	0.000	6.18	n.a.	BMB
8	4.12	n.a.	0.000	0.000	1.87	n.a.	BMB
9	4.28	n.a.	0.000	0.000	2.76	n.a.	BMB
10	4.48	n.a.	0.000	0.000	4.43	n.a.	BMB
11	4.60	n.a.	0.000	0.000	2.47	n.a.	BMB

Operator:chemistry Timebase:accutest Sequence:611042602

Page 17-78 4/27/2011 9:34 AM

12	4.71	n.a.	0.001	0.000	46.52	n.a.	BMB
13	4.74	n.a.	0.000	0.000	4.31	n.a.	Rd
14	4.89	n.a	0.000	0.000	3.38	n.a.	BMB
Total:			0.003	0.000	100.00	0.002	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	3.37	Cr-6	0.000	0.000	2.12	0.0013	BMB
2	3.61	n.a.	0.006	0.000	94.31	n.a.	BMB
3	3.92	n.a.	0.000	0.000	1.75	n.a.	BMB
4	4.02	n.a.	0.000	0.000	1.81	n.a.	BMB
Total:			0.007	0.000	100.00	0.001	

17 JA74098-1								
Sample Name: Vial Number:	JA74098-1 17	Injection Volume: Channel:	25.0 UV_VIS_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.					
Quantif. Method:	hexachrome	Dilution Factor:	1.0000					
Recording Time:	4/26/2011 17:09	Sample Weight:	1.0000					
Run Time (min):	5.00	Sample Amount:	1.0000					

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.65	n.a.	0.000	0.000	21.10	n.a.	BMB
2	2.85	n.a.	0.000	0.000	30.21	n.a.	BMB
3	2.98	n.a.	0.000	0.000	6.15	n.a.	BMB
4	3.64	n.a.	0.000	0.000	7.83	n.a.	BMB
5	3.74	n.a.	0.000	0.000	11.77	n.a.	BM
6	3.81	n.a.	0.000	0.000	6.52	n.a.	MB
7	3.95	n.a.	0.000	0.000	9.23	n.a.	BMB
8	4.20	n.a.	0.000	0.000	7.19	n.a.	BMB
Total:			0.001	0.000	100.00	0.000	

Quantif. Method:

Recording Time:

1.0000

1.0000

1.0000

hexachrome

4/26/2011 17:17

1.00

Vial Number: 18 Channel: UV_VIS_1 Sample Type: unknown Wavelength: n.a.				
Sample Name: Vial Number:		•		
Sample Type: Control Program:	unknown hexachrome_ASDV	Wavelength: Bandwidth:	n.a. n.a.	

Dilution Factor:

Sample Weight:

Sample Amount:

4.00

Run Time (min): 5.00 UV_VIS_1 0.000600 611042602 #18 AU JA74098-1 0.000500-5 - 4.65 4 - 3.850 0.000400-0.000300 2 - 2.807 0.000200 0.000100 -0.000000 min -0.000100

No.	Ret.Time	Peak Name	Height	Area AU*min	Rel.Area %	Amount	Type
	min		AU			ppm	
1	2.62	n.a.	0.000	0.000	6.03	n.a.	BMB
2	2.81	n.a.	0.000	0.000	26.55	n.a.	BMB
3	3.33	Cr-6	0.000	0.000	10.08	0.0013	BMB
4	3.85	n.a.	0.000	0.000	12.24	n.a.	BMB
5	4.65	n.a.	0.000	0.000	28.13	n.a.	BMB
6	4.75	n.a.	0.000	0.000	10.79	n.a.	вмв
7	4.88	n.a.	0.000	0.000	6.17	n.a.	BMB
Total:			0.001	0.000	100.00	0.001	

3.00

2.00

hexachrome/Integration

0.00

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

5.00

_	_	_	 _	_	_	_	_	

19 124-10MSF

GP57768-PS1

Sample Name:	124-10MSF	Injection Volume:	25.0
Vial Number:	19	Channel:	UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 17:25	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

					w ac	912111	
No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.74	n.a.	0.000	0.000	22.12	n.a.	ВМВ
2	2.91	n.a.	0.000	0.000	10.84	n.a.	BMB
3	3.12	n.a.	0.000	0.000	6.97	n.a.	BMB
4	3.35	Cr-6	0.000	0.000	17.28	0.0017	BMB
5	4.00	n.a.	0.000	0.000	9.16	n.a.	BMB
6	4.40	n.a.	0.000	0.000	9.17	n.a.	BMB
7	4.71	n.a.	0.000	0.000	12.21	n.a.	BMB
8	4.88	n.a.	0.000	0.000	12.25	n <u>.a.</u>	вмв
Total:			0.001	0.000	100.00	0.002	

hexachrome/Integration

19 GP58488-S2 GP57768-PS1						
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time: Run Time (min):	4/26/2011 17:25 5.00	Sample Weight: Sample Amount:	1.0000 1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.74	n.a.	0.000	0.000	17.22	n.a.	BMB
2	2.91	n.a.	0.000	0.000	8.43	n.a.	BMB
3	3.12	n.a.	0.000	0.000	5.43	n.a.	BMB
4	3.19	n.a.	0.000	0.000	2.54	n.a.	BM *
5	3.35	Cr-6	0.000	0.000	25.85	0.0028	M *
6	3.47	n.a.	0.000	0.000	7.21	n.a.	MB*
7	4.00	n.a.	0.000	0.000	7.13	n.a.	BMB
8	4.40	n.a.	0.000	0.000	7.14	n.a.	BMB
9	4.71	n.a.	0.000	0.000	9.50	n.a.	BMB
10	4.88	n.a.	0.000	0.000	9.54	n.a.	BMB
Total:			0.001	0.000	100.00	0.003	

20 124-10MSF						
Sample Name: Vial Number:	124-10MSF 20	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	4/26/2011 17:32	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.57	n.a.	0.000	0.000	20.72	n.a.	BMB
2	3.01	n.a.	0.000	0.000	13.61	n.a.	BMB
3	3.34	Cr-6	0.000	0.000	24.34	0.0015	BMB
4	3.87	n.a.	0.000	0.000	9.53	n.a.	BMB
5	4.26	n.a.	0.000	0.000	13.87	n.a.	BMB
6	4.54	n.a.	0.000	0.000	17.92	<u>n.a.</u>	BMB
Total:			0.001	0.000	100.00	0.002	

20 GP58488-S2						
Sample Name: Vial Number:	GP58488-S2 20	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	4/26/2011 17:32	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.57	n.a.	0.000	0.000	11.41	n.a.	BMB
2	3.01	n.a.	0.000	0.000	7.50	n.a.	BMB
3	3.34	Cr-6	0.000	0.000	45.20	0.0037	BM *
4	3.38	n.a.	0.000	0.000	13.13	n.a.	MB*
5	3.87	n.a.	0.000	0.000	5.25	n.a.	BMB
6	4.26	n.a.	0.000	0.000	7.64	n.a.	BMB
7	4.54	n.a.	0.000	0.000	9.87	n.a.	BMB
Total:			0.001	0.000	100.00	0.004	

Recording Time:

Run Time (min):

21 GP58488-D2

4/26/2011 17:40

5.00

n.a.

n.a.

Sample Weight:

Sample Amount:

1.0000

1.0000

1.0000

GP58488-D2 Injection Volume: Sample Name: Channel: Vial Number: 21 Wavelength: Sample Type: unknown Bandwidth: Control Program: hexachrome_ASDV Dilution Factor: Quantif. Method: hexachrome

0.00100 611042602 #2	21	GP5848	8-D2	UV_V	IS_1
0.00100 AU					
0.00087				6 - 3.854 	
1					
0.00075					
0.00062					
0.00062-					
0.00050					
0.00038-			1 - 2.904	Ì	
0.00025				- 3.517	
0.00025			l l	5 - 3.647 8 - 4.240	10 - 4
0.00013	1.	. Jn		Λ .11 Λ	
] AAA [. Na. N. N. J	in aram	2 - 33750	r 6 - 3.354 - 3.954 g	4.607
I WWW.	Mr 11/M/ / / ////	Wh MWV MMN	WALMAN	A AM NAM M	W!
-0.00010	<u>, , , , , , , , , , , , , , , , , , , </u>	M. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	, , , , , , , , , , , , , , , , , , ,	· • • • • • • • • • • • • • • • • • • •	min
0.00	1.00	2.00	3.00	4.00	5.00

No.	Ret.Time	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.90	n.a.	0.000	0.000	12.15	n.a.	вмв
2	3.15	n.a.	0.000	0.000	3.20	n.a.	BMB
3	3.35	Cr-6	0.000	0.000	5.05	0.0012	BMB
4	3.52	n.a.	0.000	0.000	9.71	n.a.	₿MB
5	3.65	n.a.	0.000	0.000	7.04	n.a.	BMB
6	3.85	n.a.	0.001	0.000	38.78	n.a.	BMB
7	3.95	n.a.	0.000	0.000	4.77	n.a.	BMB
8	4.24	n.a.	0.000	0.000	7.94	n.a.	BMB
9	4.61	n.a.	0.000	0.000	5.21	n.a.	BMB
10	4.70	n.a.	0.000	0.000	6.14	n.a.	BMB_
Total:			0.002	0.000	100.00	0.001	

hexachrome/Integration

22 GP58488-D2					
Sample Name: Vial Number:	GP58488-D2 22	Injection Volume: Channel:	25.0 UV_VIS_1		
Sample Type:	unknown	Wavelength:	n.a.		
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.		
Quantif. Method:	hexachrome	Dilution Factor:	1.0000		
Recording Time:	4/26/2011 17:48	Sample Weight:	1.0000		
Run Time (min):	5.00	Sample Amount:	1.0000		

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.67	n.a.	0.000	0.000	7.28	n.a.	BMB
2	2.77	n.a.	0.000	0.000	8.47	n.a.	BMB
3	2.87	n.a.	0.000	0.000	10.01	n.a.	BM
4	2.95	n.a.	0.000	0.000	15.49	n.a.	MB
5	3.59	n.a.	0.000	0.000	19.55	n.a.	BMB
6	3.68	n.a.	0.000	0.000	9.83	n.a.	BMB
7	4.03	n.a.	0.000	0.000	6.43	n.a.	BMB
8	4.27	n.a.	0.000	0.000	7.06	n.a.	BMB
9	4.91	n.a.	0.000	0.000	15.88	n.a.	BMB
Total:			0.002	0.000	100.00	0.000	

23 JA74098-1F						
Sample Name: Vial Number:	JA74098-1F 23	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time: Run Time (min):	4/26/2011 17:56 5.01	Sample Weight: Sample Amount:	1.0000 1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.70	n.a.	0.000	0.000	6.29	n.a.	BMB
2	3.10	n.a.	0.000	0.000	7.70	n.a.	BMB
3	3.25	Cr-6	0.000	0.000	13.35	0.0013	BMB
4	3.42	n.a.	0.000	0.000	8.47	n.a.	BMB
5	3.52	n.a.	0.000	0.000	12.81	n.a.	BMB
6	3.81	n.a.	0.000	0.000	13.09	n.a.	BMB
7	4.12	n.a.	0.000	0.000	13.68	n.a.	BMB
8	4.53	n.a.	0.000	0.000	9.79	n.a.	BMB
9	4.98	n.a.	0.000	0.000	14.82	n.a.	BMB
Total:			0.001	0.000	100.00	0.001	

24 JA74098-1F						
Sample Name: Vial Number:	JA74098-1F 24	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	4/26/2011 18:04	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.60	n.a.	0.000	0.000	4.14	n.a.	BMB
2	2.75	n.a.	0.000	0.000	7.86	n.a.	ВМ
3	2.82	n.a.	0.000	0.000	4.36	n.a.	М
4	2.91	n.a.	0.000	0.000	7.42	n.a.	MB
5	3.03	n.a.	0.000	0.000	3.07	n.a.	BMB
6	3.08	n.a.	0.000	0.000	2.39	n.a.	BMB
7	3.16	Cr-6	0.000	0.000	7.52	0.0017	BMB
8	3.47	n.a.	0.000	0.000	3.72	n.a.	BMB
9	3.53	n.a.	0.000	0.000	3.74	n.a.	BMB
10	3.62	n.a.	0.000	0.000	9.89	n.a.	BMB
11	4.18	n.a.	0.000	0.000	3.21	n.a.	ВМ

Page 27-78 4/27/2011 9:34 AM

12	4.23	n.a.	0.000	0.000	8.17	n.a.	М
13	4.33	n.a.	0.000	0.000	7.69	n.a.	M
14	4.46	n.a.	0.000	0.000	4.42	n.a.	MB
15	4.55	n.a.	0.000	0.000	15.90	n.a.	BMB
16	4.86	n.a.	0.000	0.000	6.49	n.a.	BMB
Total:			0.003	0.000	100.00	0.002	

25 GP58488-S1						
Sample Name: Vial Number:	GP58488-S1 3	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time: Run Time (min):	4/26/2011 18:12 5.00	Sample Weight: Sample Amount:	1.0000 1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.61	n.a.	0.000	0.000	17.77	n.a.	BMB
2	2.99	n.a.	0.000	0.000	6.55	n.a.	BMB
3	3.82	n.a.	0.000	0.000	12.12	n.a.	BMB
4	4.08	n.a.	0.000	0.000	14.05	n.a.	BMB
5	4.32	n.a.	0.000	0.000	23.96	n.a.	BMB
6	4.38	n.a.	0.000	0.000	5.79	n.a.	BMB
7	4.67	n.a.	0.000	0.000	7.82	n.a.	BMB
8	4.80	n.a.	0.000	0.000	5.48	n.a.	BMB
9	4.95	n.a.	0.000	0.000	6.46	n.a.	BMB
Total:			0.002	0.000	100.00	0.000	

26 GP58488-S1					
Sample Name: Vial Number:	GP58488-S1 4	Injection Volume: Channel:	25.0 UV_VIS_1		
Sample Type:	unknown	Wavelength:	n.a.		
Control Program:	hexachrome ASDV	Bandwidth:	n.a.		
Quantif. Method:	hexachrome	Dilution Factor:	1.0000		
Recording Time:	4/26/2011 18:20	Sample Weight:	1.0000		
Run Time (min):	5.00	Sample Amount:	1.0000		

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.59	n.a.	0.000	0.000	6.08	n.a.	BMB
2	2.78	n.a.	0.000	0.000	3.38	n.a.	BMB
3	2.84	n.a.	0.000	0.000	4.54	n.a.	BMB
4	2.97	n.a.	0.000	0.000	12.08	n.a.	BMB
5	3.09	n.a.	0.000	0.000	3.43	n.a.	BMB
6	3.21	n.a.	0.000	0.000	7.03	n.a.	BMB
7	3.36	Cr-6	0.000	0.000	7.65	0.0013	BMB
8	3.68	n.a.	0.000	0.000	6.33	n.a.	BMB
9	3.82	n.a.	0.000	0.000	17.51	n.a.	BMB
10	4.05	n.a.	0.000	0.000	10.97	n.a.	BMB
11	4.30	n.a.	0.000	0.000	9.24	n.a.	BMB

Page 30-78 4/27/2011 9:34 AM

12	4.48	n.a.	0.000	0.000	4.00	n.a.	BMB	١
13	4.56	n.a.	0.000	0.000	7.76	n.a.	BMB	1
Total:			0.002	0.000	100.00	0.001		l

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

hexachrome/Integration

Run Time (min):

5.00

1.0000

Sample Amount:

27 GP5848	27 GP58488-S2							
Sample Name: Vial Number:	GP58488-S2 5	Injection Volume: Channel:	25.0 UV_VIS_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.					
Quantif. Method:	hexachrome	Dilution Factor:	1.0000					
Recording Time:	4/26/2011 18:28	Sample Weight:	1.0000					

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.68	n.a.	0.000	0.000	12.11	n.a.	BMB
2	2.81	n.a.	0.000	0.000	3.83	n.a.	BMB
3	2.95	n.a.	0.000	0.000	5.81	n.a.	вмв
4	3.03	n.a.	0.000	0.000	6.20	n.a.	BMB
5	3.13	n.a.	0.000	0.000	3.37	n.a.	BMB
6	3.39	Cr-6	0.000	0.000	3.77	0.0011	BMB
7	3.91	n.a.	0.000	0.000	16.62	n.a.	BMB
8	4.19	n.a.	0.000	0.000	7.11	n.a.	BMB
9	4.37	n.a.	0.000	0.000	8.26	n.a.	BMB
10	4.45	n.a.	0.000	0.000	3.48	n.a.	BMB
11	4.63	n.a.	0.000	0.000	5.61	n.a.	вмв

hexachrome/Integration

Page 32-78 4/27/2011 9:34 AM

12	4.92	n.a.	0.001	0.000	23.84	n.a.	BMB
Total:			0.002	0.000	100.00	0.001	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

hexachrome/Integration

28 GP58488-S2					
Sample Name: Vial Number:	GP58488-S2 6	Injection Volume: Channel:	25.0 UV_VIS_1		
Sample Type:	unknown	Wavelength:	n.a.		
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.		
Quantif. Method:	hexachrome	Dilution Factor:	1.0000		
Recording Time:	4/26/2011 18:36	Sample Weight:	1.0000		
Run Time (min):	5.00	Sample Amount:	1.0000		

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm_	Туре
1	2.62	n,a.	0.000	0.000	16.18	n.a.	BMB
2	2.88	n.a.	0.000	0.000	7.81	n.a.	BMB
3	3.06	n.a.	0.000	0.000	7.06	n.a.	BMB
4	3.42	Cr-6	0.000	0.000	4.44	0.0010	BMB
5	3.59	n.a.	0.000	0.000	14.88	n.a.	BMB
6	4.30	n.a.	0.000	0.000	4.29	n.a.	BMB
7	4.37	n.a.	0.000	0.000	5.70	n.a.	BMB
8	4.51	n.a.	0.000	0.000	11.93	n.a.	BMB
9	4.67	n,a.	0.000	0.000	9.62	n.a.	вм
10	4.72	n.a.	0.000	0.000	11.15	n.a.	MB
11	4.92	n.a.	0.000	0.000	6.94	n.a.	BMB

QC Reports: GN50164

Reports. GN30104

Operator:chemistry Timebase:accutest Sequence:611042602

Page 34-78 4/27/2011 9:34 AM

Total:	0.002	0.000	100.00	0.001	

<u>~</u>

29 CCV	,		
Sample Name: Vial Number:	CCV 25	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time: Run Time (min):	4/26/2011 18:44 5.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.54	n.a.	0.000	0.000	0.27	n.a.	BMB
2	2.63	n.a.	0.000	0.000	0.20	n.a.	BMB
3	3.00	n.a.	0.000	0.000	0.27	n.a.	BMB
4	3.32	Cr-6	0.016	0.002	97.94	0.2553	вм
5	3.74	n.a.	0.000	0.000	0.19	n.a.	MB
6	3.94	n.a.	0.000	0.000	0.40	n.a.	BMB
7	4.03	n.a.	0.000	0.000	0.22	n.a.	BMB
8	4.13	n.a.	0.000	0.000	0.25	n.a.	BMB
9	4.25	n.a.	0.000	0.000	0.24	n.a.	BMB
Total:			0.017	0.002	100.00	0.255	

30 CCB			
Sample Name: Vial Number:	CCB 26	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 18:52	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU* <u>min</u>	Rel.Area %	Amount ppm	Type
1	2.55	n.a.	0.000	0.000	17.81	n.a.	BMB
2	2.65	n.a.	0.000	0.000	5.36	n.a.	BMB
3	2.74	n.a.	0.001	0.000	24.95	n.a.	BMB
4	2.98	n.a.	0.000	0.000	10.53	n.a.	BMB
5	4.20	n.a.	0.000	0.000	6.66	n.a.	BMB
6	4.43	n.a.	0.000	0.000	6.02	n.a.	BMB
7	4.62	n.a.	0.000	0.000	4.86	n.a.	BM
8	4.68	n.a.	0.000	0.000	14.31	n.a.	MB
9	4.81	n.a.	0.000	0.000	9.48	n.a.	BMB
Total:	•		0.002	0.000	100.00	0.000	

31 JA74098-2							
Sample Name: Vial Number:	JA74098-2 27	Injection Volume: Channel:	25.0 UV_VIS_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.				
Quantif. Method:	hexachrome	Dilution Factor:	1.0000				
Recording Time:	4/26/2011 19:00	Sample Weight:	1.0000				
Run Time (min):	5.00	Sample Amount:	1.0000				

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.60	n.a.	0.000	0.000	15.27	n.a.	BMB
2	2.93	n.a.	0.000	0.000	5.72	n.a.	BMB
3	3.11	n.a.	0.000	0.000	11.18	n.a.	BMB
4	3.33	n.a.	0.000	0.000	6.96	n.a.	BMB
5	3.43	Cr-6	0.000	0.000	16.19	0.0022	ВМ
6	3.53	n.a.	0.000	0.000	14.56	n.a.	М
7	3.56	n.a.	0.000	0.000	10.13	n.a.	MB
8	4.23	n.a.	0.000	0.000	4.56	n.a.	BMB
9	4.56	n.a.	0.000	0.000	15.4 <u>4</u>	n <u>.a.</u>	BMB
Total:			0.002	0.000	100.00	0.002	

32	JA74098-2
32	JA74098-2

Sample Name: Vial Number:	JA74098-2 28	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 19:08	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.85	n.a.	0.000	0.000	4.13	n.a.	вмв
2	3.08	n.a.	0.000	0.000	18.49	n.a.	BMB
3	3.43	Cr-6	0.000	0.000	8.78	0.0013	BMB
4	3.64	n.a.	0.000	0.000	5.37	n.a.	BMB
5	3.72	n.a.	0.000	0.000	6.60	n.a.	BMB
6	3.81	n.a.	0.000	0.000	15.60	n.a.	BMB
7	4.08	n.a.	0.000	0.000	9.01	n.a.	BMB
8	4.16	n.a.	0.000	0.000	5.77	n.a.	ВМ
9	4.23	n.a.	0.000	0.000	13.87	n.a.	MB
10	4.86	n.a.	0.000	0.000	7.27	n.a.	вмв
11	4.93	n.a.	0.000	0.000	5.11	n.a.	BMB

Page 39-78 4/27/2011 9:34 AM

Total:	0.002	0.000	100.00	0.001	

33 JA7409	33 JA74098-2F							
Sample Name: Vial Number:	JA74098-2F 29	Injection Volume: Channel:	25.0 UV_VIS_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	hexachrome ASDV	Bandwidth:	n.a.					
Quantif. Method:	hexachrome	Dilution Factor:	1.0000					
Recording Time:	4/26/2011 19:16	Sample Weight:	1.0000					
Run Time (min):	5.00	Sample Amount:	1.0000					

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.67	n.a.	0.000	0.000	6.18	n.a.	BMB
2	2.99	n.a.	0.000	0.000	20.18	n.a.	BMB
3	3.38	Cr-6	0.000	0.000	16.77	0.0023	BMB
4	3.49	n.a.	0.000	0.000	7.91	n.a.	BMB
5	3.63	n.a.	0.000	0.000	5.01	n.a.	ВМ
6	3.70	n.a.	0.000	0.000	5.32	n.a.	MB
7	4.14	n.a.	0.000	0.000	23.47	n.a.	BMB
8	4.53	n.a.	0.000	0.000	6.32	n.a.	BMB
9	4.94	n.a.	0.000	0.000	8.83	n.a.	BMB
Total:			0.002	0.000	100.00	0.002	

34 JA74098-2F						
Sample Name: Vial Number:	JA74098-2F 30	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time: Run Time (min):	4/26/2011 19:23 5.00	Sample Weight: Sample Amount:	1.0000 1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.69	n.a.	0.000	0.000	13.70	n.a.	вМ
2	2.74	n.a.	0.000	0.000	6.62	n.a.	MB
3	2.99	n.a.	0.001	0.000	46.52	n.a.	BMB
4	3.67	n.a.	0.000	0.000	4.80	n.a.	BMB
5	3.89	n.a.	0.000	0.000	6.13	n.a.	BMB
6	4.63	n.a.	0.000	0.000	8.80	n.a.	BMB
7	4.72	n.a.	0.000	0.000	8.69	n.a.	BMB
8	4.91	n,a	0.000	0.000	4.74	n.a.	BMB
Total:			0.002	0.000	100.00	0.000	

35 JA74098-3							
Sample Name: Vial Number:	JA74098-3 31	Injection Volume: Channel:	25.0 UV_VIS_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.				
Quantif. Method:	hexachrome	Dilution Factor:	1.0000				
Recording Time:	4/26/2011 19:31	Sample Weight:	1.0000				
Run Time (min):	5.00	Sample Amount:	1.0000				

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.58	n.a.	0.001	0.000	12.25	n.a.	BMB
2	2.77	n.a.	0.000	0.000	3.90	n.a.	BMB
3	2.93	n.a.	0.001	0.000	12.80	n.a.	BMB
4	3.13	n.a.	0.001	0.000	31.10	n.a.	BMB
5	3.39	Cr-6	0.000	0.000	2.34	0.0011	BMB
6	3.47	n.a.	0.000	0.000	2.40	n.a.	BMB
7	3.61	n.a.	0.000	0.000	1.81	n.a.	BMB
8	3.81	n.a.	0.000	0.000	2.40	n.a.	BMB
9	4.16	n.a.	0.000	0.000	3.53	n.a.	BMB
10	4.27	n.a.	0.000	0.000	2.34	n.a.	BMB
11	4.41	n.a.	0.000	0.000	6.90	n.a.	вмв

Page 43-78 4/27/2011 9:34 AM

12	4.51	n.a.	0.001	0.000	14.36	n.a.	ВМ
13	4.61	n.a.	0.000	0.000	_3.87	n.a.	MB
Total:			0.005	0.000	100.00	0.001	

36 JA74098-3						
Sample Name: Vial Number:	JA74098-3 32	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	4/26/2011 19:39	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.90	n.a.	0.000	0.000	5.40	n.a.	BMB
2	3.40	Cr-6	0.000	0.000	9.28	0.0019	BM
3	3.50	n.a.	0.000	0.000	10.02	n.a.	MB
4	3.60	n.a.	0.000	0.000	4.66	n.a.	BMB
5	3.69	n.a.	0.001	0.000	21.18	n.a.	BMB
6	3.98	n.a.	0.000	0.000	2.66	n.a.	BMB
7	4.13	n.a.	0.001	0.000	36.48	n.a.	BMB
8	4.59	n.a.	0.000	0.000	5.39	n.a.	BMB
9	4.90	n.a.	0.000	0.000	4.93	n.a.	BMB_
Total:			0.003	0.000	100.00	0.002	

37 124-100	37 124-10DUPF					
Sample Name: Vial Number:	124-10DUPF 33	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time: Run Time (min):	4/26/2011 19:47 5.00	Sample Weight: Sample Amount:	1.0000 1.0000			

					YN SAZ	J. UIDIIV	
No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
					10.24	n,a.	ВМ
1	2.97	n.a.	0.000	0.000	10.24	11.0.	
2	3.06	n.a.	0.000	0.000	17. 7 5	n.a.	M
3	3.15	n.a.	0.000	0.000	22.86	n.a.	M
4	3.29	Cr-6	0.000	0.000	10.76	0.0022	M
5	3.32	n.a.	0.000	0.000	9.25	n.a.	MB
6	3.99	n.a.	0.000	0.000	10.41	n.a.	BMB
7	4.20	n.a.	0.000	0.000	16.19	n.a.	BMB
8	4.44	n.a.	0.000	0.000	2.55	n.a.	BMB
Total:		100100	0.003	0.000	100.00	0.002	

37 JA7409	8-3F		
Sample Name: Vial Number:	JA74098-3F 33	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 19:47	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.97	n.a.	0.000	0.000	13.41	n.a.	BM *
2	3.06	n.a.	0.000	0.000	16.52	n.a.	MB*
3	3.29	Cr-6	0.000	0.000	13.68	0.0019	BM *
4	3.32	n.a.	0.000	0.000	12.60	n.a.	MB*
5	3.99	n.a.	0.000	0.000	15.64	n.a.	BMB
6	4.20	n.a.	0.000	0.000	24.32	n.a.	BMB
7	4.44	n.a.	0.000	0.000	3.82	n.a.	BMB
Total:			0.002	0.000	100.00	0.002	

38	JA74098-3F	

25.0 Injection Volume: JA74098-3F Sample Name: UV_VIS_1 Channel: 34 Vial Number: Wavelength: n.a. Sample Type: unknown Bandwidth: n.a. Control Program: hexachrome_ASDV Dilution Factor: 1.0000 Quantif. Method: hexachrome 1.0000 Sample Weight: Recording Time: 4/26/2011 19:55 Sample Amount: 1.0000 5.00 Run Time (min):

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.62	n.a.	0.000	0.000	12.64	n.a.	BMB
2	2.83	n.a.	0.000	0.000	7.26	n.a.	BMB
3	2.96	n.a.	0.000	0.000	15.41	n.a.	BMB
4	3.83	n.a.	0.000	0.000	5.43	n.a.	BMB
5	4.18	n.a.	0.000	0.000	6.58	n.a.	BMB
6	4.30	n.a.	0.000	0.000	17.82	n.a.	BMB
7	4.50	n.a.	0.000	0.000	6.22	n.a.	BMB
8	4.72	n.a.	0.000	0.000	23.84	n.a.	BMB
9	4.96	n.a.	0.000	0.000	4.80	n.a.	BMB
Total:			0.002	0.000	100.00	0.000	

hexachrome/Integration

Injection Volume: 25.0 JA74099-1 Sample Name: UV_VIS_1 Channel: 35 Vial Number: Wavelength: n.a. Sample Type: unknown Bandwidth: hexachrome ASDV n.a. Control Program: Dilution Factor: 1.0000 Quantif. Method: hexachrome Sample Weight: 1.0000 Recording Time: 4/26/2011 20:03 Sample Amount: 1.0000 Run Time (min): 5.00

No.	Ret.Time	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.52	n.a.	0.000	0.000	5.03	n.a.	BMB
2	2.58	n.a.	0.000	0.000	3.49	n.a.	BMB
3	2.65	n.a.	0.000	0.000	3.41	n.a.	BMB
4	2.72	n,a.	0.000	0.000	8.35	n.a.	BMB
5	3.60	n.a.	0.000	0.000	5.16	n.a.	BMB
6	3.73	n.a.	0.000	0.000	18.99	n.a.	BMB
7	3.89	n.a.	0.000	0.000	19.88	n.a.	BMB
8	4.78	n.a.	0.000	0.000	5.86	n.a.	BMB
9	4.86	n.a.	0.000	0.000	9.41	n.a.	вм
10	4.94	n,a.	0.000	0.000	20.42	n.a.	MB
Total:			0.002	0.000	100.00	0.000	

hexachrome/Integration

Run Time (min):

5.00

1.0000

Sample Amount:

40 JA7409	9-1		
Sample Name: Vial Number:	JA74099-1 36	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 20:11	Sample Weight:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.79	n.a.	0.000	0.000	13.14	n.a.	BMB
2	2.99	n.a.	0.000	0.000	6.79	n.a.	BMB
3	3.31	Cr-6	0.000	0.000	5.97	0.0015	BMB
4	3.42	n.a.	0.000	0.000	3.59	n.a.	BMB
5	3.51	n.a.	0.000	0.000	3.55	n.a.	BMB
6	3.59	n.a.	0.000	0.000	5.04	n.a.	BMB
7	3.71	n.a.	0.000	0.000	7.17	n.a.	BMB
8	3.85	n.a.	0.000	0.000	4.47	n.a.	BMB
9	4.00	n.a.	0.000	0.000	7.68	n.a.	вмв
10	4.20	n.a.	0.000	0.000	5.10	n.a.	BMB
11	4.32	n.a.	0.000	0.000	7.79	n.a.	BMB

hexachrome/Integration

Page 49-78 4/27/2011 9:34 AM

12	4.66	n.a.	0.000	0.000	6.83	n.a.	BMB
13	4.76	n.a.	0.000	0.000	5.41	n.a.	BMB
14	4.84	n.a.	0.000	0.000	10.55	n.a.	BMB
15	4.91	n.a.	0.000	0.000	6.90	n.a.	BMB
Total:			0.003	0.000	100.00	0.001	

41 JA7409	41 JA74099-1F					
Sample Name: Vial Number:	JA74099-1F 37	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	4/26/2011 20:19	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU* <u>min</u>	Rel.Area %	Amount ppm	Туре
1	2.56	n.a.	0.000	0.000	13.41	n.a.	BMB
2	2.75	n.a.	0.000	0.000	10.40	n.a.	BMB
3	3.07	n.a.	0.000	0.000	6.62	n.a.	BMB
4	3.20	n.a.	0.000	0.000	4.57	n.a.	BMB
5	3,36	Cr-6	0.000	0.000	9.80	0.0019	BMB
6	3.57	n.a.	0.000	0.000	4.59	n.a.	BMB
7	3.83	n.a.	0.000	0.000	13.82	n.a.	BMB
8	4.05	n.a.	0.000	0.000	5.71	n.a.	BMB
9	4.18	n.a.	0.000	0.000	9.16	n.a.	BM
10	4.22	n.a.	0.000	0.000	6.88	n.a.	МВ
11	4.85	n.a.	0.000	0.000	7.01	n.a.	BM

Page 51-78 4/27/2011 9:34 AM

1 12	4.93	n.a.	0.000	0.000	8.03	n.a.	МВ
Total:			0.003	0.000	100.00	0.002	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

hexachrome/Integration

42 JA74099-1F							
Sample Name: Vial Number:	JA74099-1F 38	Injection Volume: Channel:	25.0 UV_VIS_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.				
Quantif. Method:	hexachrome	Dilution Factor:	1.0000				
Recording Time: Run Time (min):	4/26/2011 20:27 5.00	Sample Weight: Sample Amount:	1.0000 1.0000				

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.63	n.a.	0.000	0.000	5.32	n.a.	BMB
2	2.72	n.a.	0.000	0.000	6.43	n.a.	BMB
3	2.92	n.a.	0.000	0.000	6.14	n.a.	BMB
4	3.14	n.a.	0.000	0.000	7.48	n.a.	BM
5	3.21	n.a.	0.000	0.000	2.94	n.a.	MB
6	3.36	Cr-6	0.000	0.000	4.31	0.0013	BMB
7	3.50	n.a.	0.000	0.000	5.17	n.a.	BMB
8	3.65	n.a.	0.000	0.000	2.48	n.a.	BMB
9	3.73	n.a.	0.000	0.000	7.83	n.a.	BMB
10	3,99	n.a.	0.000	0.000	2.56	n.a.	BMB
11	4.10	n.a.	0.000	0.000	2.19	n.a.	BMB

Page 53-78 4/27/2011 9:34 AM

12	4.23	n.a.	0.000	0.000	9.21	n.a.	BMB
13	4.39	n.a.	0.000	0.000	20.09	n.a.	BMB
14	4.54	n.a.	0.000	0.000	5.04	n.a.	BMB
15	4.66	n.a.	0.000	0.000	4.86	n.a.	BMB
16	4.76	n.a.	0.000	0.000	2.10	n.a.	BMB
17	4.95	n.a.	0.000	0.000	5.87	n.a <u>.</u>	BMB
Total:			0.003	0.000	100.00	0.001	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

hexachrome/Integration

43 JA74099-2						
Sample Name: Vial Number:	JA74099-2 39	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	4/26/2011 20:35	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.59	n.a.	0.000	0.000	1.52	n.a.	BMB
2	3.20	Cr-6	0.000	0.000	1.08	0.0016	BMB
3	3.60	n.a.	0.000	0.000	0.72	n.a.	BMB
4	3.83	n.a.	0.000	0.000	1.14	n.a <i>.</i>	BMB
5	3.97	n.a.	0.018	0.001	91.04	n.a.	BMB
6	4.16	n.a.	0.000	0.000	1.00	n.a.	BMB
7	4.29	n.a.	0.000	0.000	0.51	n.a.	BMB
8	4.36	n.a.	0.000	0.000	0.48	n.a.	BMB
9	4.51	n.a.	0.000	0.000	0.69	n.a.	BMB
10	4.59	n.a.	0.000	0.000	1.19	n.a.	BMB
11	4.90	n.a.	0.000	0.000	0.63	n.a.	BMB

Page 55-78 4/27/2011 9:34 AM

Operator:chemistry Timebase:accutest Sequence:611042602

0.040 0.004 400.00 0.002		 				
110fal:1 0.019 0.001 100.00 0.002	Total:	 0.019	0.001	100.00	0.002	

Sample Name: Vial Number:	JA74099-2 40	Injection Volume: Channel:	25.0 UV_VIS_
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 20:43	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.69	n.a.	0.000	0.000	4.88	n.a.	BMB
2	2.91	n.a.	0.000	0.000	7.34	n.a.	BMB
3	3.05	n.a.	0.000	0.000	5.87	n.a.	BMB
4	3.14	n.a.	0.000	0.000	13.08	n.a.	вмв
5	3.31	Cr-6	0.000	0.000	3.12	0.0011	BMB
6	3.62	n.a.	0.001	0.000	13.61	n.a.	вм
7	3.65	n.a.	0.000	0.000	9.71	n.a.	MB
8	3.88	n.a.	0.000	0.000	6.05	n.a.	вмв
9	4.13	n.a.	0.000	0.000	8.67	n.a.	ВМ
10	4.21	n.a.	0.000	0.000	4.93	n.a.	MB
11	4.43	n.a.	0.000	0.000	3.43	n.a.	BMB

Page 57-78 4/27/2011 9:34 AM

12	4.55	n.a.	0.000	0.000	5.52	n.a.	вмв
13	4.82	n.a.	0.000	0.000	3.17	n.a.	ВМ
14	4.84	n.a.	0.000	0.000	6.25	n.a.	MB
15	4.98	n.a.	0.000	0.000	4.35	n.a.	BMB
Total:			0.004	0.000	100.00	0.001	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

hexachrome/Integration

45 JA74099-2F						
Sample Name: Vial Number:	JA74099-2F 41	Injection Volume: Channel:	25.0 UV_VIS_1			
Sample Type:	unknown	Wavelength:	n.a.			
Control Program:	hexachrome ASDV	Bandwidth:	n.a.			
Quantif. Method:	hexachrome	Dilution Factor:	1.0000			
Recording Time:	4/26/2011 20:50	Sample Weight:	1.0000			
Run Time (min):	5.00	Sample Amount:	1.0000			

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.56	n.a.	0.000	0.000	6.52	n.a.	BMB
2	2.72	n.a.	0.000	0.000	8.46	n.a.	BMB
3	2.83	n.a.	0.000	0.000	6.11	n.a.	BMB
4	3.16	Cr-6	0.000	0.000	15.11	0.0028	вм
5	3.24	n.a.	0.000	0.000	18.52	n.a.	MB
6	3.43	n.a.	0.000	0.000	6.68	n.a.	BMB
7	3.68	n.a.	0.000	0.000	3.17	n.a.	BMB
8	4.35	n.a.	0.000	0.000	7.12	n.a.	BMB
9	4.50	n.a.	0.000	0.000	10.90	n.a.	BMB
10	4.57	n.a.	0.000	0.000	5.03	n.a.	BM
11	4.63	n.a.	0.000	0.000	7.42	n.a.	MB

Page 59-78 4/27/2011 9:34 AM

12	n.a.	0.000	0.000	4.96	n.a.	вмв
Total		0.003	0.000	100.00	0.003	

46 JA74099-2F								
Sample Name: Vial Number:	JA74099-2F 42	Injection Volume: Channel:	25.0 UV_VIS_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.					
Quantif. Method:	hexachrome	Dilution Factor:	1.0000					
Recording Time:	4/26/2011 20:58	Sample Weight:	1.0000					
Run Time (min):	5.00	Sample Amount:	1.0000					

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.64	n.a.	0.000	0.000	11.02	n.a.	BMB
2	2.84	n.a.	0.000	0.000	9.91	n.a.	BMB
3	3.00	n.a.	0.000	0.000	4.78	n.a.	BMB
4	3.56	n.a.	0.000	0.000	3.11	n.a.	BMB
5	3.67	n.a.	0.000	0.000	12.16	n.a.	вм
6	3.71	n.a.	0.000	0.000	13.02	n.a.	MB
7	3.83	n.a.	0.000	0.000	2.30	n.a.	BMB
8	3.90	n.a.	0.000	0.000	6.45	n.a.	BMB
9	4.27	n.a.	0.000	0.000	2.20	n.a.	BMB
10	4.38	n.a.	0.000	0.000	11.34	n.a.	BMB
11	4.52	n.a.	0.000	0.000	8.34	n.a.	BMB

Page 61-78 4/27/2011 9:34 AM

12	4.65	n.a.	0.000	0.000	4.52	n.a.	вмв
13	4.87	n.a.	0.000	0.000	10.86	n.a.	BMB
Total:			0.003	0.000	100.00	0.000	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

47 JA7410	00-1	
Sample Name:	JA74100-1	Injection Volume:
Vial Number: Sample Type:	43 unknown	Channel: Wavelength:

25.0 UV_VIS_1 n.a. Control Program: hexachrome_ASDV Bandwidth: n.a. Dilution Factor: 1.0000 Quantif. Method: hexachrome Sample Weight: 1.0000 Recording Time: 4/26/2011 21:06 1.0000 Sample Amount: 5.00 Run Time (min):

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	3.06	n.a.	0.000	0.000	1.55	n.a.	BMB
2	3.33	Cr-6	0.002	0.000	70.80	0.0341	BMB
3	3.57	n.a.	0.000	0.000	1.36	n.a.	BMB
4	3.73	n.a.	0.000	0.000	0.99	n.a.	BMB
5	3.83	n.a.	0.000	0.000	0.99	n.a.	BMB
6	4.17	n.a.	0.002	0.000	17.51	n.a.	BMB
7	4.62	n.a.	0.000	0.000	1.15	n.a.	BMB
8	4.78	n.a.	0.000	0.000	3.68	n.a.	BMB
9	4.96	п.а.	0.000	0.000	1.96	<u>n.a.</u>	BMB
Total:			0.005	0.000	100.00	0.034	

hexachrome/Integration

48 JA74100-1								
Sample Name: Vial Number:	JA74100-1 44	Injection Volume: Channel:	25.0 UV_VIS_1					
Sample Type:	unknown	Wavelength:	n.a.					
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.					
Quantif. Method:	hexachrome	Dilution Factor:	1.0000					
Recording Time:	4/26/2011 21:14	Sample Weight:	1.0000					
Run Time (min):	5.00	Sample Amount:	1.0000					

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.53	n.a.	0.000	0.000	1.59	n.a.	BMB
2	2.70	n.a.	0.000	0.000	1.08	n.a.	BMB
3	2.81	n.a.	0.000	0.000	3.56	n.a.	BMB
4	3.05	n.a.	0.000	0.000	1.60	n.a.	BMB
5	3.34	Cr-6	0.002	0.000	77.66	0.0360	BMB
6	3.57	n.a.	0.000	0.000	2.88	n.a.	BMB
7	3.76	n.a.	0.000	0.000	0.97	n.a.	BMB
8	4.52	n.a.	0.000	0.000	2.24	n.a.	BMB
9	4.65	n.a.	0.000	0.000	5.08	n.a.	BMB
10	4.80	n.a.	0.000	0.000	3.35	n.a.	BMB
Total:			0.004	0.000	100.00	0.036	

49 JA74100-1F							
Sample Name: Vial Number:	JA74100-1F 45	Injection Volume: Channel:	25.0 UV_VIS_1				
Sample Type:	unknown	Wavelength:	n.a.				
Control Program:	hexachrome ASDV	Bandwidth:	n.a.				
Quantif. Method:	hexachrome	Dilution Factor:	1.0000				
Recording Time:	4/26/2011 21:22	Sample Weight:	1.0000				
Run Time (min):	5.00	Sample Amount:	1.0000				

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.61	n.a.	0.001	0.000	7.20	n.a.	ВМВ
2	2.73	n.a.	0.000	0.000	0.71	n.a.	BMB
3	2.81	n.a.	0.001	0.000	6.47	n.a.	BMB
4	2.94	n.a.	0.001	0.000	12.28	n.a.	BMB
5	3.34	Cr-6	0.002	0.000	58.75	0.0400	вмв
6	3.65	n.a.	0.000	0.000	0.51	n.a.	BMB
7	3.78	n.a.	0.001	0.000	5.06	n.a.	BMB
8	4.01	n.a.	0.000	0.000	3.21	n.a.	BMB
9	4.13	n.a.	0.000	0.000	1.73	n.a.	BMB
10	4.18	n.a.	0.000	0.000	0.70	n.a.	BMB
11	4.35	n.a.	0.000	0.000	1.19	n.a.	BMB

Page 65-78 4/27/2011 9:34 AM

-	Total:			0.008	0.001	100.00	0.040		١
Į	14	4.75	n.a.	0.000	0.000	0.67	n.a.	BMB	┨
-	13	4.67	n.a.	0.000	0.000	0.58	n.a.	BMB	1
-	12	4.49	n.a.	0.000	0.000	0.94	n.a.	BMB	١

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

Sample Name: Vial Number:	JA74100-1F 46	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 21:30	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.57	n.a.	0.000	0.000	2.59	n.a.	BMB
2	2.65	n.a.	0.000	0.000	2.83	n.a.	ВМ
3	2.70	n.a.	0.000	0.000	1.37	n.a.	MB
4	2.79	n.a.	0.000	0.000	1.48	n.a.	ВМ
5	2.88	n.a.	0.000	0.000	3.07	n.a.	М
6	2.96	n.a.	0.000	0.000	1.44	n.a.	М
7	3.02	n.a.	0.000	0.000	1.11	n.a.	MB
8	3.33	Cr-6	0.002	0.000	73.81	0.0389	BMB
9	3.52	n.a.	0.000	0.000	1.49	n.a.	Rd
10	3.91	n.a.	0.000	0.000	1.08	n.a.	BMB
11	4.03	n.a.	0.000	0.000	1.03	n.a.	ВМ

Page 67-78 4/27/2011 9:34 AM

12	4.10	n.a.	0.000	0.000	0.90	n.a.	MB
13	4.34	n.a.	0.000	0.000	2.03	n.a.	BMB
14	4.47	n.a.	0.000	0.000	1.54	n.a.	ВМ
15	4.51	n.a.	0.000	0.000	1.56	n.a.	MB
16	4.65	n.a.	0.000	0.000	1.64	n.a.	BMB
17	4.82	n.a.	0.000	0.000	1.04	n.a.	BMB
Total:			0.005	0.000	100.00	0.039	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

51 CCV			
Sample Name: Vial Number:	CCV 47	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 21:38	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.72	n.a.	0.000	0.000	0.58	n.a.	вмв
2	2.82	n.a.	0.000	0.000	0.57	n.a.	BMB
3	3.32	Cr-6	0.016	0.002	96.82	0.2459	BMB
4	3.99	n.a.	0.000	0.000	0.29	n.a.	BMB
5	4.26	n.a.	0.000	0.000	0.30	n.a.	BMB
6	4.43	n.a.	0.000	0.000	0.36	n.a.	BMB
7	4.55	n.a.	0.000	0.000	0.49	n.a.	ВМ
8	4.65	n.a.	0.000	0.000	0.60	n.a.	MB
Total:			0.018	0.002	100.00	0.246	

52 CCB			
Sample Name: Vial Number:	CCB 48	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time: Run Time (min):	4/26/2011 21:46 5.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*m <u>in</u>	Rel.Area %	Amount ppm	Туре
1	2.55	n.a.	0.000	0.000	5.41	n.a.	ВМ
2	2.62	n.a.	0.000	0.000	10.65	n.a.	MB
3	2.80	n.a.	0.000	0.000	4.60	n.a.	BMB
4	2.90	n.a.	0.000	0.000	4.52	n.a.	BMB
5	3.07	n.a.	0.000	0.000	9.75	n.a.	BMB
6	3.15	n.a.	0.000	0.000	2.49	n.a.	BMB
7	3.40	n.a.	0.000	0.000	2.99	n.a.	ВМ
8	3.47	Cr-6	0.000	0.000	4.96	0.0014	MB
9	3.58	n.a.	0.000	0.000	4.66	n.a.	BMB
10	3.68	n.a.	0.000	0.000	2.44	n.a.	BMB
11	3.99	n.a.	0.000	0.000	3.40	n.a.	BM

Page 70-78 4/27/2011 9:34 AM

12	4.07	n.a.	0.000	0.000	9.09	n.a.	М
13	4.14	n.a.	0.000	0.000	8.28	n.a.	M
14	4.21	n.a.	0.000	0.000	4.52	n.a.	MB
15	4.29	n.a.	0.000	0.000	6.67	n.a.	BMB
16	4.46	n.a.	0.000	0.000	4.10	n.a.	BMB
17	4.54	n.a.	0.000	0.000	4.12	n.a.	BMB
18	4.63	n.a.	0.000	0.000	4.77	n.a.	BMB
19	4.86	n.a.	0.000	0.000	2.58	n.a.	BMB
Total:			0.003	0.000	100.00	0.001	

53 JA7410	0-2		
Sample Name: Vial Number:	JA74100-2 49	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time: Run Time (min):	4/26/2011 21:54 5.00	Sample Weight: Sample Amount:	1.0000 1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.84	n.a.	0.000	0.000	1.56	n.a.	вмв
2	2.93	n.a.	0.000	0.000	3.41	n.a.	вм
3	2.99	n.a.	0.000	0.000	2.48	n.a.	М
4	3.08	n.a.	0.000	0.000	6.20	n.a.	MB
5	3.19	n.a.	0.000	0.000	2.26	n.a.	BMB
6	3.34	Cr-6	0.000	0.000	5.69	0.0020	BMB
7	3.61	n.a.	0.000	0.000	4.67	n.a.	BMB
8	3.83	n.a.	0.001	0.000	21.25	n.a.	BMB
9	4.02	n.a.	0.000	0.000	3.20	n.a.	BMB
10	4,11	n.a.	0.000	0.000	2.92	n.a.	BMB
11	4.23	n.a.	0.000	0.000	4.39	n.a.	BMB

Page 72-78 4/27/2011 9:34 AM

12	4.34 4.42	n.a. n.a.	0.000 0.000	0.000 0.000	3.95 2.46	n.a. n.a.	BMB BMB
14	4.53	n.a.	0.000	0.000	6.12	n.a.	ВМ
15	4.55	n.a.	0.000	0.000	9.29	n.a.	MB
16	4.71	n.a.	0.000	0.000	4.36	n.a.	BMB
17	4.84	n.a	0.001	0.000	15.80	n.a.	BMB
Total:			0.005	0.000	100.00	0.002	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

54 JA74100-2					
Sample Name: Vial Number:	JA74100-2 50	Injection Volume: Channel:	25.0 UV_VIS_1		
Sample Type:	unknown	Wavelength:	n.a.		
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.		
Quantif. Method:	hexachrome	Dilution Factor:	1.0000		
Recording Time:	4/26/2011 22:02	Sample Weight:	1.0000		
Run Time (min):	5.00	Sample Amount:	1.0000		

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
1	2.61	n.a.	0.000	0.000	2.88	n.a.	BMB
2	2.72	n.a.	0.000	0.000	9.67	n.a.	вм
3	2.78	n.a.	0.000	0.000	13.29	n.a.	MB
4	2.88	n.a.	0.000	0.000	5.65	n.a.	BMB
5	2.99	n.a.	0.000	0.000	4.49	n.a.	BMB
6	3.32	Cr-6	0.000	0.000	3.63	0.0013	BMB
7	3.50	n.a.	0.000	0.000	9.51	n.a.	BMB
8	3.61	n.a.	0.000	0.000	3.10	n.a.	вмв
9	3.69	n.a.	0.000	0.000	5.37	n.a.	BMB
10	4.10	n.a.	0.000	0.000	4.30	n.a.	BMB
11	4.18	n.a.	0.000	0.000	3.33	n.a.	BMB

Page 74-78 4/27/2011 9:34 AM

12	4.25	n.a.	0.000	0.000	2.60	n.a.	вмв
13	4.48	n.a.	0.000	0.000	7.64	n.a.	BMB
14	4.59	n.a.	0.000	0.000	7.19	n.a.	BMB
15	4.70	n.a.	0.000	0.000	4.11	n.a.	BM
16	4.76	n.a.	0.000	0.000	9.15	n.a.	MB
17	4.98	n.a.	0.000	0.000	4.10	n.a.	BMB
Total:	•		0.004	0.000	100.00	0.001	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

55 CCV			
Sample Name: Vial Number:	CCV 1	Injection Volume: Channel:	25.0 UV_VIS_1
Sample Type:	unknown	Wavelength:	n.a.
Control Program:	hexachrome_ASDV	Bandwidth:	n.a.
Quantif. Method:	hexachrome	Dilution Factor:	1.0000
Recording Time:	4/26/2011 22:10	Sample Weight:	1.0000
Run Time (min):	5.00	Sample Amount:	1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Туре
	2.56	n.a.	0.000	0.000	0.17	n.a.	BMB
2	2.62	n.a.	0.000	0.000	0.31	n.a.	BMB
3	2.90	n.a.	0.000	0.000	0.31	n.a.	BMB
4	3.32	Cr-6	0.016	0.002	93.50	0.2401	BMB
5	3.61	n.a.	0.000	0.000	0.35	n.a.	BMB
6	3.90	n.a.	0.001	0.000	1.99	n.a.	BMB
7	4.05	n.a.	0.000	0.000	0.19	n.a.	Rd
8	4.19	n.a.	0.000	0.000	0.29	n <i>.</i> a.	BM
9	4.25	n.a.	0.000	0.000	0.82	n.a.	М
10	4.33	n.a.	0.000	0.000	0.69	n.a.	MB
11	4.50	n.a.	0.000	0.000	0.76	n.a.	BMB

Page 76-78 4/27/2011 9:34 AM

Operator:chemistry Timebase:accutest Sequence:611042602

12	4.73	n.a.	0.000	0.000	0.28	n.a.	ВМ	
13	4.80	n <u>.a.</u>	0.000	0.000	0.34	n.a <i>.</i>	MB	_
Total:			0.019	0.002	100.00	0.240		

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

56 CCB

25.0	
UV_VIS_1	

Injection Volume: Sample Name: **CCB** Vial Number: Channel: 2 Wavelength: Sample Type: n.a. unknown Control Program: hexachrome_ASDV Bandwidth: n.a. Dilution Factor: 1.0000 Quantif. Method: hexachrome Sample Weight: 1.0000 Recording Time: 4/26/2011 22:17 Run Time (min): 5.00 Sample Amount: 1.0000

No.	Ret.Time min	Peak Name	Height AU	Area AU*min	Rel.Area %	Amount ppm	Type
1	2.71	n.a.	0.000	0.000	4.77	n.a.	BMB
2	2.98	n.a.	0.000	0.000	6.24	n.a.	BMB
3	3.07	n.a.	0.000	0.000	2.11	n.a.	BMB
4	3.35	Cr-6	0.002	0.000	41.16	0.0096	BMB
5	3.45	n.a.	0.000	0.000	3.68	n.a.	BMB
6	3.57	n.a.	0.000	0.000	3.19	n.a.	ВМ
7	3.60	n.a.	0.000	0.000	2.11	n.a.	MB
8	3.82	n.a.	0.000	0.000	1.71	n.a.	BMB
9	3.88	n.a.	0.000	0.000	1.68	n.a.	вмв
10	4.04	n.a.	0.000	0.000	5.90	n.a.	BMB
11	4.11	n.a.	0.000	0.000	3.97	n.a.	ВМ

hexachrome/Integration

Page 78-78 4/27/2011 9:34 AM

12	4.14	n.a.	0.000	0.000	5.47	n.a.	MB
13	4.29	n.a.	0.000	0.000	2.65	n.a.	BMB
14	4.44	n.a.	0.000	0.000	2.54	n.a.	BMB
15	4.56	n.a.	0.000	0.000	8.82	n.a.	BMB
16	4.66	n.a.	0.000	0.000	3.99	n.a.	BMB
Total:			0.005	0.000	100.00	0.010	

Chromeleon (c) Dionex 1996-2001 Version 6.80 SR10 Build 2818 (166959)

